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PREFACE
The underlying goal of this text is to help you develop an appreciation for the essential

roles axioms and definitions play throughout mathematics.
We offer a number of paths toward that goal: a Logic path (Chapter 1); a Set Theory path

(Chapter 2); an Analysis path (Chapter 3); a Topology path (Chapter 4); and an Algebra
path (Chapter 5). You can embark on any of the last three independent paths upon comple-
tion of the first two:

A one-semester course may include one, two, or even all three of the last three chapters,
in total or in part, depending on the preparation of the students, and the ambition of the
instructor.

For our part, we have made every effort to assist you in the journey you are about to
take. We did our very best to write a readable book, without compromising mathematical
integrity. Along the way, you will encounter numerous Check Your Understanding boxes
designed to challenge your understanding of each newly-introduced concept. Detailed
solutions to each of the Check Your Understanding problems appear in Appendix A, but
you should only turn to that appendix after making a valiant effort to solve the given prob-
lem on your own, or with others. In the words of Desecrates:

We never understand a thing so well, and make it our own, when we
learn it from another, as when we have discovered it for ourselves.

There are also plenty of exercises at the end of each section, covering the gamut of diffi-
culty, providing you with ample opportunities to further hone your mathematical skills. 

I wish to thank my colleague, Professor Marion Berger, for her numerous comments and
suggestions throughout the development of the text. Her generous participation is deeply
appreciated. I am also grateful to Professor Maxim Goldberg-Rugalev for his invaluable
input.
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. Chapter 3
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Chapter 4A Touch of TopologyChapter 5
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CHAPTER 1 
A Logical Beginning

Mathematics strives, as best it can, to transpose our physical universe
into a non-physical form—a thought-universe, as it were, where defini-
tions are the physical objects, and where the reasoning process rules. At
some point, one has to ask whether we humans are creating mathemat-
ics or whether, through some kind of wonderful mental telescope, we
are capable of discovering a meager portion of the mathematical uni-
verse which, in all of its glory, may very well be totally independent of
us the spectators. Whichever; but one thing appears to be clear: the
nature of mathematics, as we observe it or create it, appears to be
inspired by what we perceive to be intuitive logic. 

We begin by admitting that “True” and “False” are undefined con-
cepts, and that the word “sentence” is also undefined. Nonetheless:   

Fine, we have a definition, but its meaning rests on undefined words!
We feel your frustration. Still, mathematics may very well be the closest
thing to perfection we have. So, let’s swallow our pride and proceed. 

We can all agree that  is a True proposition, and that
 is a False proposition. But how about this sentence:

THE SUM OF ANY TWO ODD INTEGERS IS EVEN.
First off, in order to understand the sentence one has to know all of its
words, including: sum, integer, odd, and even. Only then can one hope
to determine if the sentence is a proposition; and, if it is, to establish
whether it is True or False. All in good time. For now, let us consider
two other sentences:

HE IS AN AMERICAN CITIZEN. This sentence cannot be
evaluated to be True or False without first knowing exactly who
“He” is. It is a variable proposition (more formally called a
predicate), involving the variable “He.” Once He is specified,
then we have a proposition which is either True or False.

THE TWO OF US ARE RELATED. Even if we know precisely
who the “two of us” are, we still may not have a proposition.
Why not? Because the word “related” is just too vague. 

§1. PROPOSITIONS

DEFINITION 1.1
PROPOSITION

A proposition (or statement) is a sentence
that is True or False, but not both.

5 3+ 8=
5 3+ 9=
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The two numbers 3 and 5 can be put together in several ways to arrive
at other numbers: , , , and so on. Similarly, two propo-
sitions, p and q, can be put together to arrive at other propositions,
called compound propositions. One way, is to “and-them:”

For example, the proposition:
 and  is True.

 (since both  and  are True)
The proposition:

 and  is False.
(since  and  are not both True)

Another way to put two propositions together is to “or-them:” 

For example, the proposition:  or  is True, as is the
proposition  or . The proposition  or 
is False, since neither  nor  is True.

The above and/or operators, which act on two given propositions, are
said to be binary operators. The following operator is a unary operator
in that it deals with only one given proposition:

For example, the proposition:
  is True, since the proposition  is False.

The proposition:
 is False, since the proposition  is True.

In truth table form:
p q

T T T

T F F

F T F

F F F

p q

COMPOUND PROPOSITIONS

DEFINITION 1.2
p and q

Let p, q be propositions. The conjunction of
p and q (or simply: p and q), written ,
is that proposition which is True if both p and
q are True, and is False otherwise.

3 5+ 3 5– 3 5

p q
p q

7 5 3 5+ 8=
7 5 3 5+ 8=

7 5 3 5+ 9=
7 5 3 5+ 9=

In truth table form:
p q

T T T
T F T
F T T
F F F

Note that p or q is True when
both p and q are True. As such, it
is said to be the inclusive-or. The
exclusive-or is typically used in
conversation, as in: Do you want
coffee or tea (one or the other, but
not both)

  (a) True    (b) False

p q DEFINITION 1.3
p or q

Let p, q be propositions. The disjunction of p
and q (or simply: p or q), written , is
that proposition which is False when both p
and q are False, and is True otherwise.

CHECK YOUR UNDERSTANDING 1.1
Let p be the proposition , and q be the proposition .

(a) Is  True or False?   (b) Is  True or False?

p q
p q

7 5 3 5+ 8=
7 5 3 5+ 9= 7 5 3 5+ 9=

7 5 3 5+ 9=

7 5= 3 5+ 8=
p q p q

In truth table form:
p

T F
F T

p
DEFINITION 1.4

NOT P
Let p be a proposition. The negation of p,
read “not p,” and written , is that proposi-
tion which is False if p is True, and True if p
is False.

p

~ 7 5  7 5

~ 3 5+ 8=  3 5+ 8=
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The negation operator “~” takes precedence (is performed prior) to
both the “ ” and the “ ” operators. 

For example, the proposition:
  is True.

 [since  is True]
As is the case with algebraic expressions, the order of operations in a

logical expression can be overridden by means of parentheses. 
For example, the proposition:

 is False
[since  is True

]

Consider the sentence:
IF IT IS MONDAY, THEN JOHN WILL CALL HIS MOTHER.

For it to become a proposition, we must attribute logical values to it
(True or False); and so we shall:

You probably feel comfortable with the first two rows in the adjacent
truth table but maybe not so much with the last two. Why is it that for p
False, the proposition  is specified to be True for every proposi-
tion q, whether q is True or False? 

 (a) False    (b) False

CHECK YOUR UNDERSTANDING 1.2
 Indicate if the proposition  is True of False, given that

(a) p is the proposition .
(b) p is the proposition , where q is the proposition .

p
5 3

q 3 5=

 

Brackets”[ ]”play the same
role as parentheses, and are
used to bracket an expres-
sion which itself contains
parentheses.

3 5  3 5+ 9= 
3 5 

5 3  3 5+ 8=  
5 3  3 5+ 8= 

True: d, f, g, h, j
False: a, b, c, e, i, k

CHECK YOUR UNDERSTANDING 1.3
Assume that p and q are True propositions, and that s is a False prop-
osition. Determine if the given compound proposition is True or
False.
(a)   (b)    (c)   (d) 

(e)      (f)       (g)      (h) 

(i)       (j)      (k) 

CONDITIONAL STATEMENT

p q  p q  s q  s q 

p q p q s q s q

p s  q s  p s  q s  p s  q s 

In truth table form:
p q

T T T
T F F
F T T
F F T

p q

DEFINITION 1.5
if p then q

Let p, q be propositions. The conditional of q
by p, written , and read if p then q, is
False if p is True and q is False, and is True
otherwise.

p is called the hypothesis and q is
called the conclusion of .

p q

p q

p q

p q
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In an attempt to put your mind a bit at ease, let’s reconsider the condi-
tional proposition:

IF IT IS MONDAY, THEN JOHN WILL CALL HIS MOTHER.
Suppose it is not Monday. Then John may or may not call his mother.
So, if p is False (it is not Monday), then  should not be assigned
a value of False.

Does the statement: 
IF IT IS MONDAY, THEN I WILL GO TO SCHOOL

allow you to go to school on Tuesday? Sure, but the following state-
ment does not:

I WILL GO TO SCHOOL IF AND ONLY IF IT IS MONDAY 
Or, if you prefer:

IT IS MONDAY IF AND ONLY IF I GO TO SCHOOL
Formally:

A tautology is a proposition which is necessarily always True; as is
the case with the proposition :

Yes, but can’t the same “argument” be given to support the
assertion that if p is False, then  should not be assigned
a value of True? It could, but that option would lead us up an
intuitively illogical path (see Exercise 85). 

p q

p q

p q

T T T
T F F
F T F
F F T

p q DEFINITION 1.6
p if and only if q

p iff q

Let p, q be propositions. The biconditional of
p and q, written , and read p if and
only if q (abbreviated “p iff q), is True if p
and q have the same truth values and is False
if they have different truth values.

ORDER OF OPERATIONS 
First “ ”, then “ ”, and finally “ , ” 

Use parentheses to establish precedence 
between  and between ,

p q

p q

 ,   

,   

 The third column follows from
Definition 1.5; the fourth from
Definition 1.2, and the fifth
from Definition 1.5

LOGICAL IMPLICATION AND EQUIVALENCE

T T T T T
T F F F T
F T T F T
F F T F T

p q  p  q

p q p q p q  p p q  p  q

Definition 1.5
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We use the symbol , read p implies q, to mean that if the prop-
osition p is True, than q must also be True. Equivalently, that 
is a tautology:

In particular, as we have just observed: . 

SOLUTION: (a) We verify that  is a tautology:

(b) We verify that  is a tautology:

Subjected to the logical impli-
cation “ ” the proposition:

If pigs can fly then Donald
Duck is the president of
the United States

is True. 
It is a well-known fact that
most mathematicians ignore
flying pigs. Typically, they
start with a True proposition in
the hope of being able to estab-
lishing the validity of another.
They primarily deal with



p q

For given propositions p and q, the only thing that
can keep  from being a tautology is if p is
True and q is False (Definition 1.5).

It is important to note that  is not a proposition for it
does not assume values of True or False. It is an assertion
(sometimes called a meta-proposition). 

p q
p q

p q

p q  p  q

p q

It is only logical:
If p or q is True and p is
False, then q must be True.

The Truth-Values in the
fifth column are a conse-
quence of the Truth-Values
in columns 3 and 4 (Defini-
tion 1.2). The tautology
(column 6) follows from
Definition 1.5.

EXAMPLE 1.1 (a) Show that .
(b) Show that .

T T T F F T
T F T F F T
F T T T T T
F F F T F T

p q  ~ p  q
p q  q s   p s 

p q  ~ p q

p q p q p p q  ~ p p q  ~ p  q

Definition 1.5

p q  q s   p s 

T T T T T T T T
T T F T F F F T
T F T F T F T T
T F F F T F F T
F T T T T T T T
F T F T F F T T
F F T T T T T T
F F F T T T T T

p q s p q q s p q  q s  p s p q  q s   p s 

Answer: See page A-1.

CHECK YOUR UNDERSTANDING 1.4

Verify:
       p q  ~q  ~p
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In other words: 
 if the proposition  is a tautology; or, equivalently: 
p is True if and only if q is True (Definition 1.6).

 

PROOF:  

Observing that the values of  and  coincide, we
conclude that .

(b) :  

 

SOLUTION: 
(a) 

Suppose you want to show that
a proposition p is True, and you
know that . Suppose
you like the looks of q better.
Fine —deal with q for p will be
True if and only if q is True.

p q

DEFINITION 1.7
LOGICALLY
EQUIVALENT

Two propositions p and q are logically equiv-
alent, written , if  and .p q p q q p

p q p q

Augustus DeMorgan
(1806-1871).

THEOREM 1.1
DEMORGAN’S

 LAWS

(a) 

(b) 

~ p q  ~p ~q

~ p q  ~p ~q

The driving force in the table
was to arrive at the truth-values
of the compound propositions:

  and p q  ~p ~q

T T F F T F F
T F F T F T T
F T T F F T T
F F T T F T T

T T F F T F F
T F F T T F F
F T T F T F F
F F T T F T T

EXAMPLE 1.2 Use DeMorgan’s laws to negate the given prop-
osition:

(a) Mary is a math major and lives on campus.
(b) Bill will go running or swimming.
(c) .

(a)

p q p q p q p q  ~p ~q

same

p q  ~p ~q
~ p q  ~p ~q

~ p q  ~p ~q

p q p q p q p q  ~p ~q

same

5 x 19

Mary is a math major  Mary lives on campus 
~ Mary is a math major  ~ Mary lives on campus :

Mary is not a math major or she does not live on campus
(Either Mary is not a math major or she does not live on campus.)
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   (b) 

   (c) The negation of the proposition :

is the proposition 

There are several distributive properties involving propositions. Here
is one of them:   

PROOF: The eight possible value-combinations of p, q, and s, are
listed in the first three columns of the table below. The remaining col-
umns speak for themselves:   

  

Bill will go running Bill will go swimming 
~ Bill will go running  ~ Bill will go swimming :

Bill will not go running and he will not go swimming o swimming

(Bill will neither go running nor swimming)

5 x 19
5 x AND x 19

5 x OR x 19
5 x OR x 19equivalently:

Answer: See page A-2.

CHECK YOUR UNDERSTANDING 1.5
Use DeMorgan’s laws to negate the given proposition:

(a) Mary is going to a movie or she is going shopping.
(b) Bill weighs more than 200 pounds and is less than 6 feet tall.
(c)  or .x 0 x 5–

In general, a truth table
involving n propositions will
contain  rows. That being
the case, they quickly become
“unmanageably tall”: 

A four-proposition-table
calls for  rows,
while a five-proposi-
tion-table  has 32 rows.

2n

24 16=

THEOREM 1.2     

T T T T T T T T
T T F F T T T T
T F T F T T T T
T F F F T T T T
F T T T T T T T
F T F F F T F F
F F T F F F T F
F F F F F F F F

EXAMPLE 1.3 Are  and  logi-
cally equivalent?

p q s  p q  p s 

p q s q s p q s  p q p s p q  p s 

same

p q  ~ p p q ~ p 
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 SOLUTION: No:

To say that  is Not True is to say that p is True and q is False.
To put it another way:

PROOF: We offer two proofs for your consideration: 

While the above truth table method is the more straight-forward
approach, the development on the right is a better representation of what
you will be doing in subsequent math courses. Indeed, truth be told: 

Once you leave this course, you may
never again encounter a truth table.

Are the following two statements saying the same thing?
IF IT IS MONDAY, THEN I WILL GO TO SCHOOL.

IF I DO NOT GO TO SCHOOL, THEN IT IS NOT MONDAY.
Yes:

Answer: See page A-2.

T T T F F F F
T F F F T T T
F T F T T T F
F F F T T T F

CHECK YOUR UNDERSTANDING 1.6

Verify: 
   (a)                         (b)              

   (c)     (d) 

THEOREM 1.3 NEGATION OF A CONDITIONAL PROPOSITION:

p q p q p p q  ~p q ~p p q ~p 

not the same truth values, so
not logically equivalent

~ ~p  p p q ~p q

~ p q  ~ ~p q  p q p q  q p 

p q

~ p q  p ~q

Formal proof aside, we
suggest that this result
is intuitively appealing.
After all, to say that it is
not true that p implies
q, is to say that p is true
while q is false.

Truth Table Method: Using Established Results

CONTRAPOSITIVE

T T T F F F
T F F T T T
F T T F F F
F F T F T F

p q p q ~ p q  ~q p ~q ~ p q  ~ ~p q 

~ ~p  ~q
p ~q

CYU 1.6(b)

 1.1:

CYU 1.6(a)

This is a very useful result.
It tells you that:

as  goes 
so does  

p q
~q ~p

THEOREM 1.4 p q ~q ~p
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PROOF: 

Getting a bit ahead of the game, we point out that by virtue of  1.4,
one can establish the validity of the proposition: 

   If  is even then n is even 
     by verifying that:

If n is odd, then  is not even  

For example:   

It is important to note that neither the converse nor the inverse of a
conditional proposition is logically equivalent to the given proposition:  

T T T F F T
T F F F T F
F T T T F T
F F T T T T

          

We note that the proposition  is said to be the
contrapositive of the proposition .

p q p q ~p ~q ~q ~p

same

~q ~p
p q

Answer: See page A-3.

CHECK YOUR UNDERSTANDING 1.7

Prove that    using:
     (a) A truth table.                    (b) Previously established results.

CONVERSE AND INVERSE OF A CONDITIONAL STATEMENT

DEFINITION 1.8 The converse of   is .

The inverse of  is .

Proposition If it is Monday, then I will go to school.

Converse If I go to school, then it is Monday.

Inverse If it is not Monday, then I will not go to school.

T T T T F F T
T F F T F T T
F T T F T F F
F F T T T T T

n2

n2

p q  ~s  s ~p ~q  

p q q p

p q ~p ~q

p q

q p

~p ~q

p q p q q p p q ~p ~q

not the same
not the same
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Truth table aside, consider the True statement:
If n is divisible by 4, then n is even.

Its converse is False:
If n is even, then n is divisible by 4.
(6 is even but is not divisible by 4)

Its inverse is also False:
If n is not divisible by 4, then n is not even.

 (6 is not divisible by 4 but is even)

A bit of set notation is needed for the development of the remainder of
this chapter. Roughly speaking, a set is a collection of objects, or ele-
ments. A “small” set can be specified by simply listing all of its elements
inside brackets, as is done with the set A below:

The above so-called roster method can also be used to denote a set
whose elements follow a discernible pattern, as is done with the set O
of odd positive integers below:

The descriptive method can also be used to define a set. In this
method, a statement or condition is used to specify the elements of the
set, as is done with the set O below: 

 For a given set A, , is read: x is an element of A (or x is con-
tained in A), and  is read: x is not an element of A. For example:

Finally, we note that throughout the text:
 denotes the set of real numbers.

 denotes the set of positive real numbers.

 denotes the set of integers: .

 denotes the set of positive integers: .

 denotes the set of rational numbers (“fractions”).

, the set of positive rational numbers.

So, the inverse is the con-
trapositive of the converse.

Answer: See page A-3.

CHECK YOUR UNDERSTANDING 1.8
Prove that the converse and the inverse of  are logically equiv-
alent.

SET NOTATION

p q

The order in which ele-
ments appear in a set is of
no consequence. The sets

 and 
for example, are consid-
ered to be one and the
same, or equal.

1 2 3   2 3 1  
A 2 5 11 99  – =

O 1 3 5 7 9      =

O x x is an odd positive integer =

Read:  O is the set of all x such that x is an odd positive integer

x A
x A

5 2 5 11 99  –    while   9 2 5 11 99  – 



+

Z Z  3– 2– 1– 0 1 2 3         =

Z+ Z+ 1 2 3 4     =

Q

Q+
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Exercises 1-10. State whether the given proposition is True or False. 

Exercises 11-31. Assume that p and q are True propositions, and that r and s are False propositions.
Determine if the given compound proposition is True or False. 

Exercises 32-39. Determine if the given statement is a tautology.

Exercises 40-43. Proceed as in Example 1.1 to establish the given implication.

Exercises 44-59. Determine if the given pair of statements are logically equivalent. 

EXERCISES

1. 10 is an even number. 2. 15 is an even number.

3. 10 or 15 is an even number. 4. 10 and 15 are even numbers.

5.  or (  or  is odd) 6.  and (  or  is odd)

7.  or (  and  is odd) 8. (  and ) or  is odd

9. (  or ) and  is odd 10. (  and ) or  is not odd

11. 12. 13.

14. 15. 16.

17. 18. 19.

20. 21. 22.

23. 24. 25.

26. 27. 28.

29. 30. 31.

32. 33.

34. 35.

36. 37.

38. 39.

40. 41.

42. 43.

44. , p 45. , q

46. , p 47. , q

3 2 5 7 9 3 2 5 7 9

3 2 5 7 9 3 2 5 7 9

3 2 5 7 9 3 2 5 7 9

p s ~ p s  ~ p ~s 

r s ~ r s  ~ r ~s 

r s ~ r s  ~ r ~s 

p s  r s  p s  r s  p q  ~r ~s 

p q  r s  p q  r s  p ~r  q s 

~ p q  ~ r s  ~ p q  r s   p q  p s 

p q  ~ r s  ~ p r  ~ p s   ~ p q  ~ r ~s  

p ~p p ~p q 

p ~p q  p ~p q 

~p q  p ~q  p q  ~p p ~q  

p q  s  p q s   p q  s  ~p q s  

p q p p q p ~q

p q  ~p q  q p ~p q  p q

p p q  p p q 

p ~q  p p ~q  p
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Exercises 60-62. Establish the given logical equivalence.

Exercises 63-65. Indicate True or False. For any proposition p and any tautology t:

66. Contradiction. A contradiction is a proposition which is False for all possible values of the
statements from which it is constructed; as is the case with :

(a) Verify that  is a contradiction.

(b) Verify that  is a contradiction.
(c) Indicate True or False. For any proposition p and any contradiction c: 

(i)                (ii)             (iii) 

(d) Indicate True or False. For any tautology t and any contradiction c:
 (i)    is a tautology.                               (ii)  is a tautology. 

 (iii)  is a contradiction.                        (iv)  is a contradiction.

(e) Indicate True or False:  is a contradiction for any tautology t, contradiction
c, and proposition p.

Exercises 67-74. Negate the given statement.

48. , 49.  , 

50. , 51. , 

52. , 53. , 

54. , 55. , 

56. , 57. , 

58. , 59. , 

60. Commutative Laws: 61. Associative Laws:

62. Distributive Laws: 

63. 64. 65.

T F F
F T F

67. Joe is a math major and Mary is a biology major.

68. Joe is a math major or Mary is a biology major.

~ p ~q  q ~p ~ p ~q  ~p ~q   q

~ p ~p q   ~p ~q ~ p ~p q   ~p ~q

~ p q  p ~q  ~ p q  ~q ~p

p q  p s  p q s  p q  p s  p q  s

p r  q s  p q  s p s  q s  p q s 

p q  q s  p s p q  q s  p s

(a)  p q q p
(b)  p q q p

(a)  p q  r p q r 
(b)  p q  r p q r 

(a)  p q r  p q  p r 
(b)  p q r  p q  p r 

Already proved (Theorem 1.2)

p t p p t p p t t

p ~p

p ~p p ~p

~p q  p ~q 

p q  ~p p ~q  

p c p p c c p c p

t c t c

t c t c

~t c  p
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Exercises 75-83. Formulate the contrapositive, converse, and inverse of the given conditional
statement.

84. Exclusive-Or. Let p and q be propositions. Define, via a Truth Table, the exclusive-or propo-
sition: p or q but not both p and q.

85. In defense of Definition 1.5. 

69. Joe is neither a math major nor a biology major.

70. Mary does not live in the dorms but does eat lunch in the cafeteria.

71.  and both x and y are integers.

72. x is divisible by both 2 and 3, but is not divisible by 7.

73. x is not divisible by either 2 or 3, but is divisible by 7.

74. x is greater than y and z, but is less than .

75. If it rains, then I will stay home.

76. If it does not rain, then I will go to the game.

77. If Nina feels better, then she will either go to the library or go shopping.

78. If either Jared or Tommy gets paid, then the two of them will go to the concert.

79. If  then .

80. If  then  is a solution of the given equation.

81. If  then  or N is a solution of the given equation.

82. If  then  and N are solutions of the given equation.

83. If  then the given equation has no solution.

(a) Prove that If we chose to define: p q Then  
T T T (which runs contrary to 

our logical instincts)T F F
F T F
F F T

(b) Prove that If we chose to define: p q Then 
T T T (which runs contrary to 

our logical instincts)T F F
F T T
F F F

(c) What if we chose to define: p q Anything “bad” happens?
T T T
T F F
F T F
F F F

3x 5+ y=

y z–

X Z= M N

X Z M

X Z M

X Z M

X Z

p q p q q p

p q p q ~q ~p

p q
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 1
 

In the previous section, we considered the variable proposition: He is
an American citizen. As it stands, the sentence is not a (determined)
proposition, for its truth value depends on the variable “He.” Here is
another variable proposition, :

Once we substitute a number for the variable x, we arrive at a proposi-
tion which can be evaluated to be True or False. For example:
                                 

                        while 

Now consider the sentences:
For all real numbers x,  (*)

For some real numbers x,  (**)
Are they propositions? Yes: (*) is a False proposition since it fails to hold
for the number 7 (among other numbers), while (**) is a True proposition
since it holds for the number 25 (among others). In both cases a variable
x is present, but in each case it is quantified by a condition: “For all” in
(*), and “For some” in (**). Lets begin by focusing on the “For all” sit-
uation:

The symbol , called the universal quantifier, is read “for all.” 
The proposition  is False,
since it does not hold for every real number x. 
The proposition  is true, since it
does hold for every real number x. 

In general:

The above is a long definition, but it’s really quite straightforward.
Consider the following examples.

Chances are you already
know most of the material
of this section. Not neces-
sarily because you for-
mally saw it before, but
because it is, well, “logi-
cal.” You know, for exam-
ple, that to disprove the
claim that every dog has
fleas one needs to exhibit
a specific dog which has
no fleas. On the other
hand, finding a dog with
fleas will not prove that all
dogs have fleas.

§2. QUANTIFIERS

THE UNIVERSAL QUANTIFIER: 

p x 
p x :    x 5 15+

p 7  is False, since 7 5 15+

p 25  is True, since 25 5 15+

x 5 15+

x 5 15+



We remind you that 
denotes the set of real num-
bers, and that  is read:
x is an element of ; which
is to say, x is a real number. 



x 


DEFINITION 1.9

UNIVERSAL
PROPOSITION

Let  be a variable proposition, and let X
denote the set of values which the variable x
can assume (called the domain of x).
If  is True , then the universal
proposition  is True.
If  is false for at least one , then
the universal proposition  is
False (any such  is said to be a coun-
terexample). 



x  x 5 15+

x  x2 0

p x 

p x  x X
x X p x 

p x  x X
x X p x 

p x 
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SOLUTION: (a) We show  is True:
                    For any : 

(b) We show that the proposition  is False by exhibit-
ing a specific couterexample:

 For , 
Any negative integer whatsoever can be used to
show that the given proposition is False.

(c) The proposition  is also False. We need
to display a counterexample — a SPECIFIC pair of integers, n and m,
for which . Here is one such pair:  and :

The symbol “ ,” called the existential quantifier, is read “there
exists.” 

The proposition  is True, since
 and .

The proposition  is False, for
there does not exist a positive integer which when added to 5
yields 3. 

We point out that the symbol “ ” is read “such that.” For example:

 translates to: 
 and:  translates to .

We remind you that  denotes
the set of all integers, and that

 denotes the set of all posi-
tive integers.
The expression  in
(c) is shorthand for:

Z

Z+

n m Z+

n Z+ and m Z+

EXAMPLE 1.4 Indicate if the given proposition is True or False.
Justify your claim.

(a) 

(b) 

(c) 

n Z+ 2n n

n Z 2n n

n m Z+ n m nm+

n Z+ 2n n

n Z+ 2n n n n 0++ n= =
n Z 2n n

n 5–= 2n 2 5–  10 5––= =

(b) and (d) are True
(a) and (d) are False

CHECK YOUR UNDERSTANDING 1.9
Indicate if the given proposition is True or False. If False, exhibit a
counterexample.
(a) All months have at least thirty days.
(b) Every month contains (at least) three Sundays.

(c) .

(d) 

THE EXISTENTIAL QUANTIFIER: 

n m Z+ n m nm+

n m nm+ n 1= m 2=
n m+ 1 2+ 3 while nm 1 2 2= = = =

n m Z+ n m Z++

n Z+ and m Z n m Z++




n Z+ such that  n 3+ 5=
2 Z+ 2 3+ 5=

 n Z+ such that  n 5+ 3=



 n Z+ n 5+ 3=  n Z+ such that  n 5+ 3=
x X p x  x X such that p x 
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In general:

SOLUTION: 
(a)  is True: for , .
       Any negative integer whatsoever can be used to establish the validity of this proposition

(b)  is True: for , .
Only the number 0 can be used to establish the validity of this proposition.
                                        One is all we needed!

(c)  is False: for any positive integer n, .

When a statement contains more than one quantifier, the left-most
quantifier takes precedence. For example, the proposition:

 
is True, since: 

For every integer n, there does exists an integer m such
that ; namely, . 

On the other hand, the proposition:

is False, since: 
For any given integer n we can find some m for which

. One such m is : .

The proposition: 

can be further abbreviated: 
x X p x 

x X p x 

DEFINITION 1.10

EXISTENTIAL
PROPOSITION

Let  be a variable proposition with
domain X.
If  is True for at least one , then the
existential proposition  is True.

If  is false for every , then the exis-
tential proposition  is False. 

EXAMPLE 1.5 Indicate if the given proposition is True or False.
(a) 
(a) 

(b) 

p x 

p x  x X
x X p x 

p x  x X
x X p x 

n Z 2n n–
x  2x x=

n Z+ 2n n=

n Z 2n n– n 5–= 2n 10 5– n–= =

x  2x x= x 0= 2x 2 0 0 x= = =

(a), (c), and (d) are True.
(b) is False.

CHECK YOUR UNDERSTANDING 1.10
Indicate if the given proposition is True or False. If True, verify.
(a) There exists a month with more than thirty days.
(b) There exists a week with more than seven days.
(c) 

(d) 

PROPOSITIONS CONTAINING MULTIPLE QUANTIFIERS 

n Z+ 2n n= 2n n

n m Z+ n m+ 100=

n m Z+ nm n m+=

n Z m Z n m+ 5=

n m+ 5= m 5 n–=

n Z m Z n m+ 5=

n m 5+ 6 n– n 6 n–  5+
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SOLUTION:
(a) Here is what the proposition “ ”is

saying:
For all positive integers, n and m, there exists a
positive integer, s, such that .

Is it True? No:
For  and , there does not exist a posi-
tive integer s such that ; which is to say,
there is no positive integer s such that 

(b)  is True:

For given  let . Then: .

(c) Here is what the proposition  is saying:
There is an integer that is smaller than every positive integer.
This proposition is True: 

The integer  is smaller than every positive integer. 

(d) The proposition  is False:
For any given , the integer  is less than n.

  

The four mathematical sen-
tences of this example are
nice and compact. Their
interpretation may call for a
less compact consideration.
Please try to arrive at each
answer before looking at
our solution. 

EXAMPLE 1.6 Indicate if the given proposition is True or False.

(a) 

(b) 

(c) 
(d) 

n m Z+ s Z+ ns m.=

n m Z+ s  ns m.=

n Z m Z+n m.

n Z m Z n m.

n m Z+ s Z+ ns m=

ns m=

n 2= m 1=
ns m=

2s 1=

n m Z+ s  ns m=

n m Z+ s m
n
---- = ns n m

n
---- m= =

We had to exhibit a par-
ticular n, and went with

. Any non-positive
integer would do as well.
n 7–=

n Z m Z+ n m

n 7–=

n Z m Z n m
n Z m n 1–=

(a), and (d) are True.
(b) and (c) are False

CHECK YOUR UNDERSTANDING 1.11
Indicate if the given proposition is True or False. Justify your claim.

(a) .

(b) .
(c) .

(d) .

n m Z+ s Z+ s nm

s Z+ n m Z+ s nm
x  n Z+ xn x

n Z+ m Z+ nm n=
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The negation of the proposition:   All dogs have fleas.
                                                  is NOT:    No dog has fleas.
It IS the proposition:   At least one dog does not have fleas.
In general:  

SOLUTION:
(a) The negation of: All things go bang in the night.

is: Some thing does not go bang in the night.

(b) The negation of: , x is this and x is that.
is:  such that x is not this or x is not that.

                                                                                                  (possibly neither)
(c) The negation of: , x is this or x is that.

is:  such that x is not this and x is not that.

The negation of the proposition:  Some music rocks.
                      Is the proposition: No music rocks 

                            (or: all music does not rock)
In general: 

NEGATION OF QUANTIFIED PROPOSITIONS

The negation of the universal proposition:

is the existential proposition:

EXAMPLE 1.7 Negate the given proposition.
(a) All things go bang in the night.
(b)

(c)

x X p x 

x X ~p x 

x X x is this and x is that.

x X x is this or x is that.

x X
x X 

x X
x X 

Answer: See page A-4.

CHECK YOUR UNDERSTANDING 1.12
Write an existential negation of the given universal proposition.

(a) All college students study hard.
(b) Everyone takes a bath at least once a week.
(c)

(d)

The negation of the existential proposition:

is the universal proposition:

x X p x  q x 

x X p x  q x 

x X p x 

x X ~p x 
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SOLUTION:
(a) The negation of: There is a perfect person.
                        is: Nobody is perfect.
(b) The negation of:   such that x is this and x is that.

                       is: , x is not this or x is not that.
                                                                                 (possibly neither)
(c) The negation of:   such that x is this or x is that.

                       is: , x is not this and x is not that.

The negation of the universal/existential proposition:
In every day there is a beautiful moment.

Is the existential/universal proposition:
Some day contains no beautiful moment.

In general:

SOLUTION:
(a) The negation of: To every problem there is a solution.
                            is: There is a problem that has no solution.

(b) The negation of:

                            is:   

EXAMPLE 1.8 Negate the given proposition.
(a) There is a perfect person.
(b)

(c)

x X such that x is this and x is that.

x X such that x is this or x is that.

x X
x X

x X
x X

Answer: See page A-4.

CHECK YOUR UNDERSTANDING 1.13
Write a universal negation of the given existential proposition.

(a) There are days when I don’t want to get up.
(b)

(c)

x X p x  q x  

x X p x  q x  

The notation  is used
to indicate that the truth
value of the proposition, p,
is a function of two vari-
ables, x and y.

p x y  The negation of the universal/existential proposition:

is the existential/universal proposition:

EXAMPLE 1.9 Negate the given proposition.
(a) To every problem there is a solution.

(b) 

x X y Y p x y 

x X y Y ~p x y 

x  n Z+ n x

x  n Z+ n x

x  n Z+ n x
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The negation of the existential/universal proposition:
There is a girl at school who can jump higher than every boy.

Is the universal/existential proposition:
For any girl in school, there is a boy who can jump as high
or higher than that girl.

          Or: No girl in school can jump higher than every boy.
In general:

SOLUTION:
(a) The negation of: Some cheetahs run faster than every gazelle.
                            is: For any cheetah there is a gazelle that runs as

fast or faster than that cheetah. 

(b) The negation of:

                           is: .

(c) The negation of:

                           is: .1

Answer: See page A-4.

CHECK YOUR UNDERSTANDING 1.14
Write an existential/universal negation of the given universal/exis-
tential proposition.
(a) For every  there exists a  such that y blips at x. 

(b)

The negation of the existential/universal proposition:

is the universal/existential proposition:

EXAMPLE 1.10 Negate the given proposition.
(a) Some cheetahs run faster than every

gazelle.

(b) 

(c) 

x X y Y

x  n Z+ x 2n=

x X y Y p x y 

x X y Y ~p x y 

x  n Z+ 0 xn 100

x  n Z+ xn 0 or xn 100

x  n Z+ 0 xn 100

x  n Z+ xn 0 or xn 100

Answer: See page A-4.

CHECK YOUR UNDERSTANDING 1.15
Write a universal/existential negation of the given existential/univer-
sal proposition.
(a) There is a motorcycle that gets better mileage than any car. 

(b)

x  n Z+ xn 0 or xn 100

x  n Z+ 0 xn 100

n Z m Z+ n m
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Exercises 1-51. Indicate if the given statement is True or False. 
If you indicate False, then justify your claim by means of a specific counterexample. To illustrate: 

 is False: .   

EXERCISES

1. 2.

3. 4.

5. 6.

7. 8.

9. 10.

11. 12.

13. 14.

15. 16.

17. 18.

19. 20.

21. 22.

23. 24.

25. 26.

27. 28.

29. 30.

31. 32.

33. 34.

35. 36.

37. 38.

39. 40.

41. 42.

43. 44.

45. 46.

a b : a b+ 2 a2 b2+= 3 2+ 2 25  while  32 22+ 13= =

n Z  n n 1+– r  r r–

n Z n n 1+– r  r r–

n m Z nm n m+ n m Z+ nm Z

n m Z nm Z+ n m Z: n m or m n

a b  a b+ a b+= a b  a b+ a b+

a b  a b+ a b+= n m Z+ n m+ n m+=

n m Z s Z n s+ m= n m Z s Z+ n s+ m=

x y  n Z x n+  y= x y  r  x r+  y=

n Z: n2 n= n Z+: n 2 n=

x y  r  xr  y= n Z+ a b Z+ a n+ b=

n Z a b Z+ a n+ b= n Z+ a b Z a n+ b=

n Z+ n 2n n Z n 2n

n Z+ n 2n and n 2n n Z+ n 2n or n 2n

n Z+ r  5r n= r  n Z+ 5n r=

n Z n n2 n Z+ n n2

n Z+ n n2 x y  x x y+=

n Z+ n n2 x y  s  x s+ x y+=

x y  x y+ 2 2xy x y  : x y+ 2 2xy

n Z m Z+ nm n n Z+ m Z n m

n Z m Z+ nm n n Z+ m Z nm n

n Z m Z+ n m n m Z s Z n m s+

n Z m Z n 2m= a  b  a 2b=

n m Z+ s Z n m s+ n m Z+ s Z+ n m s+
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Exercises 53-64. Write an existential negation of the given universal proposition. 

Exercises 65-74. Write a universal negation of the given existential proposition. 

Exercises 75-84. Write an existential/universal negation of the given universal/existential propo-
sition. 

Exercises 85-94. Write a universal/existential negation of the given existential/universal proposi-
tion. 

47. 48.

49. 50.

51. 52.

53. All roads lead to Rome. 54. Every cloud has a silver lining.
55. Every time it rains, it rains pennies from 

heaven.
56. All good things must come to an end.

57. for 58.  for 

59.  for 60.

61. 62.

63. 64.

65. There is a reason for everything. 66. There is no room for error.

67.  for 68.  for 

69.  for 70.  for 

71. 72.

73. 74.

75. Everybody loves somebody. 76. All dogs go to heaven.
77. Every day contains a special moment. 78. Every good deed has a reward.

79. 80.

81. 82.

83.

84.  

85. Some operas are longer than every symphony. 86. There is a solution to every problem.
87. Someone is greater than everyone else. 88. At some point in time, everything will be 

fine.

89. 90.

91. 92.

93.

94.

n Z and x  m Z+ x m n+ n Z+ and x  m Z+ n m x+

n Z+ and x  m Z+ n m x+ n Z+ m s Z n m n s++

n Z+ m s Z+ nm ns= n Z m s Z+ nm ns=

n Z n a a  x  x a a 

n Z n a and n b a b  x  x a or x b

x X p x  q x  s x  x X p x  q x  s x 

x X p x  q x  s x   x X p x  q x   s x 

n Z n a a  n Z n a a 

n Z n a and n b a b  x  x a or x b a b 

x X p x  q x  s x  x X p x  q x  s x 

x X p x  q x  s x   x X p x  q x   s x 

x Z y Z x y+ 0= x Z y  x y

a b  m n Z a b+ mn= a b Z x  a b+ x=

x Z a b R a x b or b+ a x+= =

x  and y  z Z z x or z y= =

x  y  x y+ 0= x  y  x y

a b  m n Z a b+ mn= a b Z x  a b+ x=

x  a b  a x b or b+ a x+= =

x  and y Z z Z z x or z y= =
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 1
 

For example,  is even since:

While  is odd since:

SOLUTION: The hypothesis and conclusion of the journey estab-
lishes a frame within which you are to paint a logical path:.

§3. METHODS OF PROOF
THROUGHOUT THIS SECTION WE WILL BE DEALING EXCLUSIVELY WITH INTEGERS.

(A TOUCH OF NUMBER THEORY)

Let us accept the fact that:
n is odd if and only
if it is not even.

DIRECT PROOF

The direct method of proving  is to assume that p is True
and then apply mathematical reasoning to deduce that q is True.

DEFINITION 1.11
EVEN AND ODD

 is even if .

 is odd if .

p q

n Z k Z n 2k=

n Z k Z n 2k 1+=

n 14=

14 2 7=

           
k

A proof is like a journey,
which begins at a given
point (the hypothesis), and
ends at a given point (the
conclusion). You must be
mindful of both the begin-
ning and the end of the jour-
ney. For if you know where
you want to go (the conclu-
sion), but do not know
where you are (the hypoth-
esis), then chances are that
you aren’t going to reach
your destination. More-
over, if you know where
you are, but do not know
where you are going, then
you probably won’t get
there; and even if you do,
you won’t know it.

EXAMPLE 1.11 Prove that the sum of any two even integers is
even.

        n and m are even

            is even

Let n and m be even integers.
By Definition 1.11,  such that:

 
Then:

Thus:  is even (Definition 1.11).

Note how Definition 1.11 is used in both directions in the above proof. It was used
in one direction to accommodate the given information that n and m are even inte-
gers, and was then used in the other direction to conclude that  is even.

n 23–=

23– 2 12–  1+=

              k

the fram
e

a logical
path

n m+

k h Z

n 2k and m 2h= =

n m+ 2k 2h+ 2 k h+ = =

n m+

n m+

Answer: See page A-4.

CHECK YOUR UNDERSTANDING 1.16
(a) Prove that the sum of any two odd integers is even.
(b) Formulate a conjecture concerning the sum of an even integer

with an odd integer. Establish the validity of your conjecture.
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SOLUTION: We need to establish validity in both directions; namely:
(1) If  is odd, then n is odd.
(2) If n is odd, then  is odd.

Lets do it, beginning with (1):
If  is odd, then  for some k.

Solving for n we have: .
Conclusion: n is odd.

 Now for (2): 
If n is odd, then  for some k. 
Consequently: .
Conclusion:  is odd.

Sometimes, one may be able establish both directions of an “if and
only if” proposition simultaneously; as we are able to do here: 

Theorem 1.4, page 8 (see margin) tells us that if you can show that
, then  will follow. Formality aside:

Suppose you know that . Can  p be True and q False?
No, for if p were True and q False, then  would be False and

 True — contradicting .
Another argument:

Suppose (i): . Can it be that (ii): ? No, for if so:

EXAMPLE 1.12 Prove that  is odd if and only if n is
odd.

2m n+

2m n+
2m n+

2m n+ 2m n+ 2k 1+=

n 2k 1 2m–+ 2 k m–  1+= =

n 2k 1+=
2m n+ 2m 2k 1+ + 2 m k+  1+= =

2m n+

2m n is odd 2m n+ 2k 1+=+
n 2k 2m– 1+=
n 2 k m–  1 n is odd+=

Definition 1.11

Definition 1.11

Answer: See page A-4.

CHECK YOUR UNDERSTANDING 1.17
Prove that  is even if and only if n is even.2m n+

p q ~q ~p
CONTRAPOSITIVE PROOF

~q ~p p q

~q ~p
~p

~q ~q ~p

~q ~p p ~q

p ~q ~p

(ii)        (i)

Tisk!
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PROOF: (a) We use a direct argument to show that

 :

 
We use a contrapositive argument (margin) and show that:

 
Specifically, we show that:  i.e :

 :

(b) 

 

One can establish that a proposition p is True by demonstrating that
the assumption that p is False leads, via a logical argument, to a False
conclusion. Invoking the “logical commandment” that from Truth only
Truth can follow, one can then conclude that the assumption that p is
False must itself be False, and that therefore p has to be True. 

EXAMPLE 1.13 Show that for all integers n:
(a) n is even if and only if  is even.
(b) n is odd if and only if  is odd. 

n2

n2

A proof which estab-
lished the validity of

 by showing that
 is said to be a

Contrapositive Proof.

p q
~q ~p

n  even n2 even

n even n 2k (for some k =

n2 4k2 2 2k2 = =
n2  is even

n2 even n even

n not even n2 not even
n odd n2 odd

n odd n 2k 1 (for some k +=

n2 2k 1+ 2=
4k2 4k 1+ +=
2 2k2 2k+  1 n2 odd+=

n is odd n is not even 

n2   is not even
n2  is odd

Part (a):

Answer: See page A-5.

CHECK YOUR UNDERSTANDING 1.18
Prove that:

(a) .

(b) .

3n is odd if and only if n is odd

n3 is odd if and only if n is odd

This method of proof is called:
proof by contradiction or, if
you prefer Latin: reductio ad
absurdum. 

PROOF BY CONTRADICTION



26     Chapter 1    A Logical Beginning                                                                                             

Whatever you can do by the contrapositive method can also be done
by the contradiction method. To illustrate, in Figure 1.1(b) we recall the
contrapositive proof of  given in Example 1.13(a),
and offer a proof by contradiction in Figure 1.1(b). As you can see
there is precious little difference between the two methods. In (b),
rather than showing that , we start off
accepting he given condition that  is even, and then go on to show
that the assumption that n is not even contradicts that given condition. 

Figure 1.1
We have exhibited three methods of proof:

In attempting to prove something, which method should you use? No
general answer can be provided, other than if one does not work then
try another. We do note, however, that a direct proof is considered to be
more aesthetically pleasing than either a contrapositive proof or a proof
by contradiction, but a direct proof may not always be a viable option.

SOLUTION: Let’s try to prove that  using a
direct approach:

  — Now what? If you try

something like , where does it take you

(nowhere, other than to an expression that may be outside
the realm of integers)? 

Okay the direct approach does not appear to work, should we try the
contrapositive approach or the proof by contradiction approach? That
is basically a matter of taste, and so we offer both methods for your
consideration: 

n2 even n even

n not even n2 not even
n2

Contrapositive Proof:
We show : Proof by Contradiction:

Suppose  is even (given condition), 
and assume that n is odd, say 

 for some k. Then:

 

— contradicting our stated assumption 
that  is even. 

(a) (b)

n2 is even n is even

n odd n2 odd

n odd n 2k 1 (for some k +=

n2 2k 1+ 2=
4k2 4k 1+ +=
2 2k2 2k+  1 n2 odd+=

n2

n 2k 1+=
n2 4k2 4k 1+ +=

2 2k 2+  1 n2 is odd+=

n2

Direct Proof Contrapositive Proof Proof by Contradiction

EXAMPLE 1.14 Prove that if  is even, then n is even.   3n 2+

3n 2 even n even+

3n 2+ 2k 3n 2k 2–= =

n 2k 2–
3

---------------=
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Here are two statements for your consideration:
(a) If , then .

(b) If , then  or .
Let’s Challenge (a) with some specific integers:

Challenge 1: 3 divides 9 and 9 divides 18; does 3 divide 18? Yes.
Challenge 2: 2 divides 4 and 4 divides 24; does 2 divide 24? Yes.
Challenge 3: 5 divides 55 and 55 divides 110; does 5 divide 110? Yes.

The above “Yeses” may certainly suggest that (a) does indeed hold for
all  — suggest, yes, but NOT PROVE. A proof is provided in
Theorem 1.5(a), below.

Statement (b): If , then  or  is False.
              A counterexample:  but  and .

Contrapositive 
Proof:

Proof by Contradiction:
Let  be even (given condition)

Assume that n is odd, say . 

Then: 

— contradicting the stated condition that 
 is even. 

3n 2 even n even+

n not even 3n 2 not even+
i.e:  n odd 3n 2 odd+

3n 2+

n odd n 2k 1 (for some k)+=

3n 2+ 3 2k 1+  2+=
6k 5+=
6k 4 1+ +=
2 3k 2+  1+=

3n 2 odd+

n 2k 1+=

3n 2+ 3 2k 1+  2+=
6k 5+ 6k 4 1+ += =

2 3k 2+  1+=
3n 2 odd+

3n 2+

Answer: See page A-5.

CHECK YOUR UNDERSTANDING 1.19

Prove that  is odd if and only if n is odd.   3n 2+

Note that while  is the

number 3.  is not a
number; it is the state-
ment that there exists an
integer k (in this case 3)
such that . 

15
5
------

5 15

15 5k=

DEFINITION 1.12
DIVISIBILITY

We say that a nonzero integer a divides an
integer b, written , if  for some
integer k.
In the event that , we say that b is divis-
ible by a and that b is a multiple of a.

TYPICALLY:
A GENERAL ARGUMENT is needed to establish the validity of a statement.

A (specific) COUNTEREXAMPLE is needed to establish that a statement is False.

a b b ak=

a b

a b  and  b c a c

a bc a b a c

a b c Z 

a bc a b a c
6 2 3  6 2 6 3
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PROOF: (a) If , then, by Definition 1.12:
.

Consequently:
 (where ).

It follow, from Definition 1.12, that .

(b) If , then  and  for some h and k. 
Consequently:

 (where ).
It follows that .

(c) If , then  for some k. Consequently, for any c:
 (where ). 

It follows that .

SOLUTION: (a) Unless you are fairly convinced that a given statement
is True, you may want to start off by challenging it:

Challenge 1. , and 4 certainly divides 8 or 16 (in fact,
it divides both 8 and 16). Inconclusive.

Challenge 2. , and 4 divides neither 3 nor 1 — 
a counterexample! The statement is False.

(b) Challenging the statement “If  and , then ” will
not yield a counterexample. It can’t, since the statement is True.
To establish its validity, a general argument is called for.   

 One proof:
Since , there exists  such that: (1) .
Since , there exists k such that: (2) .
    (Now we have to go ahead and show that  for some t)

From (2): .
From (1): .

Since  (where ): .

THEOREM 1.5 Let b and c be nonzero integers. Then:

(a) If , then .

(b) If , then .

(c) If , then  for every c.

Note how Definition 1.12 is used in both directions in the above proof.

EXAMPLE 1.15 Prove or give a counterexample.
(a) If , then  or .

(b) If  and , then .

a b  and  b c a c

a b  and  a c a b c+ 

a b a bc

a b  and  b c
b ak and c bh  for some h and k= =

c bh ak h a kh  at= = = = t kh=
a c

a b  and  a c b ah= c ak=

b c+ ah ak+ a h k+  at= = = t h k+=
a b c+ 

a b b ak=
bc ak c a kc  at= = = t kc=

a bc

a b c+  a b a c

a b a b c+  a c

4 8 16+ 

4 3 1+ 

a b and a b c+ 

a c

a b a b c+  a c

a b h b ah=
a b c+  b c+ ak=

c at=
c ak b–=
c ak ah– a k h– = =

c at= t k h–= a c
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An alternate proof: Observing that:
 

we employ Theorem 1.6(b) and (c) to conclude that . 
                   (Recall that we are given that  and that )

As you worked your way through this
section, you must have observed how:  

c b c+  b– b c+  1– b+= =

Answer: See page A-6.

CHECK YOUR UNDERSTANDING 1.20
(a) Prove:

(a-i) If  and  then .

(a-ii) If  then  for every .

(b) Prove or give a counterexample: 
(b-i) If  or , then .

(b-ii) If a and b are even and if , then c must be even.

(b-iii) If , then there exist k such that:

 .

DEFINITIONS RULE!
They are the physical objects in the mathematical universe.

a c
a b c+  a b

a n a m a n m+ 

n a n ca c Z

a b a c a b c+ 

a b c+ 

a b+  c d+ 

ak bk c d+ + + 0=
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Exercises 1-25. Establish the validity of the given statement. 

EXERCISES

1. 0 is even and 1 is odd.

2. The product of any two even integers is even.

3. The product of any two even integers is divisible by 4.

4. The sum of any two odd integers is even.

5. If  then .

6.  if and only if .

7. If   , and  then  for every n and m.

8. If , and  then .

9. If  is even then n is odd.

10.  is even if and only if n is odd.

11. If  then either n and m are both even or they are both odd. 

12.  is odd for all n.   

13.  is even if and only if n is odd.

14.  is even if and only if n is even.

15. If  is even then so is 3n. 

16.  is even if and only if  is even.

17.  is even if and only if  is even.

18. If  is even, then either n and m are both even or they are both odd.

19. The square of every odd integer is of the form  for some .

20. If  then .

21. Let . Prove that if  and , then . 

22. If bc is not a multiple of a, then neither b nor c can be a multiple of a.

23. If  is a multiple of a, and b is a multiple of a, then c is a multiple of a.

24. If a and b are odd positive integers and if , then c is even.

25. If a is odd and b is even and if , then c is odd.

a b a2 b2

3 n 3 n 9+ 

a b a c a bn cm+ 

a c b d ab cd

5n 7–

11n 7–

4 n2 m2– 

n2 3n 5+ +

3n 1+

n3

n4

3n3 5n2

5n 11– 3n 11–

3n 5m+

4n 1+ n Z

4 n2 1–  2 n 1– 

b aq r+= c a c b c r

b c+

c a b+ 

c a b+ 
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Exercises 26-33. Disprove the given statement. . 

26. The sum of any two even integers is divisible by 4.

27. The sum of any three odd integers is divisible by 3.

28. The product of any two even integers is divisible by 6.

29. If  then .

30. If  is odd then both m and n are odd.

31. If  is even then both m and n are even.

32. If  or  then .

33. If  and  then .

PROVE OR GIVE A COUNTEREXAMPLE

34. If n is odd and m is even then  is odd.

35. If  is odd then neither n nor m can be even.

36. If  is even then neither n nor m can be odd.

37. If  is odd then n or m must be odd.

38. If  is even then n or m must be even.

39. If  is even then so is .

40. If  is even then so is .

41. If  is even then so is .

42. If  is even then so is .

43. If  is odd then so is .

44. If  is odd then so is .

45. If  is odd then so is .

46. If  is odd then so is .

47. If a is even and b is odd then  is even.

48. If a is even and b is odd then  is odd.

49. If a is odd then so is .

50. If a is odd then so is .

4 n2 1–  4 n 1– 

2m n+

2m n+

a b a c a b c+ 

a b b a a b=

n m–

n m+

n m+

n m+

n m+

n 1+ n3 1–

n 1+ n2 1–

n 1+ n3 1+

n 1+ n2 1+

n 1+ n3 1–

n 1+ n2 1–

n 1+ n3 1+

n 1+ n2 1+

a2 2b+

a2 3b+

a2 2a+

a2 3a+
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51. If a is even and b is odd then  is even.

52. If  then 

53. If  is even then a or b has to be even.

54. If , then .

55. If , then  or   or .

a 2+ 2 b 1– 2+

9 n 3+  3 n

a 2+ 2 b 1– 2+

a b b c and c a a b c= =

a b b c and c a a b= a c= b c=
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This section introduces a most powerful mathematical tool, the Prin-
ciple of Mathematical Induction (PMI). Here is how it works:

Step II of the induction procedure may strike you as being a bit
strange. After all, if one can assume that the proposition is valid at

, why not just assume that it is valid at  and save a
step! Well, you can assume whatever you want in Step II, but if the
proposition is not valid for all n you simply are not going to be able to
demonstrate, in Step III, that the proposition holds at the next value of
n. It’s sort of like the domino theory. Just imagine that the propositions

 are lined up, as if they were
an infinite set of dominoes:

If you knock over the first domino (Step I), and if when a domino falls
(Step II) it knocks down the next one (Step III), then all of the domi-
noes will surely fall. But if the falling  domino fails to knock over
the next one, then all the dominoes need not fall.

 To illustrate how the process works, we ask you to consider the sum
of the first n odd integers, for  through :

Figure 1.2

§4. Principle of Mathematical Induction

A form of the Principle of Math-
ematical Induction is actually
one of Peano’s axioms, which
serve to define the positive inte-
gers.
[Giuseppe Peano (1858-1932).] 

PMI
Let  denote a proposition that is either true or false, depend-
ing on the value of the integer n. 

If: I.  is True.

And if, from the assumption that: II.   is True

one can show that: III.  is also True.

then the proposition  is valid for all integers 

P n 

P 1 

P k 

P k 1+ 

P n  n 1

n k= n k 1+=

P 1  P 2  P 3   P k  P k 1+   

P(1) P(2) P(3) P(4) P(5) P(6)    P(7)    P(8)   P(9)   P(10) .......

The Principle of Mathemati-
cal Induction might have been
better labeled the Principle of
Mathematical Deduction, for
inductive reasoning is used to
formulate a hypothesis or con-
jecture, while deductive rea-
soning is used to rigorously
establish whether or not the
conjecture is valid. 

kth

n 1= n 5=

n   Sum of the first n odd integers  Sum
1
2
3
4
5

1 1
1 + 3 4

9
16
25

1 + 3 + 5
1 + 3 + 5 + 7

1 + 3 + 5 + 7 + 9

n
      

Sum
1        1
2        4
3        9
4      16
5      25
6      ?
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Looking at the pattern of the table on the right in Figure 1.1, you can
probably anticipate that the sum of the first 6 odd integers will turn out
to be , which is indeed the case. Indeed, the pattern suggests
that:              
Using the Principle of Mathematical Induction, we now establish the
validity of the above conjecture: 

 Let  be the proposition that the sum of the first n odd integers
equals .

I. Since the sum of the first 1 odd integers is ,  is true.
II. Assume  is true; that is:

 

III. We show that  is true, thereby completing the proof:  

SOLUTION: Let  be the proposition:

I.  is true: 

II. Assume  is true: 

III. We are to show that  is true; which is to say, that (*)
holds when :

Let’s do it:  

62 36=
The sum of the first n odd integers is n2

The sum of the first 3 odd
integers is:

The sum of the first 4 odd
integers is:

Suggesting that the sum of
the first k odd integers is:   

     (see Exercise 1).

1 3 5+ + 2 3 1–

1 3 5 7+ + + 2 4 1–

1 3  2k 1– + + +

EXAMPLE 1.16 Use the Principle of Mathematical Induction to
establish the following formula for the sum of
the first n integers:

P n 
n2

12 P 1 
P k 

1 3 5  2k 1– + + + + k2=
see margin

P k 1+ 

1 3 5  2k 1– + + + +  2k 1+ + k2 2k 1+ + k 1+ 2= =
  

the sum of the first k 1 odd integers+

induction hypothesis: Step II

1 2 3  n+ + + + n n 1+ 
2

--------------------=

P n 

1 2 3  n+ + + + n n 1+ 
2

--------------------= (*)

P 1  1 1 1 1+ 
2

--------------------= Check!

P k  1 2 3  k+ + + + k k 1+ 
2

--------------------=

P k 1+ 
n k 1+=

1 2 3  k k 1+ + + + + + k 1+  k 1+  1+ 
2

------------------------------------------------ k 1+  k 2+ 
2

----------------------------------= =

1 2 3  k k 1+ + + + + + 1 2 3  k+ + + +  k 1+ +=
k k 1+ 

2
-------------------- k 1+ +=

k k 1+  2 k 1+ +
2

----------------------------------------------- k 1+  k 2+ 
2

----------------------------------= =

induction hypothesis:
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The “domino effect” of the Principle of Mathematical Induction need
not start by knocking down the first domino . Consider the fol-
lowing example where domino  is the first to fall.

SOLUTION: Let  be the proposition .

I.  is true: , since .

II. Assume  is true: .

III. We show  is true; namely that :

SOLUTION: Let  be the proposition .

I.  is true: , since .

II. Assume  is true: .

III. We show  is true; namely, that :

The desired conclusion now follows from CYU 1.17, page 24:

Answer: See page A-6.

CHECK YOUR UNDERSTANDING 1.21

(a) Use the formula for the sum of the first n odd integers, along with
that for the sum of the first n integers, to derive a formula for the
sum of the first n even integers. 

(b)Use the Principle of Mathematical Induction directly to establish
the formula you obtained in (a). 

EXAMPLE 1.17 Use the Principle of Mathematical Induction to
establish the inequality  for all .

EXAMPLE 1.18 Use the Principle of Mathematical Induction to
show that  for all integers .

P 1 
P 0 

n 2n n 0

P n  n 2n

P 0  0 20 20 1=

P k  k 2k

P k 1+  k 1 2k 1++

k 1 2k 1 2k 2k+++ 2 2k  2k 1+= =
    II 1 2k

4 5n 1–  n 0

What motivated us to
write  in the form

? Necessity did:
We had to do something
to get “ ” into the
picture (see II).

Clever, to be sure; but such
a clever move stems from
stubbornly focusing on
what is given and on what
has to be established.

1–
5– 4+

5k 1–

EXAMPLE 1.19 Use the Principle of Mathematical Induction to
show that  for all integers .

P n  4 5n 1– 

P 0  4 50 1–  50 1– 1 1– 0= =

P k  4 5k 1– 

P k 1+  4 5k 1+ 1– 

5k 1+ 1– 5 5k  1– 5 5k  5– 4  (see margin)+= =

5 5k 1–  4+=

4 5k 1–  4 5 5k 1–  and then:

4 5 5k 1–  and  4 4 4 5 5k 1–  4+ 

CYU 1.20(a), page 29:

CYU 1.20(b):

3 22n 1–  n 1



36     Chapter 1    A Logical Beginning                                                                                             

SOLUTION: Let  be the proposition: .

I.  is true: 
II. Assume  is true: .
III. We show that  is true; which is to say: : 

Clearly 3 divides , and, by the induction hypothesis,
. The desired result now follows from CYU 1.18(a),

page 25.

SOLUTION: Let  be the proposition :

I.  is true: .
II. Assume  is true:  (for )
III. We show  is true; namely, that :

Now what? Well, if we can show that , then we
will be done. Let’s do it:

Since , , and therefore 

Multiplying both sides by the positive number :
.

P n  3 22n 1– 

P 1  22 1 1– 3= Check!
P k  3 22k 1– 

P k 1+  3 22 k 1+  1– 

22 k 1+  1– 22k 2+ 1–=
22 2 2k 1–=
4 22k 1–=
3 1+ 22k 1–=

3 22k 22k 1– +=

an m+ anam:=

regrouping:

wanting to get a 3 into the picture:

Answer: See page A-7.

CHECK YOUR UNDERSTANDING 1.22
Use the Principle of Mathematical Induction to show that

 for all integers .

3 22k
3 22k 1– 

6 n3 5n+  n 1

Recall that:.
n! 1 2  n  =

EXAMPLE 1.20 Use the Principle of Mathematical Induction to
show that  for all integers .n! n2 n 4

P n  n! n2

P 4  4! 1 2 3 4   24 42= =
P k  k! k2 k 4
P k 1+  k 1+ ! k 1+ 2

k 1+ ! k! k 1+  k2 k 1+ =
II

k2 k 1+  k 1+ 2

k 4 k 2
k2 k k 2k k 1+=

k 1+ 
k2 k 1+  k 1+ 2

Answer: See page A-7.

CHECK YOUR UNDERSTANDING 1.23
Use the Principle of Mathematical Induction to show that

 for all integers .2n n 2+ ! n 0
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Our next application of the Principle of Mathematical Induction
involves the following Tower of Hanoi puzzle:

Start with a number of washers of differing sizes on spindle A,
as is depicted below: 

The objective of the game is to transfer the arrangement cur-
rently on spindle A to one of the other two spindles. The rules
are that you may only move one washer at a time, without ever
placing a larger one on top of a smaller one.

SOLUTION: If spindle A contains one washer, then simply move that
washer to spindle B to win the game (Step I).
Assume that the game can be won if spindle A contains k washers
(Step II —the induction hypothesis).
We now show that the game can be won if spindle A contains 
washers (Step III):

Just imagine that the largest bottom washer is part of
the base of spindle A. With this sleight of hand, we are
looking at a situation consisting of k washers on a
modified spindle A (see margin). By the induction
hypothesis, we can move those k washers onto spindle
B. We now take the only washer remaining on spindle
A (the largest of the original  washers), and
move it to spindle C, and then think of it as being part
of the base of that spindle. Applying the induction
hypothesis one more time, we move the k washers
from spindle B onto the modified spindle C, thereby
winning the game.

Edouard Lucas formalized
the puzzle in 1883, basing
it on the following legend: 
In a temple at Benares,
there are 64 golden disks
mounted on one of three
diamond needles. At the
beginning of the world,
all the disks were stacked
on the first needle. The
priests attending the
temple have the sacred
obligation to move all
the disks to the last nee-
dle without ever placing
a larger disk on top of a
smaller one. The priests
work day and night at
this task. If and when
they finally complete the
job, the world will end. EXAMPLE 1.21 Show that the tower of Hanoi game is winna-

ble for any number n of washers.

A                           B                                 C

...

 new 
base

}k washers{
k 1 wahsers+

k 1+

k 1+

Answer: See page A-7.

CHECK YOUR UNDERSTANDING 1.24
(Challenging)

Use the Principle of Mathematical Induction to show that any n lines,
no two of which are parallel and no three of which pass through a

common point, will separate the plane into  regions.n2 n 2+ +
2

------------------------
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We complete this section by introducing two equivalent forms of the
Principle of Mathematical Induction — equivalent in that any one of
them can be used to establish the remaining two.

One version, which we will call the Alternate Principle of Induction
(API), is displayed in Figure 1.3(b). As you can see, the only difference
between PMI and API surfaces in (*) and (**). Specifically, the propo-
sition “  True” in (a) is replaced, in (b), with the proposition “
True for all integers m up to and including k”.

Figure 1.3
We establish the equivalence of PMI and API by showing that (*)

holds if and only (**) holds. Clearly, if (*) holds then (**) must also
hold. As for the other way around:

Assume that (**) holds and that (*) does not.
(we will arrive at a contradiction)

If (*) does not hold, then there must exist some  for which
 is True and  is False. Since  is False,

and since (**) holds, we know that  is False for some
. But we are assuming that  is True. Hence

 is False for some . 
Let  be the smallest positive integer less than  for
which  is false. Repeating the above procedure with

 playing the role of  we arrive at  is False for
some .

Continuing in this fashion we shall, after at most
 steps, be forced to conclude that  is False

— contradicting the assumption that  is True.

SOLUTION: 
I. Claim holds for : 

TWO ALTERNATE FORMS OF THE PRINCIPLE 
OF MATHEMATICAL INDUCTION

API is often called the
Strong Principle of Induc-
tion. A bit of a misnomer,
since it is, in fact, equiva-
lent to PMI.

P k  P m 

Let  denote a proposition that is either true or false, depending on the value of the integer n. 
PMI API

If  is True, and if:
(*)  True  True

then  is True for all integers 
(a)

If  is True, and if
(**):  True for   True

then  is True for all integers 
(b)

P n 

P 1 
P k  P k 1+ 

P n  n 1

P 1 
P m  1 m k  P k 1+ 

P n  n 1

EXAMPLE 1.22 Use API to show that for any given integer
 there exist integers  such

that .

k0
P k0  P k0 1+  P k0 1+ 

P k1 
1 k1 k0  P k0 
P m  1 m k0

m k1= k0
P m 

k1 k0 P k2 
1 k2 k1

k0 1– P 1 
P 1 

n 12 a 0 b 0
n 3a 7b+=

n 12= 12 3 4 7 0+=
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II. Assume claim holds for all m such that .
III. To show that the claim holds for  we first show,

directly, that it does indeed hold if  or if
:

Now consider any .
If , then . Appealing to the
induction hypothesis, we choose  such that: 

It follows that , and the proof is complete.

Here is another important property which turns out to be equivalent to
the Principle of Mathematical Induction: 

We show that the Alternate Principle of Mathematical Induction
implies the Well-Ordering Principle:

Let S be a NONEMPTY subset of . 
If , then it is certainly the smallest element in S, and we are done.
Assume , and suppose that S does not have a smallest element 
(we will arrive at a contradiction; namely, that S would have to be 
empty): 

Let  be the proposition that  for . Since,
,  is True. Suppose that  is True for all

, can  be False? No: 
To say that  is False is to say that

. But that would make  the
smallest element in S, since none of its prede-
cessors are in S. This cannot be, since S was
assumed not to have a smallest element.

Since  is True ( ) and since the validity of 
for all  implies the validity of , 
must be True for all ; which is the same as saying
that no element of  is in S — contradicting the assump-
tion that S is NONEMPTY.

12 m k 
n k 1+=

k 1+ 13=
k 1+ 14=

13 3 2 7 1  and  14+ 3 0 7 2+= =
k 1 15+

k 1 15+ 12 k 1+  3 k–
a 0 b 0

k 1+  3– 3a 7b+=

k 1+ 3 a 1+  7b+=

Note that subsets of Z need
not have first elements. A
case in point

Nor does the bounded set:

contain a smallest element
(note that 5 is not in the
above set).

 4 2 0 2 4    –– 

x  5 x 9  

THE WELL-ORDERING PRINCIPLE FOR 

Every nonempty subset of  has a smallest (or least, or first) element.

Z+

Z+

Z+

1 S
1 S

P n  n S n Z+
1 S P 1  P m 
1 m k  P k 1+ 

P k 1+ 
k 1 S+ k 1+

Answer: See page A-8.

CHECK YOUR UNDERSTANDING 1.25
Show that the Well-Ordering Principle implies the Principle of Math-
ematical Induction.

P 1  1 S P m 
1 m k  P k 1+  P n 

n Z+
Z+
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Exercises 1-33. Establish the validity of the given statement.

EXERCISES

1. The  odd integer is .

2. For every integer , .

3. For every integer , .

4. For every integer , .

5. For every integer , .

6. For every integer , .

7. For every integer , .

8. For every integer , .

9. For every integer , .

10. For every integer  and any real number , .

11.  For every integer , and any real number , .

12. For every integer : .

13. For every integer :  .

14. For every integer : .

15. For every integer : .

nth 2n 1–

n 1 1 4 7  3n 2– + + + + 3n2 n–
2

-----------------=

n 1 12 32 52  2n 1– 2+ + + + n 2n 1–  2n 1+ 
3

--------------------------------------------=

n 1 12 22 32  n2+ + + + n n 1+  2n 1+ 
6

-----------------------------------------=

n 1 4 42 43  4n+ + + + 4 4n 1– 
3

----------------------=

n 1 1
2
--- 1

4
--- 1

8
---  1

2n
-----+ + + + 1 1

2n
-----–=

n 1 1
1 2
---------- 1

2 3
---------- 1

3 4
----------  1

n n 1+ 
--------------------+ + + + n

n 1+
------------=

n 1 1
2 3
---------- 1

3 4
----------  1

n 1+  n 2+ 
----------------------------------+ + + n

2n 4+
---------------=

n 1 1 1
1
---+ 

  1 1
2
---+ 

  1 1
3
---+ 

  1 1
n
---+ 

  n 1+=

n 1 x 1 x0 x1 x2  xn+ + + + 1 xn 1+–
1 x–

---------------------=

n 1 r 1 ari

i 0=

n


a 1 rn 1+– 

1 r–
-----------------------------=

n 0 5 24n 2+ 1+ 

n 1 9 43n 1– 

n 1 3 5n 2n– 

n 1 7 32n 2n– 
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16. For every integer : .

17. For every integer ,  is divisible by 8.

18. For every integer ,  is divisible by 5.

19. For every integer ,  is divisible by 21.

20. For every integer ,  is divisible by 64.

21. For every integer , .

22. For every integer , . 

23. For every integer , .

24. For every integer , .

25. For every integer ,  is an odd integer.

26. For every integer , .

27. (Calculus Dependent) Show that the sum of n differentiable functions is again differentiable.

28. (Calculus Dependent) Show that for every integer , . 

Suggestion: Use the product Theorem: If f and g are differentiable functions, then so is 

differentiable, and .

29. Let  and . Show that .

30. Let  and . Show that .

31. For every integer , .

32. For any positive number x,  for every .

33. For every integer , there exist integers  such that .

n 1 6 n3 5n+ 

n 1 52n 7+

n 1 33n 1+ 2n 1++

n 1 4n 1+ 52n 1–+

n 1 32n 2+ 8n– 9–

n 0 2n n

n 5 2n 4 n–

n 5 2n n2

n 4 3n 2n 10+

n 1 2n !
2nn!
-------------

n 4 2n n!

n 1
xd

d xn nxn 1–=

f g

xd
d f x g x   f x 

xd
d g x  g x 

xd
d f x +=

a1 1= an 1+ 3 1
an
-----–= an 1+ an

a1 2= an 1+
1

3 an–
--------------= an 1+ an

n 1 1 1
2

------- 1
3

-------  1
n

------- 2 n 1+ 1– + + + +

1 x+ n 1 nx+ n 1

n 8 a 0 b 0 n 3a 5b+=
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34. Let  be any nonnegative integer. Use the Well-Ordering Principle to show that every non-
empty subset of the set  contains a smallest element.

35. Use the Principle of Mathematical Induction to show that there are  different ways of 
ordering n objects, where . 

36. What is wrong with the following “Proof” that any two positive integers are equal:

Let  be the proposition: If a and b are any two positive integers such
that , then .

I.  is true: If , then both a and b must equal 1.
II. Assume  is true: If , then .
III. We show  is true: 
         If  then .

         By II, .

m
n Z n m– 

n!
n! 1 2 3  n   =

P n 
max a b  n= a b=

P 1  max a b  1=
P k  max a b  k= a b=

P k 1+ 
max a b  k 1+= max a 1– b 1–  k=

a 1– b 1 a– b·= =
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In elementary school you learned how to divide one integer into
another to arrive at a quotient and a remainder, and could then check
your answer (see margin). That checking process reveals an important
result:

PROOF: We begin by establishing the existence of q and r such that:

Consider the set: 

We first show that S is not empty:
If , then , and therefore .
                                                      [0 is playing the role of n in (*)] 
If , then , and therefore .
        [a is playing the role of n in (*) and remember that ] 

Since S is a nonempty subset of , it has a least element
(Exercise 34, page 42); let’s call it r. Since r is in S, there exists 
such that:

 To complete the existence part of the proof, we show that .
Assume, to the contrary, that . From:

we see that  is of the form  (with ).
Moreover, our assumption that  implies that . It
follows that , contradicting the minimality of r.

To establish uniqueness, assume that:

               [We will show that  and  (see margin)]

Since  and  (or ): .
Since  and  (or ): 
                     Thus: , or 

From  we have: 

But if  and if  is a multiple of d, then  (or
). Returning to  we now have:

§5. The Division Algorithm and Beyond
ALL LETTERS IN THIS SECTION WILL BE UNDERSTOOD TO REPRESENT INTEGERS.

Here is a “convincing argu-
ment” for your consideration: 
Mark off multiples of d on the
number line:

Case 1. If , then let
. 

Case 2. If a is not a multiple
of d, then let  be such that

. We then
have , where: 

In either case .

3   17
      15

2

5
d

q

r

a

Check: 17 3 5 2+=
a dq r+=

-2d     -d       0       d       2d
|        |        |       |        |

a dq=
r 0=

dq
dq a d 1+ q 

a dq r+=

dq dq d+
.
a

r
d

0 r d

THEOREM 1.6
THE DIVISION 
ALGORITHM

For any given  and , there exist
unique integers q and r, with , such that: 

a Z d Z+
0 r d

a dq r+=

a dq r   with   0 r d+=

S a dn n Z  and  a dn 0–– = (*)

a 0 a a d 0 0–= a S

a 0 a da 0– a da S–
d Z+

0  Z+
q Z

r a dq–= (**)
r d

r d
r d– a dq–  d– a d q 1+ –= =

                (**)

r d– a dn– n q 1+=
r d r d 0–

r d S–

This is a common mathe-
matical theme:
To establish that some-
thing is unique, consider
two such “somethings”
and then go on to show
that the two “some-
things” are, in fact, one
and the same.

a dq r  with   0 r d  and  a dq r  with  0 r d+=+=
q q= r r=

r 0 r d r– d– r r 0 r 0 d––– d–=
r d r 0 r 0– r r d r d 0––– d=

d r r d–– r r– d

dq r+ dq r+= r r– d q q– =
(a multiple of d)

r r– d r r– r r– 0=
r r= dq r+ dq r+=

dq r+ dq r+= dq dq d q q– = 0 q q= =
d 0
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.

SOLUTION: There are, at times, more than one way to stroke a cat:

If the magnitude of either a or b is “small,” then one can easily find
their greatest common divisor. Consider, for example, the two numbers

 and 21. The only divisors of 21 are 1, 3, 7 and 21. Since 21 does
not divide 245, it cannot be the greatest common divisor of  and 21.
The next contender is 7, and 7 does divide 245 . Conse-
quently: .

EXAMPLE 1.23 Show that for any odd integer n, .8 n2 1– 

Using Induction
We show that the proposition:

holds for all  (thereby covering all
odd integers n).
I. Valid at : .
II. Assume valid at ; that is:
    or
   for some integer t. 
III. We are to establish validity at

; that is, that:
  

for some integer s. Let’s do it:

Using the Division Algorithm
We know that for any n there exists q such that: 

While (*) and (**) may not lead us to a fruitful conclu-
sion, the bottom line does. Specifically:

For any n:

If n is odd, then there are but the two possibilities:

We now show that, in either case . 
If , then:

 

If , then:

8 2m 1+ 2 1– 
m 0

m 0= 2 0 1+ 2 1– 0=
m k=

2k 1+ 2 1– 8t= 4k2 4k+ 8t=

m k 1+=
2 k 1+  1+ 2 1– 8s=

2 k 1+  1+ 2 1–
2k 3+ 2 1–=

4k2 12k 8+ +=
4k2 4k+  8k 8+ +=

8t 8 k 1+ + 8 t k 1+ +  8s= = =

II

n 2q or n 2q 1+= =
n 3q or n 3q 1 or n+ 3q 2+= = =
n 4q or n 4q 1 or n+ 4q 2 or n+ 4q 3+= = = =

(*)
(**)

n 4q or n 4q 1 or n+ 4q 2 or n+ 4q 3+= = = =

n 4q 1 or n+ 4q 3+= =
8 n2 1– 

n 4q 1+=

n2 1– 4q 1+ 2 1– 16q2 8q 1 1–+ + 8k  = = =
with k 2q2 q+= 

n 4q 3+=

n2 1– 4q 3+ 2 1– 16q2 24q 9 1–+ + 8h  = = =
with h 2q2 3q 1+ += 

Answer: See page A-8.

CHECK YOUR UNDERSTANDING 1.26

Prove that for any integer n,  or  for some inte-
ger q.

DEFINITION 1.13
GREATEST COMMON 

DIVISOR

For given a and b not both zero, the greatest
common divisor of a and b, denoted by
gcd(a,b), is the largest positive integer that
divides both a and b. 

n2 3q= n2 3q 1+=

245
245

245 7 35= 
gcd 245 21  7=
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The following example illustrating a procedure that can be used to find
the greatest common divisor of any two numbers — a procedure that will
surface within the proof of Theorem 1.7 below.  

SOLUTION: Employing the Division Algorithm:

Figure 1.4
Looking at equation (4), we see that 14 divides 98. Moving up to
equation (3) we can conclude that 14 must also divide 1582 [see The-
orem 1.5(b), page 28]. Equation (2) then tells us that 14 divides 1680,
and moving up one more time we find that 14 divides 4942. At this
point, we know that 14 divides both 1680 and 4942. 
To see that 14 is, in fact, the greatest common divisor of 1680 and
4942, consider any divisor d of 1680 and 4942. From equation (1),
rewritten in the form , we see that d must
also divide 1582. From Equation (2), rewritten as

, we see that d must also divide 98. Equation (3)
then tells us that d divides 14. 
Having observed that any divisor of 1680 and 4942 also divides 14,
we conclude that .

Working the algorithm of Figure 1.4 in reverse, we show that the
greatest common divisor of 4942 and 1680, namely 14, can be
expressed as a multiple of 4942 plus a multiple of 1680:

In general:

EXAMPLE 1.24 Determine 

Divide 1680 into 4942 to arrive at:  (1)

Divide  into 1680:      (2)

Divide  into :        (3)

Divide  into :                (4)

gcd 4942 1680 

4942 2 1680 1582+=
             r1

r1 1582= 1680 1 1582 98+=
r1          r2

r2 98= r1 1582= 1582 16 98 14+=
r2        r3r1

r3 14= r2 98= 98 7 14 0+=

Since each resulting remain-
der is strictly smaller than its
predecessor, the algorithm
must eventually terminate, as
it did in step (4), with a zero
remainder.

1582 4942 2 1680–=

1680 1582– 98=

gcd 1680 4942  14=

14 1582 16 98–=
1582 16 1680 1582– –=
4942 2 1680– 16 1680 4942 2 1680– – –=
17 4942 50– 1680+=

From (3):
From (2):
From (1):

regrouping:

In the above illustration:
a 4942 b 1680= =
s 17  and t 50–= =

THEOREM 1.7 If a and b are not both 0, then there exist s and
t such that:

gcd a b  sa tb+=
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PROOF: Let

Assume, without loss of generality that . Since both a and  are
of the form :  while ; and since
either a or  is positive: . That being the case the Well Ordering
Principle (page 39) assures us that G has a smallest element

. We show that  by showing that (1): g
divides both a and b, and that (2): every divisor of a and b also divides g. 

(1) Applying the Division Algorithm we have:
 with . 

Substituting  in (*) brings us to:

Since r is of the form  with , it cannot be in G, and
must therefore be 0 [see (**)]. Consequently , and .
The same argument can be used to show that . 

(2) If , then, by Theorem 1.5(b) and (c), page 28: .

For example:
Since , 15 and 8 are relatively prime. 
Since , 15 and 9 are not relatively prime. 

PROOF: To say that a and b are relatively prime is to say that
. The existence of integers s and t such that

 follows from Theorem 1.7.
For the converse, assume that there exist integers s and t such that

. Since  divides both a and b, it divides 1 [The-
orem 1.6(b) and (c), page 28]; and, being positive, must equal 1 [CYU
1.20(a-1), page 29].

G x 0 x ma nb for some m and n+= =
a 0 a–

ma nb+ a 1a 0b+= a– 1– a 0b+=
a– G 

g sa tb+= g gcd a b =

a qg r+=
(*)

0 r g
(**)

g sa tb+=
a q sa tb+  r+=
r 1 qs– a qtb–=
ma nb+ r g

a qg= g a
g b

d a and d b d g

(a) 5 (b) 
(c) See page A-8

s 3 t 1–= =

CHECK YOUR UNDERSTANDING 1.27
(a) Determine .
(b) Find integers s and t such that .
(c) Show that for any a and b not both zero:

 .

DEFINITION 1.14
RELATIVELY PRIME

Two integers a and b, not both zero, are rela-
tively prime if: 

THEOREM 1.8 Two integers, a and b, are relatively prime if
and only if there exist  such that

gcd 1870 5605 
gcd 1870 5605  sa tb+=

gcd a b  gcd a b =

gcd a b  1=

gcd 15 8  1=
gcd 15 9  3 1=

s t Z
1 sa tb+=

gcd a b  1=
1 sa tb+=

1 sa tb+= gcd a b 
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PROOF: Let s and t be such that:

Multiplying both sides of the above equation by c:

Clearly . Moreover, since : . The result now follows
from Theorem 1.5(b), page 28.

Chances are that you are already familiar with the important concept
of a prime number; but just in case:

 For example: 2, 5, 7, and 11 are all prime, while 9 and 25 are not.
Moreover, since any even number is divisible by 2, no even number
greater than 2 is prime.

PROOF: If , we are done. We complete the proof by showing that
if , then :

Since the greatest common divisor of p and a divides p, it is
either 1 or p. As it must also divide a, and since we are
assuming , it must be that . The result
now follows from Theorem 1.9.

THEOREM 1.9 Let . If , and if ,
then . 

a b c Z  a bc gcd a b  1=
a c

1 sa tb+=

c sac tbc+=

Answer: See page A-8.

CHECK YOUR UNDERSTANDING 1.28
Let . Show that if  and , then a and c can not be
relatively prime.

PRIME NUMBERS

DEFINITION 1.15
PRIME

An integer  is prime if 1 and p are its
only divisors. 

a sac a bc a tbc

a b c Z  a bc a b

p 1

So, 2 is the oddest prime (sorry).

THEOREM 1.10 If p is prime and if , then  or .p ab p a p b

p a
p a p b

p a gcd p a  1=

Answer: See page A-8.

CHECK YOUR UNDERSTANDING 1.29
Let p be prime. Use the Principle of Mathematical Induction to show
that if , then  for some .p a1a2an p ai 1 i n 
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The following result is important enough to be called the Fundamen-
tal Theorem of Arithmetic.

PROOF: We use API of page 38 (starting at ) to establish the
existence part of the theorem:

I. Being prime, 2 itself is already expressed as a product of primes.
II. Suppose a prime factorization exists for all m with .
III.We complete the proof by showing that  can be expressed

as a product of primes:
If  is prime, then we are done.

If  is not prime, then , with . By
our induction hypothesis, both a and b can be expressed as a
product of primes. But then, so can .

For uniqueness, consider the set: 

Assume that  (we will arrive at a contradiction). 
The Well-Ordering Principle of page 39 assures us that S has a
smallest element, let’s call it m. Being in S, m has two distinct
prime factorizations, say:

Since  and since  we have

. By CYU 1.28,  for some . 

Without loss of generality, let us assume that . Since 
is prime, its only divisors are 1 and itself. It follows, since

, that . Consequently:

THEOREM 1.11 Every integer n greater than 1 can be
expressed uniquely (up to order) as a product
of primes.

n 2=

2 m k 
k 1+

k 1+

k 1+ k 1+ ab= 2 a b k 

k 1+ ab=

S n Z+ n has two different prime decompositions =

S 

m p1p2ps q1q2qt= =
p1 p1p2ps p1p2ps q1q2qt=

p1 q1q2qt p1 qj 1 j t 

p1 q1 q1

p1 1 p1 q1=

p1p2ps q1q2qt p1p2ps p1q2qt==

p1p2ps p1q2qt– 0=

p1 p2ps q2qt–  0=

p2ps q2qt– 0=

p2ps q2qt=

p1 0:

two distinct prime decompositions for
an integer smaller than m — contradicting the minimality on m in S
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PROOF: Assume that there are but a finite number of primes, say
, and consider the number:

Since , it is not prime. By Theorem 1.11, some prime must
divide m. Let us assume, without loss of generality, that . Since

 divides both m and :  [Theorem

1.5(b), page 28]. A contradiction, since .

A pairs of prime number, such
as , , and ,
that differ by 2 are said to be
twin primes. Whether or not
there exist infinitely many
twin primes remains an open
question.

3 5  5 7  11 13 
THEOREM 1.12 There are infinitely many primes.

S p1 p2  pn   =

m p1p2pn 1+=

Answer: See page A-9.

CHECK YOUR UNDERSTANDING 1.30
Leta and b be relatively prime. Prove that if  and , then .

m S
p1 m

p1 p1p2pn p1 m p1p2pn – 

m p1p2pn – 1=

a n b n ab n
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Exercises 1-3. For given a and d, determine integers q and r, with , such that .

Exercises 4-6. Find the greatest common divisor of a and b, and determine integers s and t such that
 

EXERCISES

1. 2. 3.

4. 5. 6.

7. Prove that if 3 does not divide n, then  or  for some .

8. Let n be such that . Show that .

9. Show that if n is not divisible by 3, then  for some integer m.

10. Show that an odd prime p divides  if and only if p divides n.

11. Prove that if  for some n, then  for some m.

12. Show that  if and only if .

13. Prove that any two consecutive odd positive integers are relatively prime.

14. Let a and b not both be zero. Prove that there exist integers s and t such that  if
and only if  is a multiple of .

15.  Prove that the only three consecutive odd numbers that are prime are 3, 5, and 7. 

16. Show that a prime p divides  if and only if p divides n.

17. Prove that every odd prime p is of the form  or of the form  for some n.

18. Prove that every prime  is of the form  or of the form  for some n.

19. Prove that every prime  is of the form , , , or  for some 
n.

20. Prove that a prime p divides  if and only if  or . 

21. Prove that every prime of the form  is also of the form . 

22. Prove that if n is a positive integer of the form , then n has a prime factor of this form 
as well. 

23. Prove that a and b are relatively prime if and only if the prime decompositions of a and b do 
not share a common prime.

24. Prove that  is prime if and only if n is not divisible by any prime p with .

0 r d a dq r+=
a 0 d 1= = a 5– d 133= = a 133– d 5= =

gcd a b  s a t b+=
a 120 b 880= = a 5– d 133= = a 133– d 5= =

n 3k 1+= n 3k 2+= k Z

3 n2 1–  3 n

n2 3m 1+=

2n

a 6n 5+= a 3m 2+=

2 n4 3–  4 n2 3+ 

n sa tb+=
n gcd a b 

n2

4n 1+ 4n 3+

p 3 6n 1+ 6n 5+

p 5 10n 1+ 10n 3+ 10n 7+ 10n 9+

n2 1– p n 1–  p n 1+ 

3n 1+ 6k 1+

3k 2+

n 1 p n
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25. There exists an integer n such that  for some m.
26. If  for some m, then  for some n.
27. If m and n are odd integers, then either  or  is divisible by 4.
28. For any a, and b not both 0, there exist a unique pair of integers s and t such that

.
29. For every n, . GIO move to induction or state not to use induction

30. For every , . 

31. There exists  such that .

PROVE OR GIVE A COUNTEREXAMPLE

n2 3m 1–=
a 3m 2+= a 6n 5+=

m n+ m n–

gcd a b  s a t b+=
3 4n 1– 

n Z+ 3 4n 1+ 

n Z+ 3 4n 1+ 
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 2

CHAPTER 2 
A Touch of Set Theory

Modern mathematics rests on set theory. Some of that foundation is
introduced in the first four sections of the chapter, and a glimpse into
the axiomatic construction of the theory is offered in Section 5.     

As you might expect, one defines two sets to be equal if each element
of either set is also an element of the other:

Note that when it comes to set notation, order is of no consequence.
For example: . Moreover, to avoid an unpleas-
antness such as  we stipulate that elements
cannot be listed more than once within the set notation. 

  

For example:
 

Just as you can add or multiply numbers to obtain other numbers, so
then can sets be combined to obtain other sets:

A bit of set notation has
already been introduced
in the previous chapter.

(See page 10)

We remind you that the
symbol  is read “is an
element of.” 



§1. BASIC DEFINITIONS

DEFINITION 2.1
SET EQUALITY

Two sets A and B are equal, written  if:A B=
x A x B   and   x B x A

or: x A x B 

1 2 3   2 1 3  =
1 1 2 3    1 2 3  =

A
B

DEFINITION 2.2
SUBSET 

AND 
PROPER SUBSET

Let A and B be sets. A is said to be a subset
of B, written  if every element in A is
also an element in B, i.e: .
A is said to be a proper subset of B, written

, if A is a subset of B and . 

A B
x A x B

A B A B

1 2 3   1 2 3   1 2  1 2 3    and 1 2  1 2 3  

If someone asks you if you
want tea or coffee, you are
being offered one or the
other, but not both: the
exclusive-or is being used.
In mathematics and sci-
ence, however, the inclu-
sive-or is generally used.
In particular, to say that x
is in A or B, allows for x to
be both in A and in B.

DEFINITION 2.3
INTERSECTION AND 

UNION OF SETS

Let A and B be sets. 
The intersection of A and B, written ,
is the set consisting of the elements common
to both A and B. That is:

The union of A and B, written , is the
set consisting of the elements that are in A or
in B (see margin). That is:

A B

A B x x A and  x B =
read such that

A B

A B x x A or  x B =
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Figure 2.1

For example, if  and , then:

and: .

We note that the set that contains no elements is called the empty set
(or the null set), and is denoted by . 

I

In particular, since :
 and  are disjoint.

For example, if and ,
then:

and:

When dealing with sets, one usually has a universal set in mind — a
set that encompasses all elements under current consideration. The let-
ter U is typically used to denote the universal set, and it generally takes
on a rectangular form in Venn diagrams (see margin). 

For example, if , then:

The adjacent visual repre-
sentations of sets are called
Venn diagrams.

[John Venn (1834-1923)].
A B

A B x x A and x B =
(a)

A B

(b)
A B x x A or x B =

A 3 5 9 11   = B 1 2 5 6 11    =
A B 3 5 9 11    1 2 5 6 11     5 11 = =

A B 3 5 9 11    1 2 5 6 11     3 5 9 11 1 2 6      = =

A
B DEFINITION 2.4

DISJOINT SETS
Two sets A and B are disjoint if .



A B =

1 2 3   4 5  =
1 2 3   4 5 

BA

A B–

DEFINITION 2.5
A MINUS B   

Let A and B be sets. A minus B, denoted by
, is the set of elements in A that are not

in B: 
A B–

A B– x x A and x B =

As it is with numbers, set
subtraction is not a com-
mutative operation: 
need not equal .

A B–
B A–

A 1 2 5 6 10 11     = B 3 5 9 11   =

A B– 1 2 5 6 10 11      3 5 9 11   – 1 2 6 10   = =

B A– 3 5 9 11    1 2 5 6 10 11     – 3 9 = =

Note that:

U

A

Ac

Ac U A–=

DEFINITION 2.6
COMPLEMENT 

OF A SET

Let A be a subset of the universal set U. The
complement of A in U, written , is the set
of elements in U that are not contained in A:

(More simply: , if U is understood)

Ac

Ac x  x U and x A =
x x A 

U 1 2 3 4 5 6 7 8 9        =

1 3 5 7 8    
c 2 4 6 9   =
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Here is a link between the difference and complement concepts:

PROOF: 

We can also use a Membership Table (an approach reminiscent of Truth
Tables) to establish the above result. As you can see, we labeled the first
two columns of Row 1 in Figure 2.2: A and B. Other involved sets, built
from those two sets, are acknowledged in the remaining three columns of
Row 1. 

Now, for any given x in the universal set, there are four possibilities: 

Since 1 appears under both A and B in Row 2 of Figure 2.2, a 0 appears
in the third column of that row. Why? Because:

Why does a 1 appear in the third column of Row 3? Because:
 

You get the developing pattern, no? But just in case, let’s finish up with
Row 3:

The  column: 

The  column: 

(a-1)        (a-ii)      
(a-iii) 
(a-iv)  
(a-v)    
True: (b-i), (b-ii), (b-iii), (b-iv),
(b-vii)     False: (b-v), (b-vi)

6  1 5 6  
3 4 
2 3 4 6 7    

4 5 6  

CHECK YOUR UNDERSTANDING 2.1
(a) Let , , ,
and . Determine:

(i)           (ii)        (iii) 

(iv)              (v) 

(b) Indicate True or False:
(i)    (ii) (iii) 

(iv)    (v)    (vi)     (vii) 

THEOREM 2.1                

And so we positioned a 1 in the first two columns
of Row 1 to indicate containment. 
And so we positioned a 0 in the second column of
Row 3 to indicate non-containment.
0 and then 1 appear in the first two columns of
Row 4. 
0 and 0 appear in the first two columns of Row 5. 

U 1 2 3 4 5 6 7      = A 1 3 5  = B 2 3 4 7   =
C 3 4 5  =

A B c A Bc  A B c A B– c C

A B C – c x U x y 2 y B+= 

2  1 2  2 1 2  2  1 2  

 1 2   1 2        

A B– A Bc=

x A B x A and x B–

x A and x Bc x A Bc 

x A and  x B

x A and  x B

x A and  x B

x A and  x B

x A and x B x A B–
                  1               1              0                  

x A and x B x A B–
                  1               0               1                   

Bc x B x Bc
0             1

A Bc x A and x Bc x A Bc
                                1               1              1
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Figure 2.2

SOLUTION: (a) 

  (b) 

SOLUTION: (a) True: 

You can turn this mem-
bership table into a truth
table by replacing the
sets A and B with the
propositions

respectively.
x A  and  x B

EXAMPLE 2.1 Use a Membership Table to establish:
(a)  
(b) 

A B C

1 1 1 0 0 0 1 0
1 1 0 0 1 0 0 1
1 0 1 1 0 0 0 1
0 1 1 0 0 0 1 0
1 0 0 1 1 1 0 1
0 1 0 0 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 0 0 0 0 0

                            

EXAMPLE 2.2 Prove or give a counterexample.
(a)                
(b) 

A B

1 1 0 0 0
1 0 1 1 1
0 1 0 1 0
0 0 0 0 0

A B– Bc A Bc

x A B– x A Bc 

Set Row 1:
Row 2:
Row 3:
Row 4:
Row 5:

A B  A Bc  A=
A B–  A C–  A B C –

A B

1 1 1 0 0 1
1 0 0 1 1 1
0 1 0 1 0 0
0 0 0 0 0 0

A B Bc A Bc A B  A Bc 

x A x A B  A Bc 

A B– A C– A B–  A C–  B C A B C –

if x A B–  A C–  then x A B C –

A B c C C A B –=
A B c A B

x A B c C x C and x A B 

x C A B –
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(b) A glance at the adjacent figure suggests that,
in general,  is not a subset of .
Suggestion aside, a specific counterexample is
needed to nail down the claim. Here is one:
          For , , :

                           

The two DeMorgan’s laws in the margin were established on page 6
(see margin). Here are the “set-versions” of those laws:

PROOF: (a) In accordance with Definition 2.1, we are to show that:
  and that . 

Let’s do them both at the same time: 

(b) We choose to use a Membership Table to establish
 :  

A
B

A B c

A
B

A B c A B

U 1 2 = A 1 = B 1 =

A B c 2  while A B 1 = =

Answer: See page A-9.

Let p and q be proposi-
tions. Then:
(a) 

(b) 

~ p q  ~p ~q

~ p q  ~p ~q

CHECK YOUR UNDERSTANDING 2.2
Prove or give a counterexample:

(a) 
(b) 

THEOREM 2.2
DEMORGAN’S

 LAWS

For any sets A and B:

(a) 

(b) 

A B C – A B–  A C– =
A Bc c B Ac B=

A B c Ac Bc=

A B c Ac Bc=

x A B c x Ac Bc  x Ac Bc  A B c

x A B c x A B  x A or x B x Ac or x Bc

x Ac Bc 

Definition 2.5                       Definition 2.3         Definition 2.5

Definition 2.3:

A B c Ac Bc=

A B

1 1 0 0 0 1 0
1 0 0 1 0 1 0
0 1 1 0 0 1 0
0 0 1 1 1 0 1

Ac Bc Ac Bc A B A B c

x Ac Bc x A B c
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The union of n sets  can be denoted by

 or by , and the union of the sets  by

 or . For any set A, , denotes a collection of sets

indexed by A, and just as  can be used to denote the union of the

sets in the collection , so then does  denote the union

of the sets in the collection . For example,  denotes the

union of a collection of sets indexed by the set of real numbers . 

We are now in a position to address the most general form of DeMor-
gan’s Laws:

PROOF: (a) 

Answer: See page A-10.

CHECK YOUR UNDERSTANDING 2.3
(a) Use a Membership Table to prove Theorem 2.2(a)
(b) Prove Theorem 2.2(b) by a method similar to that used in the

proof of Theorem 2.2(a).

Similarly    , ,

and  represent the

intersection of n sets, sets
indexed by the positive
integers, and sets indexed
by the set A, respectively.

Si

i 1=

n

 Si
i Z+


S
 A


Si i 1=
n S1 S2  Sn   =

S1 S2 Sn Si

i 1=

n

 Si i 1=


Si

i 1=



 Si
i Z+
 S  A

Si
i Z+


Si i Z+ S
 A


S  A Sr
r 




THEOREM 2.3
DEMORGAN’S

 LAWS

For any collection  of sets:

(a)      (b) 

S  A

S
 A
 

 
  c

S
c

 A
= S

 A
 

 
  c

S
c

 A
=

The containment table
approach cannot be
used to establish this
result. Why not?

x S
 A
 

 
  c

 x S
 A


x S for every  A

x Sc  for every  A

x S
c

 A
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As for (b): 

Certain subsets of , called intervals, warrant special recognition.
As is indicated below, brackets are used to indicate endpoint-inclu-
sions, while parenthesis denote endpoint-exclusions. 

Figure 2.3
In general, for :

 is said to be a closed interval.
 is said to be an open interval.
and  

        are said to be half-open (or half-closed) intervals.

Answer: See page A-10.
CHECK YOUR UNDERSTANDING 2.4

Establish Theorem 2.2(b)

INTERVAL NOTATION

 , called intervals.

Interval Notation Geometrical Representation
All real numbers strictly 
between 1 and 5 (not including 
1 or 5)
All real numbers between 1 and 
5, including both 1 and 5.

All real numbers between 1 and 
5, including 1 but not 5.

All real numbers between 1 and 
5, including 5 but not 1.

All real numbers greater than 1.

All real numbers  greater than or 
equal to 1.

All real numbers strictly less 
than 5.

All real numbers less than or 
equal to 5.

The set of all real numbers.

1 5  x 1 x 5  =
excluding 1 and 5

|         |          |         |          |          |         |         |          |         |          |          |         |         |          |          |         |         |

0     1     2     3      4     5      6     7     8     9-8    -7     -6    -5    -4     -3    -2    -1
(                       )

1 5  x 1 x 5  =
including 1 and 5

|         |          |         |          |          |         |         |          |         |          |          |         |         |          |          |         |         |

0     1     2     3      4     5      6     7     8     9-8    -7     -6    -5    -4     -3    -2    -1
[                   ]

1 5  x 1 x 5 =

including 1 and excluding 5

|         |          |         |          |          |         |         |          |         |          |          |         |         |          |          |         |         |

0     1     2     3      4     5      6     7     8     9-8    -7     -6    -5    -4     -3    -2    -1
[                   )

1 5  x 1 x 5 =
excluding 1 and including 5

|         |          |         |          |          |         |         |          |         |          |          |         |         |          |          |         |         |

0     1     2     3      4     5      6     7     8     9-8    -7     -6    -5    -4     -3    -2    -1
(                   ]

1   x x 1 =
the infinity symbol

|         |          |         |          |          |         |         |          |         |          |          |         |         |          |          |         |         |

0     1     2     3      4     5      6     7     8     9-8    -7     -6    -5    -4     -3    -2    -1
(                  

1  x x 1 =|         |          |         |          |          |         |         |          |         |          |          |         |         |          |          |         |         |

0     1     2     3      4     5      6     7     8     9-8    -7     -6    -5    -4     -3    -2    -1
[                  

 5 – x x 5 =|         |          |         |          |          |         |         |          |         |          |          |         |         |          |          |         |         |
0     1     2     3      4     5      6        8     9-8    -7     -6    -5    -4     -3    -2    -1

                    )  

 5 – x x 5 =|         |          |         |          |          |         |         |          |         |          |          |         |         |          |          |         |         |
0     1     2     3      4     5      6      7     8     9-8    -7     -6    -5    -4     -3    -2    -1

                    ]  

 – x  x  – = |         |          |         |          |          |         |         |          |         |          |          |         |         |          |          |         |         |

0     1     2     3      4     5      6     7     8     9-8    -7     -6    -5    -4     -3    -2    -1
                     

a b
a b  r R a r b  =
a b  r R a r b  =
a b  r R a r b = a b  r R a r b =
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In addition:
 and  are said to be open.
 and  are said to be half-open (or half-closed).

 is said to be both closed and open (or clopen).

(a)     (b) 
(c) 

0 2  5  
2 2  3 5 –

CHECK YOUR UNDERSTANDING 2.5

Simplify:   (a)          (b) 

                                (c) 

a   – b 
a  – b 
 –  =

2– 2  0 5  1 3– c 5  

2 0–  1– 2  3 5  
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Exercises 1-19. For , , , 
, , , 

, and , determine: 

Exercises 20-23. Determine the set of all subsets of the given set A. 

24. Establish the following set identities (all capital letters represent subsets of a universal set U):

Exercises 25-51. Prove that:

EXERCISES

1. 2. 3. 4.

5. 6. 7. 8.

9. 10. 11. 12.

13. 14. 15. 16.

17. 18. 19.

20. 21. 22. 23.

Domination Laws

Complementation 
Law

Commutative 
Laws

Associative Laws

Distributive Laws

25. 26. 27.

28. 29. 30.

31. 32. 33.

34. 35. 36.

37. 38.

39. 40.

41. 42.

43. 44.

45. 46.

U 1 2 3    = O 1 3 5    = E 2 4 6    =
A 5n n U = B 3n n U = C 1 2 3  15    =
D 2 4 6 10   = F 11 12 13 14   =

O E O E A B A B

B C B C C D C D

Oc Ec Oc A C O O A c

C D  F C D F  C F  D C Fc  F

Bc C  D O  O E c A B  c O E c Cc

A 1 = A 1 2 = A 1 2 3  = A  =

A  A=
A U A=

A U U=
A  =

A A A= Ac c A=

A B B A=
A B B A=

A B C  A B  C=
A B C  A B  C=
A B C  A B  A C =
A B C  A B  A C =

A B–  Bc Ac B c A Bc= A B A–  =

A C–  C B  = A B–  C–  A C–  A B  A Bc  A=

A A B – A B–= A B– c B Ac= U A B  A B c=

Ac Ac B–  c A= Ac Bc  A– c A= A B A–  A B=

A C–  B C– – A B–  C–= A C–  B C–  A B  C–=

A C–  B C–  A B  C–= A B–  A C– – A C B– =

A B–  A C–  A B C –= A B–  A C–  A B C –=

B A–  C A–  B C  A–= A B  C– A C–  B C– =

A B– c B A– c A B c= A B  Cc A B  C–=
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Exercises 52-59. Give a counterexample to show that each of the following statements is False.

47. 48.

49. 50.

51.

52. 53. 54.

55. 56. 57.

58. 59.

60. For n an integer distinct from 0, let . Determine the set:

 (a)          (b)          (c)          (d) 

61. Prove that for any given set A,  and .

62. Prove that if  and , then .

63. Prove that if , , and  then .

64. Prove that for any sets A and B of a universal set U: .

65. Prove that  if and only if .

66. Prove that  and . 
            [So,  is a representation of A as a disjoint union]

67. Prove that  and that . 

(So,  is a representation of  as a disjoint union.)

68.  Prove that  if and only if  for every .

69. Prove that  if and only if  for every .

70. Prove that the three statements

(i)         (ii)          (iii) 

are equivalent by sowing that .

# 71. Let  be any collection of sets. Prove that for any set X:

(a)             (b) 

A B–  B C– – A B–= A B  C A– – A B C– =

A B  A C   A B C   A Bc c B Ac B=

A B C   Ac B C   Bc Cc   U=

A B– B A–= A B– c Bc Ac–= A B c Ac Bc=

A B c Ac Bc= A B c Ac Bc= A B c Ac Bc=

A B  C– A B C– = A B c Cc Ac B C c=

An a Z a is divisible by n =

A5 A10 A5 A10 A9 A3 c A9 A3 c

 A A A

A B B C A C

A B B C C A A B C= =

A B– A Bc=

A B Bc Ac

A A B  A B– = A B  A B–  =
A B  A B– 

A B A B A– = A B A–  =

A B A–  A B

A B A C  B C  C U

A B A C  B C  C U

A B A B A= A B B=

i  ii  iii  i   

S  A

S X 
 A
 S

 A
 

 
 

X= S X 
 A
 S

 A
 

 
 

X=
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PROVE OR GIVE A COUNTEREXAMPLE

72. If  and , then .

73. If  or , then .

74. If  and , then .

75. If , then .

76. If , then .

77. If , then either  or .

78. .

79. .

80.  if and only if .

81. If  and , then .

82. .

83. If no element of a set A is contained in a set B, then A cannot be a subset of B.

84. Two sets A and B are equal if and only if the set of all subsets of A is equal to the set of all 
subsets of B.

85.  .

A B  B C  A C 

A B = B C = A C =

A B C  C B A  A C=

A B A C= A C=

A B A C= A C=

A B A B= A = B =

A B C– – A B–  C–=

A B–  C– A C–  B C– –=

A B– B A–= A B=

A B C  B C D  A C  B D 

A B  A C  A B C =

  =
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 2 

You’ve dealt with functions in one form or another before, but have
you ever been exposed to a definition? If so, it probably started off with
something like:

A function is a rule...........
Or, if you prefer, a rule is a function.......

You are now too sophisticated to accept this sort of “circular definition.”
Alright then, have it your way:

 The notation  is used to denote a function from a set X to a
set Y. Moreover, as is customary, we write  to indicate that

. 

The function  is also called a mapping from X to Y. In the
event that , we will say that f maps x to y. Finally, we note that
the symbols  and  are used to denote the domain and range of f,
respectively.

Since functions are sets, the definition of equality is already at hand.
Two functions f and g are equal if the set f is equal to the set g. In other
words, if:

  and  for every .

§2. FUNCTIONS

All “objects” in mathematics
are sets, and functions are no
exceptions. The function f
given by , is the

subset   
of the plane. Pictorially: 

A function such as
 

is often simply denoted by
. Still, in spite of

their dominance throughout
mathematics and the sciences,
functions that can be described
in terms of algebraic expres-
sions are truly exceptional.
Scribble a curve in the plane
for which no vertical line cuts
the curve in more than one
point and you have yourself a
function. But what is the “rule”
for the set g below? 

Note that the set S below, is not
a function:

Why not?

f x  x2=

f x x2  x  =

f x x2  x  =

f x  x2=

g

g x 

x.
.

                                                       

S

x

...

DEFINITION 2.7
CARTESIAN
 PRODUCt

For given sets X and Y, we define the Carte-
sian Product of X with Y, denoted by ,
to be the set of ordered pairs:

DEFINITION 2.8
FUNCTION

DOMAIN

RANGE

IMAGE OF 

INVERSE IMAGE OF 

A function f from a set X to a set Y is a subset
 such that for every  there

exists a unique  with , and we
write: .
The set X is said to be the domain of f, and 

is said to be the range of f.
While the domain of f is all of X, 
the range of f need not be all of Y.

Moreover, for  and :
 is called the image of

A under f, and 
is called the inverse image of B.

When not specified, the domain of a function expressed in terms of a variable x is
understood to consist of all values of x for which the expression can be evaluated.

X Y

X Y x y  x X and y Y =

A X

B Y

f X Y x X
y Y x y  f

y f x =

y Y x y  f for some x X 

A X B Y
f A  f a  a A =

f 1– B  x X f x  B =

f: X Y
y f x =

x y  f

f: X Y
y f x =

Df Rf

Df Dg= f x  g x = x Df Dg=
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Consider the schematic representation of the functions  and
 in Figure 2.4, along with a third function .

Figure 2.4
As is suggested in the above figure, the function  is given

by:

Formally:

(a) No       (b) Range: 
(c) No       (d) No

2 

CHECK YOUR UNDERSTANDING 2.6
For  and  determine if the sub-
set f of  is a function . If so, determine its range.
(a) 

(b) 

(c) 

(d) 

COMPOSITION OF FUNCTIONS

DEFINITION 2.9
COMPOSITION

Let  and  be such that
the range of f  is contained in the domain of
g. The composite function  is
given by: 

In set notation: 

EXAMPLE 2.3 For  and  find:

  (a)    (b)  

  (c) (d) 

X 0 1 2 3   = Y 2 3 4 5 6    =
X Y f: X Y

f 0 2  1 2  2 3  2 6    =

f 0 2  1 2  2 2  3 2    =

f 0 2  1 2  2 3   =

f 2 2  3 0  4 1  5 3  6 0     =

f: X Y
g: Y T gf: X T

x
. . .f x  g f x  

f g

X                        Y                             T          
gf

gf: X T

gf  x  g f x  =

first apply f
and then apply g

f: X Y g: Y T

gf: X T

gf  x  g f x  =

gf x t  y Y x y  f  and  y t  g =

f x  x2 1+= g x  2x 5–=

gf  3  fg  3 

g f  x  fg  x 
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SOLUTION: 
(a) 

(b) 

(c) 
(d) 

The time has come to break out of our comfort zone and to consider
functions of the form , where X or Y are no longer restricted to
sets of real numbers. Here are some “exotic sets:” 

To illustrate:  and .

       ,   ,   and 

As might be expected: Two n tuples , 
are said to be equal if  for ; in other words: if the are
one and the same. The same goes for elements of .

gf  3  g f 3   g 32 1+  g 10  2 10 5– 15= = = = =

fg  3  f g 3   f 2 3 5–  f 1  12 1+ 2= = = = =

g f  x  g f x   g x2 1+  2 x2 1+  5– 2x2 3–= = = =

(a-i)    (a-ii)    

(a-iii)    (a-iv) 

(b) 

5
2
--- 17

4
------

3x 6+
x 3+

--------------- 5x 2+
x 1+

---------------

gf 1 a  c t  x 4   =

CHECK YOUR UNDERSTANDING 2.7

(a) For  and , determine:

       (i)         (ii)       (iii)       (iv) 

(b) For  and
                          , determine: .  

Is  defined? Justify your answer.

DEFINITION 2.10
n-tuples

Matrices

Let . The set of n-tuples, denoted by
, is given by:

Let  and . The set of -
matrices (pronounced n-by-m matrices).
denoted by , is given by:

f g  x  f g x   f 2x 5–  2x 5– 2 1+ 4x2 20x– 26+= = = =

f x  x 2+= g x  3x
x 1+
------------=

gf  3  fg  3  g f  x  f g  x 

f 1 a  c 5  x y   =
g a a  c 3  5 t  y 4    = gf

fg

f: X Y

n 1
n

n a1 a2  an    ai  1 i n  =

n 1 m 1 n m

Mn m

Mn m

a11 a12  a1m

a21 a22  a2m

an1 an2  anm

=   

2 1
2
---  2 3 2 5 0    4

2 5
1– 9

M2 2
4
0


M3 1 0 1 5–
3 1 4

M2 3

a1 a2  an    b1 b2  bn   
ai bi= 1 i n 

Mn m
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SOLUTION: (a-i) Just follow the “f-pattern:” 

(a-ii) Follow the g-pattern: .

(a-iii) Both patterns come into play:

(b) 

Our next goal is to single out some functions that count more than
others; beginning with one-to-one functions: 

EXAMPLE 2.4 Let  and  be  given by:

 and 

(a) Determine:

(i)     (ii)    (iii) 

(b) Find 

f: 4 M2 2 g: M2 2 R2

f a b c d    b– 2a
3d c

= g a b
c d 

 
 

a d+ bc =

f 5 2 9– 4    g 3 5
2 4 

 
 

gf  1 2 5 3   

gf  a b c d   

ONE-TO-ONE AND ONTO FUNCTIONS

f 5 2 9– 4    2    – 2 5
3 4    9–

2– 10
12 9–

= =
 a  b      c   d

g 3 5
2 4 

 
 

3 4+ 5 2  7 10 = =

gf  1 2 5 3    g f 1 2 5 3     g 2– 2
9 5 

 
 

3 18– = = =

gf  a b c d    g b– 2a
3d c 

 
 

b– c+ 6ad = =

Equivalently, f is one-to-one if 

In words:
different x’s are mapped
to different y’s.

x1 x2 f x1  f x2  DEFINITION 2.11
ONE-TO-ONE

A function  is said to be one-to-
one (or an injection) if 

In set notation: 

f: X Y

f x1  f x2  x1 x2= =

x1 y  x2 y  f x1 x2=
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Figure 2.5 represents the action of two functions, f and g, from
 to . The function f on the left is one-

to-one while the function g is not.
 

Figure 2.5
   

SOLUTION: (a) Appealing to Definition 2.10, we begin with
, and then go on to show that this can only hold if :

(b) Rather than , consider the function
 and corresponding equation : 

We see that the function  is not one-to-one, for it
maps three (need only two) different x’s to zero: 0, , and

. It follows that the function  will
map those same numbers to 75, and is therefore not one-to-one.

EXAMPLE 2.5 (a) Show that the function  is 
one-to-one.

(b) Show that the function 
 is not one-to-one.

X 0 1 2  = Y a b c d   =

0
1

2

a   
 b

c
d

...
.
..

.
0

1
2

a   
 b

c
d

...
.
..

.
                                                   
f                                                   g

one-to-one                                   not one-to-one

f x  x
5x 2+
---------------=

g x  x3 3x2 x– 75+ +=

f a  f b =

a b=

f a  f b = a b=
f a  f b =
a

5a 2+
--------------- b

5b 2+
---------------=

a 5b 2+  b 5a 2+ =
5ab 2a+ 5ab 2b+=

2a 2b=
a b=

Recall that the solutions
of the quadratic equation:

are given by the quadratic
formula:

Answer: See page A-11.

ax2 bx c+ + 0=

x b– b2 4ac–
2a

---------------------------------------=

CHECK YOUR UNDERSTANDING 2.8

(a) Show that the function  is one-to-one.

(b) Show that the function  is not one-to-one.

g x  x3 3x2 x– 75+ +=
h x  x3 3x2 x–+= x3 3x2 x–+ 0=

x3 3x2 x–+ 0=
x x2 3x 1–+  0=

x 0 x 3– 13
2

------------------------= =

using the quadratic formula

h x  x3 3x2 x–+=
3– 13+

2
------------------------

3– 13–
2

----------------------- g x  x3 3x2 x– 75+ +=

f x  x
x 1+
------------=

f x  x5 x– 777+=
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Figure 2.6 represents the action of two functions, f and g, from
 to . The function f  on the left is onto,

while  g is not.

Figure 2.6

SOLUTION: (a) To show that f is one to one, we start with
                                    
and go on to show that :

In words:
 is onto if

every element in Y is
“hit” by some .

f: X Y

f x 

DEFINITION 2.12
ONTO

A function  is said to be onto (or a
surjection) if for every  there exists

 such that .

In set notation: 

EXAMPLE 2.6 (a) Let  be given by:

Show that f is both one-to-one and onto.

(a) Let   be given by:

 

Show that f is neither one-to-one nor onto.

f: X Y
y Y

x X f x  y=

y Y x X x y  f

X 0 1 2 3   = Y a b c  =

0
1

2

a   
 b

c

...
..
.

                                               

3 .
0

1
2

a   
 b

c

.. .
.3 .

. .

                onto                                           not onto 
f                                                      g

 X                 Y                                 X                  Y 

f: 4 M2 2

f x y z w    y– 2x
3w z

=

g: M2 2 M2 2

g a b
c d 

 
  b a

c d+ 2b
=

We need to consider two ele-
ments in . They have to look
different; and so we called one
of the elements  and
the other . (We could
have labeled the other

, or whatever. The
two 4-tuples just have to look
different, that’s all.

4

x y z w   
x y z w   

A B C D   

f x y z w    f x y z w   =
x y z w    x y z w   =

f x y z w    f x y z w   = y– 2x
3w z

y– 2x
3w z

=

y– y–=
2x 2x=
3w 3w=

z z= 





 y y=

x x=
w w=
z z= 








 

x y z w    x y z w   =
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To show that f is onto, we take an arbitrary element 

and set our sights on finding  such that

:

The above argument shows that f will map the element

 to . Let’s check it out:

(b)  is not one-to one, since:

, and .

The functiong is not onto, since no element  is mapped to

:  since 3 is not 2 times 1. 

a b
c d

M2 2

x y z w    R4

f x y z w    a b
c d

=

f x y z w    a b
c d

y– 2x
3w z

a b
c d

y– a=
2x b=
3w c=

z d= 





 y a–=

x b 2=
w c 3=
z d= 








 ==

b
2
--- a– d c

3
---   

  R4 a b
c d

M2 2

f b
2
--- a– d c

3
---   

 
a– – 2 b

2
--- 
 

3 c
3
--- 
  d

a b
c d

= =

g a b
c d 

 
  b a

c d+ 2b
=

g 0 0
1 0 

 
 

g 0 0
0 1 

 
  0 0

1 0
= = 0 0

1 0
0 0
0 1



a b
c d

1 0
0 3

f a b
c d 

 
  b a

c d+ 2b
1 0
0 3

=

Answer: See page A-11.

CHECK YOUR UNDERSTANDING 2.9
Show that the function  given by:

  

is one-to-one and onto.

f: M2 2 R4

f a b
c d 

 
 

d c 3a b– =
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Consider the bijection  depicted in Fig-

ure 2.7(a) and the function  in Figure
2.7(b). Figuratively speaking, , read “f inverse,” was obtained from
f by “reversing” the direction of the arrows in Figure 2.7(a). On a more
formal level:

Figure 2.7
In general:

Figure 2.7 certainly suggests that if f is a bijection then so is , and
that if you apply f and then  you are back to where you started from
(see margin).  This is indeed the case: 

PROOF: (a)  is one-to-one: If , then: 

 is onto: Let . Since f is onto, there exists 

such that . Then: .

So:
A bijection  pairs
off each element of X with
an element of Y.

f: X Y

BIJECTIONS AND THEIR INVERSES

DEFINITION 2.13
BIJECTION

A function  that is both one-to-one
and onto is said to be a bijection.

DEFINITION 2.14
INVERSE FUNCTION

The inverse of a bijection , is the
function  given by:

More formally: 
 

f: X Y

f: 0 1 2 3    a b c d   
f 1– : a b c d    0 1 2 3   

f 1–

f 0 a  1 b  2 c  3 d    =

and:  f 1– a 0  b 1  c 2  d 3    =.
. .
.01
2

3 .
.
..

a
b

c
d . .

.01
2

3 .
.
..

a
b

c
d

.
f f 1–

(a)                                                      (b)

f: X Y
f 1– : Y X

f 1– y  x where f x  y= =

f 1– y x  x y  f =

0
1

2
3

ab

c
d. .

f

f 1– THEOREM 2.4 Let  be a bijection. Then:

(a)  is also a bijection. 

(b)  and 

f 1–

f 1–

f: X Y

f 1– : Y X

f 1– f x   x x X=
f f 1– y   y y Y=

Recall that to say that
 is to say that
 (see Definition

2.8).

f x  y=
x y  f

f 1– f 1– y1  f 1– y2  x= =
y1 x  f 1–  and y2 x  f 1–

x y1  f and x y2  f

y1 y2  (since f is a function)=
f 1– x X y Y

x y  f y x  f 1– f 1– y  x=
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(b) Let . Since , , which is to say:

      . As for the other direction: 

SOLUTION: (a) For given  we determine  such that

:

                           Conclusion: 

Answer: See page A-12.

CHECK YOUR UNDERSTANDING 2.10
Verify that for any bijection :

 

EXAMPLE 2.7 (a)  Find the inverse of the binary function of
 given by:

(see Example 2.6)

(b) Show, directly, that

 

We just observed that for :

That being the case:

  .

x X x f x   f f x  x  f 1–

x f 1– f x  =

f: X Y

f f 1– y   y for every y Y=

f: 4 M2 2

f x y z w    y– 2x
3w z

=

f f
1– a b

c d 
 
  a b

c d
=

a b
c d

x y z w   

f x y z w    a b
c d

=

f x y z w    a b
c d

= y– 2x
3w z

 a b
c d

y– a=
2x b=
3w c=

z d= 





 y a–=

x b 2=
w c 3=
z d= 








 =

f 1– a b
c d 

 
  b

2
--- a– d c

3
---   

 =

f x y z w    y– 2x
3w z

=

f b
2
--- a– d c

3
---   

  a b
c d

=

f 1– a b
c d 

 
  b

2
--- a– d c

3
---   

 =
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 (b) 

As it turns out, one-to-one and onto properties are preserved under
composition:

PROOF: (a) Assume that both f and g are one-to-one, and that:

(b) Assume that both f and g are onto, and let . We are to find
 such that . Let’s do it:

Since g is onto, there exists  such that .
Since f is onto, there exists  such that .
It follows that .

(c) If f and g are both bijections then, by (a) and (b), so is .

f f
1– a b

c d 
 
 

f b
2
--- a– d c

3
---   

 
a– – 2 b

2
--- 
 

3 c
3
--- 
  d

a b
c d

= = =

since f x y z w    y– 2x
3w z

=

Answer:

 

For the rest: See page A-11.

f 1– x y z w    z 3 w
y– x

=

CHECK YOUR UNDERSTANDING 2.11
Find the inverse of the bijection  given by

 and verify, directly, that: 

 and that .

THEOREM 2.5 Let  and  be functions with
the range of f contained in the domain of g.
Then:

(a) If f and g are one-to-one, so is .

(b) If f and g are onto, so is .

(c) If f and g are bijections, so is .

f: M2 2 R4

f a b
c d 

 
 

d c 3a b– =

f f 1– x y z w     x y z w   = f 1– f a b
c d

a b
c d

=

f: X Y g: Y W

gf

gf

gf

gf  x1  gf  x2 =

g f x1   g f x2  =

f x1  f x2 =

x1 x2=

Which is to say:

Since g is one-to-one:

Since f is one-to-one:

w W
x X gf  x  w=

y Y g y  w=
x X f x  y=

gf  x  g f x   g y  w= = =

gf



                                                                                                                                  2.2  Functions     73

Theorem 2.5(c) asserts that the composition  of two bijections is
again a bijection. As such, it has an inverse, and here is how it is related
to the inverses of its components:

PROOF: For given , let  be such that ;
which is to say, that . We complete the proof by
showing that  is also equal to x:

 

This is an example of a so-
called “shoe-sock theorem.”
Why the funny name?

One puts on socks then shoes
In the reverse process:

The shoes come off and then the socks

THEOREM 2.6 If  and  are bijections,
then: 

gf

f: X Y g: Y W

gf  1– f 1– g 1–=

w W x X gf  x  w=
gf  1– w  x=

f 1– g 1–  w 

gf  1– w  x=
w gf  x =
w g f x  =

g 1– w  f x =
f 1– g 1– w   x=
f 1– g 1–  w  x=
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Exercises 1-6. For  and  determine if the subset f of  is 
a function . If so, find its range. 

Exercises 7-16. For , , and , let

                          ,  ,  , and    be given by:
                           
                                        
             Indicate whether or not the function is one-to-one, and whether or not it is onto.

Exercises 17-20. Is  (a) One-to-one? (b) Onto? 

Exercises 21-23. Is  (a) One-to-one? (b) Onto?

Exercises 24-26. Is  (a) One-to-one? (b) Onto?

Exercises 27-28. Is  (a) One-to-one? (b) Onto?

Exercises 29-30. Is  (a) One-to-one? (b) Onto?

Exercises 31-32. Is  (a) One-to-one? (b) Onto?

EXERCISES

1. 2.

3. 4.

5. 6.

7. 8. 9. 10. 11.

12. 13. 14. 15. 16.

17. 18. 19. 20.

21. 22. 23.

24. 25. 26.

27. 28.

29. 30.

31. 32.

X a b c d   = Y A B C D   = X Y
f: X Y

f a A  = f a A  b A  c A  d A    =

f a A  a B  b B  c D  d A    = f a A  b B  c C  d D    =

f a B  b C  c D  d A    = f a B  b A  c D  d C    =

X a b c d   = Y A B C  = Z 1 2 3  =

f: X Y g: Y Z h: Z X k: Z Z
f a A  b C  c A  d B    = g A 1  B 3  C 2   =
h 1 b  2 a  3 c   = k 1 2  2 3  3 1   =

gf gk kk hk fh

kg gf f hk  kk k f h kk  

f:  

f x  3x 7–
x 2+
---------------= f x  x2 3–= f x  x

x2 1+
--------------= f x  x3 x– 2+=

f:  2
f x  x x = f x  x 1 = f x  2x 7x– =

f: 2 2
f x y  y x– = f x y  x x y+ = f x y  2x x y+ =

f: M2 2 4

f a b
c d 

 
 

a 2b– c c d–   = f a b
c d 

 
 

a b– c d b a–   =

f: 4 M2 2

f a b c d    a   b a+
c b+   d a+

= f a b c d    ab   b a+
c b+ a2b2

=

f: M3 1 M2 2

f
a
b
c 

 
 
 
 

a b
c 5

= f
a
b
c 

 
 
 
 

a b
c     a b c+ +

=
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Exercises 33-41. Show that the given function  is a bijection. Determine 
and show, directly, that   and that  .

33. , and .

34. , and .

35. , and .

36. , and .

37. , and .

38. , and .

39. , and .

40. , and .

41. , and .

42. Prove that a function  is one-to-one if and only if the function  given by 
 is one-to-one. 

43. Prove that for any given : . 

44. Let  be given, with h a bijection. 
(a) Prove that if , then . 
(b) Show, by means of an example, that (a) need not hold when h is not a bijection.

45. Let , , and  be given. Prove that there exists a function  such 
that  for every . (That is, a function g which “extends” f to all of X.)

46. Let , , and  be given. Prove that there exists a function  such 
that  for every . (That is, a function g which is the “restriction” of f to the 
subset S.)

f: X Y f 1– : Y X
f 1–
f  x  x= x X ff

1–  y  y= y Y

X  Y = = f x  3x 2–=

X – 0  0   Y – 1  1  = = f x  x 1+
x

------------=

X – 1–  1–   Y – 1  1  = = f x  2x
x 1+
------------=

X Y 2= = f a b  b– a =

X Y 2= = f a b  5a b 3+ =

X Y M2 2= = f a b
c d 

 
  b c

d a
=

X Y M2 2= = f a b
c d 

 
  c 2d

a b–
=

X 4 Y M2 2= = f a b c d    2b c 1+
d a–

=

X M3 1= Y 3= f
a
b
c 

 
 
 
 

2a a b– b c+ =

f:   g:  
g x  f x –=

f: X Y g: Y S  and  h: S T h gf  hg f=

f: X Y g: X Y  and  h: Y W
hf hg= f g=

S X Y  f: S Y g: X Y
f x  g x = x S

S X Y  f: X Y g: S Y
f x  g x = x S
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Exercise. 47-52. (Algebra of Functions) For any set X, and functions  and , 
we define  as follows:

57. (a) If  is an onto function, then so is the function  onto for any func-
tion .

(b) If  is an onto function, then so is the function  onto for any func-
tion .

58. (a) Let  and . If  is onto, then f must also be onto.

(b) Let  and . If  is onto then g must also be onto.

59. (a) If  is one-to-one, then so is the function  for any .

(b) If  is one-to-one, then so is the function  for any .

60. For any X and , there exists at least one function .

61. For any , there exists at least two functions .

 if 

47. Prove that for any  and :  and .

48. Exhibit , , such that .

49. Exhibit one-to-one functions , , such that  is not one-to-one.

50. Exhibit onto functions , , such that  is not onto.

51. Exhibit one-to-one functions , , such that  is not one-to-one.

52. Exhibit onto functions , , such that  is not onto.

PROVE OR GIVE A COUNTEREXAMPLE

53. For  and , if  is one-to-one, then both f and g must be one-to-one.

54. For  and , if  is one-to-one, then f or g must be one-to-one.

55. For  and , if  is one-to-one, then both f and g must be one-to-one.

56. For  and , if  is one-to-one, then f or g must be one-to-one.

f: X  g: X 

f g: X  f g: X  f g: X  and f
g
---: X –+

f g+  x  f x  g x += f g–  x  f x  g x –=

f g  x  f x  f x = f
g
--- 
  x  f x 

g x 
----------= g x  0

f: X  g: X  f g+ g f+= f g g f=

f:   g:   f g– g f–

f:   g:   f g+

f:   g:   f g+

f:   g:   f g

f:   g:   f g

f:   g:   f g+

f:   g:   f g+

f:   g:   f g

f:   g:   g f

f: X Y gf: X W
g: Y W

g: Y W gf: X W

f: X Y

f: X Y g: Y W gf: X W

f: X Y g: Y W gf: X W

f: X Y gf: X W g: Y W

g: Y W gf: X W f: X Y

Y  f: X Y

X  f: X X
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 2 

Assume that you do not know how to count, and that you have two
bags of marbles, one containing red marbles and the other blue. With-
out counting, you can still determine whether or not the two bags con-
tain the same number of marbles:

Take a red marble from the one bag and a blue marble
from the other, then put them aside. Continue this pairing
process till one of the bags becomes empty. If, as the one
bag becomes empty so does the other, then you can con-
clude that the two bags had the same number of marbles
(without knowing the number).

If you let the bag of red marbles be a set R, and the bag of blue mar-
bles be a set B, and if you think of the paring off process as representing
a function f which assigns to each red marble a unique blue marble,
then you can say that the two bags will have the same number of mar-
bles if the function f is a bijection.

Marbles aside:

In a sense, the term “same cardinality” can be interpreted to mean
“same number of elements.” The classier terminology is used since the
expression “same number of elements” suggests that we have associ-
ated a number to each set, even those that are infinite.

The following theorem should not surprise you. Intuitively, it says
that if a set A has the same number of elements as a set B, and if B has
the same number of elements as a set C, then A and C have the same
number of elements. Intuition aside:

PROOF: Applying Definition 2.15, we choose bijections 
and . By Theorem 2.5(c), page 72,  is also a
bijection. Returning to Definition 2.15, we conclude that A and B are
of the same cardinality.

In our physical universe, if you take something away from a collec-
tion of objects you will certainly end up with a smaller number of
objects in the collection. When it comes to infinite sets, however, this
need no longer be the case:

§3 INFINITE COUNTING

Note that if there exists a
bijection  then
there also exists a bijection
going the other way;
namely:  [see
Theorem 2.4(a), page 70]

f: A B

f 1– : B A

DEFINITION 2.15
CARDINALITY

Two sets A and B are of the same cardinal-
ity, written , if there
exists a bijection .

THEOREM 2.7 If  and ,
then .

Card A  Card B =
f: A B

Card A  Card B = Card B  Card C =
Card A  Card C =

f: A B
g: B C gf: A C
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SOLUTION: The diagram below illustrates how the elements of 
can be paired with those of :

Let’s formalize the above observation by showing that the function
 given by  is a bijection.

f is one-to-one: 

f is onto: Let . Since m is even,  for some .
Then: .

Roughly speaking, by a countable set we simply mean a set whose
elements can actually be “counted:” one element, two elements, three,
and so on until you have counted them all, even though it may require
all of  to accomplish that feat. On a more formal footing:

In particular, the set  is countable, as is the set  of Exam-
ple 2.9. Below, we show that the set  of all integers is also countable.
This may not be too surprising, since the feeling is that there should cer-
tainly be enough positive integers to count anything. (That feeling is
however wrong, as you will soon see.)

SOLUTION: The diagram below illustrates how the elements of 
can be paired off with those of Z:

EXAMPLE 2.8 Let  denote the set of even positive integers.
Show that .

2Z+

Card 2Z+  Card Z+ =

Z+

2Z+

1     2     3     4     5     6     7     8     9 . . .

2     4     6     8     10     12     14     16     18 . . .

f: Z+ 2Z+ f n  2n=

f n1  f n2  2n1 2n2 n1 n2= = =

Answer: See page A-12.

CHECK YOUR UNDERSTANDING 2.12
Prove that:

 

DEFINITION 2.16
COUNTABLE SET

A set is countable if it is finite or has the
same cardinality as .

EXAMPLE 2.9 Prove that the set Z of all integers is countable.

m 2Z+ m 2n= n Z+
f n  2n m= =

Card Z+  Card 0 1 2 3     =

Z+

Z+

1 2 3   2Z+

Z

Z+

1     2     3     4     5     6     7     8     9   . . .

    -5    -4    -3    -2    -1    0    1    2    3    4    5    6     . . .. . .

. . .
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Can we explicitly pin down the function represented in the above dia-

gram? Yes:  

f is one-to-one: Suppose that . We first observe that
since f takes even integers to non-positive integers, and odd inte-
gers to positive integers,  and  must both be even or both be
odd. We consider both cases: 

Case 1.  and  even. Taking the “low road” in the descrip-
tion of f, we have: 

Case 2.  and  odd. Taking the “high road” in the descrip-
tion of f, we now have: 

f is onto: For given z we are to find a positive integer n such that
, and again break the argument into a couple of cases:

Case 1. For  and positive, consider the odd positive inte-
ger  (see margin). Applying f  we have:

 

Case 2. For  and non-positive, consider the even posi-
tive integer  (see margin). Applying f we have: 

The set  of positive rational numbers (fractions) appears to have a
lot more elements that does . Not really:  

SOLUTION: We call your attention to Figure 2.8. The positive integers
occupy the first row of that figure. The positive rational numbers with
denominator 2, which did not already appear in the first row, are listed
in the second row. The positive rational numbers with a 3 in the
denominator, which did not appear in either the first or second row,
comprise the third row; and so on and so forth. Following the arrows
in the figure, one is able to count each and every element of :

The first number counted is the number 1. Moving along the sec-
ond arrow we arrive at the second number counted: 2, and then the

To evaluate f, follow the
stated instructions:

If n is odd, say 7, then 
use the upper “rule:”

If n is even, say 8, then 
go with the bottom 
rule:

f 7  7 1+
2

------------ 4= =

f 8  8
2
--- 1– 
 – 3–= =

f n 

n 1+
2

------------ if  n  is odd

n
2
--- 1– 
 – if  n  is even









=

f n1  f n2 =

n1 n2

n1 n2

f n1  f n2 
n1
2
----- 1– 
 –

n2
2
----- 1– 
  n1–= n2= =

details omitted

n1 n2

f n1  f n2 
n1 1+

2
--------------

n2 1+
2

-------------- n1= n2= =

f n  z=

z n 1+
2

------------=

2z n 1+=

n 2z 1–=

z n
2
--- 1– 
 –=

2z n– 2+=

n 2z– 2+=

EXAMPLE 2.10 Show that  is countable.

z Z
n 2z 1–=

f n  f 2z 1–  2z 1–  1+
2

---------------------------- 2z
2
----- z= = = =

z Z
n 2z– 2+=

f n  f 2z– 2+  2z– 2+
2

------------------- 1– 
 – z– 1 1–+ – z= = = =

Q+

Z+

Q+

Q+
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third number: . Following the third arrow we count the fourth,

fifth, and sixth numbers: 3, , and , respectively. Can you follow
our procedure and determine the next four numbers counted? Sure,
they are pierced by the fourth arrow; namely: 4, , , and . 

Figure 2.8
Though not explicitly associated with a nice compact rule, the above
counting method does establish a function : ,

, , , ; and, given enough time

we could, by brute force, grind out the value of  and beyond.
Moreover, since each element of  is ultimately pierced by one and
only one arrow, f is a bijection, and  is seen to be countable.
In a more general setting:

PROOF: Your turn:

THEOREM 2.8 The countable union of countable sets is again
countable.

1
2
---

3
2
--- 1

3
---

5
2
--- 2

3
--- 1

4
---

1 2 3 4 5 6 7 8 

1
2
--- 3

2
--- 5

2
--- 7

2
--- 9

2
--- 11

2
------ 13

2
------ 15

2
------ 

1
3
--- 2

3
--- 4

3
--- 5

3
--- 7

3
--- 8

3
--- 10

3
------ 11

3
------ 

1
4
--- 3

4
--- 5

4
--- 7

4
--- 9

4
--- 11

4
------ 13

4
------ 15

4
------ 

1
5
--- 2

5
--- 3

5
--- 4

5
--- 6

5
--- 7

5
--- 8

5
--- 9

5
--- 

. .
 .

. .
 .

. .
 .

. .
 .

. .
 .

. .
 .

. .
 .

. .
 .

f: N Q+ f 1  1=
f 2  2= f 3  1

2
---= f 4  3= f 5  3

2
---=

f 336 
Q+

Q+

Answer: See page A-12.

If:  An An Ai
i n
–=

Then: An

n 1=



 An

n 1=



=

CHECK YOUR UNDERSTANDING 2.13
Let  for . Show that

 is countable.

Note: You can assume, without loss of generality that 
if  (see margin).

An an1 an2 an3    = n 1 2 3   =

A An

n 1=



=

Ai Aj =
i j
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All infinite sets thus far considered are countable. Are there
uncountable sets? In other words, sets so large that there are not
enough integers with which to count them? Yes:

PROOF: Assume that J is countable (we will arrive at a contradic-
tion). Being countable, we can list its elements in sequential form (a
first, a second, a third, etc.):

Below, we again list the elements of J, but now in decimal form (the
first digit following the decimal point of the number  is , the
second digit is , the third is , and so on). 

We now set to work on constructing a perfectly good number 
which is not any of the numbers listed above — contradicting the
assertion that the above list contains each and every element of J. 
To be a bit more specific, we construct a number  which differs
from the number  of the above list in its  decimal place. To be
entirely specific:

Note that r cannot be , for if the first digit of , namely  is
anything but 0, then it cannot be r, as r’s first digit is 0; and if the first
digit of  is zero, then it again cannot be r, as r’s first digit would
now be 1. By the same token, r cannot be , since the second digit of
r will surely differ from , the second digit of . The same argu-
ment can be used to establish the fact that r cannot be any , since

r’s  digit differs from the  digit of .

THEOREM 2.9 The interval  is
uncountable.

J 0 1  x 0 x 1   = =

J r1 r2 r3 r4     =

rn an1

an2 an3

r1 0.a11a12a13a14=

r2 0.a21a22a23a24=

r3 0.a31a32a33a34=

rn 0.an1an2an3an4=




r J

r J
ri ith

r 0.a1a2a3a4      where  ai
0 if aii 0
1 if aii=0




= =

Answer: See page A-12.

CHECK YOUR UNDERSTANDING 2.14
For  and , let  and . Show that:

 
Suggestion: Consider line passing through L and M.

r1 r1 a11

r1
r2

a22 r2
ri

ith ith ri

a b c d L a b = M c d =

Card L  Card M =
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It is reasonable to say that a set A has cardinality less than or equal to
that of a set B if the elements of A can be paired off with those of a subset
of B:

All of the following results might be anticipated, but only the first
two are easily established. Alas, a proof of (c) lies outside the scope of
this text.

PROOF: (a) The inclusion map  given by  is
clearly one-to-one.
(b) From the given conditions, we know that there exist one-to-one
functions  and . All we need do, to complete the
proof, is to note that the composite function  is also
one-to-one (Theorem 2.5(a), page 72).

The above CYU assures us that all finite intervals are of the same car-
dinality. What about the set of all real numbers ? It is certainly bigger
than every finite interval. Does its cardinality exceed that of the finite
intervals? No:

PROOF: An analytical proof: The tangent function maps the open

interval  in a one-to-one fashion onto  (see margin).

A geometrical argument: Figure 2.9(a) displays a bijection from the
open interval  to the semicircle S of radius 1 [excluding
the end points of its diameter:  and ]. It follows that

.

We also say that the car-
dinality of B is greater
than or equal to that of
A, and write:

Card B  Card A 

DEFINITION 2.17 The cardinality of a set A is less than or
equal to the cardinality of a set B, written

, if there exists a one-
to-one function . (The function
need no longer be onto.)

Card A  Card B 
f: A B

Georg Cantor (1845-1916)
Felix Bernstein (1878-1956)
Ernst Schroeder (1841-1902)

THEOREM 2.10

CANTOR-BERNSTEIN-
SCHROEDER THEOREM

Let A, B, and C denote sets.
(a) If , then .

(b) If  and  
then .

(c) If  and  
then 

A B Card A  Card B 

Card A  Card B  Card B  Card C 

Card A  Card C 

Card A  Card B  Card B  Card A 

Card A  Card B =

IA: A B IA a  a=

Answer: See page A-13.

CHECK YOUR UNDERSTANDING 2.15
Show that all finite intervals are of the same cardinality.
Suggestions: Use the result of CYU 2.15 and Theorem 2.10.

f: A B g: B C
gf: A C


2
---– 

2
---

y xtan=

THEOREM 2.11 The cardinality of  is the same as that of a
finite interval.






2
--- 

2
---– 

  

I 1– 1 =
1– 0  1 0 

Card I  Card S =
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Figure 2.9
Figure 2.9(b) depicts a bijection from S (moved up one unit) to 
(the x-axis). It follows that . Applying Theo-
rem 2.7 we conclude that .

At this point we only have two types of infinity: the countable type
associated with , and the uncountable type associated with . Is
that all there is? Where should we look if we hope to find bigger infini-
ties? Towards bigger sets, of course, and one that might come to mind
is the familiar Cartesian plane ( . No luck, for

 [Exercise 25]. And if you are tempted to try the
three dimensional space:  don’t bother,
for it too has cardinality c. Indeed, for any n, the set

 also has cardinality c [Exer-
cise 26.] But there is another avenue we might consider, one that
involves the following concept:

For example, if , then:
 

Observe that A has 3 element, and that  has  elements.
This is no fluke:
Note that A has 3 element, and that  has  elements. This is
no fluke: 

. .
1– 1

.. .... . . . . ... . . ..S

S

(a)                                              (b)

1 1

.   . .     . .     .

Answer: See page A-13.

We point out that  is said to have cardinality c (for the continuum).
The assertion that there does not exists a set X such that

 is called the continuum hypothesis. 

CHECK YOUR UNDERSTANDING 2.16
(a) Show that the set  has cardinality c.
(b) Prove that there cannot exist a bijection from the set of real num-

bers to the set of rational numbers.

DEFINITION 2.18 The power set of a set A, denoted by
, is the set of all subsets of A.


Card S  Card  =

Card I  Card  =



Card Z  Card X  Card  

– 3  5 6  9 

Z+ 

2 x y  x y  =
Card 2  Card  =

3 x y z   x y z   =

n x1 x2  xn    xi  1 i n  =

P A 

A a b c  =
P A   a  b  c  a b  a c  b c  a b c         =

P A  23 8=

Due to this theorem, the
power set  of a given
set A is often denoted by
the symbol .

P A 

2A
THEOREM 2.12 If the set A has n elements, then its power set

 has  elements.

P A  23 8=

P A  2n
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PROOF: (By induction). Since we are only interested in counting, we
will assume, without loss of generality, that our set A of n elements is
the specific set .

I. The claim does hold at , for the set ,
contains  elements.

II. Assume that  contains  elements for .

III. We complete the proof by showing that the set  contains
 elements, where .

Clearly, every subset of  either contains the number 
or it does not. Let X be the set of those subsets that do not contain

, and Y the set of those subsets that do contain :
and

Noting that X is the set , we conclude, by the induction
hypothesis,  that it contains  elements. But every element in Y
can be obtained by simply adjoining  to some element in X:

As such, Y has the same number of elements as X, namely .

Noting that  and that , we con-
clude that the number of elements in  is

, and III is established.

The following wonderful theorem tells us that if you take the power
set of any set A, even an infinite set, you will end up with a set whose
cardinality is strictly greater than that of A. Wonderful, in that it tells us
that there is no end to the different levels of infinity.

PROOF: Clearly  (see margin). We complete
the proof by showing that the assumption 
leads to a contradiction:

Suppose there exists a bijection  (we will arrive at
a contradiction). 
For any ,  is a subset of A. As such, either 
or . Let us now focus on the following subset of A:

Since g is onto, there must exist some element of A, say ,
such that:

A 1 2 3  n    =

n 1= P 1    1  =
2 21=

P Ak  2k Ak 1 2 3k  =

P Ak 1+ 

2k 1+ Ak 1+ 1 2 3k k 1+  =

Ak 1+ k 1+

k 1+ k 1+
X S P Ak 1+  k 1 S+ = Y S P Ak 1+  k 1 S+ =

P Ak 
2k

k 1+
Y S k 1+  S X =

2k

P Ak 1+  X Y= X Y =
P Ak 1+ 

2k 2k+ 2k 1+=

The function 
given by  is
certainly one-to-one.

f: A P A 
f a  a =

THEOREM 2.13
CANTOR

For any set A:
Card A  Card P A  

Card A  Card P A  
Card A  Card P A  =

g: A P A 

a A g a  a g a 
a g a 

S0 a A a g a  =
a0

g a0  S0=



                                                                                                                                  2.3  Infinite Conunting     85

Now, either  or . Let’s see
which:

If , then since : .

If , then since : .

Since neither option can occur,  must be 
false.

a0 g a0  S0= a0 g a0  S0=

a0 S0 S0 a A a g a  = a0 S0

a0 S0 S0 a A a f a  = a0 S0

Answer: See page A-13.

The assertion that for any infinite set X there does not exist a
set Y for which  is called
the generalized continuum hypothesis.

CHECK YOUR UNDERSTANDING 2.17
Prove that there cannot exist a set of all sets.
Suggestion: Assume such a set  exists and consider the set  along with

Theorem 2.10(a) and Theorem 2.13 to arrive at a contradiction.

Card A  Card P A  =

Card X  Card Y  Card P X  

S T A
A S
=
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Exercises 1-12. Establish a specific bijection from the set A to the set B.

Exercises 13-20. For , with  and , exhibit a specific bijection, from: 

22. Prove that there are only countably many polynomials with rational coefficients.

23. Prove that there are only countably many solutions to the set of all polynomials with rational 
coefficients.

24. Prove that the set of irrational numbers is not countable.

25. Prove that there are uncountably many lines in the plane.

26.  Prove that there are only countably many lines of the form , where . 

27. Prove that there are uncountably many circles in the plane.

Exercises 28-33. Prove that the given set is countable (see Definition 2.7, page 64).

32. Prove that: .

33. Use the Principle of Mathematical Induction to show that  for any 
positive integer n.

EXERCISES

1. , 2. , 

3. , 4. , 

5. , 6. , 

7. , 8. , 

9. For given : , .

10. For given : , .

11. For given , with  and : , .

12. For given , with  and : , .

13.  to 14.  to 15.  to 16.  to 

17.  to 18.  to 19.  to 20.  to 

21. Prove that the set of intervals  is countable.

28.  29. 30.   31.  

A Z+= B 5n n Z+ = A 5n n Z+ = B Z+=

A Z+= B 5n n Z = A 5n n Z = B Z+=

A Z+= B n 2+ n Z = B n 2+ n Z = A Z+=

A 5n n Z+ = B 10n n Z+ = A Z+= B 2n n Z =

a b Z+ A an n Z+ = B bn n Z+ =

a b Z+ A an n Z = B bn n Z+ =

s t  s 0 t 0 A ns n Z+ = B nt n Z+ =

s t  s 0 t 0 A sr r  = B tr r Z+ =

a b c d    a b c d

a b  c d  a b  c d  a b  c d  a b  c d 

a   b   a b  a   a   b   a   – b 

a b  a and b are rational 

y mx b+= m b Q

Z+ Z+ Z+ Z+ Z+ Q Q Q Q Q

Card 2  Card  =

Card n  Card  =
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34. Let  (functions that assigns to each integer in the set  
the value of 0 or the value of 1. Prove that F contains  elements, and that therefore 

 

35. Let  (functions that assigns to each integer in the set 
 the value of 0 or the value of 1). Use the Principle of Mathematical Induction to 

show that F contains  elements.

36. Let  (functions that assign to each positive integer either 0 or 1). 
Prove that .

37. Prove that for any given set X, .

38. If  and , then .

39. If  and , then .

40. If  and , then .

41. If  and , then .

42. If  and , then .

43. If  and , then .

44. If  and , then .

45. If  and , then .

46. The set of intervals  is countable.

47. The set of intervals  is countable.

48. There can be at most countably many mutually disjoint circles (with positive radius) in the 
plane.

49. There can be at most countably many mutually disjoint lines in the plane.

PROVE OR GIVE A COUNTEREXAMPLE

F f: 1 2 3   0 1  = 1 2 3  
23 8=

Card F  Card P 1 2 3    =

F f: 1 2  n    0 1  =
1 2  n   

2n

F f: Z+ 0 1  =
Card F  Card  =

Card f: X 0 1    Card P X  =

Card A  Card B  Card B  Card C  Card A  Card C 

Card A  Card B  Card B  Card C = Card A  Card C 

Card A  Card B = Card C  Card D = Card A C  Card B D =

Card A  Card B  Card C  Card D  Card A C  Card B D 

Card A  Card B  Card C  Card D = Card A C  Card B D 

Card A  Card B = Card C  Card D = Card A C  Card B D =

Card A  Card B  Card C  Card D  Card A C  Card B D 

Card A  Card B  Card C  Card D = Card A C  Card B D 

a b  a and b are rational 

a b  a is rational 
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 2

In Section 2 we defined a function from a set X to a set Y to be a sub-
set  such that:

For every  there exists a unique  with .

Removing all restrictions, we arrive at a far more general concept than
that of a function:

Each and every subset of , including the chaotic one in the
margin, is a relation on , suggesting that Definition 2.19 is a tad too
general. Some restrictions are in order:

The notation  is often used to indicate that x is related to y with
respect to some understood relation E. Utilizing that option, we can
rephrase Definition 2.20 as follows: 

An   equivalence relation ~ on a set X is a relation which is
Reflexive: if  for every .

Symmetric: if , then .

and Transitive: if  and , then .

Recall that , called
the Cartesian Product
of X with Y, is the set of
all ordered pairs ,
with  and .

X Y

x y 
x X y Y

§4. EQUIVALENCE RELATIONS

DEFINITION 2.19
RELATION

A relation E from a set X to a set Y is any
subset . 
A relation from a set X to X is said to be a
relation on X.

f X Y
x X y Y x y  f

E X Y

 


DEFINITION 2.20

REFLEXIVE

SYMMETRIC

  
TRANSITIVE

EQUIVALENCE
RELATION

A relation E on a set X is a subset  and
is said to be:
Reflexive:  for every .

(Every element of X is related to itself)

Symmetric: If  then . 
(If x is related to y, then y is related to x)

Transitive: If  and  then
.

(If x is related to y, and y is related to z, then x is related to z)

An equivalence relation on a set X is a relation
that is reflexive, symmetric and transitive.

E X X

x x  E x X

x y  E y x  E

x y  E y z  E
x z  E

EXAMPLE 2.11 Show that the relation  if  is an
equivalence relation on the set of rational
numbers. 

x~y

x~x x X

x~y y~x

x~y y~z x~z

a
b
---~c

d
--- ad bc=
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SOLUTION: 
Reflexive:  since .

Symmetric: .

Transitive: 

We establish the fact that  by showing that :

 

SOLUTION: The relation  if  is:
Reflexive. , since:  

Symmetric. Assume that , which is to say, that:
 (*)

We are to show that , which is to say, that:

Lets do it. From (*) .

Hence: 

TRANSITIVE: Assume that  and ; which is to say, that:
(1)  and (2)  for 

We are to show that ; which is to say, that: .

Let’s do it. From (2): .
Hence:  

As you know, when it
comes to rational num-
bers, one simply writes

 rather than .2
3
--- 4

6
---= 2

3
---~4

6
---

In general, equivalence relations enable one to establish a somewhat
“fuzzy” sense of equality — a “fuzzyness” which is all but ignored in the
above example; for, as you know, when it comes to the set of rational

numbers, one simply writes , even though the scribbles  and 

certainly look different.

a
b
---~a

b
--- ab ba=

a
b
---~c

d
--- ad bc cb da c

d
---~a

b
---= =

a
b
---~c

d
---  and  cd

---~e
f
-- ad bc  and  cf de= =

(*)                          (**)

a
b
---~e

f
-- af be=

af bc
d

------ f bc
d

------ de
c

------ be= = =

see (*)           see (**)

3
7
--- 15

35
------= 3

7
--- 15

35
------

Recall that  means that
a divides  b (see Definition
1.7, page 15).

a b EXAMPLE 2.12 Show that the relation  if  is
an equivalence relation on Z.

a~b 2 3a b– 

a~b 2 3a b– 

An expression of the form
 is unaccept-

able in the solution pro-
cess, since we are involved
with the set Z of integers
and not “fractions.” 

a 2h b+
3

---------------=

a~a 3a a– 2a=
here, a is playing the role of b

a~b
3a b– 2h for some h Z=

b~a
3b a– 2n for some n Z=

b 3a 2h–=

3b a– 3 3a 2h–  a– 2 4a 3h–  2n= = =

a~b b c
3a b– 2h= 3b c– 2k= h k Z

a~c 3a c– 2n=

c 3b 2k–=

Answer: See page A-13

CHECK YOUR UNDERSTANDING 2.18
Show that the relation  if  is an equivalence
relation on .

3a c– 3a 3b 2k– –=
2h b 3b 2k– –+ 2 h k b–+  2n= = =From (1):

x0 y0 ~ x1 y1  x0 x1=
2
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In words: The equivalence class of  consists of all elements
of X that are related to . We now show that any element in

 will generate the same equivalence class:

PROOF: Assume that . We show that  (a similar 
argument can be used to show that  and that therefore 

):
 

Conversely, if , then, since  : .
  

SOLUTION: Let’s start off with . By definition:
   

Since 1 is not in [0],  will differ from  (Theorem 2.14).
Specifically:

In the above example the give equivalence relation decomposed  Z
into disjoint equivalence classes; namely:

   
To put it another way: the equivalence classes in Example 2.13

effected a partition of Z, where: 

DEFINITION 2.21
EQUIVALENCE 

CLASS

Let ~ be an equivalence relation on X. For
each , the equivalence class of ,
denoted by , is the set:

THEOREM 2.14 Let ~ be an equivalence relation on X. For any
:

EXAMPLE 2.13 Determine the set  of equivalence
classes corresponding to the equivalence rela-
tion  if  of Example 2.12.

x0 X x0
x0 

x0  x X x~x0 =

x0
x0

x0 

x1 x2 X
x1 x2 x1  x2 =

x1 x2 x1  x2 
x2  x1 

x1  x2 =
x x1  x x1

By transitivity, since x1~x2: x x2 x x2 

x1  x2 = x1 x2  x1 x2

n  n Z

a~b 2 3a b– 

a 0=
0  b Z  2 b–   2n n Z : the even integers= =

1  0 

1  b Z  2 3 1 b–  : the odd integers=

Z 0  1  even integers  odd integers = =

To put it roughly:
A partition of a set S chops
S up into disjoint pieces.

DEFINITION 2.22
PARTITION

A set of nonempty subsets  of a
set X is said to be a partition of X if:

(i)  

(ii) If  then 

S  A

X S
 A
=

S S  S S=
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Figure 2.10(a) displays a 5-subset partition  of the
indicated set. An infinite partition of  is represented in Figure

2.10(b): 

Figure 2.10

There is an important connection between the equivalence relations
on a set X and the partitions of X, and here it is:

PROOF: (a) We Show that:
           (i)     

and    (ii) If , then .

(i): Since  is an equivalence relation,  for every
. It follows that  for every , and that

therefore . 

(ii): If , then there exists . 

Since  and :  and . 

By symmetry and transitivity: 

By Theorem 2.14: 

S1 S2 S3 S4 S5    
0 

n n 1+  n 0=


[     )[     )[     )[     )[     )[     )[

(a)                                                          (b)

S1

S2

S3
S4

S5

0       1       2       3       4       5       6



(a): No      (b): Yes

CHECK YOUR UNDERSTANDING 2.19
Determine if the given collection of subsets of  is a partition of ?

    (a) 

(b) 

THEOREM 2.15 (a) If ~ is an equivalence relation on X, then the
set of its equivalence classes, is a partition of
X.

(b) If  is a partition of X, then the rela-
tion  if 
is an equivalence relation on X.

 

n n 1+  n Z

n  n Z  i i 1+  i 0=


 i– 1– i–  i 0=


S  A
x1~x2 x1 x2 S for some  A

X x 
x X
=

x1  x2   x1  x2 =

 x~x
x X x x  x X

X x 
x X
=

x1  x2   x0 x1  x2 

x0 x1  x0 x2  x0~x1 x0~x2

x1~x2

x1  x2 =
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(b) Let  be a partition of X. We show that the relation:

 if there exists  such that   is an equiv-
alence relation on X:

Reflexive: To say that , is to say that x belongs to the
same  as itself, and it certainly does.

Symmetric: 

Transitive: Assume  and . We show that :
Since :  for some .

Since :  for some .

Since  (y is contained in both sets): .

It follows that both x and z are in  (or in  if you prefer),

and that, consequently: .

Here is a particularly important equivalence relation of the set of inte-
gers:

PROOF: Reflexive:  since .

Symmetric: .
Transitive:

 

CONGRUENCE MODULO n

THEOREM 2.16 Let . The relation  if  is
an equivalence relation on Z.

In the event that , we say that:
     a is congruent to b modulo n and write 

THEOREM 2.17 Let . If  and ,
then:

(a) 

(b) 

S  A

x1~x2  A x1 x2 S

x~x
S

x~y  A x y S y x S y~x

x~y y~z x~z
x~y x y S  A

z~y y z S  A

S S  S S=

S S
x~z

n Z+ a~b n a b– 

a~a n a a– 

a~b n a b–  n b a–  b~a

a~b  and  b~c n a b–   and  n b c– 

n a b–  b c– + 

n a c–  a c

Theorem 1.5(b), page 28:

n a b– 
a b mod n

n Z+ a a mod n b b mod n

a b+ a b mod n+

ab ab mod n
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PROOF: (a) If  and , then: 

(a) If  and , then:

 and  for 

 We are to show that ; which is to say that 

 Lets do it: 

Notation: Referring to the equivalence relation on Z of Theorem
2.16,  if , we will use  to denote the
equivalence class of .  In particular:

 

Can we define a sum on the above five equivalence classes? Yes:

The above sum is well defined, in that it is independent of the chosen
representatives in the two equivalence classes. Indeed:

n a a–  n b b– 

n a a–  b b– +  n a b+  a b+ – 

n a a–  n b b– 

(1) a a– hn= (2) b b– kn= h k Z

n ab ab–  ab ab– ns=

ab ab– ab ab–  ab ab– +=

a a– b a b b– +=
hnb akn+ n hb ak+  ns= = =

Answer: See page A-13

CHECK YOUR UNDERSTANDING 2.20

Let . Let  and  with  and
 (see Theorem 1.5, page 21). Prove that:

  if and only if 
(same remainder when dividing by n)

n Z+ a dan r+= a b dbn r+= b 0 ra n

0 rb n

a b mod n ra rb=

a~b n a b–  m n
m Z

0 5  20 15 10 5 0 5 10 15 20      –––– =

1 5  19 14 9––– 4 1 6 11 16 21      –  =
2 5  18 13 8––– 3 2 7 12 17 22    –  =
3 5  17 12 7––– 2 3 8 12 18 23    –  =
4 5  16 11 6––– 1 4 9 13 19 24    –  =

a 5 b 5+ a b+ 5=



94   Chapter 2     A touch of Set Theory

:

PROOF: (a) A consequence of Theorem2.17(a)

(b) 

THEOREM 2.18 For given , let  denote the set of
equivalence classes associated with the equiv-
alence relation  if ; i.e:

Then:
(a) For any , the operation

is well defined.
(b) For any :

(associative property)

n Z+ Z n

a~b n a b– 

Z n 0 n 1 n  n 1– n   =

a n b n Z n

a n b n+ a b+ n=

a n b n c n Z n

a n b n+  c n+ a n b  n+ c n +=

a n b n+  c n+ a b+ n c n+ a b+  c+ n= =

a b c+ + n=

a n b  n+ c n +=

Answer: See page A-14.

CHECK YOUR UNDERSTANDING 2.21
(a) Verify that the product  in  is well

defined. That is: if  and , then:

.

(b) Prove that 

(c) Prove that .

a n b n ab n= Zn

a n a n= b n b n=

ab n ab n=

a n b n c n  a n b n  c n=

a n b n c n+  a n bn  a n c n+=
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Exercises 1-3. Show that the given relation is an equivalence relation on Z. 

Exercises 4-7. Show that the given relation is an equivalence relation on Q, the set of rational num-
bers.

Exercises 8-13. Show that the given relation is an equivalence relation on .

Exercises 14-17. Show that the given relation is an equivalence relation on .

Exercises 18-21. Show that the given relation is not an equivalence relation on . 

Exercises 22-30. Determine whether or not the given relation is an equivalence relation on .

EXERCISES

1.  if . 2.  if  . 3.  if .

4.  if . 5.  if .

6.  if . 7.  if .

8.  if . 9.  if . 10.  if .

11.  if . 12.  if . 13.   if .

14.  if . 15.  if .

16.  if . 17.  if .

18.  if . 19.  if .

20.  if . 21.  if  and .

22.  if .

23.  if .

24.  if .

25.   if .

26.  if .

27.   if .

28.  if .

29.   if .

30.  if .

a~b a b= a~b 2 a 3b–  a~b 5 a b– 

a
b
---~c

d
--- a

b
--- c

d
--- Z– a

b
---~c

d
--- 2 b d+ 

a
b
---~c

d
--- ad bc–  b2 d2+  0= a

b
---~c

d
--- ad 2 bc 2– 0=


x~y x2 y2= x~y x y= x~y x 1+ y 1+=

x~y x y– Z x~y xsin y 2+ sin= x~y x2 y2– 0=

2

x0 y0 ~ x1 y1  x0 y0+ x1 y1+= x0 y0 ~ x1 y1  x0y0 x1y1=

x0 y0 ~ x1 y1  x0
2 y0

2+ x1
2 y1

2+= x0 y0 ~ x1 y1  x0 x1=

2

x0 y0 ~ x1 y1  x0 y1= x0 y0 ~ x1 y1  x0 y1– y0 x1–=

x0 y0 ~ x1 y1  x0x1 y0y1= x0 y0 ~ x1 y1  x0x1 0 y0y1 0

3

x0 y0 z0  ~ x1 y1 z1   y0 y1=

x0 y0 z0  ~ x1 y1 z1   x0 y0 z0+ + x1 y1 z1+ +=

x0 y0 z0  ~ x1 y1 z1   x0 y1 z1+=

x0 y0 z0  ~ x1 y1 z1   x0z0 2y0+ x1z1 2y1+

x0 y0 z0  ~ x1 y1 z1   x0 2y0 3z0–+ x1 2y1 3z1–+=

x0 y0 z0  ~ x1 y1 z1   x0 y0 z0+ + 2 x1 y1 z1+ + 2=

x0 y0 z0  ~ x1 y1 z1   x0
2 y0

2 z0
2+ + x1

2 y1
2 z1

2+ +=

x0 y0 z0  ~ x1 y1 z1   x0 y0 z0 x1 y1 z1+ + + + + 0

x0 y0 z0  ~ x1 y1 z1   y0z0 y1z1=

.
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Exercises 31-34. Determine whether or not the given relation is an equivalence relation on  .

Exercises 35-41. Show that the given relation is an equivalence relation on 
(the set of functions from Z to Z).

Exercises 42-47. Describe the set of equivalence classes for the equivalence relation of:

Exercises 48-52. Show that the given collection S of subsets of the set X is a partition of X. 

Exercises 53-54. (Congruences) Let .  Use the Principle of Mathematical Induction to
show that:

31.  if .

32.  if .

33.  if .

34.  if .

35.  if . 36.  if  for every .
37.  if  for every . 38.  if  for every .

39.  if  for every .
40.  if  for every .
41.  if  for every .

42. Exercise 1 43. Exercise 3 44. Exercise 5
45. Exercise 9 46. Exercise 15 47. Exercise 17

48. , .
49. , .

50. , .

51. , .

52. , .

53. If  for , then .

54. If  for , then .

M2 2

a b
c d

~ a b
c d

a d=

a b
c d

~ a b
c d

abc abc=

a b
c d

~ a b
c d

ad bc– ad bc–=

a b
c d

~ a b
c d

ad bc– ad bc–=

F Z  f: Z Z =

f ~ g f 1  g 1 = f ~ g f n  g n = n Z
f ~ g f n  g n = n Z f ~ g 2 f n  g n +  n Z

f ~ g f n m+  g n m+ = n m Z
f ~ g 3 2f n  g n +  n Z
f ~ g 3 2 gf  n  f n +  n Z

X = S – 0  0  0    =
X Z= S 3n n Z  3n 1+ n Z  3n 2+ n Z   =

X Z+ Z+= S a b  gcd a b  n= 
n Z+

=

X  = S x y  y x b+= b R=

X  = S x y  x2 y2+ r2= r =

n Z+

ai ai mod n 1 i m  a1 a2
 am a1 a2

 am mod n+ + ++ + +

ai ai mod n 1 i m  a1a2am a1a2
am mod n
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Exercises 55-60. Determine if the given relation on the set of all people is an equivalence relation.
If not, specify the properties of an equivalence relation that are not satisfied.

Exercises 61-64. Show that the given relation is an equivalence relation. Describe the set of its
equivalence classes. 

55.  if a and b are of the same sex.

56.  if a is at least as old as b.

57.  if a and b have the same biological parents.

58.  if a and b have a common biological parent.

59.  if a and b are of the same blood-type.

60.  if a and b were born within three days of each other.

61. For ,  if a and b end in the same digit.

62. For ,  if a and b end in the same digit.

63. For ,  if the number of elements in S equals the number of ele-
ments in T. 

64. For ,  if the sum of the elements in S equals the sum of the ele-
ments in T. 

PROVE OR GIVE A COUNTEREXAMPLE

65. The union of any two equivalence relations on any given nonempty set X is again an equiv-
alence relation on X.

66. The intersection of any two equivalence relations on any given nonempty set X is again an 
equivalence relation on X.

67. The union of any two reflexive relations on any given nonempty set X is again a reflexive 
relation on X.

68. The union of any two symmetric relations on any given set X is again a symmetric relation 
on X.

69. The union of any two transitive relations on any given set X is again a transitive relation on 
X.

70. For , let  and  denote the set of equivalence classes associated with the 
equivalence relations  if  and  if , respectively. If , then 

.

71. If ,  if  is an equivalence relation on . (see Definition 
2.18, page 83)

72. There exists an equivalence relation on the set  for which each equivalence 
class contains an even number of elements.

a~b

a~b

a~b

a~b

a~b

a~b

a b 1 2  100    a~b

a b 1 2  101    a~b

S T P 1 2 3    S~T

S T P 1 2 3    S~T

a b n m  Z+ Sn Sm
a~b n a b–  a~b m a b–  n m

Sn Sm

C X A~B A C B C= P X 

1 2 3 4 5    
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73. For , let  and  denote the set of equivalence classes associated with the 
equivalence relations  if  and  if , respectively. If , then 

.

74. If , then every integer is congruent modulo n to exactly one of the integers .

75. There exists an equivalence relation on the set  for which each equivalence 
class contains an even number of elements.

a b n m  Z+ Sn Sm
a~b n a b–  a~b m a b–  n m

Sn Sm

n 2 0 m n

1 2 3 4 5    
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 2
 

The word “set” has been brandished about in previous sections. Here
is an attempt to define that important concept:

Really? Who is to specify, and how? And anyway, what is a collec-
tion? Okay, the word “set” is not precise. Yet, there is an important idea
lurking within the above would-be definition, a mathematically indis-
pensable idea. Can we zero in on it? We can try.

Consider the variable proposition:
x is a person born of my mother

It appears that we can use the above to generate a well-defined collec-
tion of objects; namely, those objects which when substituted for x ren-
der the proposition True. To put it another way: those objects which
satisfy the given proposition. This suggests another possible approach
towards the definition of a set:

Is this definition okay? Well, let’s begin by comparing it with our
previous attempt:

A set is a specified collection of objects.
First of all, note that the word collection is used in a different sense in

the two would-be definitions. In our first attempt, we tried to get by
with a circular definition: a set is a collection, or, if you prefer, a collec-
tion is a set. Now, however, the collection appears to be specifically
determined by means of a variable proposition.

Another objection we had with “Definition A” is that it appeared a bit
personal. Who is to specify the collection of objects? We no longer
appear to have this problem. For example, the statement:

I can vote in a national election.
is True or False, depending on my age, nationality, and other specified
factors. But all of these factors are simply used to determine whether or
not I am an object satisfying the variable proportion:

x can vote in a national election.

There is, of course, another problem; namely, how does one phrase a
precise variable proposition to begin with? Let us reconsider “x can vote
in a national election”. What does it mean to vote? What is a nation? The
problem is that we are attempting to build something rigorous, a totally
unambiguous statement, and we are trying to build it with non-rigorous
material: fuzzy words from a common language. Still, the hope is that
with extreme care one may be able to formulate a precise variable prop-
osition, and by-pass that language barrier. But there is another fault with
“Definition B” — a fatal fault, called the Russell Paradox:

§5. WHAT IS A SET?   (OPTIONAL)

DEFINITION A(?) 
Attempt #1

A set is a specified collection of objects.

DEFINITION B(?) 
Attempt #2

A set is a collection of objects satisfying a
variable proposition.

Bertrand Russell 1872-
1970). British Mathe-
matician and Logician.
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Assume that our second attempt does properly define the concept of a
set. We could then consider the set S of objects satisfying the following
variable proposition:

X is a set which does not contain itself as an element:
(*): 

Now, one thing is clear, our set S either contains itself as an
element  or it does not . Let’s see which:

If  then, by (*): .

Okay, our assumption that  quickly leads us to the con-
tradiction that , and therefore cannot hold. The other
option must hold. Let’s check, just to make sure: 

If  then, by (*):  .
What, again! This too cannot be.

Clearly, our would-be “Definition B” will not do, for it leads us to a
set which neither contains itself as an element nor does it not contain
itself as an element. It’s back to the drawing board; but first, a paren-
thetical remark, for what its worth:

Fine, but what is a set? Well, in the final analysis the concept of a set
remains an undefined term. We can, however, tell you how certain sets
have been created, and actually create a bunch of them right before
your very eyes.

We want to call something a set, but then again do not want to offend
anything that does not think itself as such by calling it a set. So, what
we do is to consider a collection of nothing, absolutely nothing, and
call it the empty set, and denote it by the symbol . It is unquestion-
ably the most important set of all mathematics.

We pass a formal law, lest there be any doubt as to the identity of :

We now have a legitimate set, by law, and there are going to be a lot
more. Anticipating their existence, let us come to some agreement as to
when two sets are to be considered the same, or equal.

S X X is a set X X =

This argument is reminis-
cent of that found in Can-
tor’s Theorem, page 84.

We have spent considerable time and effort, and all for a couple of bad
attempts in defining a concept. Not necessarily a waste of time. A consci-
entious attack on a problem may turn the investigator in wrong directions,
some of which may lead to places more interesting than the intended desti-
nation. In the abstract universe of mathematics there is but one mode of
transportation: thought. A lot of times it’s fun to let it take us where it may.

AXIOM 1   is a set.

S S  S S 
S S S S

S S
S S

S S S S
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Since sets are going to be collections of things, it seems reasonable to
say that two sets are the same if they contain exactly the same things, in
other words:

The above definition is certainly reasonable, and we would not want
to change it for the world. It is, however, going to impose a restriction
on all sets, wherever they may be. To make this point, let us assume
momentarily the existence of a set containing an element, say the set

. Suppose, in addition, that we allow  also to be a set. Defi-
nition 2.23 would tell us that these two sets are equal, for every element
in  is also an element in , and vice versa. This we do not
want, right? And so we stipulate that no set can contain an element
more than once. In particular  is not an acceptable representation
of a set.

At this point, there is a conspicuous lack of sets. Let us remedy the
situation by passing another law:

That’s great! Prior to the above axiom we had but one set, and empty
at that. We now have a lot of different sets. Witness a few:

 

The above sets are all different. For example,  and  are not the
same since there is an element in the latter set, namely the element ,
while there is absolutely nothing in the set . Also ,
since the only element in the set  is , and the only element in the
set  is , and we already noted that ; and so on
down the line.

We’ve come a long way from our initial set , but there is room for
improvement. After all, each of our current sets is either empty or is a
singleton set (contains but one element). Our set , for exam-
ple, contains only the element . We are going to remedy this
situation by passing other laws. But first, here is another parenthetical
remark:

This definition previously
appeared on page 53.

DEFINITION 2.23
SET EQUALITY

Two sets A and B are equal, written 
if:

AXIOM 2 For any set A,  is also a set.

What is our jurisdiction in passing these laws? In our abstract universe any
one is entitled to create anything he or she wants. Some of those creations
perish under an attack of reason, as was the case with our attempted cre-
ation labeled “Definition B”. The laws that we are busy passing, or axioms,
have survived in that they do not lead to any contradiction; or, at least,
none has yet been unearthed.   

A B=

x A x B   and   x B x A
or: x A x B 

a  a a 

a  a a 

a a 

A 
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We now introduce another law from which many more sets will
evolve. First, however, let us agree to use the term collection of sets
when referring to a set whose elements are themselves sets. 

The above set is called the union of the sets in C, and is denoted by
the symbol:

When dealing with a collection of two sets, say , we
may choose to represent  in the form . Similarly, the

notation  can be used to denote the union of the sets
 and , and so on.

Back to our set safari, and we begin by recalling our collection stem-
ming from the first two axioms:

Axiom 3 now assures us that the following is also a set:

We can now employ Axiom 2 to arrive at yet another new set:

Back to Axiom 3:

And then Axiom 2 assures us that the set containing the above set;
namely:

is also a set, and we could union it with our set
 to obtain yet another set.

There is a rather interesting development above which may be lost
within the maze of commas and brackets. Let us try to clarify the situa-
tion with the introduction of some notation. 

We start off by letting the symbol 0 denote our empty set:

(the above is not a set equality but simply designates a new symbol, 0 for the empty set)

We then denote the set  by the symbol 1:

(once more, a matter of notation)

Our set  will be denoted by 2:

AXIOM 3 For any collection C of sets, there exists a set consist-
ing precisely of those elements that belong to at least
one of the sets in C.

A
A C


C A1 A2 =
A

A C
 A1 A2

A1 A2 A3 
A1 A2  A3

             

        =

    

                 =

         

        

0 =

 
1   0 = =

   
2     0 1  0  1  1 1 = = = =
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The symbol 3 will be used to denote the set consisting of our sets 0,1,
and 2:

And in a similar manner we arrive at:

Let us give names to the above sets. We will call the set 0, zero. The
set 1 will be called one; 2 will be called two; 3 is three, and so on.

Wait a minute, what’s going on? Are we talking about sets or are we
talking about numbers? Both. What we have done is to define the num-
ber 3, among others. We can now pick up this number 3 and cuddle it,
if we want. It is no longer a vague concept, but is something concrete,
at least in our abstract mathematical universe. Three is the set

 or, equivalently, the set . Either way,
there it is, something.

We can feel rather proud of ourselves. Just a few pages ago we had
but one set, and empty at that. We now have infinitely many sets, and
sets containing many elements. We now have, for example, sets con-
taining 1,036,752 elements, among them is the set 1,036,752. But there
is room for improvement. We do not, for instance, as yet have an
infinite set. A particularly nice set we would like to construct is the one
consisting of all of the sets we have already constructed: 0, 1, 2, 3, 4,
and so on (which we will call the whole numbers). It is pretty clear,
however, that our current axioms will not yield that collection since
none of those axioms can boost us into the infinite. We need another
law, and here is the most obvious one to pass:

There exists a set consisting of all the whole numbers.
Well, that’s right to the point alright; but, unfortunately, it will not do.

We know exactly what the number zero is: . We also know that:

We can build like mad, for as long as we like, with as many gaps as we
wish, but there will always be larger whole numbers yet to be con-
structed. This concept of all the whole numbers is quite firm at one end,
at the number 0, but kind of hangs loose at the other end. Some new
ammunition is called for, and we start off with a definition:

We hastily remark that a mathematician counts potatoes the same way
everybody else does. He or she does not go around continuously aware
of the fact that 3 is actually a set which is also an element of the set 9.
Still, 3 is now something well-defined, and that is nice.

3 0 1 2   0 1  2  2 2 = = =

4 0 1 2 3    3 3 = =
5 0 1 2 3 4     4 4 = =

6 0 1 2 3 4 5      5 5 = =

135 0 1 2  134     134 134 = =




         0 1 2  



1 0 0 , and that 943 942 942 ==
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In particular, 1 is the successor of 0, 2 is the successor of 1, and 943 is
the successor of 942 (recall that ).

We are now in a position to pass our next law:

Let us agree to call any set which satisfies the condition of the
above axiom, a successor set. Clearly:

 ANY SUCCESSOR SET MUST CONTAIN EVERY WHOLE NUMBER

Now we’ve gone ahead and done it, we created an infinite set, and
maybe a lot of them. We also know that each of these successor sets
contains all of the whole numbers. What we do not know, yet, is
whether or not there exists a successor set which contains nothing other
that the whole numbers. All successor sets might just be too big.

Glancing back at our previous axioms, we see that none of them pro-
vides us with the means of plucking smaller sets from a given set. And
so we set to work on constructing an appropriate plucking mechanism,
beginning with a definition:

And so we have: 

 Let us denote this thing  which we are trying to cre-
ate by the letter N and ask ourselves the following question:
If N were a set, how would it be distinguishable from all other sets?

Answer: it should be a smallest successor set. Can we make the phrase
smallest successor set precise? Yes:

In particular, if ,
then the successor of A is the
set .

A 0 1 =

0 1 0 1   

DEFINITION 2.24 For any set A, the set  is called the
successor of A.

AXIOM 4 There exists a set which contains 0 and contains the
successor of each of its elements.

A A 

943 942 942 =

This definition previously
appeared on page 53.

DEFINITION 2.25
SUBSET 

AND 
PROPER SUBSET

A set A is said to be a subset of a set B, writ-
ten , if each element in A is also con-
tained in B.
If A is a subset of B, but is not equal to B,
then A is said to be a proper subset of B;
written: .

DEFINITION 2.26 A minimal (or smallest) successor set is a
successor set which is a subset of every suc-
cessor set.

A B

A B

2 6 3 8    1 9 6 3 2 8     
2 6 3 8    1 9 6 3 2 8     

2 6 3 8    2 6 3 8   =
2 6 3 8    2 6 3 8   
2 6 3 8    2 6 3 8   

0 1 2 3     
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Now, if we can agree that N should satisfy the property that it is a
minimal successor set, and if we can show that there is exactly one
minimal successor set, then we will have our set N.

Alright, let us first show that there is at most one minimal successor
set, and then proceed to find it.

PROOF: Let A and B be two minimal successor sets.
Since B is a successor set, and since A is a minimal successor set:

Since A is a successor set, and since B is a minimal successor set:

Employing Definition 2.23, we conclude that .

We now know that there can be at most one minimal successor set.
Still to be demonstrated is that one exists. All in good time. First,
another law is passed: 

What is the difference between Axiom 5 and our defamed “Definition
B:” A set is a collection of objects satisfying a variable proposition 
The main distinction is that while “Definition B” led to an absurdity,
via Russell’s paradox, Axiom 5 does not (or, at least, none has as yet
been uncovered). The specific distinction between Axiom 5 and “Defi-
nition B” is the phrase “those elements of A” appearing in Axiom 5. We
are no longer permitting everything to be a candidate for satisfying a
variable proposition , but are now restricting candidacy to those
elements which are themselves elements of some existing set.

Unlike the union concept which stemmed from Axiom 3, the inter-
section concept rests on Axiom 5: 

Back to our search for a minimal successor set. Axiom 4 assures us of
the existence of at least one successor set : 

 and 

There is a distinction
between a Theorem and
an Axiom. Axioms are
dictated. They are the
initial building blocks
from which mathemat-
ics is constructed. Theo-
rems, on the other hand,
are mathematical con-
structions, built from
axiomatic bricks and
logical cement. Once
established, they too
can be used as building
blocks in the construc-
tion of other theorems.
And so it goes, until
there are so many
blocks hanging around
that one loses track of
which axiom is needed
for the proof of a given
result. But it really does
not matter, providing, of
course, that we don’t
permit a faulty block to
creep into our collec-
tion. If one does, then
we will be in serious
trouble, for any argu-
ment built in part with a
faulty block may itself
be faulty.

THEOREM 2.16 There exists at most one minimal successor set.

AXIOM 5 For any given set A and any variable proposition ,
there exists a set (possibly empty) consisting of those
elements of A which satisfy .

DEFINITION 2.27 Let C be a non-empty collection of sets. The
intersection of the sets in C, denoted by

, is the set consisting of those ele-

ments contained in every set in C:

A B

B A
A B=

p x 

p x 

p x 

A
A C


A
A C
 x x A for every A C =

S

0 S x S x x  S
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Now, there are some subsets of  which are themselves successor sets (
itself, for example). The collection:

is therefore not empty, and we may consider the intersection of all the
sets in C, which we optimistically call N:

So, N is the intersection of all the subsets of the successor set  which
are themselves successor sets. We now show that N is itself a successor
set: 

Since each  is a successor set,  and

 for every . Since , ;

and for every , .

Alright, we have just established the fact that the intersection, N, of
all subsets of the successor set  which are themselves successor sets is
itself a successor set. We now define this particular set, N, to be the set
of whole numbers.

Objections! The above set N, being the intersection of all subsets of 
and being itself a successor set, is clearly the smallest successor set in
the particular set . But how about successor sets other than  which
may exist already, or others that may evolve if we continue creating
additional sets? How do we know that no new successor set will evolve
which is smaller than N?

Objection overruled:

PROOF: Consider once more the successor set  which led us to the
definition of N above. Since, as we have noted, the intersection of
successor sets is again a successor set,  is also a successor set,
and it is contained in . But N sits inside every successor set con-
tained in . Thus:  

We now have the set  and could proceed
towards a rigorous set-theoretical construction of the real number sys-
tem, and beyond. Instead, we chose to end the chapter with some gen-
eral set theory remarks. First, however, a final result:

S S

C S S S is a successor set =

N S
S C
=

NOTE: The adjacent
argument shows that
any intersection of suc-
cessor sets is again a
successor set.

THEOREM 2.17 If A is a successor set, then .

THEOREM 2.18

S

S C 0 S

x x  S x S N S
S C
= 0 N

x N S
S C
= x x  N

S

S

S S

N A

S

A S

S
S N A S A

N 0 1 2 3     =

Mathgod =



                                                                                                                                  2.5  What is a Set?     107

PROOF: Clear.

          SOME HISTORICAL REMARKS:

The formal birth of set theory occurred in 1874 with the publication of the first purely set the-
oretic work: Uber ene Eigenschaft des Inbegriffes aller Reelen Algebraishen Zahlen (On a
Property of the Collection of all Real Algebraic Numbers). Within that paper, Georg Cantor
(1845-1916) distinguishes two infinite subsets of the reals that are not of the same cardinality,
thereby pointing out the existence of different levels of infinity. He was not, however, the first
to discover this staggering fact. Indeed, Galileo Galilei (1564-1642) as early as 1632 recorded
the following interesting observation: There are as many squares as there are numbers
because they are just as numerous as their roots. Later, Bernhard Bolzano (1781-1848), famil-
iar with Galileo’s work, gave additional examples of bijections between infinite sets and some
of their proper subsets. But these were isolated instances, and the creation of set theory as well
as its fundamental development is justly accredited to Cantor.

Cantor’s valuable contributions were far from universally accepted by the mathematical
community of his time. Many disagreed vehemently with his work which, to them, appeared to
rest on little more than intuition and empty fabrications based on nonconstructive reasoning.
Some suggested that his work encroached on the domain of philosophers, while others even
accused him of violating religious principles. Most noteworthy among his numerous critics of
the day was one of Cantor’s former professors, Leopold Kronecher (1823-1891). Kronecher
objected loudly and strenuously to Cantor’s uninhibited use of infinite sets. According to that
noteworthy mathematician: Definitions must contain the means of reaching a decision in a
finite number of steps, and existence proofs must be conducted so that the quantity in question
can be calculated with any required degree of accuracy. Even the irrational numbers fail to
satisfy his imposed criteria, and, along with the infinite, they too were disregarded by Kro-
necher whose mathematical philosophy may best be read within his often quoted statement:
God created the natural numbers, and all the rest is the work of man.

And then came the paradoxes, which naturally served to further fan the flames of discontent.
Cantor’s reliance on precise statements to generate his sets simply would not do, and Bertrand
Russell (1872-1970), in 1902 demonstrated that Cantor’s own definition of sets leads to a con-
tradiction. Other similar paradoxes emerged, and they generated such turmoils that in 1908
Henri Poincare (1845-1912), a leading mathematician at the time, made the following state-
ment at the International Congress of Mathematics: Later mathematicians will regard set the-
ory as a disease from which one has recovered.

The sensitive Cantor did not recover from the onslaught of criticisms from his peers. Particu-
larly disturbed by what he felt to be Kronecher’s malicious and unjust persecutions, he suf-
fered a complete nervous breakdown in 1884, and, to some degree, mental illness plagued him
for the rest of his life. He died in the psychiatric clinic at Halle on January 6, 1918, but not
before witnessing the beginning of the tremendous role his theory would play in mathematics,
and realizing a belated recognition which he so justly deserved.
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In 1908, Ernst Zermelo (1871-1953) published his Untersuchungen ueber die Grundlagen
der Mengenlehre (Investigations into the Foundations of Set Theory). In that work, an axiom-
atic system for set theory is presented. After postulating the existence of certain sets, and with
an additional undefined notion, that of membership ( ), he required but seven axioms to set
the formal foundation for set theory and, indeed, for most of mathematics. These original axi-
oms were later amended by Abraham Fraenkel (1891-1790), John Von Neumann (1903-1957),
and Kurt Gӧdel (1906-1978), among others, and has come to be called the Zermelo-Fraenkel
Axiomatic System. It remains the most widely used axiomatic system of the day.

Yes, there is no universal axiomatic system. Though it is certainly true that the overwhelming
majority of mathematics is globally accepted, there remain important results which depend on
axioms accepted by some and rejected by others. In an attempt to clarify this statement, we
turn to a few remarks concerning the axiomatic foundations of mathematics.

Two axiomatic systems are equivalent if each axiom in either system is a consequence of
those in the other. It follows that though the axioms in one system might be quite distinct from
those in the other, both in form and number, any proposition which can be established to be
True in one system can also be established to be True in the other. Thus, equivalent systems
lead to the same theory. One system, however, might possess certain properties which makes it
more appealing than another.

One appealing property is that the system be efficient in the sense that each of its axioms is
really needed — that none of its axioms is a consequence of the others. Such a system is said
to be independent.

Another nice property, admittedly more vague than the previous one, is that the system
should, as much as possible, consist of “intuitively valid” axioms. After all, axioms are the
building blocks from which the theory is developed, and, as such, they should be “believable”
and “fundamental in nature.”

The five axioms of this chapter are independent, and fundamental in nature. We began by
stipulating the existence of a set, the empty set. Then, with the introduction of other axioms,
arrived at an axiomatic system sufficiently rich to allow for the construction of the set of natu-
ral numbers. We also established a few of the surface results founded on our meager collection
of axioms. A richer theory might, however, evolve from an axiomatic system which properly
contains ours. But how do we go about expanding our system?

We expanded all along. Very little theory could be based on our first axiom:  is a set. And
so we expanded by introducing the axiom on sets of sets, thus assuring the existence of a lot of
singleton sets. There was then a need for a greater variety of sets, a need which was partially
fulfilled by the introduction of the union axiom. We continued the process of satisfying needs,
arriving finally at the five-axiom system of this section, which we now denote by the Greek
letter omega: .
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If we continue to play with , we may very well come across some statement S which, for
some reason or other, we would like to be True. If it can be determined that neither S nor its
negation is a consequence of the axioms in , then we say that S is independent of , and
may choose to add S to . In particular, the statement: For any given set A there exists a set
consisting of all the subsets of A can be shown to be independent of the five axioms in . We

could therefore add it to the five axioms in  and in so doing arrive at a richer system .

We now turn our attention to a couple of interesting statements that are independent of .
The first of these appeared as one of the axioms posed in Zermelo’s 1908 paper on the Founda-
tions of Sets:

THE AXIOM OF CHOICE: Given any non-empty collection C of non-empty sets, there exists a
set consisting of exactly one element from each set in C.

        (This amounts to being able to “choose” and element from each of the sets in C)
The motivation for the above axiom may, in part, be attributed to Cantor. In 1883 he asserted

that every set can be well-ordered; which is to say, that an order relation can be imposed on
any set, under which each of its non-empty subsets contains a smallest or first element. This,
for example, is already the situation with any countable set. Cantor indicated that he would sub-
stantiate this fundamental and truly remarkable fact at a future date. He did not, and, as Zer-
melo subsequently showed, for good reasons.

The above WELL-ORDERING PRINCIPLE has such a wide range of applications that it was
one of the famous twenty-three unsolved problems formally offered for consideration to the
mathematical community by  David Hilbert (1862-1943), at the 1900 International Congress of
Mathematics.

It was for Zermelo, in 1904, to offer a proof in the affirmative, a proof that depended on the
principle set forth within his Axiom of Choice. In other words, given the Axiom of Choice, the
Well-Ordering Principle follows. Moreover, it is easy to see that if the Well-Ordering Principle
holds, then so does the Axiom of Choice (well order each of the sets in question, and select the
first element of each). Thus, in the Zermelo-Fraenkel Axiomatic System, the Axiom of Choice
is equivalent to the Well-Ordering Principle, in that the validity of either implies that of the
other; or, if you prefer, if you don’t have the one then you don’t have the other (nor any of its
other numerous equivalent formulations). 

In 1931, a twenty five year old student at the University of Vienna, Kurt Gӧdel (1906-1978)
showed that if the Zermelo-Fraenkel axiom system excluding the Axiom of Choice is consis-
tent, then adding the Axiom of Choice will not lead to a contradiction. It was not until 1966,
however, that Paul Cohen (1934-2007) succeeded in proving that the addition of its negation
would also not lead to a contradiction. Thus, the Axiom of Choice is independent of the other
axioms within the Zermelo-Fraenkel system, and whether to accept it or not boils down to a
matter of personal inclinations.
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This conviction of the solvability of every mathematical problem is a powerful
incentive to the worker. We hear within us the perpetual call: There is the problem.
Seek its solution. You can find it by pure reason, for in mathematics there is no: we
will not know.

Oh yes there is! For in 1931 Gӧdel published his famous Incompleteness Theorem: 
In any mathematical system rich enough to encompass the natural numbers, there
is an assertion expressible within the system that is true, yet is not provable within
that system.

And just in case that was not bad enough, he then went on to prove that the consistency of such
a system is itself an undecidable proposition.

What a double whammy! First, there will always be undecidable propositions. And, worse
than that, we can never gain assurance that our mathematics is based on a firm foundation. It
should be underlined, however, that just because we are not able to prove that our axiomatic
system is consistent, that does not mean that it is not. Indeed, not many mathematicians lose
much sleep over this issue, as most have the utmost faith that our Zermelo-Fraenkel axiomatic
system, along with its variations, are indeed consistent systems.

Yes, there are potential flaws in modern mathematics. Perhaps some drastic fundamental
changes, possibly in the field of logic, will remedy the situation. Or, perhaps, imperfection is
within the very nature of things; not only in our physical universe, but in our expanding mathe-
matical universe as well. At any rate, as things stand now, mathematics is not what we would
call perfect, but it may very well be the closest thing to perfection around.
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 3

CHAPTER 3 
A Touch of Analysis

The axiomatic structure of the real number system is introduced in Sec-
tion 1 wherein the completion axiom taking center stage. Sequences,
including Cauchy sequences, are featured in Section 2. The metric struc-
ture of the real number system is discussed in Section 3, and the important
concept of continuity is featured in Section 4. 

If it looks like a duck, walks like a duck, and
quacks like a duck, then it probably is a duck.

Unlike ducks, which appear to require but three defining characteristics
to distinguish them from all other worldly creatures, eleven characteristics
(axioms) are needed to distinguish the set of real numbers from all other
mathematical creatures. 

It can be shown that the set of real numbers , with standard addition
and standard multiplication, is a complete ordered field. It can also be
shown that any other complete ordered field can only differ from  super-
ficially (the number 5, for example, might be written as V).      

§1. THE REAL NUMBER SYSTEM

Commutative Axiom:

Associative Axiom:

Distributive Axiom:

Additive Identity Axiom:

Additive Inverse Axiom:

Multiplicative Identity Axiom:

Multiplicative Inverse Axiom:

Trichotomy Axiom:

Additive Inequality Axiom:

Multiplicative Inequality Axiom:

Completeness Axiom:
(See Definition 3.2 below)

DEFINITION 3.1
COMPLETE 

ORDERED FIELD

A complete ordered field is a set F, along
with two operations, called addition (+) and
multiplication ( ), along with an order rela-
tion ( ), such that:

(1)  .

(2)  and  .

(3)  .
(4) There exists an element which we will label  such that 

for all .
(5) For each  there exists an element which we will label  such

that .
(6) There exists an element which we will label  with  such that

 for all .

(7) For each  there exists an element  such that .

(8) For any , either  or .

(9) If , then  for every .

(10) If  and , then 

(11) Every nonempty subset of  that is bounded from above has a least upper
bound. 




x y+ y x+= x y F

x y z+ + x y+  z+= x y z  x y  z= x y z F

x y z+  x y x z+= x y z F
0 F x 0+ x=

x F
x F x F–

x x– + 0=
1 F 1 0

1 x x= x F
x 0 x 1– F x x 1– 1=

x y F x y y x
x y x z y z++ z F
x y z 0 x z y z

F
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You may be able to anticipate the meaning of the terminology in the
completeness axiom of Definition 3.1 on your own; but just in case:

 The notation  and  is used to denote the least upper bound
and greatest lower bound of S, respectively. For example:

 and 

  and 

  and 

As is illustrated above, neither the least upper bound nor the greatest
lower bound of a set S need be an element of that set. If it is, then it is
said to be the maximum or greatest member of S, and the minimum or
smallest member of S, respectively.

FOCUSING ON THE COMPLETION AXIOM

In Exercise 12 you are
invited to verify that if a
least upper bound (or
greatest lower bound)
exists, then it is unique.

DEFINITION 3.2

UPPER BOUND

LOWER BOUND

LEAST UPPER
BOUND

GREATEST LOWER 
BOUND

Let S be a subset of .

 is an upper bound of S if  for every
. 

S is bounded from above if S has an upper
bound.

 is a lower bound of S if  for every
.

S is bounded from below if S has a lower
bound.
S is bounded if S has both a lower and an
upper bound.

 is the least upper bound (or supremum) of
 if it is an upper bound of S and if it is

less than or equal to every upper bound of S. 

 is the greatest lower bound (or infimum) of
if it is a lower bound of S and if it is

greater than or equal to every lower bound of S.



a a s
s S

b b s
s S


S 


S 

lub S glb S

glb 1 2 5   1= lub 1 2 5   5=

glb 2 4 – 2–= lub 2 4 – 4=

lub – 7  lub – 7  7= = glb 3   glb 3  3= =

(a) lub: 7, glb: 3, Max: 7
(b) lub: 9, Max: 9
(c) lub: , glb: , 
     Max: 

2 2–
2

CHECK YOUR UNDERSTANDING 3.1
Determine the least upper bound, the greatest lower bound, the maxi-
mum, and the minimum element of the given set, if they exist.

(a)   (b) 

(c) 

3 5  4 7  – 0  1 3  9  

x 0 x2 2  x 0 x2 2 
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  The following result provides a useful characterization for the least
upper bound and greatest lower bound of a given set. 

PROOF: (a) If  then  is, in particular, an upper bound. To
show that (ii) also holds, we consider a given . 

Since , and since nothing smaller than  can be an
upper bound of S, there must exist some  to the right of

 (see margin). 

Conversely, suppose  satisfies (i) and (ii). To show that  is the
least upper bound of S we consider an arbitrary upper bound  of S,
and show that :

Assume, to the contrary, that . Let . By (ii):
 

Contradicting the assumption that  is an upper bound of S.

The Greek letter epsilon  is
generally used to denote a
“small” unspecified number.

Note that: 
 is FIRST given. 

THEN: s is to be found
to accommodate that
particular .







THEOREM 3.1 (a) A number  is the least upper bound of
 if and only if it satisfies the follow-

ing two properties:
(i)  is an upper bound of S.
(ii) For any given  there exists some

 (which depends on ) such that
. 

       (That is:  is not itself an upper bound)

(b) A number  is the greatest lower bound of
 if and only if it satisfies the follow-

ing two properties:
(i)  is a lower bound of S.
(ii) For every  there exists some 

(which depends on ) such that
. 

      (That is:  is not itself a lower bound)

..S




s
. .


S

s


S 


 0

s S 
s  –

 –


S 


 0 s S


s  +

 +

S


 –

s

...
 lub S= 

 0
  – 

s S
 –

 
a

 a
 a   a 0–=

 s S s  –   a– – a= =

Answer: See page A-14.
CHECK YOUR UNDERSTANDING 3.2

Prove Theorem 3.1(b).

a

We remind you that:
 Z+ 1 2 3    =

EXAMPLE 3.1
Let 

Show that .

S 1
8
--- 2

9
--- 3

10
------ 4

11
------    

 
 
  n

n 7+
------------ n Z+
 
 
 

= =

lub S 1=
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SOLUTION: (a) Since the denominator of  is always greater than

the numerator, 1 is seen to be an upper bound of S. To show that it also
satisfies (ii) of Theorem 3.1(a), we observe that for any given :

Cutting out the middle steps in the above development we conclude
that for any integer , the element  of S will lie to the
right of . 

 

PROOF: Let . We first show that S is not bounded
above:

Assume, to the contrary, that S is bounded above. By the com-
pletion axiom, S  has a least upper bound . Letting a play the
role of  in Theorem 3.1(a-ii), we conclude that there exists an
element of S, say , which lies to the right of . But if

, then  — contra-
dicting the fact that  is an upper bound of S.

To complete the proof we need but note that since S is not bounded
above, the given b  in the statement of the theorem is not an upper
bound of S. It follows that some element  of S must lie to the right
of b.

n
n 7+
------------

 0
n

n 7+
------------ 1  n n 7+  1 – –

n n n– 7 7–+
n 7 7–

n 7 7–


---------------Since  0:

(a)     (b) 694
694 7+
------------------ 6994

6949 7+
---------------------

Note that the smaller  is, the larger  becomes, and that therefore

no one element of S will lie to the right of  for all . But for
any given  an element of S does exist to “accommodate” that .

CHECK YOUR UNDERSTANDING 3.3
Find the smallest element of the set S of Example 3.1 which lies to
the right of:      

                (a)                                  (b) 

Suggestion: Write the given number in the form .

THEOREM 3.2
ARCHIMEDEAN

PRINCIPLE

For any given  with , there exists
a positive integer n such that .

n 7 7–


--------------- n
n 7+
------------

1 –

 7 7–


---------------

1 –  0
 0 

99
100
--------- 99.9

100
----------

1 –

a b  a 0
na b

S na n Z+ =




n0a  a–
 a– n0a  n0a a+ n0 1+ a S=



na
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Here is particularly useful consequence of the completion axiom:

PROOF: Consider the set  of left endpoints of the
given closed intervals :

Since L is bounded above (by , for example), it has a least upper
bound . We complete the proof by showing that  is contained in
each :

 Since each  is an upper bound of L, and since ,
 for every n. We also know that  for ever n (  is

an upper bound of L). It follows that  for every n,

and that therefore .

PROOF: The set  is nonempty as it contains 0. It is
also bounded above (by 1 if , and by x if ). As such

Answer: See page A-14.

CHECK YOUR UNDERSTANDING 3.4
(a) Prove that for any given number  there exists a positive

integer n such that .
(b) Prove that for any given  there exists a positive integer n

such that .

THEOREM 3.3
NESTED

CLOSED INTERVAL
PROPERTY

If  is a collection of non-
empty closed intervals such that 

, then .

b 
n b

 0
1
n
--- 

In an bn = n 1=

an 1+ bn 1+  an bn  In

n 1=



 

L an n Z+ =
an bn 

a1    a2    a3 b3                     b2        b1

Note that these nested
intervals are not closed.

Answer: See page A-15.

CHECK YOUR UNDERSTANDING 3.5

Let  for . Show that .

Suggestion: Use CYU 3.4(b).

b1
 

In

bn  lub L=
 bn  an 

an  bn 

 In

n 1=





Jn 0 1
n
---

= n Z+ Jn

n 1=



 =

So, in the real number system:
  exists for every . x x 0

THEOREM 3.4 For any given  there exists  such
that .

x 0  0
2 x=

S s 0 s2 x =
0 x 1  x 1
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 exists. We show that  by eliminating the two other
possibilities,  and :

Assume that . We will exhibit an element of S that is greater
than , thereby contradicting the fact that  is an upper bound of S. 

Our first step is to consider the square of numbers a bit
larger than . For any : 

Choosing  sufficiently large so that  (see

margin), and appealing to (*), we have:

So, , and is larger than  — a contradiction.

Having ruled out the possibility , we now do the same for
, and do so by looking at the square of numbers a bit smaller

than x:

Choosing , sufficiently large, so that  and

appealing to (**), we have:

Since , and since (by assumption)  for every

element in S,  is an upper bound of S — contradicting the

fact that  is the least upper bound of S.

We remind you that a rational number is a number of the form ,
where a and b are integers, with . A number that is not rational is
said to be irrational.

 lub S= 2 x=
2 x 2 x
2 x

 

Since  and :

 

It follows, from CYU 3.4(b),

that  for some N.

 0 2 x
x 2–
2 1+
---------------- 0

1
N
---- x 2–

2 1+
----------------

You are not insulting a number by calling it irrational — you
are just saying that it is not the ratio of two integers.

 n 1

 1
n
---+ 

  2
2 2

n
------- 1

n2
-----+ +=

2 2
n

------- 1
n
---+ + 2 1

n
--- 2 1+ += (*)

N 1
N
---- x 2–

2 1+
----------------

 1
N
----+ 

  2
2 1

N
---- 2 1+  2 x 2–

2 1+
---------------- 
  2 1+ ++ x=

 1
N
----+ S 

2 x
2 x

 1
n
---– 

  2
2 2

n
-------– 1

n2
-----+= 2 2

n
-------– (**)

N 1
N
---- 2 x–

2
---------------

 1
N
----– 

  2
2 1

N
---- 2  2 2 x–

2
--------------- 
  2 –– x=

 1
N
----– 

  2
x s2 x

 1
N
----–



a
b
---

b 0
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Not every number is rational:

PROOF: (By contradiction) Assume there exists a rational number 

in lowest terms (margin) such that . Then: 

Substituting  for a in (*) we have: 

Bringing us to:  — contradicting our stated condition that 

is in lowest terms. 
Since the assumption that  is rational led to a contradiction, we con-
clude that  must be irrational.

SOLUTION: (By contradiction) Let x be irrational. Assume there
exists a rational number  such that  is rational, say:

Since  is an integer and  is an integer distinct from 0
(why?), (*) tells us that x is rational — contradicting our stated condi-
tion that x is irrational.

THEOREM 3.5 There is no rational number  such that

. (In other words:  is irrational).

a
b
---

a
b
--- 
  2

2= 2

Any rational number 
can be expressed in low-
est terms (a and b share
no common factor).

a
b
---

EXAMPLE 3.2 Show that the sum of any irrational number and
any rational number is irrational.

a
b
---

a
b
--- 
  2

2=

a
b
--- 
  2

2= a2

b2
----- 2=

a 2 2b2=
a2 is even
a is even
a 2k  for some integer k=

Theorem 1.10,page 47:

(*)

 

2k

2k 2 2b2= 4k2 2b2= 2b2 4k2=

Theorem 1.10:

b2 2k2=
b2 is even
b is even
b 2h  for some integer h=

a
b
--- 2k

2h
------= a

b
---

2
2

a
b
--- x a

b
---+

x a
b
---+ c

d
---=

x c
d
--- a

b
---–=

x cb ad–
db

------------------=

Then:

(*)

cb ad– db
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Here are two important dense subsets of :

PROOF: To show that the rationals are dense in  we exhibit, for any
given  with , a rational number lying between a and b: 

Case 1. : Not much to be done here, since  is a
rational number.
Case 2. : Our goal is to find a rational number  such that:

We begin by choosing a positive integer n such that:

We then consider the non-empty set:

The Well-Ordering Principle (page 39), assures us that S has a
smallest (first) element, which we will call m.

Since : . If we can show that  then we will be
done. We can: 

Answer: See page A-15.

CHECK YOUR UNDERSTANDING 3.6
(a) Prove that the product of any irrational number with any nonzero

rational number is irrational
(b) Can the sum of two irrational number be rational? Justify your

answer. 

In other words: between
any two distinct real num-
bers, one can always find
an element of D. 

DENSE SUBSETS OF 

DEFINITION 3.3
DENSE SUBSET

A set D of real numbers is dense in  if for
any given real numbers a and b with 
there exists  such that .

THEOREM 3.6 The set of rational numbers and the set or irra-
tional numbers are dense in .
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Case 3. : Noting that , we appeal to the previ-
ous case and choose a rational number  such that .

Multiplying through by  yields the desired result: .

Using the established fact that the rationals are dense in  we now
show that the irrationals are also dense in :

Let  be given. Choose a rational number  such that:  

This completes the proof, since the sum of a rational number and
an irrational number is itself irrational (Example 3.2). 

a b 0 0 b a––
m
n
---- b m

n
---- a– –

1– a m
n
---- b–




a b m
n
----

a 2– m
n
---- b 2– 

a m
n
---- 2 b+or:

Answer: See page A-15.

CHECK YOUR UNDERSTANDING 3.7
(a) Prove that no finite subset of  is dense in .

(b) Let S be dense in . Show that any open interval  must
contain infinitely many elements of S. 

 

 a b 
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Exercises 1-6. Determine the least upper bound and greatest lower bound of the given set, and its 
maximum and minimum element, if they exist.

Exercises 7-11. Determine the least upper bound of the set S. Justify your claim. 

EXERCISES

1. 2. 3.
4. 5. 6.

7. 8. 9.

10. 11.

12. (a) Prove that if a subset S of  has a least upper bound, then it is unique.
(b) Prove that if a subset S of  has a greatest lower bound, then it is unique.

13. (a) Prove that if a subset S of  has a maximum element, then it equals .
(b) Prove that if a subset S of  has a minimum element, then it equals .

14. Prove that any finite subset of  contains a maximum and minimum element.

15. Prove that every nonempty subset of  that is bounded from below has a greatest lower 
bound.

16.  Prove that if A is a nonempty bounded subset of , then . 

17. (a) Let A and B be nonempty subsets of , bounded above, with . Show that 
. 

(b) Give an example of nonempty sets A and B, bounded above, with  and
.

18. For  and , let . Prove that:
(a) If A and B are bounded above, then so is .

(b) If A and B are bounded below, then so is .

19. (a) Prove that if a subset S of  has a least upper bound , then the set of all upper bounds of 
S is .

(b) Prove that if a subset S of  has a greatest lower bound , then the set of all lower
bounds of S is .

20. Prove that every number is both an upper bound and a lower bound of .

21. Prove that A is bounded if and only  is bounded.
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= S 2n
n 1+
------------ n Z+
 
 
 

=
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22. (a) Prove that if , with , then .
(b) Give an example where  and .

23. (a) Prove that if , with , then .
(b) Give an example where  and .

24.  (a) Let A and B be nonempty bounded sets of real numbers such that for every  there 
exists  such that , and for every  there exists  such that . Prove 
that  and .
(b) Give an example of sets A and B satisfying the conditions of part (a), with .

25.  (a) Let A and B be nonempty bounded sets of real numbers such that  for every  
and every . Prove that .
(b) Give an example of sets A and B satisfying the conditions of part (a), with .

26.  Let A be bounded above, and let . Prove that:
(a)
(b)  if , and that  if .

27. Let A be a nonempty subset of  which is bounded above but does not have a maximum ele-
ment. Prove that A cannot be finite.

28. Let A be a nonempty subset of  which is bounded below but does not have a minimum ele-
ment. Prove that A cannot be finite.

29. Let A be a nonempty subset of  which is bounded above but does not have a maximum ele-
ment. Prove that for any , .

30. Let A be a nonempty subset of  which is bounded below but does not have a minimum ele-
ment. Prove that for any , .

31. Let A be a nonempty subset of  which is bounded above but does not have a maximum ele-
ment, and let . Show that .

32. Let A be a nonempty subset of  which is bounded below but does not have a minimum ele-
ment, and let . Show that .

33. Show that any subset of  that contains a dense subset of  is itself dense.

34. Give an example of an infinite subset of  that is not dense in .

35. Prove that if x and y are rational and  is irrational then  is irrational.

36. Prove that for any positive integer n,  is rational if and only if  is an integer.

37. Show that there exists irrational numbers x and y such that    is rational.
Suggestion: Consider the number . If it is rational, then the claim is seen to hold. If
it is irrational, then consider raising it to the power .
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PROVE OR GIVE A COUNTEREXAMPLE

38. If , and if B is bounded, then A is bounded.

39. If , and if B is bounded, then  or .

40. If , then there exists an element  that is an upper bound of A.

41. If , then there exists an element  that is a lower bound of B.

42. For  and , let . If  and 
, then .

43. For  and , let . If  and 
, then .

44. For  and , let . If A and B are bounded, then so is 
.

45. For  and , let . If  and , 
then .

46. For  and , let . If  and , 
then .

47. Every infinite subset of  is dense in .

48. Let A and B be subsets of . If  is dense in  then A or B must be dense in .

49. Let A and B be subsets of . If  is dense in  then A and B must be dense in .

50. Let A and B be subsets of . If A and B are dense in  then  is also dense in .

51. Let A and B be subsets of . If A and B are dense in  then  is also dense in .

52. The product of any irrational numbers and any rational number is again irrational.

53. If x and y are irrational and  is rational then  is irrational.

54. If x and y are irrational and  is rational then  is irrational.

55. If x and y are irrational and  is rational then  is rational.

56. If   then x must be rational.

57. (a) If one solution of the quadratic equation  is rational then the other solu-
tion is also rational.

(b) If one solution of the quadratic equation  is rational, and if the coeffi-
cients a, and c are integers, then the other solution is also rational.

A B
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 3
      

Formally:

Formality aside, one seldom represents a sequence in the function-
form  but, rather, as an infinite string of numbers, or terms

with -term . 

Consider the sequences:

(a)      (b)     and  (c) 

While the sequence in (a) appears to be heading to 0, and that of (b) to
1, the sequence in (c) does not look to be going anywhere in particular,
as its terms keep jumping back and forth between 1 and 2. Appearances
are well and good, but mathematics demands precision;

The next theorem asserts that a sequence cannot converge to two dif-
ferent numbers. That being the case, if  converges to , we

are justified in saying that  is the limit of , and write:

           , or , or simply .

§2. SEQUENCES

DEFINITION 3.4
SEQUENCE

A sequence of real numbers is a real-valued
function with domain the set of positive inte-
gers.

Unlike the set , ele-

ments in a sequence 
can appear more than once, as
is the case with the sequence

.

an n 1=


an n 1=


0 1 0 1 0 1       

f: Z+ 

a1 a2 a3      or   an n 1=


nth an

1 1
2
--- 1

3
---    

  n 1+
n

------------ 
 

n 1=


1 2 1 2 1 2       

We remind you that the abso-
lute value function 

denotes the distance between
the number a and the origin
on the number line, and that

 represents the dis-
tance between the numbers a
and b. For example:

 is the distance
between 2 and 7, while

 is the
distance between 3 and .

a a if x 0
a– if x 0




=

a b–

2 7– 5=

3 4+ 3 4– – 7= =
4–

DEFINITION 3.5
CONVERGENT

 SEQUENCE

A sequence  converges to the num-
ber  if for any given  there exists a
positive integer  (which depends on )
such that:

A sequence that does not converge is said to
diverge.

In words: By going far enough in the sequence, , you can get the
terms of the sequence to be as close as you want to , .

Additional Notation: For given  and , we will
use the symbol  to denote the set of numbers that lie
within  units of a:

: 

In anticipation of higher dimensional spaces, we call 
the (open) sphere of radius  about a.

an n 1=


  0
N 

n N an – 

n N 
 an –  

an n 1=
 

 an n 1=


ann 
lim = anlim = an 

a   0
S a 



S a  x  x a–  = (                              ). }              

a +a –

}

a

S a 
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PROOF: Assume that a sequence  converges to two different
numbers  and  (we will arrive at a contradiction). Letting 

denote the larger of the two numbers, we consider :

Since  converges to  and to , there exist integers  and
 such that  and . Let

 be the larger of  and . As such, the term  of the
sequence must lie in both  and  — a contradiction, since

.

SOLUTION: (a) Let  be given. We are to find  such that

. Let’s do it:

 So, to find an N such that  is to find an N

such that . Piece of cake: let N be the first integer

greater than . 

THEOREM 3.7 A sequence can have at most one limit.

EXAMPLE 3.3 (a) Prove that .

(b) Prove that for any constant c the sequence 
 converges to c.

(c) Show that the sequence   
diverges.

an n 1=


  

  –
2

-------------=

.            .(                            )(                                ){ {S  S  

 

an n 1=
   N

N n N an –  n N an – 
N N N aN 1+

S   S  
S   S   =

n 1+
n

------------
n 
lim 1=

c c c c     
1 2 1 2 1 2       

Note how N is dependent
on  — the smaller the
given , the larger the N.



 0 N

n N n 1+
n
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n N n 1+
n

------------ 1– 

n N n 1 n–+
n

--------------------- 

n N 1
n
--- 

n N 1
n
--- 

n N n 1

---

Let’s rewrite the goal:

again:

and again:

and finally:

We want:

n N n 1+
n

------------ 1– 

n N n 1

---

1

---
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(b) For  and any given  let . Then:
 .

(c) We show that  diverges by demonstrating that
no fixed but arbitrary  can be the limit of the sequence:

Let N be any positive integer. Since any two numbers in

 are less than one unit apart (see mar-

gin), both  and  cannot be contained in , as

one of the numbers is 1 while the other is 2. This shows that no
N “works” for , and that, consequently, the arbitrarily

chosen number r cannot be a limit of . 

Example 3.3(c) shows that not every bounded sequence converges.
However:

cn  c c c c     =  0 N 1=
n N cn c– c c– 0 = =

1 2 1 2 1 2       
r 

(          |          )
1
2
--- 1

2
---

r

S1
2
---

r  x x r– 1
2
---

 
 
 

=

aN 1+ aN 2+ S1
2
---

r 

 1
2
---=

1 2 1 2 1 2       

Answer: See page A-15.

CHECK YOUR UNDERSTANDING 3.8

(a) Let .

(i) Prove that .

(ii) Find the smallest positive integer N such that

.

(b) Show that the sequence  diverges.   

DEFINITION 3.6

INCREASING

DECREASING

MONOTONE

BOUNDED

A sequence  is:

Increasing if 

Decreasing if  

Monotone if it is either increasing or
decreasing.
Bounded if there exists a real number M such
that  for every n.

THEOREM 3.8 Every increasing (decreasing) sequence that is
bounded from above (below) converges.

an n 1=
 7 101

n
---------– 

 
n 1=


=

ann 
lim 7=

n N an 7– 1
100
---------

an n 1=
 n 5–

333
------------ 
 

n 1=


=

an n 1=


an an 1+

an an 1+

an M
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PROOF: Let  be increasing and bounded from above. The
completion axiom assures us that the set  has a least upper

bound: . We show that  converges to :

Let  be given. Theorem 3.1 (a-ii), page 113, tells us that there
exists a term  such that . Since  is an increas-
ing sequence,  for every . Since ,

 for every n. It follows that  for every
 (see margin).

A similar argument can be used to show that every decreasing
sequence bounded from below converges (Exercise 35).

When it comes to sums, differences, products, and quotients,
sequences behave nicely:

PROOF:
 (a) Case 1. .   

Case 2. . For given  we are to exhibit an N such that 

 –
.. an

.
an –

an n 1=


an 

 an n 1=
 

 0
aN aN  – an n 1=



an  – n N  lub an =
an   + an – 
n N

Answer: See page A-16.

CHECK YOUR UNDERSTANDING 3.9

Prove that if a sequence converges, then it is bounded. 

THE ALGEBRA OF SEQUENCES

THEOREM 3.9 If  and , then:

(a) , for any .

(b)
(The limit of a sum equals the sum of the limits)

(c)
(The limit of a product equals the product of the limits)

(d) , providing no  and .

(The limit of a quotient equals the quotient of the limits )

lim an = lim bn =

lim can c= c 

lim an bn+   +=

lim anbn  =

lim 
an
bn
----- 


---= bn 0=  0



c 0=
lim can lim 0 a n  0 0  c= = = =

c 0  0
n N can c– 

n N c an – 

n N an – 
c
-----

i.e:

i.e:
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Since , we know that for any  there exists an N such
that . In particular, for  we can choose N

such that , and we are done.

(b) Let . We are to find N such that 

 
Note that: 

So, if we can arrange things so that both  and  are less
than , then (*) will hold. Let’s arrange things:

Since , there exists  such that: .

Since , there exists  such that: .

Letting  (the larger of  and ), we find that
for : 

(c) Let . We are to find N such that:

 

In order to get  and  into the picture (for we have con-
trol over those two expressions), we insert the clever zero

 in the expression :

The next step is to find an N such that both (i) and (ii) are less than . 

                        Focusing on (i): :

The temptation is to let  be such that 

(yielding ). No can do. For one thing, if

, then the expression  is undefined. More importantly:

lim an =  0
n N an –   

c
-----=

n N an – 
c
-----

 0

n N an bn+   + –  (*)

an bn+   + – an –  bn – + an – bn –+=
triangle inequality

an – bn –

2
---

an  N n N an – 
2
---

bn  N n N bn – 
2
---

N max N N = N N
n N

an bn+   + – an – bn – 
2
--- 

2
---++ =

 0

n N anbn – 

an – bn –

an– an+ anbn –

anbn – anbn an– an –+=

anbn an–  an – +=

anbn an– an –+ an bn –  an –+= } }

(i)                      (ii)

2
---

an bn –

N n N bn – 
2 an
-----------

an bn – an


2 an
----------- 

2
---=

an 0= 
2 an
-----------
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 is NOT A CONSTANT! We can, however, take advantage of the

fact that there exists an  such that  for every n (see
CYU 3.9), and choose  such that  (see

margin). Then: .

                          Focusing on (ii): .

Wanting  to be less than , one might be tempted to

choose  such that . But what if ?
To get around this potential problem we choose  such that

.   No problem now:

        
Letting , we see that, for :

  

(d) Appealing to (c), we establish the fact that , by show-

ing that :

Let  be given. We are to find N such that:

Since , we can choose  such that:

 . 

For  we also have:  (see margin). Consequently,

For :

Since , we can choose  such that:

  

Let the positive number 

play the role of  in Defini-
tion 3.5.


2M
--------




2 an
-----------

M 0 an M
N n N bn – 

2M
--------

n N an bn – M 
2M
-------- 

2
---=

 an –

 an – 
2
---

N n N an – 
2 
---------  0=

N
n N an – 

2  1+
------------------

n N  an –  
2  1+
------------------ 

2
---

since 
2  1+
------------------ 

2 
---------

N max N N = n N

anbn – an bn –  an – 
2
--- 

2
---++ =

lim 
an
bn
----- 


---=

lim 1
bn
----- 1


---=

 0

n N 1
bn
----- 1


---–

 bn–
bn 

----------------- = (*)

 bn–  bn–

bn – 
2

------=

bn

2

------

bn  0 N1

n N1 bn – 
2

------

n N1 bn

2

------

n N1

 bn–
bn 

----------------- 1
bn
--------

 bn–


-----------------    1   

2

------
------------

 bn–


----------------- 2
 2
-------- bn –= = (**)

bn  N2

n N2 bn –  2

2
-------- (***)
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Letting , we find that, for :

thereby establishing (*).

Roughly speaking, to get a subsequence of , simply discard
some of its terms in an orderly fashion. Formally:

For example,  is a subsequences of ,
while  is not.

There are sequences, like , that do not contain any
convergent subsequences. However:

PROOF: Let  be a bounded sequence. Being bounded, there
exists  such that  for every n. 

N max N1 N2 = n N

 bn–
bn 

----------------- 2
 2
-------- bn – 2

 2
--------  2

2
--------  =

By (**)                     By (***)

Answer: See page A-16.

CHECK YOUR UNDERSTANDING 3.10

(a) Let  and  be such that  for every n.
Show that if  and , then .

(b) Give an example of two sequences  and  with
 and such that . 

SUBSEQUENCES

DEFINITION 3.7
SUBSEQUENCE

 is a subse-

quence of  if each  is a term of

, and .

an n 1=
 bn n 1=

 0 an bn 

an  bn   

an n 1=
 bn n 1=



0 an bn lim an lim bn=

an n 1=


ank
 k 1=

 an1
an2

an3
   =

an n 1=
 ank

an  n1 n2 n3
  

Answer: See page A-16.

CHECK YOUR UNDERSTANDING 3.11
Coin a function-form definition of a subsequence of a sequence (see
Definition 3.4). We’ll get you started:

The sequence  is a subsequence of the sequence
 if .......

9 11 13 15      1 2 3    
4 2 8 6     

g: Z+ 
f: Z+ 

Bernhard Bolzano (1781-
1841), Karl Weierstrass
(1815-1897).

THEOREM 3.10
BOLZANO-WEIERSTRASS

Every bounded sequence contains a conver-
gent subsequence.

1 2 3 4     

an n 1=


M 0 an M– M 
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Cut  into two equal pieces:  and . Select one

of those two intervals (of length ) which contains an infinite num-

ber of elements of the sequence , and call it . Next cut 

in half and let  be one of those halves (now of length )

which still contains infinitely many elements of . Continue
in this fashion to generate a nested sequence of closed intervals  of

length , each containing infinitely many terms of . 

Theorem 3.3, page 115, assures us that . Let .

We now construct a subsequence of  converging to :

Let:  be any term of  in 

 be any term in  with  
                           (this we can do since  contains infinitely many entries of )

 be any term in  with  

Proceeding in the above fashion we arrive at a subsequence 
with . As for convergence:

Let  be given. Choose N such that . Since    and

 are contained in , for : .

 

To say that  is to say that the  eventually get arbi-

trarily close to . We now consider sequences whose terms eventually
get arbitrarily close to each other (with no mention made of any limit
whatsoever):

M– M  M– 0  0 M 
M
2
-----

an n 1=
 I1 I1

I2
1
2
--- M

2
----- M

22
-----=

an n 1=


In
M
2n
----- an n 1=



In

n 1=



  x0 In

n 1=





an n 1=
 x0

an1
an n 1=

 I1

an2
I2 n2 n1

I2 an 

an3
I3 n3 n2

an n 1=


ank
Ik

 0 M
2N
------  x0

ank
Ik nk N ank

x0– 

Augustin Louis Cauchy
(1789-1857).

CAUCHY SEQUENCES

DEFINITION 3.8
CAUCHY SEQUENCE

A sequence  is a Cauchy sequence
if, for any given  there exists a positive
integer  (which depends on ) such that if

, then .

ann 
lim = ans



an n 1=


 0
N 

n m N an am– 
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It may not be surprising to find that every convergent sequence is
Cauchy. After all, if the terms of a sequence are “bunching up” around
a number , then they must certainly be getting close to each other. A
bit more surprising is that the converse also holds:

PROOF: Assume that  converges to . We show  is
Cauchy:

Let  be given. Choose N such that  implies

. Then, for :

.

Conversely, assume that  is Cauchy. 

By CYU 3.12,  is bounded and, as such it has a conver-

gent subsequence    (Theorem 3.10). Let .

We complete the proof by showing that :

Let  be given. Since  is Cauchy, there exists 

such that  for all  (in particular for all

). Since , we can choose a term  of ,

with , such that: . For  we then
have: 

Answer: See page A-16.
CHECK YOUR UNDERSTANDING 3.12

Prove that every Cauchy sequence is bounded.

THEOREM 3.11 A sequence converges if and only if it is Cauchy.



an n 1=
  an n 1=



 0 n N

an – 
2
--- n m N

an am– an –  am–+ an – am – 
2
--- 

2
---++ = =

an n 1=


an n 1=


ank
 k 1=

 ankk 
lim =

Answer: See page A-16.

CHECK YOUR UNDERSTANDING 3.13

Let X be a nonempty subset of . A sequence  is said to be

a sequence in X if each . A sequence in X is said to converge
in X if .

Construct a Cauchy sequence in  which does not
converge in X. 

ann 
lim =

 0 an n 1=
 N

an am– 
2
--- n m N

n nk N ank
 ank

ank
 

nK N anK
– 

2
--- n N

an – an anK
anK

+– –=

an anK
– anK

– 
2
--- 

2
---++ =

 an n 1=


an X
anlim  X=

X 0  =
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Exercises 1-6. Find a formula for the  term of the given sequence. 

Exercises 7-15. Find the limit of the given sequence. Use Definition 3.5 to justify your claim.

Exercises 16-21. Show that the given sequence diverges.

Exercises 23-31. Find the limit of the given sequence if it exists. You may use Theorem 3.9 and 
the result of Exercise 22 to justify your claim.

EXERCISES

1. 2.

3. 4.

5. 6.

7. 8. 9. 

10. 11. 12. 

13. 14. , for 15. 

16. 17. , for 18. 

19. 20. 21. 

22. Prove that  if and only if .

23. 24. 25. 

26. 27. 28. 

29. 30. 31. 

32. Let  for . Prove that if , then .

nth

1
2
--- 2

3
--- 3

4
--- 4

5
---     

  2
3
--- 3

9
---– 4

27
------ 5

81
------–     

 

1 2 1 2 1 2        1 2 3 2 3 4 5 6 7 8 9 10             

1 1 2 4 3 9 4 16          a b a b a2+ b2 a2 b2+ a3 b3 a3 b3 +       

1
n
--- 
 

n 1=


5 1

2n
------+ 

 
n 1=


1– 1

n
-------– 

 
n 1=



n
n 1+
------------ 
 

n 1=

 n2

n2 1+
-------------- 
 

n 1=

 3n2 n+
n2

------------------ 
 

n 1=



2n2 10+
n2 1+

--------------------- 
 

n 1=

 rn n 1=
 r 1 n2 10n+

n2 1+
--------------------- 
 

n 1=



1
10
------ 1 1

20
------ 1 1

30
------ 1 1

40
------ 1         

  rn n 1=
 r 1 1– n n 1=



1– nn
n 1+

---------------- 
 

n 1=

 n2

n 100+
------------------ 
 

n 1=

 n!
2n
----- 
 

n 1=



ann 
lim 0= ann 

lim 0=

1– n
n 5+
------------- 
 

n 1=

 nsin
n

---------- 
 

n 1=

 1– n2n
n 1+

-------------------- 
 

n 1=



n2 5+
n2 5+

------------------- 
 

n 1=

 n3 10n2 n– 1+ +
n3

------------------------------------------ 
 

n 1=

 n2 ncos n 2nsin–
n3 5+

----------------------------------------- 
 

n 1=



n ncossin
n 1+

----------------------- 
 

n 1=

 ncos
n 1+
------------ 1– n

n
-------------– 

 
n 1=

 n 1+
n 3–
------------ 
  3 n3 n 1–+

2n3
----------------------- 
 

 
 

n 1=



0 a n bn n N bn 0 an 0
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Exercise 33-34. Find the limit of the given sequence. You may use Exercises 22 and 32 to justify 
your claim.  

33. 34. 

35. Prove that every decreasing sequence, bounded below, converges.

36. (a) Give an example of two converging sequences  and  such that 
.

(b) Give an example of two divergent sequences  and  such that 
.

37. Prove that the sequence  converges if and only for .

38. Prove that  if and only if, for any given ,  contains all but finitely

many terms of .

39. Prove that if  and if  for all , then .

40. Prove that a sequence  converges if and only if  converges for any positive 
integer N.

41. Prove that if  and if  then . 

42. Write down the first four terms of the sequence , if  and . 

Show that the sequence converges. Suggestion: Consider Theorem 3.8.

43. (a) Prove that if  and if  is bounded, then .

(b) Give an example of sequences  and , such that  and

 diverges.

(c) Give an example of a convergent sequence  and a bounded sequence ,

such that  diverges.

44. Establish the following “Squeeze Theorem:” 
If  for , and if , then .

45. Prove that if , then every subsequence of  also converges to .

46. Prove that every subsequence of a Cauchy sequence is itself a Cauchy sequence.

nsin
n!

---------- 
 

n 1=

 100– n
n!

------------------- 
 

n 1=



an n 1=
 bn n 1=



an bn+ 
n 
lim 5=

an n 1=
 bn n 1=



an bn+ 
n 
lim 5=

rn n 1=
 1 r 1–

ann 
lim =  0 S  

an n 1=


ann 
lim = an 0 n N  0

an n 1=
 an n N=



ann 
lim 0= r bn– an bnn 

lim r=

an n 1=
 a1 2= an 1+

1
5 an–
--------------=

ann 
lim 0= bn n 1=

 ann 
lim bn 0=

an n 1=
 bn n 1=

 ann 
lim 0=

anbn n 1=


an n 1=
 bn n 1=



anbn n 1=


an bn cn  n N ann 
lim cnn 

lim = = bnn 
lim =

ann 
lim = an n 1=
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47. Prove that if a sequence contains two subsequences with different limits, then the sequence
diverges.

48. Give an example of a divergent sequence that contains:
(a) Two subsequences with different limits.
(b) Three subsequences with different limit.
(c) Infinitely subsequences with different limits.

PROVE OR GIVE A COUNTEREXAMPLE

49. Every bounded sequence converges.

50. If  converges, then so does .

51. If  converges, then so does .

52. If    and  converge, then  must converge.

53. If  converges, then  and  must both converge.

54. If  diverges, then  and  must both diverge.

55. If , then .

56. If , then .

57. If  and if  for all , then .

58. If  and , and if  for all , then .

59. If  and  are Cauchy sequences, then  is a Cauchy sequence.

60.  If  and  are Cauchy sequences, then  is a Cauchy sequence.

an n 1=
 an n 1=



an n 1=
 an n 1=



an n 1=
 an bn+ n 1=

 bn n 1=


an bn+ n 1=
 an n 1=

 bn n 1=


an bn+ n 1=
 an n 1=

 bn n 1=


ann 
lim = ann 

lim =

ann 
lim = ann 

lim =

ann 
lim = an 0 n N  0

ann 
lim = bnn 

lim = an bn n N  

an n 1=
 bn n 1=

 an bn+ n 1=


an n 1=
 bn n 1=

 anbn n 1=
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 3
      

Roughly speaking, a metric space is a set with an imposed notion of
distance. Our concern in this section is with the standard or Euclidean
metric d on ; that function which assigns to any two numbers in 
the distance between them: 

The following distance-properties of the real number system will
evolve into the defining axioms of an abstract metric space in the next
chapter:

PROOF: The first two properties are direct consequences of the defi-
nition of the absolute value function. We establish (iii) by showing
that  (see margin):

 

§3. METRIC SPACE STRUCTURE OF 

 

d x y  x y–=

If  then:

Here:    and
.

Answer: See page A-16.

a 0 and b 0
a2 b2 a b

a x y–=
b x z– z y–+=

THEOREM 3.12 (i) : , with if
and only if .
The distance between two numbers is never negative, and is
0 only if the two numbers are one and the same.

(ii) : 
The distance between x and y is the same as that from y to x.

(iii) : 
                 The triangle inequality.

CHECK YOUR UNDERSTANDING 3.14
Prove that for any , 

x y  x y– 0 x y– 0=
x y=

x y  x y– y x–=

x y z  x y– x z– z y–+

x y– 2 x z– z y–+ 2
x z– z y–+ 2 x z– 2 2 x z– z y– z y– 2+ +=

x z– 2 2 x z– z y– z y– 2+ +=
x z– 2 2 x z–  z y–  z y– 2+ +

x2 2xz– z2 2xz 2xy– 2z2– 2zy z2 2zy– y2+ + + + +=
x2 2xy– y2+ x y– 2 x y– 2= = =

a 2 a2:=

a a :

expanding:

x y  x y– x y–

We remind you that 
S a  x x a–  =

DEFINITION 3.9
OPEN SET

A set  is open if for every  there
exists an  such that:

EXAMPLE 3.4 (a) Show that the interval  is open.

(b) Show that the interval  is not open.

O  a O
 0

S a  O

1 5 

1 5 
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SOLUTION: (a) For any given  we are to find  such
that . This is easy to do: take  to be the smaller of the
two numbers  and  (see margin). 
         Any smaller  will do just as well; but no larger  will work.

(b) For any given , . It follows that there does not

exist an  such that . 

If you peek ahead to page 171 you will see that the following three
properties of open sets are transformed into the three defining axioms
of a topological space.

PROOF:
 (i)  is open: For any , .

 is open (by default): For any  there exists an  such
that  — for the simple reason that no such a exists.

(ii) Let  be a collection of open sets, and let .

Since x is in the union of the , there must exist some
 such that . Since  is open, we can choose

 such that . Then:

                            

(iii) Let  be a collection of open sets. 

For  and , choose  such that .

and let . Since  for each i,

.

Answer: See page A-16.

(                   )
1                          5

.
a( } } 

(                   ]
1                          5

} }.
5 

2
---+

CHECK YOUR UNDERSTANDING 3.15
(a) Show that  is open for any .

(b) Show that  and  are open for any .

(c) Show that no finite subset of  is open.

THEOREM 3.13 (i)  and  are open sets.
(ii) Arbitrary unions of open sets are open.
(iii) Finite intersections of open sets are open.

a 1 5   0
S a  1 5  

a 1– 5 a–
 0 

 0 5 
2
--- 5+

 0 S 5  1 5 

a b  x a x b  = a b

 a – a   a 



 

See the indexing remarks
that follow CYU 2.3,
page 58.

 x  S1 x  

 a   0
S a  

O  A x O
 A


Os
0 A x O0

 O0

 0 S x  O0


x S x  O0
O

 A
 

Oi i 1=
n

x Oi

i 1=

n

 1 i n  i Si
x  Oi

 min 1 2  n   = S x  Oi

x S x  Oi
i 1=

n
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SOLUTION: (a) Since  is open [see CYU
3.15(b) and Theorem 3.13(ii)],  is closed.

(b) Since  is open,  is closed.

(c) Since  is not open [Example
3.4(b)],  is not closed.

Here is the “closed-version” of Theorem 3.13:

PROOF: (i) Since both  and  are open [Theorem
3.13(i)], both  and  are closed. 

(ii) Let  be a collection of closed sets. Since:

, and since each  is

open (Definition 3.10),  is closed [Theorem 3.13(ii) and

Definition 3.10].

Answer: See page A-17.

CHECK YOUR UNDERSTANDING 3.16
Give an example illustrating the fact that an infinite intersection of
open sets need not be open.

We remind you that for a
given set A,  denotes
the complement of A.

Ac
DEFINITION 3.10

CLOSED SET
A set  is closed if its complement

 is open.

EXAMPLE 3.5 (a) Show that  is closed.
(b) Show that  is closed.
(c) Show that  is not closed. 

H 
Hc x  x H =

1 5  x 1 x 5   =
1 
– 1  5  

1 5 c  1–  5  =
1 5 

1  c – 1 = 1 

Answer: See page A-17.

CHECK YOUR UNDERSTANDING 3.17
(a) Show that  is closed for any .
(b) Is  closed? Justify your answer.

THEOREM 3.14 (i)  and  are closed sets.
(ii) Any intersection of closed sets is again a

closed set.
(iii) Any finite union of closed sets is again a

closed set.

– 1  5   c 1 5 =
– 1  5  

a b  x a x b  = a b
1 3 

 

c = c =
 

H  A

H
 A
 

 
  c

H c

 A
=

Theorem 2.3(b), page 58

H c

H
 A
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(iii) Let  be a collection of closed sets. Since

 is open,  is closed.   

A sequence  of sets is said to be nested if    for
 (see margin). 

In the exercises you are asked to show that the intersection of a nested
sequence of nonempty bounded sets may turn out to be empty, and that
the intersection of a nested sequence of nonempty closed sets may also
be empty. However: 

PROOF: For each i, select an element . The Bolzano-Weiers-
tass theorem of page 129 assures us that the bounded sequence

 contains a subsequence  that converges to some
number . We show that  for every i: 

Suppose, to the contrary, that  for some . Since

, and since  is open, we can find  such

that . It follows that  (see
margin). Since the  are nested,  for every ,
which implies that  contains only finitely many terms of
the sequence , contradicting the assumption that

 converges to  (see Exercise 38, page 133).

Answer: See page A-17.

This is a generalization of
Theorem 3.3, page 115.

S1
S2

Sn...

CHECK YOUR UNDERSTANDING 3.18
Give an example illustrating the fact that the infinite union of closed
sets need not be closed.

THEOREM 3.15 If  is a nested sequence of nonempty

closed bounded sets, then .

Hi i 1=
n

Hi

i 1=

n


 
 
 
  c

Hi c

i 1=

n

=

Theorem 2.3(a), page 58

Hi
i 1=

n



S1 S2 S3     Si Sj
i j

Hi i 1=


Hi

i 1=



 

ai Hi

ai i 1=
 aik

 k 1=


  Hi

Hi0

 .

 Hi0
 i0

 Hi0
 c Hi0

 c  0

S   Hi0
 c S   Hi0

 =
His aik

Hi0
 ik i0

S  
aik
 k 1=



aik
 k 1= 
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SOLUTION:
(a) Let B be an unbounded subset of . Consider the open cover

 of B, where . Since  implies that

, for any N: . Being unbounded,  for

any N, and is therefore not contained in  for any N.

(b) For each integer , let . In the exercises

you are asked to show that  is an open cover of .
That cover has no finite subcover since, for any given N,

 and .

The following result tells us that to challenge the compactness of
 one need only consider countable open covers of S. 

PROOF: If S is compact, then every open cover of S has a finite sub-
cover. In particular, every countable open cover of S has a finite sub-
cover. 

DEFINITION 3.11
OPEN COVER

FINITE SUBCOVER

COMPACT

 is an open cover of  if each

 is open and .

An open cover  of S is said to con-
tain a finite subcover if there exists

 such that .

A subset K of  is said to be compact if
every open cover of K has a finite subcover.

EXAMPLE 3.6 (a) Show that no unbounded subset of  is
compact.

(b) Show that  is not compact.

O  A S 

O S O
 A


O  A

1 2  n    A S Oi

i 1=

n







1– 1 



In n 1=
 In n– n = ni nj

Ini
Inj

 Ini

i 1=

N

 InN
= B InN



Ini

i 1=

N



n 2 In 1 1
n
--- 1 1

n
---–+– 

 =

In n 2=
 1– 1 

1 1
N
---- 1 1– – 1 1

N
---- In

n 2=

N

–

This theorem does not hold
in a general topological
space. 

THEOREM 3.16  is compact if and only if every count-
able open cover of S has a finite subcover.

S 

S 



140     Chapter 3    A Touch of Analysis                                                                                            

For the converse, assume that every countable open cover of S has a
finite subcover, and let  be an arbitrary open cover of S.
We show that  contains a finite subcover:

For each , choose  such that .
Since  is open, and since the rationals are dense in , we
can find an open interval  with rational endpoints such that

 (see margin). Since there are but a countable
number of intervals with rational endpoints (Exercise 27,
page 86),  is a countable open cover of S. By our
assumption, a finite number of those intervals, 
cover S. It follows, since , that 

also covers S.

PROOF: Let S be a closed bounded subset of . Employing The-
orem 3.16 we establish compactness by showing that every
countable open cover  of S  has a finite subcover. 

Assume there exists a countable open cover  of S
containing no finite subcover. To arrive at a contradiction, con-
sider the nested sequence  of nonempty closed
bounded sets, where (see margin):

Choose  (see Theorem 3.15). Since each ,

. Moreover, since  is contained in each , x cannot be
contained in any  [note the complement operator in (*)], con-

tradicting the assumption that  is an open cover of S.

The converse of Theorem 3.17 also holds:

PROOF: Let  be compact. We observed, in Example 3.6(a),
that K must be bounded, and now establish that K is closed by show-
ing that its complement is open: 

For , choose
rational numbers  and

 such that: 

Then:

S x  Ox


r1
r2
x  r1 x r2 x +   –

x r1 r2  Ox


O  A
O  A

x S Ox
O  A x Ox



Ox


Ix
x Ix Ox



Ix x S
Ix1

Ix2
 Ixn

  

Ixi
Oxi

 Ox1
Ox2

 Oxn
  

Heinrich Heine (1821-
1881). Emile Borel
(1871-1958)

THEOREM 3.17
HEINE-BOREL

Every closed bounded subset of  is compact.

O1

O2

O3

S

H3 S O1 O2 O3  c=

THEOREM 3.18 Every compact subset of  is closed and
bounded. 



On n 1=

On n 1=

Hi i 1=


Hi S On

n 1=

i


 
 
 
  c

=
the intersection of two
closed sets

the complement of 
an open set

(*) (*)

x Hi

i 1=



 Hi S

x S x Hi
Oi

On n 1=



K 
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Let . For each  let  (see margin). Since

K is compact, the open cover  has a finite subcover,

say: . Noting that every ele-

ment of K is contained in some , and that

, we see that .

Combining Theorems 3.17 and 3.18 we have:

In the real number system, one can also take a sequential approach to
compactness, namely: 

PROOF: Assume that K is compact and let  be a sequence

with each . Since K is bounded (Theorem 3.18) the sequence

contains a convergent subsequence  (Theorem 3.10, page
129). Can the limit of that subsequence lie outside of K? No:

Let . Since K is closed (Theorem 3.18),  is an open set
containing a which contains no element of the . It fol-

lows that a is not the limit of .

Conversely, assume that every sequence in K contains a subsequence
that converges to a point in K. We show that K must be bounded and
closed, and therefore compact (Theorem 3.18).

x

k

..
k

K

k
x k–

4
---------------=|x -

 k|
x Kc k K k

x k–
4

--------------=

Sk
k  k K

Sk1
k1  Sk2

k2   Skn
kn    

Ski
ki 

Ski
ki  Ski

x  = x Ski
x  Kc

i 1=

n



an open set

(a) No         (b) Yes

THEOREM 3.19 A subset of  is compact if and only if it is
both closed and bounded.

CHECK YOUR UNDERSTANDING 3.19
Determine if the given subset of  is compact. Justify your answer.

             (a)                           (b) 

THEOREM 3.20  is compact if and only if every
sequence in K contains a subsequence that
converges to a point in K.





1
n
---
 
 
 

n 1=



0  1
n
---
 
 
 

n 1=





K 

kn n 1=


kn K

kni
 i 1=



a K c K c

kni
 i 1=



kni
 i 1=
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Assume that K is not bounded (we will arrive at a contradic-
tion).

Choose . Since K is not bounded, we can choose
 such that , and  such that

 and , etc. Having chosen
 with no two of the numbers within one unit

of each other, we can still find a number  that is more
than one unit from any of its predecessors (the finite set

 is bounded, and K is not). The constructed

sequence  has no convergent subsequence since, for

any , the open sphere  can contain at most one
element of the sequence.

Assume that K is not closed (we will arrive at a contradiction).
Since  is not open, we can choose  such that

 for all . In particular, for any  we

can choose  such that . The sequence

 cannot contain a subsequence converging to a point
in K, as by construction it converges to  which lies outside
of K. 

k1 K
k2 K k2 k1– 1 k3 K
k3 k1– 1 k3 k2– 1
k1 k2 k3  kn   

kn 1+

k1 k2 k3  kn    

kn n 1=


a  S1 a 

Answer: See page A-17.

CHECK YOUR UNDERSTANDING 3.20
Prove that  is compact if and only if every Cauchy sequence
in K converges to a point in K. 

Kc a Kc
S a  K   0 n Z+

kn K kn a– 1
n
---

kn n 1=


a

K 
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 3
      

Roughly speaking, a metric space is a set with an imposed notion of
distance. Our concern in this section is with the standard or Euclidean
metric d on ; that function which assigns to any two numbers in 
the distance between them: 

The following distance-properties of the real number system will
evolve into the defining axioms of an abstract metric space in the next
chapter:

PROOF: The first two properties are direct consequences of the defi-
nition of the absolute value function. We establish (iii) by showing
that  (see margin):

 

§3. METRIC SPACE STRUCTURE OF 

 

d x y  x y–=

If  then:

Here:    and
.

Answer: See page A-16.

a 0 and b 0
a2 b2 a b

a x y–=
b x z– z y–+=

THEOREM 3.12 (i) : , with if
and only if .
The distance between two numbers is never negative, and is
0 only if the two numbers are one and the same.

(ii) : 
The distance between x and y is the same as that from y to x.

(iii) : 
                 The triangle inequality.

CHECK YOUR UNDERSTANDING 3.14
Prove that for any , 

x y  x y– 0 x y– 0=
x y=

x y  x y– y x–=

x y z  x y– x z– z y–+

x y– 2 x z– z y–+ 2
x z– z y–+ 2 x z– 2 2 x z– z y– z y– 2+ +=

x z– 2 2 x z– z y– z y– 2+ +=
x z– 2 2 x z–  z y–  z y– 2+ +

x2 2xz– z2 2xz 2xy– 2z2– 2zy z2 2zy– y2+ + + + +=
x2 2xy– y2+ x y– 2 x y– 2= = =

a 2 a2:=

a a :

expanding:

x y  x y– x y–

We remind you that 
S a  x x a–  =

DEFINITION 3.9
OPEN SET

A set  is open if for every  there
exists an  such that:

EXAMPLE 3.4 (a) Show that the interval  is open.

(b) Show that the interval  is not open.

O  a O
 0

S a  O

1 5 

1 5 
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SOLUTION: (a) For any given  we are to find  such
that . This is easy to do: take  to be the smaller of the
two numbers  and  (see margin). 
         Any smaller  will do just as well; but no larger  will work.

(b) For any given , . It follows that there does not

exist an  such that . 

If you peek ahead to page 171 you will see that the following three
properties of open sets are transformed into the three defining axioms
of a topological space.

PROOF:
 (i)  is open: For any , .

 is open (by default): For any  there exists an  such
that  — for the simple reason that no such a exists.

(ii) Let  be a collection of open sets, and let .

Since x is in the union of the , there must exist some
 such that . Since  is open, we can choose

 such that . Then:

                            

(iii) Let  be a collection of open sets. 

For  and , choose  such that .

and let . Since  for each i,

.

Answer: See page A-16.

(                   )
1                          5

.
a( } } 

(                   ]
1                          5

} }.
5 

2
---+

CHECK YOUR UNDERSTANDING 3.15
(a) Show that  is open for any .

(b) Show that  and  are open for any .

(c) Show that no finite subset of  is open.

THEOREM 3.13 (i)  and  are open sets.
(ii) Arbitrary unions of open sets are open.
(iii) Finite intersections of open sets are open.

a 1 5   0
S a  1 5  

a 1– 5 a–
 0 

 0 5 
2
--- 5+

 0 S 5  1 5 

a b  x a x b  = a b

 a – a   a 



 

See the indexing remarks
that follow CYU 2.3,
page 58.

 x  S1 x  

 a   0
S a  

O  A x O
 A


Os
0 A x O0

 O0

 0 S x  O0


x S x  O0
O

 A
 

Oi i 1=
n

x Oi

i 1=

n

 1 i n  i Si
x  Oi

 min 1 2  n   = S x  Oi

x S x  Oi
i 1=
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SOLUTION: (a) Since  is open [see CYU
3.15(b) and Theorem 3.13(ii)],  is closed.

(b) Since  is open,  is closed.

(c) Since  is not open [Example
3.4(b)],  is not closed.

Here is the “closed-version” of Theorem 3.13:

PROOF: (i) Since both  and  are open [Theorem
3.13(i)], both  and  are closed. 

(ii) Let  be a collection of closed sets. Since:

, and since each  is

open (Definition 3.10),  is closed [Theorem 3.13(ii) and

Definition 3.10].

Answer: See page A-17.

CHECK YOUR UNDERSTANDING 3.16
Give an example illustrating the fact that an infinite intersection of
open sets need not be open.

We remind you that for a
given set A,  denotes
the complement of A.

Ac
DEFINITION 3.10

CLOSED SET
A set  is closed if its complement

 is open.

EXAMPLE 3.5 (a) Show that  is closed.
(b) Show that  is closed.
(c) Show that  is not closed. 

H 
Hc x  x H =

1 5  x 1 x 5   =
1 
– 1  5  

1 5 c  1–  5  =
1 5 

1  c – 1 = 1 

Answer: See page A-17.

CHECK YOUR UNDERSTANDING 3.17
(a) Show that  is closed for any .
(b) Is  closed? Justify your answer.

THEOREM 3.14 (i)  and  are closed sets.
(ii) Any intersection of closed sets is again a

closed set.
(iii) Any finite union of closed sets is again a

closed set.

– 1  5   c 1 5 =
– 1  5  

a b  x a x b  = a b
1 3 

 

c = c =
 

H  A

H
 A
 

 
  c

H c

 A
=

Theorem 2.3(b), page 58

H c

H
 A
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(iii) Let  be a collection of closed sets. Since

 is open,  is closed.   

A sequence  of sets is said to be nested if    for
 (see margin). 

In the exercises you are asked to show that the intersection of a nested
sequence of nonempty bounded sets may turn out to be empty, and that
the intersection of a nested sequence of nonempty closed sets may also
be empty. However: 

PROOF: For each i, select an element . The Bolzano-Weiers-
tass theorem of page 129 assures us that the bounded sequence

 contains a subsequence  that converges to some
number . We show that  for every i: 

Suppose, to the contrary, that  for some . Since

, and since  is open, we can find  such

that . It follows that  (see
margin). Since the  are nested,  for every ,
which implies that  contains only finitely many terms of
the sequence , contradicting the assumption that

 converges to  (see Exercise 38, page 133).

Answer: See page A-17.

This is a generalization of
Theorem 3.3, page 115.

S1
S2

Sn...

CHECK YOUR UNDERSTANDING 3.18
Give an example illustrating the fact that the infinite union of closed
sets need not be closed.

THEOREM 3.15 If  is a nested sequence of nonempty

closed bounded sets, then .

Hi i 1=
n

Hi

i 1=

n


 
 
 
  c

Hi c

i 1=

n

=

Theorem 2.3(a), page 58

Hi
i 1=

n



S1 S2 S3     Si Sj
i j

Hi i 1=


Hi

i 1=



 

ai Hi

ai i 1=
 aik

 k 1=


  Hi

Hi0

 .

 Hi0
 i0

 Hi0
 c Hi0

 c  0

S   Hi0
 c S   Hi0

 =
His aik

Hi0
 ik i0

S  
aik
 k 1=



aik
 k 1= 
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SOLUTION:
(a) Let B be an unbounded subset of . Consider the open cover

 of B, where . Since  implies that

, for any N: . Being unbounded,  for

any N, and is therefore not contained in  for any N.

(b) For each integer , let . In the exercises

you are asked to show that  is an open cover of .
That cover has no finite subcover since, for any given N,

 and .

The following result tells us that to challenge the compactness of
 one need only consider countable open covers of S. 

PROOF: If S is compact, then every open cover of S has a finite sub-
cover. In particular, every countable open cover of S has a finite sub-
cover. 

DEFINITION 3.11
OPEN COVER

FINITE SUBCOVER

COMPACT

 is an open cover of  if each

 is open and .

An open cover  of S is said to con-
tain a finite subcover if there exists

 such that .

A subset K of  is said to be compact if
every open cover of K has a finite subcover.

EXAMPLE 3.6 (a) Show that no unbounded subset of  is
compact.

(b) Show that  is not compact.

O  A S 

O S O
 A


O  A

1 2  n    A S Oi

i 1=

n







1– 1 



In n 1=
 In n– n = ni nj

Ini
Inj

 Ini

i 1=

N

 InN
= B InN



Ini

i 1=

N



n 2 In 1 1
n
--- 1 1

n
---–+– 

 =

In n 2=
 1– 1 

1 1
N
---- 1 1– – 1 1

N
---- In

n 2=

N

–

This theorem does not hold
in a general topological
space. 

THEOREM 3.16  is compact if and only if every count-
able open cover of S has a finite subcover.

S 

S 
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For the converse, assume that every countable open cover of S has a
finite subcover, and let  be an arbitrary open cover of S.
We show that  contains a finite subcover:

For each , choose  such that .
Since  is open, and since the rationals are dense in , we
can find an open interval  with rational endpoints such that

 (see margin). Since there are but a countable
number of intervals with rational endpoints (Exercise 27,
page 86),  is a countable open cover of S. By our
assumption, a finite number of those intervals, 
cover S. It follows, since , that 

also covers S.

PROOF: Let S be a closed bounded subset of . Employing The-
orem 3.16 we establish compactness by showing that every
countable open cover  of S  has a finite subcover. 

Assume there exists a countable open cover  of S
containing no finite subcover. To arrive at a contradiction, con-
sider the nested sequence  of nonempty closed
bounded sets, where (see margin):

Choose  (see Theorem 3.15). Since each ,

. Moreover, since  is contained in each , x cannot be
contained in any  [note the complement operator in (*)], con-

tradicting the assumption that  is an open cover of S.

The converse of Theorem 3.17 also holds:

PROOF: Let  be compact. We observed, in Example 3.6(a),
that K must be bounded, and now establish that K is closed by show-
ing that its complement is open: 

For , choose
rational numbers  and

 such that: 

Then:

S x  Ox


r1
r2
x  r1 x r2 x +   –

x r1 r2  Ox


O  A
O  A

x S Ox
O  A x Ox



Ox


Ix
x Ix Ox



Ix x S
Ix1

Ix2
 Ixn

  

Ixi
Oxi

 Ox1
Ox2

 Oxn
  

Heinrich Heine (1821-
1881). Emile Borel
(1871-1958)

THEOREM 3.17
HEINE-BOREL

Every closed bounded subset of  is compact.

O1

O2

O3

S

H3 S O1 O2 O3  c=

THEOREM 3.18 Every compact subset of  is closed and
bounded. 



On n 1=

On n 1=

Hi i 1=


Hi S On

n 1=

i


 
 
 
  c

=
the intersection of two
closed sets

the complement of 
an open set

(*) (*)

x Hi

i 1=



 Hi S

x S x Hi
Oi

On n 1=



K 
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Let . For each  let  (see margin). Since

K is compact, the open cover  has a finite subcover,

say: . Noting that every ele-

ment of K is contained in some , and that

, we see that .

Combining Theorems 3.17 and 3.18 we have:

In the real number system, one can also take a sequential approach to
compactness, namely: 

PROOF: Assume that K is compact and let  be a sequence

with each . Since K is bounded (Theorem 3.18) the sequence

contains a convergent subsequence  (Theorem 3.10, page
129). Can the limit of that subsequence lie outside of K? No:

Let . Since K is closed (Theorem 3.18),  is an open set
containing a which contains no element of the . It fol-

lows that a is not the limit of .

Conversely, assume that every sequence in K contains a subsequence
that converges to a point in K. We show that K must be bounded and
closed, and therefore compact (Theorem 3.18).

x

k

..
k

K

k
x k–

4
---------------=|x -

 k|
x Kc k K k

x k–
4

--------------=

Sk
k  k K

Sk1
k1  Sk2

k2   Skn
kn    

Ski
ki 

Ski
ki  Ski

x  = x Ski
x  Kc

i 1=

n



an open set

(a) No         (b) Yes

THEOREM 3.19 A subset of  is compact if and only if it is
both closed and bounded.

CHECK YOUR UNDERSTANDING 3.19
Determine if the given subset of  is compact. Justify your answer.

             (a)                           (b) 

THEOREM 3.20  is compact if and only if every
sequence in K contains a subsequence that
converges to a point in K.





1
n
---
 
 
 

n 1=



0  1
n
---
 
 
 

n 1=





K 

kn n 1=


kn K

kni
 i 1=



a K c K c

kni
 i 1=



kni
 i 1=
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Assume that K is not bounded (we will arrive at a contradic-
tion).

Choose . Since K is not bounded, we can choose
 such that , and  such that

 and , etc. Having chosen
 with no two of the numbers within one unit

of each other, we can still find a number  that is more
than one unit from any of its predecessors (the finite set

 is bounded, and K is not). The constructed

sequence  has no convergent subsequence since, for

any , the open sphere  can contain at most one
element of the sequence.

Assume that K is not closed (we will arrive at a contradiction).
Since  is not open, we can choose  such that

 for all . In particular, for any  we

can choose  such that . The sequence

 cannot contain a subsequence converging to a point
in K, as by construction it converges to  which lies outside
of K. 

k1 K
k2 K k2 k1– 1 k3 K
k3 k1– 1 k3 k2– 1
k1 k2 k3  kn   

kn 1+

k1 k2 k3  kn    

kn n 1=


a  S1 a 

Answer: See page A-17.

CHECK YOUR UNDERSTANDING 3.20
Prove that  is compact if and only if every Cauchy sequence
in K converges to a point in K. 

Kc a Kc
S a  K   0 n Z+

kn K kn a– 1
n
---

kn n 1=


a

K 
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 3 
          

Let’s begin with a formal definition:

What a beautiful definition! Here is what it is saying:

From a geometrical point of view: 

SOLUTION: For a given  we are to find  such that: 

While a choice of  for which 
may not be so apparent, it is trivial to find a  that works if the task’s

rewritten form , namely: .

The Greek letter  is pro-
nounced “delta.” Note the
similarities between this
definition and Definition
3.5, page 123.

In a calculus course conti-
nuity is typically defined
in terms of the limit con-
cept. Specifically:
  f is continuous at c if 

 



f x 
x c
lim g c =

§4. CONTINUITY

DEFINITION 3.12
CONTINUITY AT A 

POINT

A function  is continuous at
 if for any given  there exists a

 such that:

f: D 
c D  0
 0

x c–  f x  f c – 
with x D 

x c–  f x  f c – 

The distance between f x  and  f c  can be made as small as you wish

providing x is sufficiently close to c

If a particular  “works”
for a given , then any
smaller  will also work
for that . However, a
smaller , may call for a
smaller .









c

f c 


(  
  

.
.

   ( ) 

 
Given  0  0 x S c  f x  S f c  

x

y

)

x in here f
x
 e

nd
s u

p 
in

 h
er

e

Compare with Example
3.3(a), page 124.

EXAMPLE 3.7 Show that the function  is con-
tinuous at .

f x  2x 5+=
x 3=

 0  0

x 3–  f x  f 3 – 
x 3–  2x 5+  11– 
x 3–  2x 6– 
x 3–  2 x 3– 

x 3–  x 3– 
2
---

sam
e

i.e:

 x 3–  2x 5+  f 3 – 


x 3–  x 3– 
2
---  

2
---=
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Exercises 1-8. Prove that the given function is continuous at the given point. 

Exercises 9-12. Prove that the given function is not continuous at the given point. 

Exercises 13-18. Prove that the given function is continuous. (Recall that a function is continuous 
if it is continuous at each point in its domain.)

Exercises 19-22. Display a function with domain  which fails to be continuous only at the num-
bers in S. 

EXERCISES

1.  at 2.  at 

3.  at 4.  at 

5.  at 6.  at 

7.  at 8.  at 

9.   at 10.  at 

11.   at 12.  at 

13. 14. 15.

16. 17. 18.

19. 20. 21. 22.

23. Prove Theorem 3.21(d).

24. Let . Prove that if , then  (see Definition 3.15).
25. Use the Principle of Mathematical Induction to prove that if f is continuous at c, then so is 

the function  given by .         

26. Use the Principle of Mathematical Induction to prove that, for all , if the functions  
are continuous at c, then so is the function:
          (a)                             (b) 

27. Prove that every polynomial function, , is continu-
ous.

f x  5x– 3+= x 4= f x  1
2
---x 3+= x 1–=

f x  3x2 1+= x 2= f x  2x2 x–= x 1=

f x  1
2x
------= x 5= f x  3

2x 1+
---------------= x 0=

f x  x
2x 1+
---------------= x 0= f x  3 2x 2–= x 8=

f x  2x 3+ if x 0
x– 4+ if x 0




= x 0= f x  x2 if x 1
x 1+ if x 1




= x 1=

f x  2x 3+ if x 0
x– 3+ if x 0




= x 1–= f x 
1

x 1+
------------ if x 0

x if x 0





= x 1=

f x  3x 5+= f x  1
4
---x– 1+= f x  x2 2x+=

f x  x2– 4–= f x  1
x
---= f x  2x 3+ if x 0

x– 3+ if x 0



=



S 1– = S 1 0 1 – = S Z+= S Z=

f:   A f 1– B  f A  B

f n f n x  f x  n=

n Z+ fn

f1 f2
 fn+ + + f1 f2

 fn  

p x  anxn an 1– xn 1–  a1x x0+ + + +=
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28. Use the Principle of Mathematical Induction to prove that  if   is continuous for 

, then so is the function .

29. Prove that every rational function,   where  and  are polynomials with 

, is continuous. (Recall that a function is continuous if it is continuous at each point 
in its domain.)

30. Prove that every function  is continuous.

31. Prove that every function  is continuous.

32. Give an example of a function  that is not continuous.

33. Let . Prove that a function  is continuous at c if and only if , 

with each  implies .

34. (a) Let  be closed and let  be continuous. Prove that if  is a convergent 
sequence with each , then the sequence  must converge.
(b) Show, by means of an example, that (a) need not hold if the set H is not closed.

35. Prove that  is closed if and only if every convergent sequence , with each 
, converges to a point in H.

36. Let  and  be continuous. Prove that the set  is closed.

37. Let  and  be continuous. Prove that if  for every rational 
number x, then .

38. Display a function with domain  which fails to be continuous everywhere.
Suggestion: Consider the dense sets of the rational numbers and of the irrational numbers.

PROVE OR GIVE A COUNTEREXAMPLE

39. For given functions f and g, if  is continuous at c, then both f and g must be continuous at 
c.

40. For given functions f and g, if  is continuous at c, then f or g must be continuous at c.

41. For given functions f and g, if  and f are continuous at c, then g is continuous at c.
42. For given functions f and g, if fg is continuous at c, then both f and g must be continuous at c.
43. For given functions f and g, if fg is continuous at c, then f or g must be continuous at c.
44. For given functions f and g, if fg and f are continuous at c, and g must be continuous at c.

fi:  

1 i n  fnfn 1–  f2f1

p x 
q x 
---------- p x  q x 

q x  0

f: Z 

f: 1
n
---
 
 
 

n 1=





f: 0  1
n
---
 
 
 


n 1=





S  f: S  xn 
n 
lim c=

xn S f xn 
n 
lim f c =

H  f: H  xn 
xn H f xn  

H  xn 
xn H

f:   g:   x f x  g x = 

f:   g:   f x  g x =
f g=



f g+

f g+

f g+
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45. For given functions f and g, if  is continuous at c, then both f and g must be continuous at c.

46. For given functions f and g, if  is continuous at c, then f or g must be continuous at c.

47. For given functions f and g, if  and f are continuous at c, and g is continuous at c.

48. For given functions f and g, if  is continuous at c, then g must be continuous at c, and f at 
.

49. For given functions f and g, if  and g are continuous at c, then f must be continuous at 
.

50. For given functions f and g, if  is continuous at c, and f is continuous at , then g 
must be continuous at c.

51.  is continuous if and only if  is closed for every closed set H.

f
g
---

f
g
---

f
g
---

fg
g c 

fg
g c 

fg g c 

f:   f 1– H 
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 4

CHAPTER 4 
A Touch of Topology

The distance concept of the previous chapter will lead us to the
abstract setting of a metric space in Section 1. A further abstraction,
from metric spaces to topological spaces takes place in Section 2. The
all-important notion of continuity blossoms to that of a continuous func-
tion between topological spaces in Section 3. Cartesian products and
quotient spaces of topological spaces are introduced in Section 4.

 

As you know, the absolute value of , denoted by , is given by:

  

You can, and should, interpret  as representing the distance (num-
ber of units) between a and 0 on the number line. For example, both 5
and  are 5 units from the origin, and we have:

 and  
When you subtract one number from another the result is either plus

or minus the distance (number of units) between those numbers on the
number line. For example,  while . In either
case, the absolute value of the difference is 5, the distance between the
two numbers:

 and 

In general:  represents the distance (number of units) between a
and b.

Roughly speaking, a metric space is a set with an imposed notion of
distance — one inspired by the following result: 

PROOF: The first two properties are direct consequences of the defi-
nition of the absolute value function. We establish (iii) by showing
that  (this will do the trick, since neither
side of the inequality can be negative):

While a number of refer-
ences to Chapter 3 appear
in this chapter, they are
only included to under-
line the fact that an
abstract metric space
stems from the standard
Euclidean space . 

§1. METRIC SPACES
a  a

a a if a 0
a– if a 0




=

a

5–
5 5= 5– 5=

7 2– 5= 2 7– 5–=

7 2– 5 5= = 2 7– 5– 5= =

a b–

This theorem appears in
Chapter 3, page 135. It is
reproduced here for the sake
of “chapter-independence.”

THEOREM 4.1 (i) : , with if
and only if .
The distance between two numbers is never negative, and is
0 only if the two numbers are one and the same.

(ii) : 
The distance between x and y is the same as that from y to x.

(iii) : 
                 The triangle inequality.

x y  x y– 0 x y– 0=
x y=

x y  x y– y x–=

x y z  x y– x z– z y–+

x y– 2 x z– z y–+ 2
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As you can see, the three properties of Theorem 4.1 morph into the
defining axioms of a metric space: 

Theorem 4.1 tells us that , with  is a metric
space (called the one-dimensional Euclidean space). In the exercises you
are asked to verify that  and , with 

 and 

are also metric spaces (called the two- and three-dimensional Euclidean
spaces, respectively).

SOLUTION: We show that  satisfies each of the three defining axi-
oms of Definition 4.1.
(i) For every 

x z– z y–+ 2 x z– 2 2 x z– z y– z y– 2+ +=

x z– 2 2 x z– z y– z y– 2+ +=

x z– 2 2 x z–  z y–  z y– 2+ +

x2 2xz– z2 2xz 2xy– 2z2– 2zy z2 2zy– y2+ + + + +=

x2 2xy– y2+ x y– 2 x y– 2= = =

a 2 a2:=

a a :

expanding:

Answer: See page A-19.
CHECK YOUR UNDERSTANDING 4.1

Prove that for any , 

DEFINITION 4.1
METRIC

A metric on a set X is a function
 which satisfies the following

three properties:
(i) : , and 

if and only if .
(ii) : 

(iii) : 

A pair  consisting of a set X and a metric
d is said to be a metric space, and may simply
be denoted by X.

x y  x y– x y–

d: X X 

x y X d x y  0 d x y  0=
x y=

x y X d x y  d y x =

x y z X d x y  d x z  d z y +

X d 

and 
2 x y  x y  =

3 x y z   x y z   =

EXAMPLE 4.1 Verify that the function , given by: 

is a metric on the set .

 d  d x y  x y–=

2 d  3 d 

d x1 y1  x2 y2   x1 x2– 2 y1 y2– 2+=

d x1 y1 z1   x2 y2 z2    x1 x2– 2 y1 y2– 2 z1 z2– 2+ +=

d
d x1 y1  x2 y2   x1 x2– y1 y2–+=

2 x y  x y  =

d

x1 y1  x2 y2  2

d x1 y1  x2 y2   x1 x2– y1 y2– 0+=

since a 0 for every a 



                                                                                                                                  4.1  Metric Spaces     161

Moreover,  only if both  and
, and this can only happen if  and ;

which is to say, if .

(ii) For every :

(iii) Let , , and . We show

that : 

Open spheres in metric spaces need not even be
round. Consider, for example the adjacent sphere
of radius 1, centered at the origin, in the metric
space of Example 4.1, wherein:  
 

so that: 

d x1 y1  x2 y2   0= x1 x2– 0=
y1 y2– 0= x1 x2= y1 y2=

x1 y1  x2 y2 =

x1 y1  x2 y2  2

d x1 y1  x2 y2   x1 x2– y1 y2–+=

x2 x1– y2 y1–+ d x2 y2  x1 y1  = =

Note how the definition of
; in used in both directions

in this development. 
  One direction:

  Other direction: 

Yes: 
DEFINITIONS RULE

d

d x1 y1  x3 y3  

x1 x3– y1 y3–+=

x1 x2– y1 y2–+

d x1 y1  x2 y2  =

A x1 y1 = B x2 y2 = C x3 y3 =

d A C  d A B  d B C +

d A C  d x1 y1  x3 y3  =

x1 x3– y1 y3–+=

x1 x2– x2 x3– y1 y2– y2 y3–+ + +

x1 x2– y1 y2– x2 x3– y2 y3–+ + +=

d x1 y1  x2 y2   d x2 y2  x3 y3  +=

d A B  d B C +=

regroup:

Theorem 4.1(iii):

Answer: See page A-19.

CHECK YOUR UNDERSTANDING 4.2
(a) Let X be any set. Show that the function  given by:

is a metric on X. The metric d is said to be the discrete metric on X,
and  is said to be a discrete space.

d: X X 

d x y  1  if x y
0  if x y=




=

X d 

Compare with the notation
introduced at the bottom of
page 123.

DEFINITION 4.2
OPEN SPHERE

Let  be a metric space. For  and
, the open sphere of radius r about 

is the set:

X d  x0 X
r 0 x0

Sr x0  x X d x x0  r =

1

1

x

y

d x1 y1  x2 y2   x1 x2– y1 y2–+=

S1 0 0  x y  x y 1+  =
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SOLUTION: (a) For any given  we are to find  such
that . This is easy to do: take  to be the smaller of the
two numbers  and  (see margin). 
         Any smaller  will do just as well; but no larger  will work.

(b) We show  is open:

If , then either  or . For definite-
ness, assume that . Then, for :

 (indeed ).

(c) Let  be discrete, which is to say: 

For any  and any : . It follows
that every subset D of X is open. That being the case, every subset D
must also be closed, and, for the simple reason that  is open.

Answer: See page A-20.

CHECK YOUR UNDERSTANDING 4.3
Determine the open spheres  and  in the discrete metric
space , wherein:

  (see CYU 4.2), 

S1 5  S5 1 
Z+

d n m  1  if n m
0  if n m=




=

Open and Closed subsets of
the Euclidean space  were
introduced in the previous
chapter (Definition 3.9, and
Definition3.10).



DEFINITION 4.3
OPEN SUBSET OF A

 METRIC SPACE

CLOSED SUBSET OF A
METRIC SPACE

Let  be a metric space.

 is open in X if for every 
there exists  such that .

 is closed in X if its complement
 is open in X.

X d 

O X x0 O
r 0 Sr x0  O

H X
Hc x X x H =

(                   )
1                          5

.
a( } } 

EXAMPLE 4.2 (a) Show that the interval  is open in the
Euclidean space .

(b) Show that the square
 
is closed in the Euclidean space .

(c) Show that every subset of a discrete space
X is both open and closed. (See CYU 4.2.)

1 5 


D x y  0 x 1   0 y 1   =
2

a 1 5   0
S a  1 5  

a 1– 5 a–
 0 

.
1

1

x0 y0 r

D

Dc

x0 y0  D x0 0 1  y0 0 1 
x0 0 1  r min x0 x0 1– =

Sr x0 y0  D = Sr x0 y0  0 1    =

X X d =

d x y  1  if x y
0  if x y=




=

D X x D S1 x  D x  D=

Dc
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The following theorem will lead us to the definition of a topological
space in the next section. 

PROOF:
 (i)  is open: For any , .

 is open (by default): For any  there exists an  such
that , for the simple reason that no such a exists.

(ii) Let  be a collection of open sets, and let .

Since x is in the union of the , there must exist some
 such that . Since  is open, we can choose

 such that . Then:

 

(iii) Let . be a collection of open sets, and let .

For each i, choose  such that , and let
. Since  for each i,

.

 

An order relation ( ) need not reside in an abstract metric space.
There is, however, a sense of finite containment:

(a) See page A-20.
(b) 2n

CHECK YOUR UNDERSTANDING 4.4
(a) Show that the interval  is neither open nor closed in the

Euclidean space .
(b) Let X be a discrete metric space consisting of n elements. Deter-

mine the number of open subsets of X.

1 5 


This is the identical proof
offered for Theorem 3.13,
page 136.       

THEOREM 4.2 For any metric space X:
(i)  and  are open subsets of X.
(ii) Arbitrary unions of open sets are open.
(iii) Finite intersections of open sets are open.

X 

X x X S1 x  X

 a   0
S a  

O  A x O
 A


Os
0 A x O0

 O0

 0 S x  O0


x S x  O0
O

 A
 

Oi i 1=
n x Oi

i 1=

n



i Si
x  Oi

 min 1 2  n   = S x  Oi

x S x  Oi

i 1=

n



Answer: See page A-20.

CHECK YOUR UNDERSTANDING 4.5

Let X be a metric space. Prove that: 
(i) X and  are both closed in X.
(ii) The arbitrary intersection of closed sets is closed.
(iii)The finite union of closed sets is closed.



a b
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A collection  of open subsets of a metric space X is said to
be an open cover of a subset  if . The open cover is

said to have a finite subcover if there exists 

such that .

 

PROOF: Let K be compact. Assume that K is not closed (we will
arrive at a contradiction). 
Choose  such that for every ,  (if this
were not the case, then the complement of K would be open, and K

would therefore be closed). For each , let , and

consider the open cover  of K.   Being compact that

open cover has a finite subcover .

Answer: See page A-20.

DEFINITION 4.4
BOUNDED SUBSETS OF 

A METRIC SPACE

A subset S of a metric space  is
bounded if there exists  such that

 for every . Any
such M is said to be a bound for S.

In particular, if there exists  such
that  for every ,
then the space X is said to be bounded.

CHECK YOUR UNDERSTANDING 4.6

Prove or give a counterexample. In a metric space X
(a) The union of two bounded subsets is bounded.
(b) The arbitrary union of bounded subsets is bounded.
(c) The arbitrary intersection of bounded subsets is bounded.

X d 
M Z+

d x1 x2  M x1 x2 S

M Z+
d x1 x2  M x1 x2 X

See the indexing remarks
that follow CYU 2.3,
page 58.

 COMPACT SPACES 
O  A

S X S O
 A


1 2  n    A

S Oi

i 1=

n



Compare with Definition 3.11,
page 139

Compare with Theorem 3.18,
page 140.

DEFINITION 4.5
COMPACT

A subset K of a metric space X is compact if
every open cover of K has a finite subcover.
In particular, a metric space X is said to be
compact if every open cover of X has a finite
subcover.

THEOREM 4.3 Compact subsets of metric spaces are closed
and bounded.

x0 X  0 S x0  K 

x K x
d x x0 

2
-------------------=

Sx
x  x K

Sxi
xi  

i 1=
n
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Let . Since 

for  (see margin), and since :

 — a contradiction.

Assume that K is not bounded (we will arrive at a contradiction). 
Choose . Since K is not bounded, for any  we
can choose  such that . Since every ele-
ment of K is a finite distance from ,  is an
open cover of K, which has no finite subcover — contradict-
ing the assumption that K is compact. 

We begin by introducing some useful set-theory concepts:

Your turn:

Since the distance notion resides in metric spaces, the dreaded “  -
method” could be used to define the concept of continuity in the current
metric space environment. We take a different approach:

K

..
x0

xi

radius: x
i

d
xi

x0





2
-------------------

=

 min x1
x2

 xn
   = S x0  Sxi

xi  =

1 i n  K Sxi
xi 

i 1=

n



S x0  K =

x0 K n Z+
xn K d xn x0  n

x0 Sn x0  n Z+

Answer: See page A-21.

CHECK YOUR UNDERSTANDING 4.7
Give an example of a closed bounded subset of a metric space X that
is not compact. (Note Theorem 3.17, page 140.)

 CONTINUITY 

This is a generalization of
Definition 3.15, page 152.

DEFINITION 4.6
IMAGE OF S

PRE-IMAGE OF S

For , and  we define the image
of S under f, denoted by , to be the set

 (see margin).

For , and  we define the pre-
image of S under f, denoted by , to be the

set  (see margin).

f: X Y S X
f S 

f S  f x  x S =

f: X Y S Y
f 1– S 

f 1– S  x X f x  S =

Answer: See page A-21.

CHECK YOUR UNDERSTANDING 4.8
(a) Let . Prove that

(i)  for any subsets A, B of X.

(ii)  for any subsets A, B of Y.

(iii)  for any subsets A, B of Y.

(iv)  for any . 

(b) Show that if  is a bijection, then  for
every .

f: X Y
f A B  f A  f B =

f 1– A B  f 1– A  f 1– B =

f 1– A B  f 1– A  f 1– B =

f 1– Ac  f 1– A  c= A Y

f: X Y f A  f Ac  c=
A X
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SOLUTION: Let  be open in . Since , the conti-
nuity of I will be established once we show that the set O, open in

, is also open in the Euclidean space . Let’s do it:
For given  choose  be such that

Since  (see margin), the 
open sphere

in the Euclidean space  is contained in O. It follows
that O is open in .

If you worked your way through the previous chapter you discovered
that if  and  are continuous, then the composite
function  is also continuous. That result extends to arbi-
trary metric spaces: 

Motivated by Theorem
3.22, page 153.

DEFINITION 4.7
CONTINUOUS 

FUNCTION

Let X and Y be metric spaces. A function
 is continuous if  is open in

X for every set O open in Y. 

EXAMPLE 4.3 Let d be the standard Euclidean metric on
:

and let  be the metric of Example 4.1:

Show that the identity function:

 given by  is continuous.

f: X Y f 1– O 

2 x y  x y  =
d x1 y1  x2 y2   x1 x2– 2 y1 y2– 2+=

d
d x1 y1  x2 y2   x1 x2– y1 y2–+=

I: 2 d  2 d  
I x y  x y =

O 2 d  I 1– O  O=

2 d  2 d 

x y 

x x0–

y
y0

–

x y  x0 y0 –

.
.

x0 y0 

x0 y0  O  0
x y  x x0– y y0–+   O

open sphere of radius  centered at x0 y0  in 2 d 

x y  x0 y0 – x x0– y y0–+

x y  x y  x0 y0 –  

d x y  x0 y0   x x0– 2 y y0– 2+=

2 d 
d x y  x0 y0   =

2 d 
d x y  x0 y0   =

Answer: See page A-21.

CHECK YOUR UNDERSTANDING 4.9
Referring to the notation of the above example, show that the identity
function that “goes the other way:”  is also
continuous.

THEOREM 4.4 Let X, Y, and Z be metric spaces. If  and
 are continuous, then the composite

function  is also continuous.

I: 2 d  2 d 

f:   g:  
gf:  

f: X Y
g: Y Z

gf: X Z
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PROOF: Let O be open in Z. Since g is continuous,  is open in
Y. Since f is continuous,  is open in X. The desired result
now follows from Theorem 2.6, page 73 which asserts that

.

In any abstract setting, one attempts to define a notion of “sameness”
for its denizens. Bringing us to:

SOLUTION: The function  given by  is easily
seen to be a bijection:

f is one-to-one: .

f is onto: For any given , we have .

 f also preserves the distance between any two points : 

This is the proof of Theorem
3.23, page 153.

Answer: See page A-21.

CHECK YOUR UNDERSTANDING 4.10
Let X, Y, and Z be metric spaces. For given functions  and

, if  is continuous must both f and g be contin-
uous? Justify your answer.

ISOMETRIES

g 1– O 
f 1– g 1– O  

gf  1– O  f 1– g 1– O  =

f: X Y
g: Y Z gf: X Z

If two spaces are isometric,
then they are the “same, up to
appearances” (the naming of
elements, for example).

DEFINITION 4.8
ISOMETRIC SPACES

A metric space  is isometric to a space
 if there exists a bijection 

such that  for
every . Such a function f is said to
be an isometry from X to Y.

EXAMPLE 4.4 Show that the metric space  with
 is isometric to the space

, where  and

.

X d 

Y d  f: X Y

d x1 x2  d f x1  f x2  =
x1 x2 X

Z d 
d a b  a b–=
2Z d  2Z 2n n Z =

d 2a 2b  1
2
--- 2a 2b–=

f: Z 2Z f n  2n=

f a  f b  2a 2b a b= = =

2a 2Z f a  2a=

a b Z

d a b  a b– 1
2
--- 2a 2b– = =

1
2
--- 2a 2b– d 2a 2b  d f a  f b – = = =

Answer: See page A-22.

CHECK YOUR UNDERSTANDING 4.11
Show that isometry is an equivalence relation on any set of metric
spaces. (See Definition 2.20, page 88.)
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Exercise 1-5. Verify that each of the following is a metric space.

Exercise 6-11. Explain why the given function is NOT a metric on .

EXERCISES

1. , where  and:

 

2. , where  and: 

3. , where  and: 

4. , where  and:
 

Sketch the unit sphere  in .

5. (Calculus Dependent). , where  and:

 

6. 7. 8.

9. 10. 11.

12. Let  be any two distinct elements of a metric space X. Show that there are disjoint open 
sets  with  and .

13. Prove that if a metric space contains at least two points, then it must contain at least four dis-
tinct open sets.

14. Let S be an unbounded subset of a metric space . Prove that for any  and any 

given  there exists  such that .

15. Let X be a discrete space. Prove that every function  is continuous for any metric 
space Y.

2 d  2 x y  x y  =

d x1 y1  x2 y2   x1 x2– 2 y1 y2– 2+=

3 d  3 x y z   x y z   =

d x1 y1 z1   x2 y2 z2    x1 x2– 2 y1 y2– 2 z1 z2– 2+ +=

n d  n x1 x2  xn    xi  1 i n  =

d x1 x2  xn    y1 y2  yn     x1 y1– 2 x2 y2– 2  xn yn– 2+ + +=

2 d  2 x y  x y  =
d x1 y1  x2 y2   max x1 x2– y1 y2– =

S1 0 0  x y  d x y  0 0    1= = 2 d 

C d  C f: 0 1   f is continuous =

d f g  f x  g x – xd
0

1

=



d x y  x y+= d x y  x2 y2–= d x y  x2 y2+=

d x y  xy= d x y  x y–= d x y  x y–=

x y
Ox Oy x Ox y Oy

X d  x0 S

n Z+ xn S d x x0  n

f: X Y
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Exercise 26-32. (Closure) For A a subset of a metric space X, let 
. The set  is called the closure of A.

16. Let X, and Y be metric spaces. Prove that for any  the constant function  

given by  for every  is continuous.

17. Prove that the continuous image of a compact metric space is compact. 

18.  Let  and  be two metric spaces. Prove that , where 
 and  is a 

metric space.

19. Prove that a space X is compact if and only for any collection  of closed subsets of 

X with  one can choose a finite subcollection  such that 

20. Let H be a compact subset of a metric space X. Show that for any given  there exist dis-
joint open sets  with  and .

21. Let  and  be two disjoint compact subsets of a space X. Show that there exist two dis-
joint open sets  with  and .

22. Let X and Y be isometric spaces.Prove that X is bounded if and only if Y is bounded.

23. Let X and Y be isometric spaces.Prove that X is compact if and only if Y is compact.

24. (Set theory). Let . Prove:

(a) For , : .            (b) For : .

25. (Set theory). Let . Prove that for ,  :

(a)               (b) .

26. Determine , for the given subset A of the Euclidean space .
(a) (b) (c)  (the set of rational numbers)

(d)                         (e)  

y0 Y fy0
: X Y

fy0
x  y0= x X

X dX  Y dY  X Y d 

X Y x y  x X and y Y = d x1 y1  x2 y2   dX x1 x2  dY y1 y2 +=

H  A

H
 A
 = Hi

 i 1=
n Hi

i 1=

n

 =

x H
Ox OH x Ox H OH

H1 H2

O1 O2 H1 O1 H2 O2

f: X Y

Si X 1 i n  f Si

i 1=

n


 
 
 
 

f Si 

i 1=

n

= S X f f 1– S   S

f: X Y S X  A

f 1– S
 A
 

 
 

f 1– S 
 A
= f 1– S

 A
 

 
 

f 1– S 
 A
=

CA H X A H and H is closed in X = A H
H CA
=

A 

A 1 3 = A Z+= A Q=

A 1 3  5 = A 1
n
--- n Z+
 
 
 

=
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27. Prove that for ,  is the smallest closed subset of X that contains A, in that  is a 
subset of every closed set containing A.

28. Prove that  is closed for every .

29. Prove that if A is closed if and only if .

30. Prove that  if and only if  for every open set O containing x.

31. Let  be any two distinct elements of a metric space X. Show that there exists  

such that .

32. Let x be an element of an open subset O of a metric space X. Show that there exists  

such that .

PROVE OR GIVE A COUNTEREXAMPLE

33. , where  is a metric space for any .

34. , where  and  
is a metric space.

35. A function f from a metric space X to a metric space Y  is continuous if and only if  is 
closed in X for every closed subsets H of Y.

36.  Let  be a bijection from the metric space X to the metric space Y. If f  is continuous, 
then f is an isometry. 

37.  Let  be a bijection from the metric space X to the metric space Y. If f  and  are 
continuous, then f is an isometry. 

38. (Closure: See Exercises 26-32) If  is a subset of a metric space X, for , then:

(a) (b) (c)

(d) (e) (f) 

(g) 

A X A A

A A X

A A=

x A O A 

x1 x2 r 

Sr x1  Sr x2  =

r 

Sr x  O

 d  d x y  r x y–= r 

2 d  2 x y  x y  = d x1 y1  x2 y2   x1 x2– y1 y2––=

f 1– H 

f: X Y

f: X Y f 1–

Si i Z+

S1 S2 S1 S2= S1 S2 S1 S2= S1 S2 c S1
c S2

c=

S1 S2 c S1 S2 c= Si

i 1=



 Si

i 1=



= Si Si

i 1=



=
i 1=





Si

i 1=




 
 
 
  c

Si

i 1=




 
 
 
  c

=



                                                                                                                                 4.2  Topological Spaces     171

 4
 

Theorem 4.2, page 163, inspires the definition of a topological space: 

SOLUTION: We verify that the three axioms of Definition 4.9 hold for
the family .

(i) We are given that . In addition, since  is a finite
subset of X, .

(ii) Consider the set  with each . Since 

 (Theorem 2.3, page 58), the number of ele-

§2 TOPOLOGICAL SPACES

The Greek letter ,
spelled “tau” — rhymes
with “cow.”



DEFINITION 4.9
TOPOLOGY

TOPOLOGICAL SPACE

A topology on a set X is a collection  of sub-
sets of X, called open subsets of X, satisfying
the following properties:
(i) X and  are in .

(ii) Any union of elements of  is again in .
             (  is closed under arbitrary unions)

(iii) Any finite intersection of elements of  is
again in .

              (  is closed under finite intersections)

A pair  consisting of a set X and a topol-
ogy  is called a topological space, and may
at times simply be denoted by X.



 
 








X  


Answer: See page A-22.

CHECK YOUR UNDERSTANDING 4.12

For any set X show that:

(a)  is a topology on X [it is called the indiscrete
topology on X].

(b)  is a topology on X [it is called the discrete
topology on X].

EXAMPLE 4.5
 FINITE-COMPLEMENT 

SPACE

For any set X, let
 

Show that  is a topological space.

0 X  =

1 S S X =

   S X S c is finite =
X  


  X c =

X 
O  A O 

O
 A
 

 
 c

Oc

 A
=



172     Chapter 4    A Touch of Topology                                                                                            

ments in  cannot exceed the number of elements in any of 

the , all of which are finite. It follows that .

(iii) Consider the finite set  with each . Since

 (Theorem 2.3, page 58), the number of ele-

ments in  cannot exceed the sum of the finite number of

elements in the sets  ; and is therefore finite. It follows

that .

Every metric space gives rise to a topological space. Specifically: 

PROOF: Theorem 4.2, page 163. 

Not every topological space is metrizable:

O
 A
 

 
  c

Oc O
 A
 

Oi i 1=
n Oi 

Oi

i 1=

n


 
 
 
  c

Oi
c

i 1=

n

=

Oi

i 1=

n


 
 
 
  c

Oi 1 i n 

Oi

i 1=

n

 

Answer: See page A-22.

CHECK YOUR UNDERSTANDING 4.13

Let  and . Show that  is a topo-
logical space (called the Sierpinski space).

X a b =   X a   = X  

In the Euclidean space ,

is called the standard or
Euclidean topology on ).


 O  O is open in  =



THEOREM 4.5 For any metric space X:

 is a topology on X.

DEFINITION 4.10 A topological space  is said to be metriz-
able if there exists a metric d on X such that

  

 O X O is open in the metric space X =

X  

 O X O is open in the metric space X =

Answer: See page A-22.

CHECK YOUR UNDERSTANDING 4.14

Show that the Sierpinski space [CYU 4.13] is not metrizable. 
Suggestion: consider Exercise 13, page 168.
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The complement of open sets in a metric space were called closed
sets. Following suit:

As is the case in any metric space (see CYU 4.5, page 163):

PROOF: (i) Since  and  are open (Definition 4.9),
both  and  are closed. 

(ii) Let  be a collection of closed sets. We show  is 

closed by showing that its complement     is 

open:
Since each  is closed,  is a collection of
open sets. Since unions of open sets are open,  is

open. 
(iii) Let  be a collection of closed sets. Since

, and since finite intersections of open sets are

open,  is open; which is to say:  is closed.

DEFINITION 4.11
CLOSED SUBSET OF A
TOPOLOGICAL SPACE

Let  be a topological space. 
is closed if its complement  is open
(that is: ).

THEOREM 4.6 In any topological space X:
(i) X and  are closed in X (they are also

open).
(ii) Any intersection of closed sets is again a

closed set.
(iii) Any finite union of closed sets is again a

closed set.

X   H X
Hc

Hc 



Xc = c X=
X 

H  A H
 A


H
 A
 

 
  c

H c

 A
=

H H c  A

H c

 A


Hi i 1=
n

Hi

i 1=

n


 
 
 
  c

Hi c

i 1=

n

=

Hi

i 1=

n


 
 
 
  c

Hi

i 1=

n



Answer: See page A-22.

CHECK YOUR UNDERSTANDING 4.15

Characterize the closed subsets of the given topological space.
(a) A discrete space . (See CYU 4.12.)
(b) An indiscrete space . (See CYU 4.12)
(c) The Sierpinski space of CYU 4.13.

X 1 

X 0 
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As might be expected: 

PROOF: We verify that the three axioms of Definition 4.9 hold for the
family .

(i) Since  and X are open in , both  and
 are open in .

(ii) Let  be a family of open sets in . We show that

 is again in :

For each  choose  such that . Since 

is a topology, . The desired result now follows

from:

As for (iii):

 SUBSPACES OF A TOPOLOGICAL SPACE 

DEFINITION 4.12
SUBSPACE 

For  a topological space and 
let  

The ordered pair  is said to be a
subspace of the space  and the ele-
ments of  are said to be open in S.

THEOREM 4.7 Let  be a topological space, . The
subspace  is also a topological space.

X   S X

S O S O  =
S S 

X  

S

X   S X
S S 

S

 X    S =
X S S= S S 

U  A S S 

U
 A
 S

 A O  O S U= 
O

 A
 

U
 A
 O S 

 A
 O

 A
 

 
 

S= =

 Exercise 82(a), page 61

Answer: See page A-23.

CHECK YOUR UNDERSTANDING 4.16

Let  be a topological space and . Show that
 is closed under finite intersections.

X   S X
S O S O  =
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When analyzing a topological space it is often sufficient to consider
the following subsets of its topology:

SOLUTION: (a) A direct consequence of Definition 4.3, page 162 (see
margin).

(b) Since every open interval in  is the intersection of two elements
in , and since  is the
open interval ,  is a subbase for the Euclidean topol-
ogy on .

In the exercises you are invited to show that for any collection
 of subsets of X, the set:

is a subbase for a topology  on X, called the topology generated
by S. In other words:
 

 BASES AND SUBBASES 

  (gamma) is the Greek
letter for C.


DEFINITION 4.13
BASE

SUBBASE

A base for a space  is a subset  of
 which satisfies the following property:

  
(In other words, every open set
is a union of elements from )

A subbase for  is a subset  of 
such that the set of finite intersections of
elements of  is a base for the topology.

X   


x O  B  x B O 



X    



 is open in X if
for every  there
exists  such that

.

O X
x0 O

r 0
Sr x0  O

EXAMPLE 4.6 (a) Show that  is a 
basis for any metric space X.

(b)Show that
  

is a subbase for the Euclidean space 

 Sr x  x X r 0 =

 – b  b   a   a  =



 – b  b   a   a  = Sr x 

x r– x r+  


Answer: See page A-23.

CHECK YOUR UNDERSTANDING 4.17

Let  X  be a metric space. Show that , where
 denotes the set of positive rational numbers, is a base for the topology

of X.

 Sr x  x X r Q+ =
Q+

S S  A=

 Si

i 1=

n

 Si
S n Z+

 
 
 
 
 

=

S
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In particular, consider the set  in .
Since , every subset of , being the union
of the open sets , is open in . In other words:

  is the discrete topology on  [see CYU 4.12(b)]
 

Reminiscence of Definition 4.5, page 164:

Theorem 4.3, page 164, asserts that compact subsets of metric spaces
are closed and bounded. This result cannot carry over to general topo-
logical spaces, for the notion of “bounded” involves the concept of dis-
tance which does not reside in the general setting of topological spaces.
Moreover, as it turns out, compact subsets of a general topological
space need not even be closed:

SOLUTION: As it turns out, every single subset  of  is, in
fact, compact:

If you start with any collection S of subsets of X, and then
take all unions of the finite intersections of the sets in S, you
will end up with a topology  on X. S

S n m  n m Z n m  = 
r  r 1 r–  r r 1+ = 

r  r   S

S 

Answer: See page A-23.

CHECK YOUR UNDERSTANDING 4.18

Let  denote the standard Euclidean topology on , and let 
denote the topology on  generated by . Show
that . 

(  is called the half-open-interval space)

 COMPACT SPACES 

DEFINITION 4.14
COMPACT

A subset K of a topological space X is com-
pact if every open cover of K has a finite
subcover.
In particular, the space X is said to be com-
pact if every open cover of X has a finite sub-
cover.

EXAMPLE 4.7 Let  denote the finite complement topology
on the set Z of integers of Example 4.5:

Exhibit a compact subset of  that is not 
closed.

  S
 S x y  x y =

 S

H  S =



   S Z S c is finite =
Z  

H Z Z  
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Let  be an open cover of H. Since the empty set is
certainly compact, we can assume that  and choose an
arbitrary element . Some element of the open cover,

say  contains . By the very definition of , only
finitely many elements of Z lie outside of . A fortiori,
there are only a finite number of elements of H that are not
contained in , say . For each  choose an
element  of the given cover which contains . Clearly

 covers H.

We next show that the compact subset  of Z is not closed by show-
ing that its complement is not open:

Let O be any open set containing . Since  is
finite, . Thus  is not open.
 

In the exercises, you are asked to show that a space X is compact if
every open cover of X by sets taken from a base  of X has a finite sub-
cover. We now state, without proof, a stronger result:

In the previous section, analytical properties of the real number system
directed us to the definition of a metric space. The concept of a metric
space was then generalized further to that of a topological space. This
generalization may, in fact, be a bit too general in that there are some
rather uninteresting topological spaces hanging around. For example, a
set with indiscrete topology has very little “topological personality.”
What distinguishes a topological space from a plain old set is its collec-
tion of open sets, and while one does not like to degrade any structure, it
is nonetheless difficult to think of an indiscrete space , with

, as having evolved far from its underlying set X. 

O  A
H 

h0 H

O0
h0 

O0

O0
hi i 1=

n 1 i n 

Oi
hi

Oi i 0=
n

Z+

0 Z+ c Oc

O Z+  Z+ c

Answer: See page A-23.
CHECK YOUR UNDERSTANDING 4.19

Prove that every closed subset of a compact space is compact.

James W. Alexander
(1888-1971).

THEOREM 4.8
ALEXANDER’S

SUBBASE
THEOREM

Let X be a topological space and let  be a
subbase for the topology of X. If every open
cover of X by sets in  has a finite subcover,
then X is compact.

The above result can be shown to be equivalent to the
Axiom of Choice (see page 109).







Felix Hausdorff
(1868-1942).

 HAUSDORFF SPACES 

X  
  X =
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The following important class of spaces contain sufficiently many
open sets to “separate points:” 

An open set in a space X that contains a point  is said to be an
(open) neighborhood of x. With this terminology at hand, we can say
that a space is Hausdorff if any two points in the space reside in disjoint
neighborhoods.

We previously observed that compact subsets of a general topological
space need not be closed. However:

PROOF: Suppose K is a compact subset of a Hausdorff space 
that is not closed (we will arrive at a contradiction): 

Since K is not closed, its complement is not open, and we can
choose  such that  for every open neigh-
borhood  of  (if this were not the case, then the com-
plement of K would be open). For each , choose disjoint
open sets  and  containing x and , respectively
(margin), and consider the open cover  of K. Being

compact that open cover has a finite subcover . It fol-

lows that the neighborhood  of  contains no ele-

ment of K — a contradiction.

Distinct points in a Haus-
dorff space can be sepa-
rated by disjoint open
sets. Additional separa-
tion properties are intro-
duced in the exercises.

Answer: See page A-23.

DEFINITION 4.15
HAUSDORFF SPACE

  is a Hausdorff space if for any two
distinct points  in X there exists disjoint
open sets  with  and .

CHECK YOUR UNDERSTANDING 4.20
Prove that every metrizable space is Hausdorff. 

y. Oy.xOx

X  
x y

Ox Oy x Ox y Oy

x X

This result along with
CYU 4.19 tell us that:

A subset of a compact
Hausdorff space is
compact if and only if
it is closed.

THEOREM 4.9 Any compact subset of a Hausdorff space is
closed.

X  

x0.
O x0 .x

Ox

K

x0 X O x0  K 
O x0  x0

x K
Ox Ox x0  x0

Ox x K

Oxi
 i 1=

n

Oxi
x0 

i 1=

n

 x0

Answer: See page A-23.

CHECK YOUR UNDERSTANDING 4.21
Let K be a compact set in a Hausdorff space X. Show that for any
given  there exists disjoint open sets  and  containing

 and K, respectively. 

x0 K Ox0
OK

x0
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.
EXERCISES

1. Let . Determine whether or not the given collection of subsets of X is a topol-
ogy on X.
(a)       (b)     (c) 

(d)            (e)               (f) 

(g)         (h) 

2. Show that the topology of Example 4.6 is a proper subset of the standard Euclidean topology 
on .

3. Prove that if  is a base for a discrete space X, then  for every .

4. Prove that if  is a base for a topological space , and if , then  is also a 

base for . 

5. Let  be a subspace of a topological space . Prove that  is closed in  
if and only if there exists a closed subset H of X such that .

6. Exhibit three topologies  on the set  with .

7. (a) Let  be topologies on a set X. Prove that  is also a topology on X.

(b) Let  be a collection of topologies on a set X. Prove that  is also a topology

on X.
(b) Let  be a collection of topologies on a set X. Prove that  is also a topol-

ogy on X.

8. Let S be open in the topological space X. Prove that  is open in the subspace S if and 
only if O is open in X.

9. Show that  where  is a topology on .

10. Let X be an uncountable set. Prove that the collection  is a 
topology on X.

11. Prove, without appealing to Theorem 4.8, that a space X is compact if every open cover of X 
by sets taken from a base  of X has a finite subcover.

12. Prove that  is a subbase for .

13. Prove that a subbase of a topological space is a base for the space if an only if it is closed 
under finite intersections.

X a b c d   =

 X   X a b     X a  a b  a c     

a  b  c  d      X a     X a  b    

 X a b c   a b d   a b c        X a  a b  a c d      



 x   x X

 X      


S S  X   D S S S 

H S D=

1 2 3  X a b c  = 1 2 3 

1 2 1 2

i i 1=
n i

i 1=

n



  A 
 A


O S

   On 
n Z+

= On i Z+ i n = Z+

 O X Oc is countable =



 – b  b Q  a   a Q = 
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14. Show that for any collection  of subsets of a set X, the set:

is a subbase for a topology on X.

15. (Rational-Real Topology) Let  denote the standard Euclidean topology on  and Q the set 

of rational numbers. Let  denote the topology on  generated by . Prove that:

(a) .

(b)  is a base for .

(b)  is a subbase for .

16. (Half-Open Interval Topology) 

(a) Show that  is closed under finite intersections, and is therefore a base

for a topology on .

(b) Show that , where  denotes the Euclidean topology on .

17. (Tangent Disc Topology) Consider the upper closed plane  
. For any  with  

let , and let  for any   

consist of those sets of the form  where D is an 
open disk in T tangent to q (see adjacent figure).  

(a) Show that  is closed under finite intersections, and is therefore a base

for a topology on T. [  is called the Moor plane.]

(b) Is the point  open in ? Justify your answer. 

(c) Is the topology  the same as the subspace topology , where  denotes the standard
Euclidean topology on ? Justify your answer.

18. Let  be a function from a non-empty set X to a topological space . Show that 

 is a topology on X. (See Definition 3.15, page 152.)

S S  A=

 Si

i 1=

n

 Si
S n Z+

 
 
 
 
 

=

 

   Q

 

 a b  a b  a b  Q a b = 
 a   a   – a  a   Q = 

H a b  a b =

 

   

.p

q
.

T x y  R2 y 0 = p x y = y 0
S p  Sr p  r y = S q  q x 0 =

q  D

S S x y   x y  T=

 T  

q 

 T 
2

f: X Y Y  

f 1– O  O   
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Exercise 23-24. (Sequences) A sequence  in a topological space X is said to be a conver-
gent sequence which converges to  if for any neighborhood O of  there exists N such 
that . In the event that the sequence converges to  we write , 

and say that  is a limit point of the sequence.

19. (a) Let ,  be two topological spaces. Prove that , where 

 is also a topological space.

(b) If  and  are base for  and , is  a base for ? Jus-
tify your answer.

(c) State and establish a generalization of part (a) to accommodate a collection of n topological

spaces .

20. Let S be a subset of a topological space X. Prove that the subspace S is compact if and only if 
every cover of S by sets open in X contains a finite subcover.

21. (a) Show that every infinite subset S of a compact space X contains a point whose every 
neighborhood contains infinitely many elements of S.

(b) Show, by means of an example, that (a) need not hold if X is not compact.
(c) Show that the converse of (a) does not hold.

22. Prove that a topological space X is compact if and only if for any given collection  
of closed sets such that , there exists a finite subcollection  with 

.

23. (a) Give an example of a convergent sequence in a topological space which has more than 
one limit point. 

(b) Prove that in a Hausdorff space a convergent sequence has a unique limit point.

24. (a) Let H be a closed subset of a topological space. Prove that if a sequence  with 
each  converges to , then .

(b) Prove that (a) need not hold if H is not closed in X. Suggestion: Think indiscreetly.
(c) Show, by means of an example, that the condition in (a) can hold without H being

closed.

X1 1  X2 2  X1 X2  

 O1 O2 O1 1 and O2 2 =

1 2 X1 1  X2 2  1 2 X1 X2  

Xi i  i 1=
n

H  A
H

 A
 = Hi

 i 1=
n

Hi

i 1=

n

 =

xi i 1=


x0 X x0
n N xn O x0 xnn 

lim x0=

x0

xi i 1=


xi H x0 x0 H
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Exercise 25-33. (Closure) For S a subset of a topological space X, let 

. The set  is called the closure of A.

25. Prove that  if and only if  for every open set O containing x.

26. For the topology  on :

(a) List the closed subsets of .
(b) Determine the closure of the sets  and . 

27. For the topology  on 
:

(a) List the closed subsets of X.
(b) Determine the closure of the sets , , , , , , and .

28. Prove that  is closed for every .

29. Prove that  for every .

30. Prove that if  with H closed, then .

31. Prove that if S is closed if and only if .

32. (a) Prove that for any finite collection  of subsets of a topological space X:

                                                    

(b) Prove that for any collection , .

(c) Show, by means of an example, that (a) need not hold if the collection is not finite.

(d) Prove that for any collection , .

(e) Show, by means of an example, that even for a finite collection  of subsets,
equality in (d) need not hold.

33. Determine , for the given subset A of the topological space .
(a) (b) (c)  (the set of rational numbers)

(d) (e)  

CS H X S H and H is closed in X = S H
H CS
=

x S O A 

  Z  n n 1 n 2++   
n Z+

= Z+

Z+

5 11 13   3 5 7 9     

  X a  a b  a c d   a b e   a b c d         =
X a b c d e    =

a  b  c  d  e  c e  b e 

S S X

S S= S X

S H S H

S S=

Si i 1=
n

Si

i 1=

n

 Si

i 1=

n

=

S  A S
 A
 S

 A


S  A S
 A
 S

 A


Si i 1=
n

A 

A 1 3 = A Z+= A Q=

A 1 3  5 = A 1
n
--- n Z+
 
 
 

=
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Exercise 34-37. (Dense) A subset A of a topological space X is said to be dense in X if  
(see Exercise 24-32).

Exercise 38-43. (Separation Properties) 

34. Prove that  is dense if and given any  and any neighborhood O of x, 
.

35. Prove that the set Q of rational numbers is dense in .

36. For the topology  on 
, determine the dense subsets of X.

37. For the topology  on , determine the dense 

subset of .

38. A  is a topological space in which for any two distinct points there is an open set 
containing one of the points and not the other.
(a)  Show that  is a .
(b) Give an example of a topological space that is not a .

39. A  is a topological space in which for any two distinct points there is a neighbor-
hood of each point not containing the other point.
(a)  Show that  is a .
(b) Give an example of a  that is not a  (see Exercise 38).

40. or Hausdorff space (see Definition 4.14).

(a)  Show that  is a .
(b) Give an example of a  that is not a  (see Exercise 39).

41. A  or regular space is a  (see Exercise 40) in which for any closed set H 
and any point  there exist disjoint open sets  with  and 
(a)  Show that  is a .
(b) Give an example of a  that is not a  (see Exercise 40).

42. A  or normal space is a  (see Exercise 40) in which for any two disjoint 
closed sets  there exist disjoint open sets  with  and .

(a)  Show that  is a .
(b) Give an example of a  that is not a  (see Exercise 41).

43. Prove that any compact Hausdorff space is normal (see Exercise 42).

A X=

A X x X
O A 



  X a  a b  a c d   a b e   a b c d         =
X a b c d e    =

  Z  n n 1 n 2++   
n Z+

= Z+

Z+

T0-space

 T0-space
T0-space

T1-space

 T1-space
T0-space T1-space

T2-space

 T2-space
T1-space T2-space

T3-space T1-space
x H U V x U H V
 T3-space

T2-space T3-space

T4-space T1-space
H1 H2 O1 O2 H1 O1 H2 O2

 T4-space
T4-space T3-space
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Exercise 44-49. (Connected Spaces) A topological space is connected if it is not the union of 
two nonempty disjoint open sets. 
44. Prove that a topological space X is connected if and only if the only subsets of X that are 

both open and closed are  and X. 

45. Prove that any discrete space consisting of 2 or more elements is not connected.

46. Show that the space , where  and  is con-
nected.

47. Show that  with the standard Euclidean topology is connected. (You will need to invoke 
the completion axiom of Definition 3.1, page 111.) 

48. Show that the subspace Q (rational numbers) of the Euclidean space  is not connected.

49. Prove that if A is a connected subspace of a space X, then the closure of A in X is also con-
nected. (See Exercises 25-33). 

PROVE OR GIVE A COUNTEREXAMPLE

50. If  are topologies on a set X, then so is  a topology on X.

51. If  is a subbase for a topological space , and if , then  is also a subbase 
for .

52. If  is a base for a topological space , and if , then  is also a base for .

53. If X is an indiscrete space (CYU 4.11), then any base for X must contain two elements.

54. If X is an indiscrete space (CYU 4.11), then any base for X cannot contain more than two ele-
ments.

55. (See Exercises 26-34) For subsets  and  of a topological space X:

(a) (b)           (c) 

(d) If , then (e) If , then 

56. (See Exercises 44-49) If A and B are connected subspaces of a space X, then:
(a)   is also connected.                            (b)  is also connected.
(c) If , then  is also connected.

57. The set of open subsets of a topological space and that of the closed subsets of the space are of 
the same cardinality (see Definition 2.15, page 77).



X   X a b c d   =   X a b   =





1 2 1 2

 X       


 X        

S T

S T c Sc Tc= S T c S c T c= Sc c S=

S T S T S T= S T=

A B A B
A B  A B
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 4
 

We extend Definition 4.7 of page 166 to accommodate general topo-
logical spaces: 

SOLUTION: (a) Since the discrete topology consists of all subsets of X,
 is open in X for every open set O in Y.

(b) Let O be open in Y. We consider two cases.
Case 1: . Since, by the definition of f, every  maps

to ,  — an open subset of X.

Case 2: . Since no element in X maps to , 
— an open subset of X.

(c) Let O be open in X. By Definition 4.12, page 174,  is open
in S. Noting that , we conclude that  is
continuous.

§3 CONTINUOUS FUNCTIONS 
AND HOMEOMORPHISMS

DEFINITION 4.16
CONTINUITY 

Let X and Y be topological spaces. A func-

tion  is continuous if  is
open in X for every O open in Y.

EXAMPLE 4.8 Show that:
(a) If  is a discrete topological space (CYU

4.12, page 171), then every function 
is continuous for every topological space Y. 

(b) Let X and Y be topological spaces. For any
 the constant function 

given by  for every  is con-
tinuous.

(c) For any subspace  of a topological space X,
the inclusion function  given by

 for every  is continuous. 

f: X Y f 1– O 

X
f: X Y

y0 Y fy0
: X Y

fy0
x  y0= x X

S
IS: S X

IS s  s= s S

f 1– O 

y0 O x X

y0 fy0

1– O  X=

y0 O y0 fy0

1– O  =

Answer: See page A-24.

CHECK YOUR UNDERSTANDING 4.22
Exhibit a continuous function f  from the Sierpinski space of CYU
4.13 (page 172) to , and a non-continuous function g from the
Sierpinski space to .

O S

IS
1– O  O S= IS: S X
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Here are several equivalent characterization of the continuity con-
cept: 

PROOF: We show .

. Let H be closed in Y. Since  is open,  is open in
X (by continuity). But  [CYU 4.8(a-iv), page
165]. It follows that  is closed in X.

. Let  be a subbase for Y, with . Since S is open in
Y,  is closed. By (ii),  is closed in X. But

 [CYU 4.8(a-iv), page 165]. Taking the comple-
ment of both sides we have . Being the comple-
ment of a closed set,  is open in X.

. Follows directly from the observation that every base
for a topology is also a subbase for the topology.

. Let  be a base for Y, and let O be open in Y. If

, then it is open in X. 

For  and  choose  such that
. Let  be such that . We then have

. Since, by assumption,  is open: 
is open.

THEOREM 4.10 Let f be a function from a topological space X
to a topological space Y. The following are
equivalent:
(i) f  is continuous.

(ii)  is closed in X for every H closed
in Y.

(iii)  is open in X for every  in a sub-
base for the topology of Y. 

(iv)  is open in X for every B in a base
for the topology of Y. 

f 1– H 

f 1– S  S

f 1– B 

i  ii  iii  iv  i    

(i) (ii) Hc f 1– Hc 

f 1– H  c f 1– Hc =
f 1– H 

(ii) (iii)  S 
Sc f 1– Sc 

f 1– S  c f 1– Sc =
f 1– S  f 1– Sc  c=

f 1– S 

(iii) (iv)

(iv) (i) 

f 1– O  =

f 1– O   x0 f 1– O  y0 O
f x0  y0= B  y0 B O

x0 f 1– B  f 1– O  f 1– B  f 1– O 

Answer: See page A-24.

CHECK YOUR UNDERSTANDING 4.23
Let X be an arbitrary topological space and Y an indiscrete topologi-
cal space (see CYU 4.12, page 171). Prove that every function

 is continuous,f: X Y
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Theorem 4.4, page 166, extends to general topological spaces:

PROOF: Let O be open in Z. Since g is continuous,  is open in
Y. Since f is continuous,  is open in X. The desired result
now follows from Theorem 2.6 of page 73 which asserts that

.

The following result is of particular importance in analysis: 

PROOF: Let K be a compact subset of X and let  be an open

cover of . Since f is continuous,  is an open cover
of K. Since K is compact, that cover contains a finite subcover

. We then have:

We just copied the proof
of Theorem 4.4.

Answer: See page A-24.

THEOREM 4.11 Let X, Y, and Z be any topological spaces.

If  and  are continuous,
then the composite function  is
also continuous.

CHECK YOUR UNDERSTANDING 4.24
Construct functions  and  (where X, Y, and Z are
topological spaces) such that:
(a) f is continuous and  is not continuous.

(b) g is continuous and  is not continuous.

(c)  is continuous with neither f nor g continuous.

THEOREM 4.12 Let  be continuous. If  is a com-
pact subset of X, then  is a compact sub-
set of Y.

f: X Y g: Y Z
gf: X Z

g 1– O 
f 1– g 1– O  

gf  1– O  f 1– g 1– O  =

f: X Y g: Y Z

gf: X Z

gf: X Z

gf: X Z

f: X Y K
f K 

Answer: See page A-24.

CHECK YOUR UNDERSTANDING 4.25

PROVE OR GIVE A COUNTEREXAMPLE: 
Let  be continuous and let . If  is a compact sub-
set of Y, then S is a compact subset of X.

V  A

f K  f 1– V   A

f 1– Vi
  i 1=

n

K f 1– Vi 
 

i 1=

n

 f K  f f 1– Vi 
 

i 1=

n

 f f 1– Vi 
 

i 1=

n

= Vi
i 1=

n



Exercise 24, page 169

f: X Y S X f S 
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The definition of a continuous function  kind of “works in
reverse” in that it hinges on the behavior of : 

 is open in X for every O open in Y.

Here are a couple of “forward looking” concepts for your consideration:

The following example shows the independent nature of continuous,
open, and closed functions.

SOLUTION: (a) Let . Let  denote the discrete topology
on X and  the indiscrete topology (CYU 4.12, page 171). It is easy
to see that the identity function , given by

 for every , is a continuous function which is nei-
ther open nor closed. 

(b) Let X be the subspace  of , and let Y be the subspace
 of the half-open interval space H of CYU 4.18, page 176.

Consider the inclusion function , given by  for
every .

J is open: Let O be open in X. Since  is open in ,
O is open in  (Exercise 8, page 179). Since the topology of H
contains the Euclidean topology (CYU 4.18), O is open in H. It
follows that  is open in the subspace 
of H.
J is not continuous: The set  is open in Y but

 is not open in X. 

OPEN AND CLOSED FUNCTIONS

DEFINITION 4.17
OPEN AND CLOSED 

FUNCTIONS

Let X and Y be topological spaces. A func-
tion  is said to be:

Open if  is open in Y for every
O open in X.
Closed if  is closed in Y for
every C closed in X.

EXAMPLE 4.9 (a) Give an example of a continuous function 
that is neither open nor closed.

(b) Give an example of an open function that is 
neither continuous nor closed.

(c) Give an example of a closed function that is 
neither continuous nor open.

f: X Y
f 1– : Y X

f 1– O 

f: X Y
f O 

f C 

X a b = 1

0

IX: X 1  X 0 
IX x  x= x X

0 1  
0 1 

J: X Y J x  x=
x X

X 0 1 = 


J O  O Y= Y 0 1 =

1
2
--- 1 

J 1– 1
2
--- 1   1

2
--- 1 =
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J is not closed:  is certainly closed in X. However,
 is not closed in Y, since every open neighbor-

hood of 0 in the space Y meets .

 (c)Let X be the following subspace of  

Let Y be the same as the topological space X, but with  added
to its topology [  is open in Y (see margin)]. Consider the func-
tion  given by:

f is closed: For C closed in X, we show that  is open in Y.
               Let . 

Case 1: . Since  is discrete (recall that , is
open in Y) we have that  is an open set in Y containing
no element of . 
Case 2: . Since  and , .
Since C is closed in X, we can choose an integer N such that 

The desired result now follows from the observation that

 is also open in Y.

f is not continuous: The set , is open in Y but not in X, and
. 

f is not open: The set  is open in X, but  is not
open in Y. 

X 0 1 =
J 0 1   0 1 =

0 1 

.  . . ........ . . .
10 23

2
---1

2
---

not open in X

10 23
2
---

. .  . . .....f

X

Y
open in Y

... . .
1
2
---



X 0  1
n
--- n Z+
 
 
 

2 1
n
--- n Z+–

 
 
 

2   =

2 
2 

f: X Y

f x  x if x 1
0 if x 1




=

f C  c

y f C 
y 0 Y 0 – 2 

y 
f C 

y 0= f 0  0= y f C  0 C

0  1
n
--- n N
 
 
 

 C =

0  1
n
--- n N
 
 
 



2 
f 1– 2   2 =

Answer: See page A-24.

CHECK YOUR UNDERSTANDING 4.26
Give an example of a function  that is open and closed, but
not continuous.

1
2
---
 
 
  f 1

2
---
 
 
 

 
 
  0 =

f: X Y
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Two topological spaces are considered to be “the same” if there exists
a bijection from one to the other which preserves the topological struc-
ture of those spaces. To be more precise:

PROOF: Let  be a continuous closed bijection. Appealing to
CYU 4.26, we show that  is also continuous, and do so by

showing that for any O, open in X,  is open in Y: 
Noting that the inverse of the inverse function  is the func-
tion f, we have . 

And why is  open? Because:

 

HOMEOMORPHIC SPACES

Recall that  is a
bijection if it is both one-
to-one and onto (Defini-
tion 2.13, page 70).

Answer: See page A-24.

f: X Y

DEFINITION 4.18
HOMEOMORPHIC

SPACES

A topological space  is homeomor-
phic to a topological space , written

, if there exists a bijection 
such that: 

Such a function f is said to be a homeomor-
phism from X to Y. 

CHECK YOUR UNDERSTANDING 4.27
Prove that a bijection  is a homeomorphism if and only if
both f and  are continuous.

THEOREM 4.13 Any continuous closed bijection is a homeo-
morphism.

X X 
Y Y 

X Y f: X Y

f X  f O  O X  Y= =

f: X Y
f 1– : Y X

f: X Y
f 1– : Y X

f 1–  1– O 
f 1–

f 1–  1– O  f O  f Oc  c= =
CYU 4.8(b), page 165

Answer: See page A-25.

CHECK YOUR UNDERSTANDING 4.28
(a) Prove that any continuous open bijection is a homeomorphism.
(b) Give an example of a continuous bijection  which is

not a homeomorphism.

THEOREM 4.14 Any continuous bijection from a compact
space to a Hausdorff space is a homeomor-
phism.

f Oc  c

O open Oc is closed f Oc  is closed f Oc  c is open

f is closed

f: X Y
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PROOF: Let  be a continuous bijection from a compact
space X to a Hausdorff space Y. We complete the proof by showing
that f is closed (see Theorem 4.13):

Let C be closed in X. Since X is compact, C is compact (see
CYU 4.19, page 177). By Theorem 4.12,  is compact,
and therefore closed [Theorem 4.9 (page 178)].

 

A major goal in topology is to determine when two spaces are homeo-
morphic. Finding an explicit homeomorphism may not be easy. There is,
however, a useful technique that can at times be used to show that two
spaces are not homeomorphic:

In particular, if two topological spaces X and Y are not of the same car-
dinality then they cannot be homeomorphic. Why not? Because any
homomorphism  must be a bijection.

Here is a less obvious topological invariant property:

PROOF: Let X be a path connected space, and let Y be homeomorphic
to X. We show that Y must also be path connected:

Since , there exists a homeomorphism . For any
two given points , let  be such that

 and . Since X is path connected, we know
that there exists a continuous function  such that

 and . The continuous function
 (Theorem 4.11), produces a path joining  to :

  and .

Answer: See page A-25.

CHECK YOUR UNDERSTANDING 4.29
Give an example of a bijection that is both open and closed from a
compact space to a Hausdorff space that is not a homeomorphism.

TOPOLOGICAL INVARIANT PROPERTIES

Properties of a topological space which are preserved
under homeomorphisms are said to be topological invari-
ant properties. Exhibiting a topologically invariant prop-
erty possessed by one space and not by another can serve to
show that the two spaces are not homeomorphic.

f: X Y

f C 

f: X Y

. .
a b| |

0 1

Xf
DEFINITION 4.19

PATH

PATH CONNECTED

A path in a topological space X is the image
of a continuous function . 

A space X is path connected if for any
two given points  there exists a path:

THEOREM 4.15 Path connectedness is a topological invariant
property.

f: 0 1  X 

a b X
f: 0 1  X   with f 0  a and  f 1  b.= =

..
0         1

x1

x2

.
.f

y1

y2

. .
g

X Y g: X Y
y1 y2 Y x1 x2 X

f x1  y1= f x2  y2=
f: 0 1  X

f 0  x1= f 1  x2=
gf: 0 1  Y y1 y2

fg  0  f g 0   f x1  y1= = = fg  1  y2=
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In the exercises you are asked to verify that the subspace  of
 is path connected, and that  is not. It follows, from

the previous theorem, that the two spaces are not homeomorphic.

Roughly speaking two spaces are homeomorphic if by stretching one
of them you can arrive at the other. Indeed, topology is often called the
“rubber-sheet geometry.” In particular, one can stretch the “rubber”

interval  to get to the interval , and the interval  to

the interval  (just keep on stretching): 

 One cannot, however, stretch the non-compact interval  to the
compact interval  [see CYU 4.28(a)]. In addition, the path con-
nected interval  is not homeomorphic to the non path connected

 (see Theorem 4.15). 

Answer: See page A-25.

CHECK YOUR UNDERSTANDING 4.30
(a) Prove that compactness is a topological invariant property. 
(b) Are the subspaces  and  of  homeomorphic?

Justify your answer. 

SOME CASUAL REMARKS

1 3 
 0 1  2 3 

0 1  0 1  

1 3  1 5  
2
---– 

2
--- 

 

–  

1

1      5

3

.
.

-

-

| |

y f x  x
2
--- 1

2
---+= =

f: 1 5  1 3 
A homeomorphism [Exercise 17(a)]


2
---– 

2
---

f x  x: 
2
---– 

2
--- 

  tan=
            A homeomorphism [Exercise 17(b)]

Answer: See page A-25.

CHECK YOUR UNDERSTANDING 4.31
Prove that homeomorphic is an equivalence relation ( ) on any set
of topological spaces (see Definition 2.20, page 88).

1 3 
1 5 

1 3 
1 2  2 3 
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EXERCISES

1. Let f be a function from a topological space X to . Prove that f is continuous if and only if for 
any  both the sets  and  are open.

2. Let Y be any space that is not indiscrete. Show there exists a space X and a function  
that is not continuous.

3. Let X be any space that is not discrete. Show there exists a space Y and a function  that 
is not continuous.

4. Let  be a topological space and let  be a metric space. Prove that a function 
 is continuous at  if and only if for any  there exists a neighborhood O of x 

such that  for every .

5. Let f and g be continuous functions from a topological space X to . Prove that:

(a)  is continuous for any .

(a)  is continuous.

(a)  is continuous if  for any .

6. Give an example of a function  that is continuous and open, but not closed.

7. Give an example of a function  that is continuous and closed, but not open.

8. Let  be a bijection. Prove that f is open if and only if  is continuous.

9. (a) Show that a function  is open in Y if  is open in Y for every B in a base for 
the topology of X.

(b) Show, by means of an example, that (a) need not hold when the word “base” is replaced
with “subbase.”

(c) Show that in the event that f is a bijection, then (a) will hold when the word “base” is
replaced with “subbase.”

10. (a) Prove that a bijection  is a closed function if and only if it is an open function.
(b) Give and example of an open onto function that is neither closed nor continuous.
(c) Give and example of an open one-to-one function that is neither closed nor continuous.
(d) Give and example of a closed onto function that is neither open nor continuous.
(e) Give and example of a closed one-to-one function that is neither open nor continuous.

11. Let  be a collection of continuous functions. Use the Principle of Mathe-
matical Induction to show that  is also continuous.


a  x f x  a  x f x  a 

f: X Y

f: X Y

X   Y d 
f: X Y x X  0

d f x  f y     y O



af bg: X + a b 

fg: X 

f
g
---: X  g x  0 x X

f: X Y

f: X Y

f: X Y f 1– : Y X

f: X Y f B 

f: X Y

fi: Xi Xi 1+ i 1=
n

fnfn 1– f2f1:X1 Xn 1+
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12. Closure (See Exercises 25-33, page 182)]. Establish the equivalence of the following three 
properties:

(i)  is continuous.

(ii)  for every .

(iii)  for every .

13.[Closure (See Exercises 25-33, page 182)]. Prove that  is closed if and only if 

 for every .

14. Let  be closed. Show that for any  and any open set U containing  there 

exists an open set V containing A such that .

15. Let  be open. Show that for any  and any closed set H containing  there 

exists a closed set V containing A such that .

16. Give an example of a set X, and two topologies  and  such that the identity function 

 is:

(a) Continuous but not open. (b) Continuous but not closed.
(c) Continuous but not a homeomorphism. (d) Open but not closed.
(e)  Open but not continuous. (f) Open but not a homeomorphism.
(g) Closed but not open. (h) Closed but not continuous.
(i) Closed but not a homeomorphism.

17. (a) Show that  given by  is a homeomorphism.

(b) Show that  given by  is a homeomorphism.

18. Is the closed unit interval  homeomorphic to the open interval ? Justify your 
answer.

19. Give an example of an open bijection from a compact Hausdorff space to a Hausdorff space 
that is not a homeomorphism.

20. Give an example of a closed bijection from a compact Hausdorff space to a Hausdorff space 
that is not a homeomorphism.

21.[Let  be a bijection. Show that the following properties are equivalent:
(i) f is a homeomorphism.
(ii) f is continuous and open.
(ii) f is continuous and closed.

(iii)  for every .

f: X Y

f A  f A  A X

f A  f A  A X

f: X Y

f A  f A  A X

f: X Y A Y f 1– A 

f 1– V  U

f: X Y A Y f 1– A 

f 1– V  H

 
IX: X   Y  

f: 1 5  1 3  f x  x
2
--- 1

2
---+=

f: 
2
---– 

2
--- 

   f x  xtan=

0 1  1 1– 

f: X Y

f A  f A = A X
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22. Show that the Sierpinski space (CYU 4.13, page 172) is not homeomorphic to the discrete 
space of two points (CYU 4.12, page 171).

23. Show that the subspace  of  is path connected, and that  is not.

24. (Fixed Point Property). A nonempty space X satisfies the fixed point property if for any 
continuous function  there exists  such that . Prove that the fixed 
point property is a topological invariant.

25. (a) Prove that the existence of a proper subset of a topological space X that is both open and 
closed is a topological invariant property. 

(b) Use (a) to show that the subspaces  and  of  are not homeomorphic.

26. Prove that connectedness is a topological invariant property (see Exercise 44-49, page 184).

27. Prove that the cardinality of the set of subsets of a topological space that are both open and 
closed is a topological invariant property. 

28. Prove that metrizable is a topological invariant property. 

29. Prove that each of the separation properties:  of Exercises 38-42, page 183, 
is a topological invariant property. 

PROVE OR GIVE A COUNTEREXAMPLE

30. If Y is an indiscrete space, then every function  is continuous for every space X.

31. Any continuous open bijection is a homeomorphism.

32. Two topological spaces, X and Y, are homeomorphic if and only if .

33. If the space X is homeomorphic to a space Y, then .

34. (See Exercises 34-37, page 183.) If  is a homeomorphism, and if  is dense in Y, 
then  is dense in Y. 

35. (See Exercises 34-37, page 183.) If  is continuous, and if  is dense in X, then  
is dense in Y.

36. (See Exercises 34-37, page 183.) If  is onto and continuous, and if  is dense in X, 
then  is dense in Y.

37. (See Exercises 34-37, page 183.) If  is continuous, and if  is dense in X, then  
is dense in Y.

1 3   0 1  2 3 

f: X X x X f x  x=

0 1  0 1  2  

T0 T1 T2 T3 T4   

f: X Y

Card X  Card Y =

Card X  Card Y =

f: X Y A
f A 

f: X Y A f A 

f: X Y A
f A 

f: X Y A f A 
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 4
 

Let’s impose a topology on the Cartesian product of two topological
spaces: 

Note that while the above collection  is closed under finite intersec-
tions (Exercise 2), it need not be closed under unions. For example,
while the intersection of the two rectangles  and

 in Figure 4.1 is again of the form  with U and V
open in , their union is not. It follows that  is not a topology on

; but then again, it does not profess to be a topology, but rather a
basis for the product topology on : the collection of all arbitrary
unions of elements from .

Figure 4.1

See Definition 2.7, page 63.

§4 PRODUCT AND QUOTIENT SPACES

DEFINITION 4.20
PRODUCT TOPOLOGY 

ON TWO SPACES

Let  and  be topological
spaces. The product topology on

 
is that topology with basis:

X X  Y Y 

X Y x y  x X y Y =

 U V U X V Y =



1 3  1 2 
2 4  0 3  U V

 
 

 


1         2           3          4

3

2

1

0

V

U

U V

1 3  1 2 

2 4  0 3 

Answer: See page A-26.

CHECK YOUR UNDERSTANDING 4.32
(a) Show that if  and  are bases for the topological spaces X

and Y, respectively, then 

is a basis for the product topology on .
(b) Show that the product topology on  coincides with the

Euclidean topology on .

X Y

 D E D X and E Y =
X Y
 

2
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As you will see, the following result continues to hold for any collec-
tion of compact spaces.

PROOF: If either X or Y is empty, then so is , and, as such, is
compact. That being the case, we need only consider the case where
neither X nor Y is empty. 
Appealing to Exercise 11, page 179, we show that  is compact
by showing that every open cover of , taken from the basis

, where U is open in X and V is open in Y, has a finite subcover:
Let  be a cover of , where each  is
open in X, and each  is open in Y. For any  and ,
the element  is contained in some . It follows
that  and  are open covers of X and Y,
respectively. By compactness, we can choose finite subcovers

 and  of X and Y, respectively. Noting that
for any  there exist elements  and  of
those subcovers containing x and y respectively, we conclude
that the finite collection  covers

.
 

  

PROOF: To see that  is continuous you need but note that if U is
open in X, then  is open in  (see Definition
4.20). The same argument can be applied to .

THEOREM 4.16 If X and Y are compact spaces, then the prod-
uct space  is also compact.X Y

X Y

X Y
X Y

U V
U V  A X Y U

V x X y Y
x y  U V

U  A V  A

Ui
 i 1=

n Vi
 i 1=

m

x y  X Y Ui
Vj

Ui
Vj

 1 i n 1 j m  

X Y

Answer: See page A-26.

CHECK YOUR UNDERSTANDING 4.33
Establish the converse of Theorem 4.16: If  is compact, then X
and Y are compact.

X Y

X

Y

x y .
.

.
x

y
1

2

DEFINITION 4.21
PROJECTION
 FUNCTIONS

Let X and Y be nonempty sets. The func-
tions  and 

given by  and 
are called the projection functions onto X
and Y, respectively.

THEOREM 4.17 If X and Y are nonempty topological spaces,
the projection functions  and

 are continuous.

1 : X Y X 2 : X Y Y

1 x y  x= 2 x y  y=

1 : X Y X
2 : X Y Y

1

1
1– U  U Y= X Y

2 : X Y Y
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In Exercise 14, page 180, you were asked to show that any collection
 of subsets of a given set generates a topology on that set; namely: the

set of arbitrary unions of finite intersections of elements taken from .
As it turns out:

PROOF: The claim is a consequence of Definition 4.20 and the obser-
vation that for any open set U in X, and any open set V in Y: 

The Cartesian product of two sets can easily be extended to accom-
modate a finite number of sets :

 

A countable number of sets:

Any collection of sets:

Answer: See page A-26.

CHECK YOUR UNDERSTANDING 4.34
Are the projection functions of Theorem 4.17 necessarily open?
Closed? Justify your answer.

U

V U V

THEOREM 4.18 Let X and Y be topological spaces. The prod-
uct topology on  is generated by:  

(In other words: the above collection consti-
tutes a subbase for the product topology.)

 GENERAL PRODUCT SPACES 




X Y

1
1– U  U is open in X

 
 
 

2
1– V  V is open in Y

 
 
 



U V 1
1– U  2

1– V = (see margin)

X1 X2  Xn  

Xi

i 1=

n

 x1 x2  xn    xi Xi =

Xi

i 1=



 x1 x2  xn      xi Xi =

X
 A
 x  x X =
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By the same token, Definition 4.29 can be generalized to accommo-
date any collection of topological spaces. Let’s first turn to a finite col-
lection:

The following generalization of Definition 4.21 will enable us to
extend the concept of a product topology to any collection of topologi-
cal spaces:

 

While one is able to geometrically depict the Cartesian product of two
or   three sets (see margin), the same cannot be said for four or more sets.
We can, however, provide a visual sense of the product topology

 of an arbitrary collection of spaces by first representing each

 as a vertical line, as is done in Figure 4.2. An open set O is also
depicted (in blue) in the figure. Note that being a union of finite inter-
sections of the subbase elements , only a finite number of the

 lines can fail to be “entirely blue.”

DEFINITION 4.22
PRODUCT TOPOLOGY 

ON n SPACES

Let  be a collection of
topological spaces. The product topology

on  is that topology with basis:

Which is to say: The set consisting of arbi-
trary unions of elements from .

Xi Xi  i 1=
n

Xi

i 1=

n



 U1 U2  Un Ui Xi =



DEFINITION 4.23
PROJECTION
 FUNCTION

Let  be a collection of nonempty sets.

For , the function

  given by 

is called the projection function onto the 
component of .

X  A

 A

 : X
 A
 X  x  A x=

th

X
 A


X

Y
x y .y

x

X

Y

Z

x
y

z x y z  .

DEFINITION 4.24
PRODUCT TOPOLOGY 

Let  be a collection of topo-
logical spaces. The product topology on

 is that topology with subbase

X X  A

X
 A


 1– Ua  Ua X  A =

X
 A


X

1– Ua 

X
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Y

Figure 4.2
Theorem 4.16 assured us that the product of two compact spaces is

again compact. Much more can be said:

PROOF: Appealing to Alexander’s Subbase Theorem of page 177, we

assume that  is a cover of

 that has no finite subcover, and arrive at a contradiction: 

For any ,  cannot cover the compact

space . For if it did, then there would exist a finite subfamily

 which covers , resulting in a finite

subfamily of F which covers X; namely: . Conse-

quently, for every , we can choose an element 

which is not contained in any  with . Since the
particular point  is not contained in any element of
F, F does not cover X — a contradiction.

We remind you that:

...    ...                  ...   ...

(  
   

 )

( 
  

  
 )

(  
   

 ) (  
   

 )

( 
  

  
 )

   
  

The Xs
... ...... ...

An open set O

(   
   )

(  
    

)

( 
  

  
 )

Andrey Tychonoff 
   (1906-1993)

THEOREM 4.19
TYCHONOFF’S

PRODUCT THEOREM

Any product of compact spaces is compact.

Answer: See page A-27.

CHECK YOUR UNDERSTANDING 4.35

Show that if  is compact then each  must be compact. 

F 1– U  U X  A

X X
 A
=

 A U 1– U  F 

X

Ui
1– Ui

  F 
i 1=
n X

1– Ui
  i 1=

n

 A x X

U 1– U  F
x  A X

X X
 A
= X
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• An equivalence relation on a set X is a relation, ~, that is
reflexive, symmetric, and transitive (Definition 2.20, page 88).

• The equivalence class of , denoted by , is given by
 (Definition 2.21, page 91).

We will denote the set of equivalence classes associated with an
equivalence relation ~ on a topological space X  by the symbol :

In addition, the function , given by , will be
called the projection function of X onto .

As it turns out, the topology on X imposes a topology on the set :

PROOF: We verify that the three defining axioms of a topological
space (Definition 4.9, page 171) are satisfied:

(i) Since  and X are open in X,  and
 are open in .

(ii) Arbitrary unions of open sets in  are again open.

 , 
(iii) Finite intersections of open sets in  are again open.

 QUOTIENT SPACES 

THEOREM 4.20

QUOTIENT TOPOLOGY

QUOTIENT SPACE

If ~ be an equivalence relation on a topologi-
cal space , then

is a topology on  (called a quotient
topology). 

The resulting topological space  is

said to be a quotient space of X. 

x0 X x0 

x0  x X x~x0 =

X  ~
X ~ x  x X=

: X X  ~  x  x =
X  ~

X  ~

X  

̃  1– O  X O  =

X  ~

X ~, ̃ 
 

  1–   =
 1– X  X ~= X  ~

X  ~

 1– O 
 A
  1– O

 A
 

 
 

=

open in XExercise 25, page 169

X  ~

 1– Oi 

i 1=

n

  1– Oi

i 1=

n


 
 
 
 

=

open in XExercise 25, page 169
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Here are a couple of specific quotient spaces for your consideration:
(a) Let ~ be the equivalence relation on the subspace 

of  represented by the partition  for every
, and . As is sug-

gested in Figure 4.3, the quotient space  is
homeomorphic to the unit circle

 — a fact that can be rig-
orously established by showing that the function

 given by  is a
homeomorphism.

Figure 4.3

While every point in the
open interval  is
identified with itself
only, the two end points
of the closed interval are
identified with each
other. The visual effect
is that of gluing one end
point of the interval to
the other. 

0 2 
0 2 

 x  x =
x 0 2  0  2  0 2 = =

0 2   ~

S1 x y  2 x2 y2+ 1= =

f: 0 2   ~ S1 f x   x xsincos =

20 
. () (    )

.

0
2



=

. 
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(b) Consider the space  where ,
and ~ is the relation represented by the partition

 for , , and
 for . As is

suggested in Figure 4.4, the quotient space  is
homeomorphic to the cylinder  — a fact
that can be rigorously established by showing that the
function  given by
  is a homeomorphism.

Figure 4.4

Visually, we are gluing
the left and right edges
of the square together.

Answer: See page A-27.

CHECK YOUR UNDERSTANDING 4.36
Let X denote the rectangle of Figure. 4.4.
Define an equivalence relation ~ on X in
such a way so that  is homeomorphic to
a torus.

X  ~ X 0 2  0 1 =

x y   x y  = 0 x 2  0 y 1 
0 y   1 y  0 y  1 y  = = 0 y 1 

X  ~
C S1 0 1 =

f: X ~  C
f x y    x xsincos y =

0 0  2 0 

0 1  2 1 

x y .. . 2 y 0 y  ..

X  ~
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EXERCISES

1. Let   and   be two topologies on the set 
. Determine the topology on the product space:

(a)              (b)              (c) 

2. (a) Let  and  be topological spaces. Prove that  
is closed under finite intersections.

(b) Let  be a collection of topological spaces. Prove that

 is closed under finite intersections.

3. Prove that a space X is Hausdorff if and only if  is closed in .

4. (a) Prove that the product of two Hausdorff spaces is Hausdorff.
(b) Prove that the product of Hausdorff spaces is Hausdorff.

5. (a) Prove that the product of two regular spaces is regular (see Exercise 41, page 183).
(b) Prove that the product of regular spaces is regular (see Exercise 41, page 183).

6. Let f and g be functions from a topological space X to a topological space Y. Let  
be given by . Prove that h is continuous if and only if both f and g are con-
tinuous.

7. For given functions  and , let   be given 
by . Prove that  is continuous if and only if f and g  are 
continuous.

8. (a) Let U and V be a subspaces of X and Y, respectively. Prove that  is a subspace of 
.

(b) Let  be a subspace of a space , . Prove that  is a subspace of .

(c) Let  be a subspace of a space , . Prove that  is a subspace of .

1  X a b   = 2  X a  a b  a c     =
X a b c  =

X 1  X 1  X 1  X 2  X 2  X 2 

X X  Y Y  S U V U X V Y =

Xi Xi  i 1=
n

 U1 U2  Un Ui Xi =

x x  x X  X X

h:X Y Y
h x  f x  g x  =

f: X1 Y1 g: X2 Y2 f g : X1 X2 Y1 Y2
f g  x1 x2  f x1  g x2  = f g

U V
X Y

Si Xi 1 i n  Si

i 1=

n

 Xi

i 1=

n



S X  A S
 A
 X

 A
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9. (a) Let U and V be subsets of the spaces X and Y, respectively. Prove that  is dense in 
 if and only if U is dense in X, and V is dense in Y. (See Exercises 34-37, page 183.)

(b) Let  be a subset of a space , . Prove that  is dense in  if and

only if each  is dense in .

(c) Let  be a subset of a space , . Prove that  is dense in  if and

only if each  is dense in .

10. (a)  Let X and Y be topological spaces. Prove that the projection functions  

and  are open. 

(b) Prove that each projection function  is open.

11. (a) Prove that for any functions  and , the function 
 given by  is continuous if and only if f 

and g are both continuous. 

(b) Let  be given, for . Prove that the function 

given by  is continuous if and only if each  is continuous.

12. (a) Let X, , and  be topological spaces. Prove that a function  is continu-

ous if and only if  and  are continuous. 

(b) Prove that a function  is continuous if and only if the functions

 are continuous for every .

13. (a) Let  and  be closed subsets of the topological spaces  and , respectively. Prove 
that  is a closed subset of . 

(b) Let  be a closed subset of , for . Prove that .

14. (a) Let  and  be subsets of the topological spaces  and , respectively. Prove that 

. (See Exercises 25-33, page 182.)

(b) Let  be a subset of , for . Prove that .

U V
X Y

Si Xi 1 i n  Si

i 1=

n

 Xi

i 1=

n


Si Xi

S X  A S
 A
 X

 A


S X

1 : X Y X

2 : X Y Y

: X
 A
 X

f: X1 Y1 g: X2 Y2

h: X1 X2 Y1 Y2 h x1 x2  f x1  g x2  =

f: X Y  A h: X
 A
 Y

 A


h x  X f x   A= f

Y1 Y2 f: X Y1 Y2

1f: X Y1 2f: X Y2

f: X Y
 A


 f: X Y  A

S1 S2 X1 X2

S1 S2 X1 X2

S X  A S
 A
 X

 A
=

S1 S2 X1 X2

S1 S2 S1 S2=

S X  A S
 A
 S

 A
=
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15. Prove that for any two topological spaces X and Y, . 

16. (a) Prove that if   is homeomorphic to , and if   is homeomorphic to , then 
 is homeomorphic to .

(b) Prove that if  is homeomorphic to , for , then  is homeomorphic to

.

17. (a) Let ~ be an equivalence relation on a space X. Prove that  is  if and only if each 
equivalence class  is closed in X. (See Exercise 39, page 183.)

(b) Give an example of a -space X and an equivalence relation ~ on X such that  is
not .

18. Let ~ be the equivalence relation on the space  given by 
 if and only if . Describe the quotient space  and show 

that it is not a Hausdorff space.

19. (a) Let X and Y be topological spaces. Let ~ be the equivalence relation given by 
 if and only if . Prove that  is homeomorphic to X.

(b) Generalize (a) to accommodate a collection  of spaces.
(c) Generalize (a) to accommodate a collection  of spaces.

20. Let ~ be an equivalence relation on a compact space X. Prove that  is compact.

21. Let ~ be the equivalence relation on the subspace  of  induced by the partition 
 for every , and  (see Figure 4.4). Show that 

the function  given by  is a homeomorphism. 

22. Let ~ be the equivalence relation on the space  induced by the partition 
 for , , and  for 

 (see Figure 4.4). Let  denote the unit circle: . 
Show that the function  given by  is a 
homeomorphism.

X Y Y X

X1 Y1 X2 Y2

X1 X2 Y1 Y2

X Y  A X
 A


Y
 A


X  ~ T1

x 

T1 X  ~
T1

X 0 1  0 1 =
x1 y1 ~ x2 y2  y1 y2=  0 X  ~

x1 y1 ~ x2 y2  x1 x2= X Y  ~

Xi i 1=
n

X  A

X  ~

0 2  
x  x = x 0 2  0  2  0 2 = =

f: 0 2  ~  S1 f x   x xsincos =

X 0 2  0 1 =
x y   x y  = 0 x 2  0 y 1  0 y   1 y  0 y  1 y  = =

0 y 1  S1 S1 x y  2 x2 y2+ 1= =
f: X ~ S1 0 1  f x y    x xsincos y =
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PROVE OR GIVE A COUNTEREXAMPLE

23. The Cartesian Product of two metrizable spaces is again metrizable.

24. The Cartesian Product of any collection of metrizable spaces is again metrizable.

25. For any two topological spaces X and Y, the projection functions  and 

 are closed. 

26. For any three topological spaces X, , and , a function  is open if and only 

if  and  are open.

27. For any four nonempty topological spaces , , , and , if  is homeomorphic 
to , then  is homeomorphic to  and  is homeomorphic to .

28. For any three nonempty topological spaces X, , and , if  is homeomorphic to 
, then  is homeomorphic to .

1 : X Y X

2 : X Y Y

Y1 Y2 f: X Y1 Y2

1f: X Y1 2f: X Y2

X1 X2 Y1 Y2 X1 Y1

X2 Y2 X1 X2 Y1 Y2

Y1 Y2 Y1 X
Y2 X Y1 Y2
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 5

CHAPTER 5 
A Touch of Group Theory 

The following properties reside in the familiar set Z of integers:

                               

A generalization of the above properties bring us to the definition
of a group — an abstract structure upon which rests a rich theory,
with numerous applications throughout mathematics, the sciences,
architecture, music, the visual arts, and elsewhere: 

In particular,  is a group; with “+, 0, and ” playing the role of
“*, e, and ” in the above definition. 

Is the set of integers under multiplication a group? No:
While “regular” multiplications is an associative
binary operator on Z, with 1 as identity, no integer
other than  has a multiplicative inverse in Z.

Bottom line: The set of integers under multiplication is not a group.

§1. DEFINITIONS AND EXAMPLES

Property Example:

Closure   

Associative 1.  

Identity 2.  

Inverse 3.  

a b+ Z a b Z 5 7+ Z

a b c+ + a b+  c+= a b Z 5 4 1+ + 5 4+  1+=

a 0+ a= a Z 4 0+ 4=

a a– + 0= a Z 5 5– + 0=

A binary operator on a set X
is a function that assigns to
any two elements in X an ele-
ment in X. Since the function
value resides back in X, one
says that the operator is
closed.

Evariste Galois defined
the concept of a group in
1831 at the age of 20. He
was killed in a duel one
year later, while attempt-
ing to defend the honor of
a prostitute.

We show, in the next section,
that both the identity element
e and the inverse element 
of Axioms 2 and 3 are, in fact,
both unique and “ambidex-
trous:”

a

a*e e*a a= =
a*a  a*a e= =

DEFINITION 5.1
GROUP

Associative Axiom:
Identity Axiom:

Inverse Axiom:

A group , or simply G, is a nonempty
set G together with a binary operator, *, (see
margin) such that:
1.  for every .

2. There exists an element in G, which we will
label e, such that  for every .

3. For every  there exists an element,
 such that . 

Yes, there is a number whose prod-
uct with 2 is 1:

 , but .

G * 

a* b*c  a*b *c= a b c G

a*e a= a G
a G

a G a*a e=

Z +  a–
a

1

2 1
2
--- 1= 1

2
--- Z
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We now move Theorem 2.18 of page 94 up a notch:

PROOF: We already know that  is a well defined associative oper-
ator. The identity and inverse axioms of Definition 5.1 are also met:

Identity: For any : .

Inverses: For any : 

Molding Theorem 5.1 into a more compact form by replacing each
equivalent class  with the smallest nonnegative integer in that class,
we come to:

For example, if  then , and:

(a), (b), and (d) are groups.
            (c) is not a group.

CHECK YOUR UNDERSTANDING 5.1
Determine if the given set is a group under the given operation. If
not, specify which of the axioms of Definition 5.1 do not hold.

(a) The set  of rational numbers under addition.
(b)The set  of real numbers under addition.
(c)The set  of real numbers under multiplication.

(d)The set  of positive real numbers under
multiplication.

THEOREM 5.1 For given , let  denote the set of
equivalence classes associated with the equiva-
lence relation  if ; i.e:

Then:  with 

is a group

Q




+ r  r 0 =

n Z+ Z n

a~b n a b– 

Z n 0 n 1 n  n 1– n   =

Z n +   a n +  b n a b+ n=

+ 

a n Z n a n +  0 n a 0+ n a n= =

a n Z n a n +  a– n a a– n 0 n= =

You are invited to for-
mally establish this result
in Exercise 51.

THEOREM 5.2 For given , let ,
and let , where .

Then  is a group.

The above sum is called addition modulo n.
Note that  for every , and that
for any : 

a n

n Z+ Zn 0 1 2  n 1–    =
a +n b r= a b+ dn r+=

Zn +n 

a+n 0 a= a Zn
a Zn a n a– + 0=

n 5= Z5 0 1 2 3 4    =

1+5 2 3  4+5 4 3  and  3+5 2   = 0= =
3 4 4+  mod 5
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Groups containing infinitely many elements, like  and ,
are said to be infinite groups. Those containing finite may elements,
like  which contains n elements, are said to be finite groups.

The group , with table depicted in Figure 5.1(a), has order 4. Another
group of order 4, the so-called Klein 4-group, appears in Figure 5.1(b).

Figure 5.1
Is K really a group? Well, the above table leaves no doubt that the

closure and identity axioms are satisfied (e is the identity element).
Moreover, each element has an inverse, namely itself:

. Finally, though a bit tedious,
you can check directly that the associative property holds [for example:

 and ]. You can also see that K is
an abelian group; where:  

Answer: See page A-27.

CHECK YOUR UNDERSTANDING 5.2
Complete the following (self-explanatory) group table for . 

DEFINITION 5.2
ORDER OF A GROUP

Let G be a finite group. The number of ele-
ments in G is called the order of G, and is
denoted by .

GROUP TABLES AND BEYOND

Z4 +4 

+4   0   1   2  3
0  3
1     2   
2 1
3    0 2

since 0+43 3=

since 2+43 1=

since 3+43 2=

since 1+41 2= since 3+41 0=

Z +   + 

Zn +n 

G

Z4

  * e a b c
e e a b c
a a e c b
b b c e a
c c b a e

  + 0 1 2 3
0 0 1 2 3
1 1 2 3 0
2 2 3 0 1
3 3 0 1 2

4Z4: K:

(a)                                                    (b)

 Abelian groups are also said
to be commutative groups.

DEFINITION 5.3
ABELIAN GROUP

A group  is abelian if

ee e aa e bb e  and cc e= = = =

ab a ca b= = a ba  ac b= =

G * 
a*b b*a  for every a b G=
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We will soon show that  and K are the only groups of order 4, but
first: 

PROOF: Let . By construction, the  row
of G’s group table is precisely . The fact
that every element of G appears exactly one time in that row is a con-
sequence of Exercise 50, which asserts that the function 
given by  is a bijection. As for the columns: 

We now show that the two groups in Figure 5.1 represent all groups
of order four. To begin with, we note that any group table featuring the
four elements  must “start off” as in T in Figure 5.2, for e
represents the identity element.                           

Figure 5.2
Since no element of a group can occur more than once in any row or

column of the table, the -box in T can only be inhabited by e, b or c,
with each of those possibilities displayed as E, B, and C in Figure 5.2.
Repeatedly reemploying Theorem 5.2, we observe that while E leads to
two possible group tables, both B and C can only be completed in one
way (see Figure 5.3)

THEOREM 5.3 Every element of a finite group G must
appear once and only once in each row and
each column of its group table.

Z4

Answer: See page A-27.
CHECK YOUR UNDERSTANDING 5.3

Complete the proof of Theorem 5.3.

G e a1 a2  an 1–    = ith

aie aia1 aia2  aian 1–   

fai
: G G

fai
g  aig=

e a b c   

  * e a b c
e e a b c
a a c
b b
c c

T:

E:                                 B:                                 C:

  * e a b c
e e a b c
a a b
b b
c c

  * e a b c
e e a b c
a a e
b b
c c

  * e a b c
e e a b c
a a
b b
c c
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.

Figure 5.3
At this point we know that there can be at most four groups of order

4, and their corresponding group tables appear in Figure 5.4. The group
tables for  and K of Figure 5.1 are also displayed at the bottom Fig-
ure 5.4.

Figure 5.4 

While table  and the Klein group table K are identical, those of the
remaining four tables in Figure 5.4 look different.

But looks can be deceiving:

  * e a b c
e e a b c
a a e
b b
c c

  * e a b c
e e a b c
a a e c b
b b
c c

  * e a b c
e e a b c
a a e c b
b b c
c c b

  * e a b c
e e a b c
a a e c b
b b c e a
c c b a e

  * e a b c
e e a b c
a a e c b
b b c a e
c c b e a

only option                only option

tw
o options

E:

E1

E2

  * e a b c
e e a b c
a a b
b b
c c

  * e a b c
e e a b c
a a b c e
b b
c c

  * e a b c
e e a b c
a a b c e
b b c e a
c c e a b

B:

only option                      only option                        only option

B
e
a
b
c

e   a     b    c
e   a     b    c
a    b     c     e
b    c
c     e

  * e a b c
e e a b c
a a c
b b
c c

  * e a b c
e e a b c
a a c e b
b b
c c

  * e a b c
e e a b c
a a c e b
b b e
c c b

  * e a b c
e e a b c
a a c e b
b b e c a
c c b a e

C:

only option only option only option

C

Z4

  * e a b c
e e a b c
a a e c b
b b c e a
c c b a e

E2:  * e a b c
e e a b c
a a b c e
b b c e a
c c e a b

B:   * e a b c
e e a b c
a a c e b
b b e c a
c c b a e

C:

  * e a b c
e e a b c
a a e c b
b b c e a
c c b a e

K:  + 0 1 2 3
0 0 1 2 3
1 1 2 3 0
2 2 3 0 1
3 3 0 1 2

4Z4:

  * e a b c
e e a b c
a a e c b
b b c a e
c c b e a

E1:

E2
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To show, for example, that  and  only differ superficially, we
begin by reordering the elements in the first row and first column of 
in Figure 5.5(a) from “0, 1, 2, 3” to “0, 2, 1, 3” [see Figure 5.5 (b)]. We
then transform Figure 5.5(b) to  in (c) by replacing the symbols “0,
2, 1, 3” with the symbols “e, a, b, c,” respectively, and the operator
symbol “ ” with “*”.  

Figure 5.5
So, appearances aside, the group structure of  coincides with that

of . In a similar fashion you can verify that tables B and C of Figure
5.4 only differ from table  syntactically. 

For any non-empty set X, let . We
then have:

PROOF: Turning to Definition 5.1:
Operator. :    [Theorem 2.5(c), page 72].

Associative. :  [Exercise 43, page 75].

Identity. : , where  is the iden-
tity function:  for every .

Inverse. :  [Theorem 2.4(b), page 70].

IN PARTICULAR:

Let’s get our feet wet by considering the symmetric croup , the set
of permutations on . Since there are  ways of ordering
n objects (Exercise 35, page 42), the group  consists of

 elements:

This “appearances aside”
concept is formalized in
Section 4. 

PERMUTATIONS AND SYMMETRIC GROUPS

Z4 E1
Z4

E1

+4

  + 0 1 2 3
0 0 1 2 3
1 1 2 3 0
2 2 3 0 1
3 3 0 1 2

4Z4:

(a)                                                      (b)

  + 0 2 1 3
0 0 2 1 3
2 2 0 3 1
1 1 3 2 0
3 3 1 0 2

4   * e a b c
e e a b c
a a e c b
b b c a e
c c b e a

(c)

E1:

E1
Z4

Z4

The composition operator
“ ” is defined on page 64.  THEOREM 5.4 For any non-empty set X,  is a group. 

The elements (functions) in  are said to be permutations (on X),
and  is said to be the symmetric group on X.

For ,  is called the symmetric
group of degree n, and will be denoted by .

SX f: X X f is a bijection =

SX  

f g SX gf SX

f g h SX h gf  hg f=

f SX fIX IXf f= = IX: X X
IX x  x= x X

f SX ff
1– IX=

SX
SX  

X 1 2  n   = SX  
Sn

S3
X 1 2 3  = n!

S3
3! 1 2 3  6= =



                                                                                                                                  5.1   Definitions and Examples     213

In a more compact (and more standard) form (see margin), we write:

Note that  is the identity function e: 

The symmetric group 
Figure 5.6

Generalizing the above observation we have:

   SOLUTION: (a) To find  we first perform  and then apply 
to the resulting function values:

 (b) Using the standard form we show that :

(c) Tor arrive at the inverse of the permutation ,

simply reverse its action:

e 1

1 1
2 2
3 3

        
1 2
2 3
3 1

2 3

1 3
2 1
3 2

        
1 1
2 3
3 2

4 5

1 3
2 2
3 1

        
1 2
2 1
3 3

Directly below each ele-
ments of the first row
appears its image under the
permutations. The fact that
3 lies below 1 in , for
example, simply indicates
that the permutation 
maps 1 to 3: .

4

4

1 3

THEOREM 5.5 The symmetric group  of degree n contains
 elements.

EXAMPLE 5.1 Referring to the group  featured in Figure 5.6,
Determine:
(a)            (b)           (c) 

e
1   2   3
1   2   3 
  ,  1

1   2   3
2   3   1 
  ,  2

1   2   3
3   1   2 
 ===

3
1   2   3
1   3   2 
  ,  4

1   2   3
3   2   1 
  ,  5

1   2   3
2   1   3 
 ===

0 0 1  1= 0 2  2=  and 0 3  3=

S3

Sn
n!

S3

24 42 2  1–

From Figure 5.6:

2

1 3
2 1
3 2

4

1 3
2 2
3 1

24 4 2

1 3 2 
2 2 1 
3 1 3 

4   2

24
1 2
2 1
3 3

5= =

42 3=

1    2     3
3    1     2
1    3     2 
 
 
  first 2: 

1    2     3
3    1     2 
 

42
1   2   3
1   3   2 
  3= =

then 4: 
1    2     3
3    2     1 
 

2
1   2   3
3   1   2 
 =

2
1– 1   2   3

3   1   2 
  1– 3   1   2

1   2   3 
  1   2   3

2   3   1 
  1= = = =
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Adhering to convention, we will start using  (rather than ) to
denote the binary operation in a generic group. Under this notation, the
symbol  (rather than ) is used to denote the inverse of a, while e
continues to represent the identity element. In a generic abelian group,
however, the symbol “+” is typically used to represent the binary oper-
ator, with 0 denoting the identity element, and  denoting the inverse
of a. To summarize:
                              In Summery:

SOME ADDITIONAL NOTATION: 

Utilizing the above notation:

Answer: 

: 
1   2   3   4   5
5   4   3   2   1 
 

: 
1   2   3   4   5
4   3   2   5   1 
 

CHECK YOUR UNDERSTANDING 5.4
With reference to the symmetric group , determine  and ,
where:

 and 

S5  


1   2   3   4   5
1   5   2   3   4 
 = 

1   2   3   4   5
5   3   2   1   4 
 =

ab a*b

a 1– a

a–

Original Form Product Form Sum Form
(Reserved only for abelian groups)

1.   1.  1.  

2.  2.  2.  

3.  3.  3.  

4. 4. 4.

a*b G a b G ab G a b G+

a* b*c  a*b * c= a bc  ab c= a b c+ + a b+ = c+

 a*e a= ae a= a 0+ a=

a*a e= aa 1– e= a a– + 0=

Referring to the product form,
do not express  in the form

 (there is no “division” in
the group). 
From its very definition we
find that the following expo-
nent rules hold in any group G: 

For any :

In the sum form, it is accept-
able utilize the notation .
By definition:

 .

a n–

1
an
-----

n m Z
anam an m+=

an m anm=

a b–

a b– a b– +=

For any positive integer n:
    represents 

    and  
We also define  to be e.

For any positive integer n:
 represents 

and 
We also define 0a to be 0.

DEFINITION 5.4
CYCLIC GROUP

GENERATOR

(Product form) A group G is cyclic if there
exists  such that .

(Sum form) An abelian group G is cyclic if
there exists  such that . 

In either case we say that the element a is a gen-
erator of G, and write .

EXAMPLE 5.2 Show that:
     (a)  is cyclic         (b)  is not cyclic.

an aaaa
n  a’s

a n– a 1– n=
a0

na a a a  a+ + + +
n  a’s

n– a n a– =

a G G an n Z =

a G G na n Z =

G a =

Z6 S3
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SOLUTION: (a) Clearly . In fact, as we now show, 5 is also a
generator of  (don’t forget that we are summing modulo 6):

Since every element of  is a multiple of 5, we
conclude that .

(b) We could use a brute-force method to verify, directly, that no element
of  generates all of . Instead, we appeal to the following theorem
[and Example 5.2(b)] to draw the desired conclusion.

PROOF: Let . For any two elements  and 
in G (not necessarily distinct) we have:

At this point we have two groups of order 6 at our disposal:
 and  

Do these groups differ only superficially, or are they
really different in some algebraic sense? They do differ
algebraically in that one is cyclic while the other is not,
and also in that one is abelian while the other is not.

THEOREM 5.6 Every cyclic group is abelian.

Z6 1 =
Z6

1 5  5=
2 5  5+65 4= =

3 5  5+65+65 3= =

4 5  5+65+65+65 2= =

5 5  5+65+65+65+65 1= =

6 5  5+65+65+65+65 5+ 6 0= =

5 0 5 5+=
10 1 6 4+=

15 2 6 3+=

20 3 6 2+=

25 4 6 1+=

30 5 6 0+=

Note that:

Z6 0 1 2 3 4 5     =
Z6 5 =

S3 S3

Answer: See page A-28.

CHECK YOUR UNDERSTANDING 5.5
(a) Show that 1 and 5 are the only generators of .

(b) Show that  is cyclic.

(c) Show that  is not cyclic for any .

G a  an n Z = = as at

asat as t+ at s+ atas= = =

Z6

S2

Sn n 2

Z6 +n  S3



216   Chapter 5   A touch of Group Theory                                                                                         

Exercise 1-11. Determine if the given set is a group under the given operator. If not, specify why
not. If it is, indicate whether or not the group is abelian, and whether or not it is cyclic. If it is
cyclic, find a generator for the group.

Exercise 12-23. Referring to the group :

                  

determine:   

EXERCISES

1. The set  of even integers under addition.

2. The set  of odd integers under addition.

3. The set of integers Z, with , where c is the smaller of the two integers a and b (the 
common value if ).

4. The set  of positive rational numbers, with .

5. The set , with .

6. The set  under the operation of addition modulo 10.

7. The set  under multiplication modulo 4. (For example: , since 
; and , since .)

8. The set  under multiplication modulo 5. (See Exercise 7.)

9. The set  under addition.

10. The set  under the usual multiplica-
tion of real numbers.

11. The set , with .

12.  and 13.  and 14.  for .

15.  for . 16.  and 17.  for .

18.  for . 19.  and 20.  for .

21.  for . 22.  and 23.  for .

2n n Z 

2n 1+ n Z 

a*b c=
a b=

Q+ a*b ab
2

------=

x  x 0  a*b a2

b
-----=

0 2 4 6 8    

0 1 2 3    2*3 2=
2 3 6 1 4 2+= = 3*3 1= 3 3 9 2 4 1+= =

0 1 2 3 4    

a b 2+ a b Z 

a b 2+ a b Q with not both a and b equal to 0 

Z Z a b  a b Z = a b  c d + a c+ b d+ =

S3

e
1   2   3
1   2   3 
  ,  1

1   2   3
2   3   1 
  ,  2

1   2   3
3   1   2 
 === 3

1   2   3
1   3   2 
  ,  4

1   2   3
3   2   1 
  ,  5

1   2   3
2   1   3 
 ===

24 42 3
2 3

3 3
n n Z+

1
n n Z+ 3

2– 3
3– 3

n– n Z+

3
n– n Z+ 2

2 2
3 2

n n Z+

2
n n Z+ 2

2– 2
3– 2

n– n Z+
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Exercise 24-33. For

                                 

Determine:

24.  25.  26.  27.  28. 

29.  30.  31.  32.  33. 

34. Let . Show that  with  is a group. Is the group abelian? Cyclic?

35. Is  with  a group? If so, is it abelian? Cyclic?

36.  Is  with  a group? If so, is it abelian? Cyclic?

37. Is  with  a group? If so, is it abelian? Cyclic?

38. Let  along with the binary operator: . Is  a group?

39. Let  along with the binary operator: . Is  a group?

40. Let . Show that  with  is 
a group. Is the group abelian? 

41. For , let  denote the set of polynomials of degree less than or equal to n.   Show that 

 with  is a group. Is the group abelian?

42. Let . Show that  with  is a 
group. Is the group abelian?

43. Let  denote the set of rational numbers. Show that  with  is not a 
group.

 1 2 3 4 5 6
2 3 4 5 6 1 

 
 =  1 2 3 4 5 6

2 1 4 3 6 5 
 
 =  1 2 3 4 5 6

6 5 4 3 2 1 
 
 =

    

5 100 101 100 101

S 1 = S *  1*1 1=

M2 2 +  a b
c d

a b
c d

+ a a+ b b+
c c+ d d+

=

M2 2 *  a b
c d

*
a b
c d

aa bb
cc dd

=

M2 2 *  a b
c d

*
a b
c d

aa bc+ ab bd+
ca dc+ cb dd+

=

S a b c  =
* a b c
a a b c
b b b c
c c c c

S * 

S a b c  =
* 2 0 1
2 2 0 1
0 0 1 2
1 1 2 0

S * 

S x y  x y  = S *  x y * x y  x x 1–+ y y 1+ + =

n 0 Pn

Pn *  aix
i

i 0=

n


 
 
 
 
 

* bix
i

i 0=

n


 
 
 
 

ai bi+ xi

i 0=

n

=

S x y  x y  = S *  x y * x y  x x 2+ + y y+ =

Q Q *  a*b a b ab+ +=
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44. Let . Show that  with  is a group. Is the 
group abelian?

45. Let . Show that the function  given by  is 
a bijection

46. (a) Give an example of a group G in which the exponent law  does not hold in 
a group G, for .
(b) Prove that the exponential law  does hold if the group G is abelian.
(c) Express the property  in sum-notation form.

47. Let G be a group and . Show that if , then .

48. Show that the group  of Theorem 5.1 is cyclic for any .

49. Let  denote the set of all real-valued functions. For f and g in , let  be given 
by . Show that  is a group. Is the group abelian?

50. Let  be a group. Show that the function  is a bijection.

51. Prove Theorem 5.2.

52. Let G and  be groups. Let  with:

 

(a) Show that  is a group.

 (b) Prove that  is abelian if and only both G and H are abelian.

53. Let X be a set and let  be the set of all subsets of X. Is  a group if:
                  (a)                               (b) 

PROVE OR GIVE A COUNTEREXAMPLE

54. The set  of real numbers under multiplication is a group

55. The set  of positive real numbers under multiplication.

56. Let G be a group and . If , then .

57. Let G be a group and . If , then  for every .

58. Let G be a group and . If , then  for every .

59. The cyclic group  has exactly two distinct generators.

Q a Q a 1– = Q *  a*b a b ab+ +=

G e a1 a2  an 1–    = fai
: G G fai

g  aig=

ab n anbn=
n Z""

ab n anbn=
ab n anbn=

a b c G  ab ac= b c=

Zn n Z+

F   F   f g+
f g+  x  f x  g x += F   + 

G e a1 a2  an 1–    = fai
g  aig=

H G H g h  g G h H =

g h * g h  gg hh =

G H * 

G H * 

P X  P X  * 

A*B A B= A*B A B=



+ r  r 0 =

a b c G  b c ab ac

a b G ab b= ac c= c G

a b G ab ba= ac ca= c G

Z + 
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 5 

We begin by recalling the group axioms, featuring both the product
and the sum notation:

Actually, as we show below, both the identity element of Axiom 2 and
the inverse elements of Axiom 3 work on both sides; but first:

PROOF: 

PROOF: 

(a) 

          Since :  (see Lemma 5.1).

(b) 

Axioms 2 and 3 stipulates the existence of an identity in a group, and
of an inverse for each element of the group. Are they necessarily
unique? Yes:

§2 ELEMENTARY PROPERTIES OF GROUPS

For aesthetic reasons, a set of
axioms should be indepen-
dent, in that no axiom or part of
an axiom is a consequence of
the rest. One should not, for
example, replace Axiom 2 in
Definition 5.1, page 207: 

with:
e G ae a a G=

e G ae ea= a a G=

Product Form Sum Form
(Typically reserved for abelian groups)

Closure   
Associative Axiom 1.  1.  
Identity Axiom 2.  2.  
Inverse Axiom 3. 3.

LEMMA 5.1 Let G be a group. If  is such that ,
then .

THEOREM 5.7 Let G be a group. For :

(a) 

(b) 

THEOREM 5.8 (a) There is but one identity in a group G.
(b) Every element in G has a unique inverse.

ab G a b G+

a bc  ab c= a b c+ + a b+ = c+

ae a= a 0+ a=

aa 1– e= a a– + 0=

a G a2 a=
a e=

aa a= aa a 1– aa 1– a aa 1–  e ae e a=== e=
              Axiom 1                     Axiom 3         Axiom 2

a G

aa 1– e a 1– a e==

ae a ea a==

a 1– a  a 1– a  a 1– aa 1–  a a 1– e a a 1– a= = =
Axiom 2Axiom 1 Axiom 3

a 1– a  a 1– a  a 1– a= a 1– a e=

ea aa 1– a a a 1– a  ae a= = = =
Axiom 3Axiom 3 Axiom 1 part (a)
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PROOF: (a) We assume that  and  are identities, and go on to show
that :

(b) We assume that  and  are inverses of , and show that
.

Since  and  are both equal to the identity they must be
equal to each other:

 The left and right cancellation laws hold in groups.

PROOF: 

e e
e e=

e ee e= =
Since e is an identity

Since e is an identity

a 1– a 1– a G
a 1– a 1–=

Answer: See page A-28.

CHECK YOUR UNDERSTANDING 5.6

Show that if  are elements of a group such that , then
.

aa 1– aa 1–

aa 1– aa 1–=
a 1– aa 1–  a 1– aa 1– =
a 1– a a 1– a 1– a a 1–=

ea 1– ea 1–=
a 1– a 1–=

Multiply both sides by a 1– :
Associativity:

a b c  abc e=
bca e=

Sum form:
a b+ c b+= a c=
b a+ b c a+ c= =

THEOREM 5.9 In any group G:
(a) If , then .
(b) If , then 

ab cb= a c=
ba bc= a c=

Just in case you are ask-
ing yourself:

What if b is 0 and
has no inverse?

Tisk, every element in a
group has an inverse. 

(a) (b) ab cb=

ab b 1– cb b 1–=

a bb 1–  c bb 1– =
ae ce=

a c=

ba bc=

b 1– ba  b 1– bc =

b 1– b a b 1– b c=
ea ec=

a c=

Answer: See page A-28.

CHECK YOUR UNDERSTANDING 5.7

PROVE OR GIVE A COUNTEREXAMPLE:
(a) In any group G, if  then .

(b) In any abelian group G, if  then .

ab bc= a c=

a b+ b c+= a c=
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In the real number system, do linear equations  have unique
solutions for every ? No — the equation  has no solu-
tion, while the equation  has infinitely many solutions. This
observation assures us that the reals is not a group under multiplication,
for:

PROOF: Existence:

Uniqueness: We assume (as usual) that there are two solutions, and
then proceed to show that they are equal:

(a)                 

(b)               

The inverse of a product is the product of the inverses, but in
reverse order: 

PROOF: To show that  is the inverse of  is to show that
. No problem:

THEOREM 5.10 Let G be a group. For any , the linear
equations  and  have unique
solutions in G.

(a) (b) 

ax b=
a b  0x 5=

0x 0=

a b G
ax b= ya b=

ax b=

a 1– ax  a 1– b=

a 1– a x a 1– b=

ex a 1– b=

x a 1– b=

ya b=

ya a 1– ba 1–=

y aa 1–  ba 1–=

ye ba 1–=

y ba 1–=

ax1 b and ax2 b= = ax1 ax2 x1 x2= =
Theorem 5.9(b)

y1a b and y2a b= = y1a y2a y1 y2= =
Theorem 5.9(a)

Answer: See page A-29.

CHECK YOUR UNDERSTANDING 5.8
Since the set of real numbers under addition is a group, Theorem 5.9
applies. Show, directly, that any linear equation in  has a
unique solution.

 + 

This is another shoe-sock
theorem (see page 73).

THEOREM 5.11 For every  in a group G:
 

a b
ab  1– b 1– a 1–=

b 1– a 1– ab
b 1– a 1–  ab  e=

b 1– a 1–  ab  b 1– a 1– a b b 1– eb b 1– b e= = = =
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The associative axiom of a group G assures us that an expression
such as , sans parentheses, is unambiguous [since  and

 yield the same result]. It is plausible to expect that this nicety
extends to any product  of elements of G. Plausible, to be
sure; but more importantly, True: 

PROOF: [By induction (page 33)]:
I. The claim holds for  (the associative axiom).

II. Assume the claim holds for , with .

III. (Now for the fun part) We show the claim holds for : 

Let x denote the product    under a certain pair-
ing of its elements, and y the product under another pairing
of its elements. We are to show that . 

Assume that one starts the multiplication process with the
following pairing for x and y:

Case 1. : By the induction hypothesis (II), no matter
how the products in A and C are performed, A will equal C.
The same can be said concerning B and D. Consequently

.

Case  Assume, without loss of generality, that . Break-
ing the “longer” product B into two pieces M and D we have:

By the induction hypothesis, A, M, and D are well defined
(independent of the pairing of its elements in their products).
Bringing us to:

Answer: See page A-29.

CHECK YOUR UNDERSTANDING 5.9

Give an example of a group G for which  does not
hold for every .

THEOREM 5.12 Let . The product expression

 is unambiguous in that its value is
independent of the order in which adjacent
factors are multiplied. 

ab  1– a 1– b 1–=
a b G

abc ab c
a bc 

a1a2an

a1a2an G

a1a2an

n 3=

n k= k 3

n k 1+=

a1a2ak 1+

x y=

x a1a2ai  ai 1+ ak 1+   and  y a1a2aj  aj 1+ ak 1+ = =
A                   B                                       C                 D

i j=

x AB CD y= = =

i j

x a1a2ai  ai 1+ aj  aj 1+ ak 1+ =
A                                    M                D               

x AB A MD  AM D CD y= = = = =

I: Claim holds for n 3=
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PROOF: Let G be of order n. Surely not all of the  elements
 can be distinct. Choose  such that

. Since :
, for .

 

SOLUTION: (a) Since:
 

   The element 4 has order 3 in .
(b) Since:

     The element  has order 3 in .

Answer: See page A-29.

CHECK YOUR UNDERSTANDING 5.10
Use the Principle of Mathematical Induction, to show that for any

:

 

THEOREM 5.13 For any given element a of a finite group G:
 for some .

a1a2an G

ana2a1  1– a1
1– a2

1– an
1–=

am e= m Z+

In the additive notation,
 translates to
; which is to say:

am e=
na 0=

a a  a+ + + 0=

 sum of n as 

DEFINITION 5.5
ORDER OF AN 

ELEMENT OF G

Let G be a finite group, and let 
The smallest positive integer m such that

 is called the order of a and is
denoted by . If no such element exists,
then a  is said to have infinite order.

EXAMPLE 5.3 (a) Determine the order of the element 4 in the 
group .

(b) Determine the order of the element

 

in the symmetric group .

n 1+
a a2 a3  an 1+    1 s t n 1+
at as= ata s– at s– e= =

am e= m t s–=

a G

am e=
o a 

Z6 +6 


1   2   3   4   5
3   2   4   1   5 
 =

S5

1 4  4=
2 4  4+64 2  = =

3 4  4+64+64 2+64 0= = =

Z6

1   2   3   4   5
3   2   4   1   5
4   2   1   3   5
1   2   3   4   5 
 
 
 
 
 


2

3

e


1   2   3   4   5
3   2   4   1   5 
 = S5



224     Chapter 5    A Touch of Group Theory                                                                                        

Answer: (a) 4       (b) 6

CHECK YOUR UNDERSTANDING 5.11

(a) Determine the order of the element  in .

(b) Determine the order of the element 4 in .

Note: There is no “subtraction” in a group . For
convenience, however, for given , we define
the symbol  as follows:

(add the additive inverse of b to a)

There is no “division” in a group . In this setting,
however, one does not ever substitute the symbol  for

. Why not? Convention.


1   2   3   4   
2   3   4   1    
 = S4

Z24

G + 
a b G

a b–
a b– a b– +=

G . 
a
b
---

ab 1–
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EXERCISES

1. Let G be a group and . Solve for x, if:
     (a)          (b)          (c)          (d) 

2. Let G be a group. Prove that  for every .

3. Prove that for any element a in a group G the functions  given by  and
the function  given by  are bijections.

4. Let a be an element of a group G. Show that 

5. Let G be a group and let . Show that if there exists one element  for which , 
then . 

6. Let a be an element of a group G for which there exists  such that . Prove that 
.

7. Prove that a group G is abelian if and only if  for every .

8. Let G be group for which  for every . Prove that G is abelian.

9. Let G be group for which  for every . Prove that G is abelian.

10. Let G be a finite group consisting of an even number of elements. Show that there exists , 
, such that .

11. (a) Let G be a group. Show that if, for any , there exist three consecutive integers i such 
that  then G is abelian.

(b) Let G be an abelian group. Show that for any  and : .

12. Let * be an associative operator on a set S. Assume that for any  there exists  such 
that , and an element  such that . Show that  is a group.

13. Let G be a group and . Define a new operation * on G by  for all . 
show that  is a group.

14. Let G be a group and . Use the Principle of Mathematical Induction to show that for 
any positive integer n: .

a b c  G
axa 1– e= axa 1– a= axb c= ba 1– xab 1– ba=

a 1–  1– a= a G

fa: G G fa b  ab=
ga: G G ga b  ba=

G ab b G =

a G x G ax x=
a e=

b G ab b=
a e=

ab  1– a 1– b 1–= a b G

a 1– a= a G

ab 2 a2b2= a b G

a G
a e a2 e=

a b G
ab i aibi=

a G n Z n– a n a– =

a b S c S
a*c b= d S d*a· b= S * 

a G b*c ba 1– c= b c G

G * 

a b G

a 1– ba n a 1– bna=
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15. Let  be of order n. Find .

16. List the order of each element in the Symmetric group  of Figure  5.6, page 213.

17. Let  be of order n. Prove that  if and only if n divides .

18. Prove that if  for every element a in a group G, then G is abelian.

19. Let * be an associative operator on a finite set S. Show that if both the left and right cancel-
lation laws of Theorem 5.9 hold under *, then  is a group. 

PROVE OR GIVE A COUNTEREXAMPLE

20. If  are elements of a group such that , then . 

21. In any group G there exists exactly one element a such that .

22. In any group G: .

23. Let G be a group. If  then .

24. Let G be a group. If  then .

25. Let G be a group. If  then .

a G a 1–

S3

a G as at= s t–

a2 e=

S * 

a b c  abc e= cba e=

a2 a=

ab  2– b 2– a 2–=

abc bac= ab ba=

abcd bacd= ab ba=

abc  1– a 1– b 1– c 1–= a c=
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 5
 

Apart from closure, to challenge whether or not a non-empty subset of
a group is a subgroup you need but challenge Axiom3: 

PROOF: If S is a subgroup, then (i) and (ii) must certainly be satisfied. 
Conversely, if (i) and (ii) hold in S, then Axioms 1 and 2 hold: 

Axiom 1: Since  holds for every ,
that associative property must surely hold for every

.
Axiom 2: Since  for every , then surely 

for every . It remains to be shown that .
Lets do it:

Choose any . By (ii): . 
                                By (i): .      

                                              

SOLUTION: Since , .

(i)  is closed under addition:

(ii) For any :

       Conclusion:  is a subgroup of Z (Theorem 5.14).

§3. SUBGROUPS

DEFINITION 5.6
SUBGROUP

A subgroup of a group G is a nonempty
subset H of G which is itself a group under
the imposed binary operation of G.

GROUP AXIOMS
Closure:   
Axiom 1. 
Axiom 2. 
Axiom 3. 

ab G
a bc  ab c=
ae a=
aa 1– e=

THEOREM 5.14 A nonempty subset S of a group G is a subgroup
of G if and only if:
(i) S is closed with respect to the operation in G.

(ii)  implies that .

When challenging if  is a subgroup, we suggest that you first
determine if it contains the identity element. For if not, then S is not a
subgroup, period. If it does, then  and you can then proceed to
challenge (i) and (ii) of Theorem 2.14.

a S a 1– S

a bc  ab c= a b c G 

a b c S 

ae a= a G ae a=
a S e S

a S a 1– S
aa 1– e S=

S G

S 

For example: 
5Z  10– 5– 0 5 10       =

EXAMPLE 5.4 Show that for any fixed  the subset
               
is a subgroup of .

n Z
nZ nm m Z =

Z + 

We remind you that, under
addition,  rather than

 is used to denote the
inverse of a.

a–
a 1–

0 n 0 nZ= nZ 

nZ
nm1 nm2+ n m1 m2+  nZ=

nm nZ
nm – n m–  nZ=

nZ
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You are invited to show in the exercises that the following result holds
for any collection of subgroups of a given group:

PROOF: Since H and K are subgroups, each contains the identity ele-
ment. It follows that  and that therefore . We
now verify that conditions (i) and (ii) of Theorem 5.14 are satisfied:
 (i) (Closure) If , then  and . Since H

and K are subgroups,  and . It follows that
.

(ii) (Inverses) If , then  and . Since H and K
are subgroups,  and . consequently,

.

We recall the definition of a cyclic group appearing on page 214:

Answer: See page A-29.

CHECK YOUR UNDERSTANDING 5.12
The previous example assures us that  is a subgroup of . As
such, it is itself a group. Show that  is a subgroup .

THEOREM 5.15 If H and K are subgroups of a group G, then
 is also a subgroup of G.

3Z Z + 
6Z 3Z

H K

e H K H K 

a b H K a b H a b K
ab H ab K

ab H K

Answer: See page A-30.

CHECK YOUR UNDERSTANDING 5.13
PROVE OR GIVE A COUNTEREXAMPLE:

If H and K are subgroups of a group G, then  is also a sub-
group of G.

a H K a H a K
a 1– H a 1– K

a 1– H K

H K

Answer: 
              

3  Z8=
4  0 4 =

A group G is cyclic if there exists
 such that .

DEFINITION 5.7 Let G be a group, and . The cyclic
group  is called the
cyclic subgroup of G generated by a.
    (In sum form: )

CHECK YOUR UNDERSTANDING 5.14

For , determine . (Use sum notation.)

a G G an n Z =

a G
a  an n Z =

a  na n Z =

G Z8= 3   and 4 



                                                                                                                                 5.3   Subgroups     229

PROOF: Let G be a cyclic group generated by a: . Let H be a
subgroup of G. 

Case 1. , then  is cyclic with generator e. 

Case 2. . Let  be the smallest positive integer such that
. We show  by showing that every  is a

power of :
Let . Employing the Division Algorithm of
page 43, we chose integers q and r, with , such
that: . And so we have:

            or:

 

Since  and  are both in H, and since H is a group:

. Consequently, from (**): .

Since  and since m is the smallest positive integer
such that : . Consequently, from (*):

  — a power of .

Here is a particularly important result: 

A proof of Lagrange’s Theorem is offered at the end of the section.We
now turn to a few of its consequences, beginning with:

PROOF: Let , where p is prime. Since , we can choose
an element  distinct from . By Lagrange’s theorem, the order of
the cyclic group  must divide p. But only 1 and p
divide p, and since  contains more than one element, it must con-
tain p elements, and is therefore all of G.

THEOREM 5.16 Every subgroup of a cyclic group is cyclic.

G a =

H e = H e =

H e  m
am H H am = h H

am

h an H=
0 r m

n mq r+=
h an amq r+ am qar= = = (*)

ar am  q– an= (**)

an am

am  q– an H ar H

0 r m
am H r 0=

h an am qa0 am q= = = am

Joseph-Louis Lagrange
(1736-1813)

While the converse of The-
orem 5.17 holds for abelian
groups, it does not hold in
general. In particular, there
exists a group of order 12
that does not contain a sub-
group of order 6 (The so
called alternating group of
degree 4). 

THEOREM 5.17
      (Lagrange)

If G is a finite group and H is a subgroup of
G, then the order of H divides the order of G:

       
(see Definition 5.2, page 209)

To illustrate: If a group G contains 35 elements, it cannot
contain a subgroup of 8 elements, as 8 does not divide 35. 

THEOREM 5.18 Any group G of prime order is cyclic.

H  G

G p= p 2
a G e

a  an n Z =
a 
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PROOF: We know that  and the Klein group K are the only groups of
order 4, and each is abelian. Clearly the trivial group  of order 1 is
abelian. Any group or order 2 or 3, being of prime order, must be cyclic
(Theorem 5.18), and therefore abelian (Theorem 5.6, page 215).

                           

PROOF: If , then  is a
subgroup of G consisting of m elements. Consequently: .

PROOF: Let , with . Since m divides n (Lagrange’s
Theorem),  for some . Thus:

We begin by recalling some material from Chapter 1:
An   equivalence relation ~ on a set X is a relation which is

Reflexive:  for every ,

            Symmetric: If , then ,

Transitive: If  and , then .

For  the equivalence class of  is the set:
.

The symmetric group 
is an example of a non-
abelian group of order 6.

S3 THEOREM 5.19 Every group of order less than 6 is abelian.

Z4
e 

We remind you that 
denotes the order of a.
 (Definition 5.5, page 223).

o a  THEOREM 5.20 For any element a in a finite group G:
 o a  G

o a  m= a  a a2  am 1– am e=    =
o a  G

If , then n 1= G e = THEOREM 5.21 If G is a finite group of order n, then
 for every .an e= a G

a G o a  m=
n tm= t Z+

Answer: See page A-30.

CHECK YOUR UNDERSTANDING 5.15
PROVE OR GIVE A COUNTEREXAMPLE

Let G be a group with . If  and , then
.

PROOF OF LAGRANGE’S THEOREM 

an atm am t et e= = = =

a b G o a  n= o b  m=
ab nm e=

See Definition 2.20 page 88.
x~x x X

See Definition 2.21 page 91.

x~y y~x

x~y y~z x~z

x0 X x0

x0  x X x~x0 =
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PROOF: 
~ is reflexive:  since .

~ is symmetric:.

~ is transitive: If , then:

  

Having established the equivalence part of the theorem, we now ver-
ify that :

We are now in a position to offer a proof of Lagrange’s Theorem: 
If H is a subgroup of a finite group G, then .

PROOF: Theorem 2.15(a), page 93, and Lemma 5.2, tell us that sets
 partition G. Since G is finite, we can choose

 such that  with  if . 

We now show that each  has the same number of elements as H
by verifying that the function  given by  is a
bijection:

LEMMA 5.2 Let H be a subgroup of a group G. The relation  if
 is an equivalence relation on G. Moreover: 

NOTE: The above set  will be denoted by :

a~b
ab 1– H

a  ha h H =

x~x xx 1– e H=

a~b ab 1– h  for some h H=

ab 1–  1– h 1–=
b 1–  1– a 1– h 1–=

ba 1– h 1–= b~a since h 1– H

Theorem 5.11, page 221:

Exercise 2, page 225:

H
 is a group

a~b  and  b~c      
ab 1– H  and  bc 1– H

 ab 1–  bc 1–  H

a b 1– b c 1– H

aec 1– H

ac 1– H a~c
             
                           a  ha h H =

b a  b~a ba 1– h  for some  h H=
b ha  for some  h H=
b ha h H 

ha h H  Ha
Ha ha h H =

H  G

Ha a G 

a1 a2  ak   G Hai
i 1=

k

= Hai Haj = i j

Hai

fi: H Hai fi h  hai=
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 is one-to-one:

        
 is onto: 

        For any given , .
Since G is the disjoint union of the k sets , and
since each of those sets contains  elements: , and there-
fore: .

fi
fi h1  fi h2 = h1a h2a=

h1a a 1– h2a a 1–=

h1 aa 1–  h2 aa 1–  h1 h2= =

fi
hai Hai fi h  hai=

Ha1 Ha2  Hak  

H G k H=
H  G
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Exercise 1-5. Determine if the given subset S is a subgroup of .

Exercise 6-8. Determine if the given subset S is a subgroup of  (see Theorem 5.2, page 208).

Exercise 9-12. Determine if the given subset S is a subgroup of .

Exercise 13-18.  Determine if the given subset S is a subgroup of  where:

                          

Exercise 19-21. Determine if the given subset S is a subgroup of .

Exercise 23-26. Determine if the given subset S is a subgroup of .

Exercise 27-30. Determine if the given subset S is a subgroup of   (see Exercise 49, page 
218).

Exercise 31-34. Determine if the given subset S is a subgroup of   (see Theorem 5.4, page 
212).

EXERCISES

1. 2. 3.

4. 5.

6. 7. 8.

9. 10.

11. 12.

13. 14. 15.

16. 17. 18.

19. 20.

21. 22.

23. 24.

25. 26.

27. 28.

29. 30.

31. 32.

33. 34.

Z + 
S n n is even = S n n 1 = S n n is odd =

S n n is divisible by 2 and 3 = S n n is divisible by 2 or 3 =

Z8 +n 

S 0 2 4 6   = S 0 3 6  = S 0 2 3 4   =

 + 
S x x 7y for y = = S x x 7y for y 0= =

S x x 7 y for y += = S x x 7 y for y 0+= =

S3  

0
1   2   3
1   2   3 
  ,  1

1   2   3
2   3   1 
  ,  2

1   2   3
3   1   2 
 === 3

1   2   3
1   3   2 
  ,  4

1   2   3
3   2   1 
  ,  5

1   2   3
2   1   3 
 ===

S 0 1 = S 0 2 = S 0 3 =

S 0 1 2  = S 0 3 5  = S 1 2 3 4 5    =

R3 + 
S a b 0   a b  = S a b 1   a b  =

S a b c   c a b+= = S a b c   c ab= =

M2 2 + 

S a   b
a b+   0

a b 
 
 
 

= S a   b
a b+   1

a b 
 
 
 

=

S a   b
a b+   ab

a b 
 
 
 

= S a   b
c   2a c+

a b c 
 
 
 

=

F   + 

S f f is continuous = S f f is differentiable =

S f f 1  1= = S f f 1  0= =

S  

S f f is continuous = S f f is differentiable =

S f f 1  1= = S f f 1  0= =
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35. Prove that all subgroups of Z are of the form .

36. Find all subgroups of  .

37. Prove that if  and G are the only subgroups of a group G, then G is cyclic of order p, 
for p prime.

38. Show that a nonempty subset S of a group G is a subgroup of G if and only if 
 

39. Show that for any group G the set  is a subgroup of G.

40. Let G be an abelian group. Show that for any integer n,  is a subgroup of 
G.

41. Prove that the subset of elements of finite order in an abelian group G is a subgroup of G 
(called the torsion subgroup of G).

42. Let G be a cyclic group of order n. Show that if m is a positive integer, then G has an ele-
ment of order m if and only if m divides m.

43. Let a be an element of a group G. The set of all elements of G which commute with a:
 

is called the centralizer of a in G. Prove that  is a subgroup of G.

44. Let H be a subgroup of a group G. The centralizer  of H is the set of all elements of
G that commute with every element of H: .
Prove that  is a subgroup of G.

45. The center  of a group G is the set of all elements in G that commute with ever ele-
ment of G: . 
(a) Prove that  is a subgroup of G.
(b) Prove that  if and only if  (see Exercise 43.)

(c) Prove that . 

46. Let H and K be subgroups of an abelian group G. Verify that 
is a subgroup of G.

47. Let H and K be subgroups of a group G such that  for every . Show that
 is a subgroup of G.

48. Let G be a finite group, and .
(a) Prove that the elements  have the same order.
(b) Prove that ab and ba have the same order. 
   Suggestion: Apply (a) to 

49. Prove that H is a subgroup of a group G if and only if .

50. Let H and K be subgroups of an abelian group G of orders n and m respectively. Show that
if , then  is a subgroup of G of order nm.

nZ

Z6 +n 

e 

s s S ss 1– S

Z G  a G ag ga g G= =

a G an e= 

C a  b G ab ba= =
C a 

C H 
C H  a G ah ha for all h H= =

C H 

Z G 
Z G  a G ab ba for all b G= =

Z G 
a Z G  C a  G=

Z G  C a 
a G
=

HK hk h H and k K =

k 1– Hk H k K
HK hk h H and k K =

a b G
a a 1–  and bab 1–

ab a ba a 1–=

HH 1– ab 1– a b H  H=

H K e = HK hk h H and k K =
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51. (a) Prove that the group  contains an infinite number of subgroups.
(b) Prove that any infinite group contains an infinite number of subgroups.

52. Let S be a finite subset of a group G. Prove that S is a subgroup of G if and only if 
for every .

53. (a)  be subgroups of a group G. Show that  is also a subgroup of G.

(b) Let  be a collection of subgroups of a group G. Show that  is also a

subgroup of G.

(c) Let  be a collection of subgroups of a group G. Show that  is also a

subgroup of G.

PROVE OR GIVE A COUNTEREXAMPLE

54. If H and K are subgroups of a group G, then  is also a subgroup of G. 

55. It is possible for a group G to be the union of two disjoint subgroups of G.. 

56. In any group G,  is a subgroup of G. 

57. In any abelian group G,  is a subgroup of G. 

58. Let G be a group with . If  and , then .

59. If H and K are subgroups of a group G, then  is also a subgroup 
of G.

60. In any group G,  is a subgroup of G.

61. No nontrivial group can be expressed as the union of two disjoint subgroups.

Z + 

ab S
a b S

Hi i 1=
n Hi

i 1=

n



Hi i 1=
 Hi

i 1=





H  A H
 A


H K

a G an e for some n Z= 

a G an e for some n Z+= 

a b G o a  n= o b  m= ab nm e=

HK hk h H and k K =

a G a3 e= 



 236     Chapter 5    A Touch of Group Theory                                                                                        

 5
 

Up until now we have focused our attention exclusively on the inter-
nal nature of a given group. The time has come to consider links
between groups:

Let’s focus a bit on the equation:  

The operation, ab, on the left side of the equation is taking place in the
group G while the one on the right, , takes place in the group

. What the statement is saying is that you can perform the product in
G and then carry the result over to the group  (via ), or you can
first carry a and b over to  and then perform the product in that
group. Those groups and products, however, need not resemble each
other. Consider the following examples:    

SOLUTION: We consider three cases:
Case 1. (Both integers are even). If  and , then:

 (since  is even)
And also: .

Case 2. (Both are odd). If  and , then:
 
And also: 

 .

Case 3. (Even and odd). If  and , then:
 
And also: .

§4. HOMOMORPHISMS AND ISOMORPHISMS

The word homomorphism
comes from the Greek
homo meaning “same” and
morph meaning “shape.”

DEFINITION 5.8
HOMOMORPHISM

A function  from a group G to a
group  is said to be a homomorphism if

 for every .

: G G
G

 ab   a  b = a b G

 ab   a  b =

You can easily verify that
, under stan-

dard multiplication 

is a group.

G 1 1– =

* 1 1–
1 1 1–
1– 1– 1

EXAMPLE 5.5 Let , and let  under
standard integer multiplication (see margin).
Show that  given by:

is a homomorphism.

 a  b 
G

G 
G

G Z + = G 1 1– =

f: G G

 n  1 if n is even
1– if n is odd




=

a 2n= b 2m=
 a b+   2n 2m+  1= = 2n 2m+

 a  b   2n  2m  1 1 1= = =

Since  is abelian, we
need not consider 
and 

Z + 
a 2n 1+=

b 2m=

a 2n 1+= b 2m 1+=
 a b+   2n 1+  2m 1+ +   2n 2m 2+ +  1= = =

 a  b   2n 1+  2m 1+  1–  1–  1= = =

a 2n= b 2m 1+=
 a b+   2n  2m 1+ +   2 n m+  1+  1–= = =

 a  b   2n  2m 1+  1  1–  1–= = =
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SOLUTION: Let  with ,  with
, and  with . Then:

SOLUTION:  is one-to-one:

To show that  is a homomorphism we need to show that
, which is to say, that the function  is

equal to the function . Let’s do it:
For any :                    

                       and 

By associativity, , and we are done.

See page 208 for a discus-
sion of the group .Zn +n  EXAMPLE 5.6 Show that the function 

given by  where  with
 is a homomorphism.

: Z +  Zn +n 

 m  r= m nq r+=
0 r n

a nq1 r1+= 0 r1 n b nq2 r2+=
0 r2 n r1 r2+ nq3 r3+= 0 r3 n

 a b+   nq1 r1+  nq2 r2+ + =

 n q1 q2+  r1 r2+ + =

 n q1 q2+  nq3 r3+ +  with 0 r3 n=

 n q1 q2 q3+ +  r3+  r3 (since 0 r3 n)= =

And:   a +n  b   nq1 r1+ +n  nq2 r2+ =

r1+n r2 r3 (since r1 r2+ nq3 r3 with 0 r3 n +== =

sam
e

See page 212 for a discussion on
the symmetric group .SG  

EXAMPLE 5.7 For any fixed element a in a group G, let
 be given by . Show

that the function  given by
 is a one-to-one homomorphism. 

fa: G G fa g  ag=
: G SG  

 a  fa=



 a   b = fa fb= fa e  fb e = ae be a b= =

in particular


 ab   a  b = fab: G G

fafb: G G
x G fab x  ab x=

fafb  x  fa fb x   fa bx  a bx = = =

Answer: See page  A-30.

CHECK YOUR UNDERSTANDING 5.16
(a) Show that for any two groups  and  the function 
given by  for every  is a homomorphism (called the
trivial homomorphism from  to ).
(b) Let  denote the group of positive real numbers under multipli-
cation. Prove that the function , given by

 is a homomorphism. 

ab x a bx =

G G : G G
 a  e= a G

G G
+

: Z +  +
 n  n=
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Homomorphisms preserve identities, inverses, and subgroups:   

PROOF:
(a) Since  is a homomorphism: . 

Multiplying both sides by  yields the desired result:

(b) Since :

 .

(c)  We use Theorem 5.14, page 227, to show that the nonempty set 
is a subgroup of :

Since :  is closed with respect to the
operation in .
Since, for any , :

  for every .
(d) We use Theorem 5.14, page 227, to show that the nonempty set

 is a subspace of :
Let . To say that  is to say that

, and it is:
Since , and since , being a subgroup of

, is closed with respect to the operations in : .
Let . To say that  is to say that

, and it is:
Since , and since  contains the
inverse of each of its elements: .

THEOREM 5.22 Let  be a homomorphism. Then:
(a)           
(b) 
(c) If H is a subgroup of G, then  is a

subgroup of .
(d) If  is a subgroup of , then 

is a subgroup of .

: G G
 e  e=
 a 1–   a   1–=

 H 
G

H G  1– H 
G

  e   ee   e   e  = =
 e   1–

 e   1–  e   e   1–  e  e  =
e  e   1–  e    e =
e e e   e = =

Answer: See page A-30.

CHECK YOUR UNDERSTANDING 5.17
Let  and  be homomorphisms. Prove that the
composite function  is also a homeomorphism. 

 a 1–  a   a 1– a   e  e= = =
(a)

 a 1–   a   1–=

 H 
G

 a  b   ab =  H 
G

a G  a 1–   a   1–=
 a   1–  H   a   H 

 1– H  G
a b  1– H  ab  1– H 

 ab  H
 ab   a  b = H

G G  ab  H
a  1– H  a 1–  1– H 

 a 1–  H
 a 1–  a  1–= H

 a 1–  H

: G G : G G
: G G
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For any given homomorphism , we define the kernel of 
to be the set of elements in G which map to the identity  [see
Figure 5.7(a)]. We define the set of all elements in  which are “hit”
by some  to be the image of  [see Figure 5.7(b)].

Figure 5.7More formally:

Both the kernel and image of a homomorphism turn out to be sub-
groups of their respective groups:

PROOF: We appeal to Theorem 5.14, page 227 to establish the
desired results.
(a) Nonempty: Since  [Theorem 5.22(a)], .

Closure: 

Inverses: For , we are to show that .
Let’s do it: 

(b) Nonempty: Since , 

IMAGE AND KERNEL 
: G G 

e G
G

 a  

.
(a)                                                             (b)

G                          G G                          G

Kernel of  Image of 

e




Utilizing the notation of
Definition 2.8, page 63:

Ker    1– e  =
Im    G =

DEFINITION 5.9
KERNEL

IMAGE

Let  be a homomorphism.

The kernel of , denoted by , is
given by:

The image of , denoted by , is
given by: 

THEOREM 5.23 Let  be a homomorphism. Then:

(a)  is a subgroup of G.

(b)  is a subgroup of .

: G G

 Ker  

Ker   a G  a  e= =

 Im  

Im    a  a G =

: G G

Ker  

Im   G

 e  e= e Ker  

a b Ker    ab   a  b  ee e= = =
 is a homomorphism

a Ker   a 1– Ker  
 a 1–   a   1– e  1– e= = =

Theorem 5.22(b)

 e  e= e Im  
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Closure: For  choose  such that
 and . Then:

 .

Inverses: For  choose  such that    .
Then:

  

Definition 5.9 tells us that a homomorphism  is onto if and 
only if . The following result is a bit more interesting, in 
that it asserts that in order for a homomorphism to be one-to-one, it 
need only behave “one-to-one-ish” at e (see margin):

PROOF: Suppose  is one-to-one. If , then both
 and  [Theorem 5.22(a)]. Consequently 

(since  is assumed to be one-to-one). Hence: .

Conversely, assume that . We need to show that if
, then . Let’s do it:

 

a b Im   a b G
 a  a=  b  b=

 ab   a  b  ab ab Im  = =
 is a homomorphism

Answer: See page A-31.

CHECK YOUR UNDERSTANDING 5.18

Show that the function  given by  is a
homomorphism. Determine the kernel and image of .

a Im   a G  a  a=

 a 1–   a   1– a  1– a  1– Im  = =
Theorem 5.22(b)

: 2Z 4Z  2n  8n=


A homomorphism 
must map e to . What this
theorem is saying is that if e is
the only element that goes to

, then no element of  is
going to be hit by more that one
element of G. This is certainly
not true for arbitrary functions: 

: G G
e

e G

x

y

f x  x=

THEOREM 5.24 A homomorphism  is one-to-one
if and only if .

: G G
Im   G=

: G G
Ker   e =

 a Ker  
 a  e=  e  e= a e=

 Ker   e =

Ker   e =
 a   b   = a b=

 a   b   =
 a   b   1– e=
 a  b 1–  e=
 ab 1–  e=

ab 1– e=
ab 1– b eb=

a b=

Theorem 5.22(b):

 is a homomorphism:

Ker   e :=

Answer: See page A-31.

CHECK YOUR UNDERSTANDING 5.19

Prove that a homomorphism  is one-to-one if and only if
there exists an element  (not necessarily the identity e) such
that if  then . 

In other words: for a homomorphism  to be one-to-one, it
need only behave “one-to-one-ish” at any one-point in G.”

: G G
a G

 a   b = a b=
: G G
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As previously noted, a homomorphism  preserves the
algebraic structure in that . An isomorphism also
preserves the set structures in that it pairs up the elements of G with
those of . More formally: 

SOLUTION: We show that the function  given by
 is a homomorphism that is also a bijection:

 is a homomorphism: 

 is one-to-one:

 is a onto: For , we have: .

The word isomorphism
comes from the Greek iso
meaning “equal” and
morph meaning “shape.”

ISOMORPHISMS 

DEFINITION 5.10
ISOMORPHISM

ISOMORPHIC

A homomorphism  which is
also a bijection is said to be an isomor-
phism from the group G to the group .

Two groups G and  are isomorphic,
written , if there exists an isomor-
phism from one of the groups to the other.

EXAMPLE 5.8 Show that the group  of real numbers
under addition is isomorphic to the group

 of positive real numbers under multi-
plication.

: G G
 ab   a  b =

G

: G G

G

G
G G

 + 

+ . 

In this discussion we are not
using e to denote the identity
element in  (which is
1). Here, e is the transcen-
dental number . 

+ . 

e 2.718

:  +  + . 
 a  ea=


 a b+  ea b+ eaeb  a  b = = =



 a  1 ea 1 a 0= = =

The identity in   + The identity in  + . 

 a + .   aln  e aln a= =

Answer: See page A-31.

CHECK YOUR UNDERSTANDING 5.20
(a) Prove that  is an equivalence relation on any set of groups (see

Definition 2.19, page 88).
(b) Let . Prove that the map  given by 

is an automorphism (called an inner automorphism.) 



g G ig: G G

ig x  gxg 1–  x G=
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Let  be an isomorphism. Being a bijection it links every
element in G with a unique element in  (every element in G has its
own  counterpart, and vice versa). Moreover, if you know how to
function algebraically in G, then you can also figure out how to func-
tion algebraically in  (and vice versa). Suppose, for example, that
you forgot how to multiply in the group , but remember how to mul-
tiply in G. To figure out  in  you can take the “  bridge” back
to G to find the elements a and b such that  and ,
perform the product  in G, and then take the “  bridge” back
to to find the product : .

Basically, if a group G is isomorphic to , then the two groups can
only differ in appearance, but not “algebraically.” Consider, for exam-
ple, the following two groups which appeared previously in Figure 5.1,
page 209:

Both contain four elements ({0,1,2,3} and {e,a,b,c}); so, as far as sets
go, they “are one and the same” (different element-names, that’s all).
But as far as groups go, they are not the same (not isomorphic). Here
are two algebraic differences (either one of which would serve to prove
that the two groups are not isomorphic):

1.  is cyclic while the Klein 4-group, K, is not.
2. There exist three elements in K of order 2 (see Definition

5.5, page 223), while  contains but one (the element 2).
To better substantiate the above claims: 

A ROSE BY ANY OTHER NAME

a

b

ab

a

b

ab

 1–

 1–



THEOREM 5.25 If , then:

(a) G is cyclic if and only if  is cyclic.

(b)For any given integer n, there exists an
element  such that  if and
only if there exists an element 
such that .

: G G
G

G

G
G

ab G  1–

 a  a=  b  b=
ab 

G ab  ab 

G

  * e a b c
e e a b c
a a e c b
b b c e a
c c b a e

  + 0 1 2 3
0 0 1 2 3
1 1 2 3 0
2 2 3 0 1
3 3 0 1 2

4Z4: K:

(a)                                                    (b)

Z4

Z4

G G

G

a G an e=
a G

a n e=
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PROOF: Let  be an isomorphism.

(a) Suppose G is cyclic, with . We show  by
showing that for any , there exists  such that

:
Let  be such that . Since , there
exists  such that . Then:

The “only-if” part follows from the fact that if G is isomorphic
to , then  is isomorphic to G (see CYU 5.20).

 (b)Let  be such that . Then:
 

The “only-if” part follows from CYU 5.20. 

The following results underlines the importance of symmetric groups
(see discussion on page 212).  

PROOF: The function  given by

was shown to be a one-too-one homomorphism in Example 5.7.
Since it is onto the subspace  of :

  is an isomorphism.

: G G

G a = G  a  =
b G n Z

b  a  n=
b G  b  b= G a =

n Z b an=
b  b   an   a  n= = =

Exercise 13

G G

a G an e=
 a  n  an   e  e= = =

Answer: See page A-31.

CHECK YOUR UNDERSTANDING 5.21
Prove that if , then G is abelian if and only if  is abelian.

A property of a group G that is shared by all groups isomor-
phic to G is said to be a group invariant property. For exam-
ple, abelian and cyclic are group invariant properties. Other
group invariant properties are cited in the exercises. 
In general, one can show that two groups are not isomorphic

by exhibiting a group invariant property that holds in one of
the groups but not in the other. For example, the permutation
group  is not isomorphic to  as one is abelian
while the other is not.

G G G

S3 Z6 +6 

Arthur Cayley (1821-1885) THEOREM 5.26
(Cayley)

Every group is isomorphic to a subgroup of
a symmetric group.

: G SG

 g  fg: G G where fg x  gx  ( x G = =

  G  SG

: G  G 
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Exercise 1-14. Determine if the given function  is a homomorphism.

EXERCISES

1.  and .

2.  and .

3.  and  where n is the smallest integer greater than or 
equal to x.

4.  and .

5.  and  where  with .

6.  and  if n is even and  if n is odd.

7.  and  for .

8.  with G abelian, and  for .

9.  with G abelian, , and  for .

10. ,  and  where  with .

11. ,  and  where  with .

12.  and .

13.  and .

14.  and .

15. Let  denote the group of all real numbers under addition, and  the group of 
all positive real numbers under multiplication. Show that the map  given by 

 is an isomorphism.

16. Let  be a homomorphism and let . Prove that  for 
every .

17. Let  be a homomorphism. Prove that for all :

: G G

G G Z + = =  n  2n=

G G Z + = =  n  n 1+=

G  +  G Z + = =  x  n=

G Z +  G  + = =  n  n=

G Z +  G Z3= =  n  r= n 3m r+= 0 r 3

G Z +  G 1 1–  . = =  n  1= f n  1–=

G G=  a  a 1–= a G

G G=  a  a 1–= a G

G G= n Z +  a  an= a G

G Z5= G Z2=  n  r= n 2d r+= 0 r 2

G Z6= G Z2=  n  r= n 2d r+= 0 r 2

G G M2 2 + = =  a b
c d 

 
  a b+   d

c–   0
=

G M2 2 +  G = =  a b
c d 

 
 

ad bc–=

G G M2 2 + = =  a b
c d 

 
  a b+   d

c–   1
=

 +  + . 
: + 

 x  xln=

: G G a G  an   a  n=
n Z

: G G a b G
 ab 1–   a  b  1–  and  a 1– b   a  1–  b = =
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18. Let  be a homomorphism, Show that:
(a) If  is onto and if G is abelian, then  is abelian.

(a) If  is one-to-one and if  is abelian, then G is abelian.

19. Prove that a group G is abelian if and only if the function  given by 
is a homomorphism.

20. Let  be cyclic and let  be any group. Let  be a homomorphism. 
Prove that  is cyclic.

21. Let  be a homomorphism. Show that if , then  for 
every .

22. Let  be cyclic and let  be any group. Prove that for any chosen  there 
exists a unique homomorphism  such that .

        So, a homomorphism on a cyclic group  is completely determined by its action on a.

23. Let  be a homomorphism. Prove that, for any given : 

24. Let A, B, C, and D be groups. Show that if   and , then  (see 
Exercise 52, page 218). 

25. Let G and  be groups. Show that  (see Exercise 52, page 218). 

26. (a) Show that the set , with  is 
a group.

(b)Verify that the functions  and  given by 
and , respectively, are homomorphisms.

(c) Show that the function  given by  is a
homomorphism.

(d)Show that the function  given by  is
an isomorphism.

27. For , , let  be given by .
 (a) Show that  is a one-to-one homomorphism. 

(b) Show that  is an isomorphism if and only if .

28. Let  denote the additive group of real valued function (see Exercise 49, page 218), 
and let  denote the additive group of real numbers. Prove that for any  the func-
tion  given by  for  is a homomorphism (called an 
evaluation homomorphism.)

: G G
 G

 G

f: G G f g  g 1–=

G a = G : G G
Im  

: G G k Ker   gkg 1– Ker  
g G

G a = H h H
: G H  a  h=

G a =

: G G x G
g G  g   x =  xk k Ker   =

A B C D A C B D

G G G G G

Z Z a b  a b Z = a b * c d  a c+ b d+ =

1: Z Z Z 2: Z Z Z 1 a b  a=
2 a b  b=

: Z Z Z  a b  21 a b  32 a b +=

: Z Z Z Z  a b  2 a b  1 a b  =

m Z m 0 m: Z Z m n  mn=
m

m m 1=

F  
 c 

c: F    c f  f c = f F  
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Exercise 34-40. Show that the give property on a  G is an invariant.  

29. Let  denote the set of differentiable functions from  to .
(a) Show that  is a group.

(b) Show that for any  the function  given by  is a
homomorphism.

(c) Is  one-to-one for any c?

(d) Is  onto for any c?

30. Let  denote the set of continuous real valued functions. 
(a) Show that  is a group.

(b) Show that for any closed interval  in  the function  given by

 is a homomorphism.

(c) Show that the function  given by  is a

homomorphism.

31. Show that for any , the function  given by  is a homo-
morphism. Is it necessarily an isomorphism?

32. Show that the function  given by  is a homo-

morphism. Determine the image and kernel of 

33. Let G be a group. Prove that  is a 
group. 

34.  — the order of a finite group G.

35. G contains a nontrivial cyclic subgroup.

36. G contains an element of order n for given .

37. G contains m elements of order n for given .

38. G contains a subgroup of order of order n for given .

39. The number of elements in  (see Definition 5.5, page 224).

40. The number of elements in  — the center of a finite group G. (See Exercise 45, page 
235.)

D    
D   + 

c  c: D    c f  f c =

c

c

C  
C   + 

a b   : C   

 f  f x  xd
a

b

=

: C     f  f x  xd
0

1

 2 f x  xd
2

3

+=

 S3 : S3 S3    =

: S3 S4     i   i  if i 4
4 if i 4=




=



Aut G   : G G is an automorphism   =

G

n 1

n 1

n 1

Tn g G o g  n= =

Z G 
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PROVE OR GIVE A COUNTEREXAMPLE

41. The additive group  is isomorphic to the additive group Q of rational numbers)

42. The additive group Z is isomorphic to the additive group Q of rational numbers)

43. If  is a homomorphism from a group G to a cyclic group , then  is a
cyclic subgroup of G. 

44. If  is an isomorphism from a group G to a cyclic group , then  is a
cyclic subgroup of G. 

45. For  the group of continuous real valued functions under addition the function

 given by  is a homomorphism.

46. If ,  and  are not isomorphic.



 G a = Ker  

 G a = Ker  

C  

: C     f  f x  xd
0

1

 
  f x  xd

2

3

 
 =

n m Sn Sm
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CHECK YOUR UNDERSTANDING SOLUTIONS
CHAPTER 1

A LOGICAL BEGINNING

1.1 PROPOSITIONS

CYU 1.1 (a) Since q is True ( ),  is True, independently of p.

(b) Since p is False ( ),  is False, independently of q.

CYU 1.2 (a) Since p is True ( ), its negation  is False.

(b) Since q is False ( ), its negation p is True, so  is False.

CYU 1.3 (a) Since p and q are True, so is . It follows that  is False. 

(b) Since p and q are True, so is . It follows that  is False.

(c) Since q is True, so is . It follows that  is False.

(d) Since s is False, so is . It follows that  is True.

(e) Since p is True,  is False. It follows that  is False.

(f) Since q is True, so is .

(g) Since s is False,  is True. It follows that  is True.

(h) Since both  and q are True, so is .

(i) Since s is False, so is . It follows that  is False.

(j) Since p is True, so is . It follows that  is True.

(k) Since p is True, so is . It follows that  is False, as is
.

CYU 1.4  We show that  is a tautology:

T T T F F F T
T F F T F F T
F T T F F T T
F F T T T T T

3 5+ 8= p q
7 5= p q

5 3 ~p

3 5= ~p

p q ~ p q 

p q ~ p q 

s q ~ s q 

s q ~ s q 

~p ~p q

p q

~s s q

~s s q

q s  p s  q s 

p s  p s  q s 

p s  ~ p s 
p s  q s 

p q  ~q  ~p

p q p q ~q p q  ~q ~p p q  ~q  ~p
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CYU 1.5  (a) Negating Mary is going to a movie or she is going shopping:
                                          ~[(Mary is going to a movie) ˅ (Mary is going shopping)]
              Theorem 1.1(b):    ~(Mary is going to a movie) ˄ ~(Mary is going shopping)
                                         Mary is neither going to a movie nor going shopping.

                (b) Negating Bill weighs more than 200 pounds and is less than 6 feet tall:
                                  ~[(Bill weighs more that 200 pounds) ˄ (Bill is less than 6 feet tall)]
      Theorem 1.1(a):    ~(Bill weighs more that 200 pounds) ˅ ~(Bill is less than 6 feet tall)

                 Bill weighs at most 200 pounds or is at least 6 feet tall.

(c) Negating  or :   ~(  or )

                                  Theorem 1.1(b):      ~( ) and ~( )

                                                                        and 

                                                                                      

CYU 1.6  (a) 
T F T
F T F

                 (b) 

T T T F T
T F F F F
F T T T T
F F T T T

              (c) 
T T T F F T F
T F F T F F T
F T T F T T F
F F T F T T F

            (d) 
T T T T T T
T F F F T F
F T F T F F
F F T T T T

x 0 x 5– x 0 x 5–

x 0 x 5–

x 0 x 5–

5 x 0–

~ ~p  p p ~p ~ ~p 

p q ~p q p q p q ~p ~p q

~ p q  ~ ~p q  p q p q ~ p q  p ~p q ~ ~p q 

p q p q  q p  p q p q p q q p p q  q p 
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CYU 1.7 (a) :

(b) 

CYU 1.8 Go with a Truth Table if you wish. For our part:  by Theorem 1.4.

1.2 QUANTIFIERS

CYU 1.9 (a) All months have at least thirty days is False: February has 28 (or 29) days.
 (b) Every month contains (at least) three Sundays is True.

(c)  is True.

(d)  is False: .

CYU 1.10 (a) There exists a month with more than thirty days is True: January has 31 days.
(b) There exists a week with more than seven day is False.

(c)  is True: .

(d)  is True: .

CYU 1.11 (a)  is True: Let .

(b)  is False: If , then  for every 
.

(c)  is False: . 

(d)  is True: 

T T T T F F F F F F
T T F T T T F F F T
T F T T F F F T F F
T F F T T T F T F T
F T T T F F T F F F
F T F T T T T F F T
F F T F F T T T T T
F F F F T T T T T T

p q  ~s  s ~p ~q  

p q s p q ~s p q  ~s ~p ~q ~p ~q s ~p ~q 

p q  ~s  ~(~s) ~ p q   s ~ p ~q   

Theorem 1.4 CYU 1.6(a) and Theorem 1.1(b)

q p ~p ~q

n m Z+ n m Z++

n Z+ and m Z n m Z++ 3 4– + 1 Z+–=

n m Z+ n m+ 100= 50 50+ 100=

n m Z+ nm n m+= 2 2 2 2+=

n m Z+ s Z+ s nm s nm 1+=

s Z+ n m Z+ s nm s 1= s nm

n m Z+

x  n Z+ xn x x  x1 x
 

n Z+ m Z+ nm n= 1m 1 m Z+=
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CYU 1.12 (a) Negation of All college students study hard: Some college student does not study 
hard.

(b) Negation of Everyone takes a bath at least once a week: Someone does not take a 
bath at least once a week.

(c) Negation of : .

(d) Negation of : .

CYU 1.13 (a) Negation of There are days when I don’t want to get up: Every day I want to get up.

(b) Negation of : .

(b) Negation of : .

CYU 1.14 (a) Negation of For every  there exists a  such that y blips at x: 
There exists some  such that no  blips at that x.

(b) Negation of : .

CYU 1.15 (a) Negation of There is a motorcycle that gets better mileage than any car: 
 For every motorcycle there is some car that gets the same or better mileage than 

that motorcycle.

(b) Negation of : .

1.3 METHODS OF PROOF

CYU 1.16 (a) Let . We show that  is even:

 .

(b) The sum of any even integer with any odd integer is odd. Proof:
For , .

CYU 1.17  

x X p x  q x  x X ~p x  ~q x  

x X p x  q x  x X ~p x  ~q x  

x X p x  q x   x X ~p x  ~q x 

x X p x  q x   x X ~p x  ~q x 

x X y Y
x X y Y

x  n Z+ x 2n= x  n Z+ x 2n

n Z m Z+ n m n Z m Z+ n m

n 2k 1 and m+ 2h 1+= = n m+

n m+ 2k 1+  2h 1+ + 2 k h 1+ + = =

n 2k and m 2h 1+= = n m+ 2k  2h 1+ + 2 k h+  1+= =

2m n is even 2m n+ 2k=+
n 2k 2m–=
n 2 k m–  n is even=
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CYU 1.18  (a)

              (a direct proof): 

     (a contrapositive proof):

 
        (b) 

 (a direct proof): 

         (a contrapositive proof):

 

CYU 1.19  A direct proof can be use to show that :

 
An attempt to show, directly, that  leads us to a dead end:

 — Now what?
We try something else, that’s what: 

Contrapositive Proof: Proof by Contradiction:
Let  be odd (given condition)

Assume that n is even, say . 
Then:

 

— contradicting the stated condition that 
 is odd. 

3n is odd if and only if n is odd

n odd 3n odd: n odd n 2k 1 3n+ 3 2k 1+ = =

3n 6k 3+=
3n 6k 2+  1+=
3n 2 3k 1+  1 3n odd+=

3n odd n odd

n not odd n even n 2k=

3n 6k=
3n 2 3k  3n even 3n not odd=

n3 is odd if and only if n is odd

n odd n3 odd: n odd n 2k 1+=

n3 2k 1+ 3 8k3 12k2 6k 1+ + += =

n3 2 4k3 6k2 3k+ +  1 n3 odd+=

n3 odd n odd

n not odd n even n 2k=

n3 8k3 2 4k3  n3 even n not odd= =

n odd 3n 2 odd+
n odd n 2k 1+=

3n 2+ 3 2k 1+  2+ 6k 5+ 2 3k 2+  1 3n 2 odd++= = =

3n 2 odd n odd+
3n 2+ 2k 1+ 3n 2k 1–= =

3n 2 odd n odd+

n even 3n 2 even+ 3n 2+

n even n 2k (for some k)=

3n 2+ 3 2k  2+=
2 3k 1+ =

3n 2 even+

n 2k=

3n 2+ 3 2k  2+ 2 3k 1+  even= =

3n 2+
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CYU 1.20 (a-i) If  and , then  and  for some h and k. Consequently:

 
(a-ii)  for some h. For  we then have:

 

(b-i) If  or , then  is False:
Counterexample:  and . Since :  or  is True. 
However  is False.

(b-ii) If a and b are even and if , then c must be even is True:
Proof: Let  be such that , and .

Then: 

(b-iii) If , then there exist k such that  is True.
Proof: Let  be such that . 

Then: , or , where .      

                              

1.4 PRINCIPLE OF MATHEMATICAL INDUCTION

CYU 1.21 (a) The equation  illustrate that the sum of the first 
two even integers can be expressed as the sum of the first four integers minus the 
sum of the first two odd integer. Generalizing, we anticipate that the sum of the 
first n even integers is the sum of the first 2n integers minus the sum of the first n 
odd integers; leading us to the conjecture that the sum of the first n even integers 
equals :

 

(b) Let  be the proposition that the sum of the first n even integers equals .

I. Since the sum of the first 1 even integers is 2,  is true.

II. Assume  is true; that is: .

III. We complete the proof by verifying that  is true; which is to say,

that :

a n a m n ha= m ka=

n m+ ha ka+ h k+ a a n m+ = =
n a a nh= c Z

ca c nh  ch n n ca= =

a b a c a b c+ 
a b 2= = c 1= 2 2 2 2 2 1

2 2 1+ 

a b c+ 
k1 k2 h  a 2k1= b 2k2=

(*)

b c+ ha=
a b c+ 

(**)

ha b c+ 2k2 c 2k2 c++ ha= = =

2k2 c+ h 2k1  c 2hk1 2k2–= =

c 2 hk1 k2–  (even)=

 (**)                  (*)

(*)

a b+  c d+  ak bk c d+ + + 0=
h c d+ h a b+ =

c d ha– hb–+ 0= ak bk c d+ + + 0= k h–=

2 4+ 1 2 3 4 1 3+ –+ + +=

n2 n+
2n 2n 1+ 

2
--------------------------- n2– 2n2 n n2–+ n2 n+= =

sum or first 2n integers sum of first n odd integers
(Eample 1.16)          (page 34)

P n  n2 n+

P 1  12 1+ 2= =

P k  2 4 6  2k+ + + + k2 k+=

P k 1+ 

2 4 6  2k 2 k 1+ + + + + + k 1+ 2 k 1+ +=

2 4 6  2k 2 k 1+ + + + + + k2 k 2 k 1+ + +=
k2 2k 1+ +  k 1+ + k 1+ 2 k 1+ += =

by II
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CYU 1.22 Let  be the proposition that  for all integers .
I. True at : .
II. Assume  is true; that is: .
III. To establish that , we begin by noting that

 and then set our sights on showing
that  (for clearly ).

Wanting to get II into play we rewrite  in the form
. Our induction hypothesis allows us to assume

that . If we can show that , then we will be
done, by virtue of Theorem 1.6(b), page 28. Let’s do it:

Since , and since either k or  is even:
6 is a factor of .

CYU 1.23 Let  be the proposition that  for all integers 

I. Since ,  is true.
II. Assume  is true; that is: .
III. We complete the proof by showing that :

CYU 1.24 Let  be the proposition that the n lines, no two of which are parallel and no three 
of which pass through a common point, will separate the plane into  regions.

I. One line does separate the plane into  regions.

II. Assume  is true.
III. Consider  lines. The  line will pass

through region-line-region-line-region... (one
more region than the k lines) and will split each
of the encountered regions into two parts, adding

 regions to the  preceding regions

generated by the first k lines. (see above figure
for ). It follows that the number of regions stemming from the  lines
is given by:

P n  6 n3 5n+  n 1
n 1= 6 13 5 1+ 

P k  6 k3 5k+ 

6 k 1+ 3 5 k 1+ + 

k 1+ 3 5 k 1+ + k3 3k2 8k+ +  6+=
6 k3 3k2 8k+ +  6 6

k3 3k2 8k+ +
k3 5k+  3k2 3k+ +

6 k3 5k+  6 3k2 3k+ 

3k2 3k+ 3k k 1+ = k 1+
3x2 3k+

P n  2n n 2+ ! n 0

20 0 2+ ! P 0 
P k  2k k 2+ !

2k 1+ k 1+  2+ ! k 3+ !=

2k 1+ 2 2k k 3+  k 2+ ! k 3+ != =
II

P n 
n2 n 2+ +

2
------------------------

12 1 2+ +
2

------------------------ 2=

P k 

line 1 line 3
line 2

region

region

region

..
k 1+ k 1+ th

k 1+ k2 k 2+ +
2

------------------------

k 3= k 1+

k2 k 2+ +
2

----------------------- k 1+ + k2 k 2 2k 2+ + + +
2

--------------------------------------------- k 1+ 2 k 1+  2+ +
2

----------------------------------------------------= =

II
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CYU 1.25 Let  be a proposition for which  is True and for which the validity at k
implies the validity at . We are to show, using the Well-Ordering Principle, that

 is True for all n. Suppose not (we will arrive at a contradiction): 

Let . Since  is True, . The Well-Ordering 
Principle tells us that  contains a least element, . But since the validity at  
implies the validity at ,  must be in S — contradicting the minimality of . 

1.5 THE DIVISION ALGORITHM AND BEYOND

CYU 1.26 The division algorithm tells us that n must be of the form , or , or , 
for some integer m. We show that, in each case,  or  for some 
integer q:

If , then  with .

If , then .

If , then . 

CYU 1.27 (a) As in Example 1.22: 

(b) 

(c) We simply show that  divides  if and only if : 

                           

CYU 1.28 Proof by contradiction: Assume that . From Theorem 1.9: if , and
if , then  — contradicting the given condition that .

CYU 1.29 Let  be the proposition that if , then  for some .

I.  is trivially True.
II. Assume  is True: If , then  for some .

III. Suppose ; or, to write it another way: .

If  then we are done. If not, then by Theorem 1.9: .
Invoking II we conclude that  for some . 

P n  P 1 
k 1+

P n 

S n Z+ P n  is False = P 1  S 
S n0 n0 1–
n0 n0 1– n0

3m 3m 1+ 3m 2+
n2 3q= n2 3q 1+=

n 3m= n2 9m2 3q= = q 3m2=

n 3m 1+= n2 9m2 6m 1+ + 3 3m2 2m+  1+ 3q 1+= = =

n 3m 2+= n2 9m2 12m 4+ + 3 3m2 4m 1+ +  1+ 3q 1+= = =

5605 2 1870  1865+=
1870 1865 5+=
1865 373 5  0 gcd 1870 5605 + 5= =

(1)

(2)

(3)

5 1870 1865– 1870 5605 2 1870 – – 3 1870  1– 5605+= = =
above line 2 above line 1

c 0 n Z c n

c kn c kn c k n c h n   where h k= = = = =
since c 0

gcd a c  1= a bc
gcd a c  1= a b a b

P n  p a1a2an p ai 1 i n 

P 1 
P k  p a1a2ak p ai 1 i k 

p a1a2akak 1+ p a1a2ak ak 1+

p ak 1+ p a1a2ak 

p ai 1 i k 
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CYU 1.30 CYU 1.20(iii) enables us to restrict our attention to the case where  and . 

Let  be the prime decompositions of a and b,
with distinct primes , and distinct primes . 

Since : . It follows that and each  must appear in
the prime decomposition of n, for  (with possibly additional ’s appearing

in the prime decomposition of k). Similarly, since , each  must appear in the
prime decomposition of n, for .

Since a and b are relatively prime, none of the  is equal to any of the . It fol-

lows that  appears in the prime decomposition of n, and

that therefore  divides n.

CHAPTER 2
A TOUCH OF SET THEORY

2.1 BASIC DEFINITIONS

CYU 2.1 (a) (i) 

(ii) 

(iii) 

(iv) 

(v) 

(b-i) True.       (b-ii) True.       (b-iii) True.                (b-iv) True: Every element in  is contained
in , by default, since  contains no element.        

(b-v) False: The empty set is not an element of  — it is not contained in .
(b-vi) False:  is not an element of .                    (b-vii) True.

CYU 2.2 (a) The proposition  is False. Here is a counterex-
ample: For , , and : 

While: 

a 1 b 1

a p1
r1p2

r2ps
rs= b q1

m1q2
m2qt

mt=
p1 p2  ps   q1 q2  qt  

a n n ak p1
r1p2

r2ps
rs k= = pi

ri

1 i s  pi

b n qi
mi

1 i t 

pis qis

p1
r1p2

r2ps
rsq1

m1q2
m2qt

mt

ab p1
r1p2

r2ps
rsq1

m1q2
m2qt

mt=

A B c 1 2 3 4 5 7     c 6 = =

A Bc  A B c 1 3 5   1 5 6    6  1 5 6  = =

A B– c C 1 5 c 3 4 5   2 3 4 6 7     3 4 5   3 4 = = =

A B C – c 1 3 5   3 4 – c 1 5 c 2 3 4 6 7    = = =

x U x y 2 y B+=  4 5 6  =


1 2  

1 2  1 2 
   

A B C – A B–  A C– =
A 1 2 3  = B 3 4 = C 2 3 =

A B C – 1 2 3   3 4  2 3  –=
1 2 3   3 – 1 2 = =

A B–  A C–  1 2 3   3 4 –  1 2 3   2 3 – =
1 2  1  1 = =
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(b) The proposition  is True: 

CYU 2.3 (a) 

     (b) 

CYU 2.4 

CYU 2.5 (a)                   (b) 

              (c) 

2.2 FUNCTIONS

CYU 2.6 (a) No:  and                    (b) Yes. Range:      

(c) No:  but there is no                   (d) No: 

CYU 2.7 (a-i)

(a-ii)

(a-iii)

(a-iv)

A Bc c B Ac B=

1 1 0 0 0 0 0
1 0 1 1 1 0 1
0 1 1 0 1 1 1
0 0 0 0 0 1 1

A B Bc A Bc A Bc  B Ac Ac B

same

A B

1 1 0 0 1 0 0
1 0 0 1 0 1 1
0 1 1 0 0 1 1
0 0 1 1 0 1 1

Ac Bc A B A B c Ac Bc

x A B c x A B x A and x B x Ac and x Bc x Ac Bc

x S
 A
 

 
  c

 x S
 A
 x S0

 for some 0 A

x S0
c  for some 0 A x S

c

 A


2– 2  0 5  0 2 = 1 3– c 5   5  =

2 0–  1– 2  3 5   2– 2  3 5 =

2 3  f 2 6  f 2  

3 X 3 --  f 4 X

gf  3  g f 3   g 5  15
6
------ 5

2
---= = = =

fg  3  f g 3   f 9
4
--- 
  9

4
--- 2+ 17

4
------= = = =

g f  x  g f x   g x 2+  3 x 2+ 
x 2+  1+

-------------------------- 3x 6+
x 3+

---------------= = = =

fg  x  f g x   f 3x
x 1+
------------ 
  3x

x 1+
------------ 2+ 5x 2+

x 1+
---------------= = = =
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(b) .  is not defined. [ , for example, is not
in the domain of f]. 

CYU 2.8 (a) 

 (b) The function  is easily seen not to be one-to-one, since
. It follows that the function  is also not

one-to-one, since .

CYU 2.9 One-to-one: 

Onto: For given , we find  such that :

Hence:  

CYU 2.10  Let . Since , , which is to say: .

CYU 2.11The function  given by  is a bijection [see

CYU 2.9]. To find its inverse we determine  for which :

Conclusion: 

gf 1 a  c t  x 4   = fg g a 

f a  f b = a
a 1+
------------ b

b 1+
------------ a b 1+  b a 1+  ab a+ ba b+= a == b=

g x  x5 x– x x4 1– = =
g 0  g 1  0= = f x  x5 x– 777+=

f 0  f 1  777= =

f a b
c d 

 
 

f a b
c d 

 
 

d c 3a b–  d c 3a b– = =

d d=
c– c–=

3a 3a=
b b=

 a b
c d

 a b
c d

=

x y z w    a b
c d

f a b
c d 

 
 

x y z w   =

f a b
c d 

 
 

x y z w    d c– 3a b   x y z w   

d x=
c– y=

3a z=
b w= 






 d x=

c y–=
a z 3=
b w= 








 = =

f z 3 w
y– x 

 
 

x y z w   =

y Y y f 1– y   f 1– f 1– y  y  f f f 1– y   y=

f: M2 2 R4 f a b
c d 

 
 

d c 3a b– =

a b
c d

f a b
c d 

 
 

x y z w   =

f a b
c d 

 
 

x y z w    d c 3a b–  x y z w   

d x=
c– y=

3a z=
b w= 






 a z 3=

b w=
c y–=
d x= 








 = =

f 1– x y z w    z 3 w
y– x

=
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Moreover: 

and: 

2.3 INFINITE COUNTING 

CYU 2.12 The function  given by  is a bijection:

On-to-one: 

Onto: For any ,  and .

CYU 2.13

CYU 2.14 We show that the function  given by

 (inspired by the adjacent figure) is a bijection.

One-to-one: 

ONTO: For , we are to find  such that . Let’s do it:

 
We complete the proof by showing that :

f f 1– x y z w     f z 3 w
y– x 

 
 

x y– – 3 z
3
--- 
  

·
w

 
 
 

x y z w   = = =

f 1– f a b
c d 

 
 

f 1– d c 3a b–  3 a 3  b
c– – d

a b
c d

= = =

f: Z+ 0 1 2 3      f n  n 1–=

f a  f b = a 1– b 1 a– b= =

a 0 1 2 3      a 1+ Z+ f a 1+  a=

a11  a12 a13 a14 

a21 a22 a23 a24 

a31 a32 a33 a34 

a41 a42 a43 a44 

    

x

.
f x 

y d c–
b a–
------------ 
  x i+=

..

.

.
a                  b

c

d

.
.

i

f: a b  c d 

f x  d c–
b a–
------------ 
  x i+=

y-intercept

f x1  f x2 =

d c–
b a–
------------ 
  x1 i+ d c–

b a–
------------ 
  x2 i+=

d c– x1 d c– x2=

x1 x2=

y0 c d  x a b  f x  y0=

f x  y0
d c–
b a–
------------ 
  x i+ y0= =

d c– x i b a– + y0 b a– =

x
y0 b a–  i b a– –

d c–
----------------------------------------------- y0 i–  b a–

c d–
------------ 
 = =

a y0 i–  b a–
c d–
------------ 
  b 
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CYU 2.15  For any given finite interval F, choose closed intervals ,  such
that . CYU 2.15 tells us that . It follows,
from Theorem 2.9, that the finite interval F is of the same cardinality as that of (any)
finite closed interval. That being the case, any two finite intervals must be of the same
cardinality (Theorem 2.7).

CYU 2.16 (a) Since  and since 
,  

(b) Since , there cannot exist a bijection from  to Q.

CYU 2.17 Assume the set of all sets exists. Let’s call it . Consider the set , and its 

power set . Since S contains all sets, . As such, . But then: 
 [Theorem 2.10(a)] — a contradiction [Theorem 2.13].

2.4 EQUIVALENCE RELATIONS
CYU 2.18 (a-i) Not symmetric:  but .                (a-ii) Yes.    

(a-iii) Not transitive:  and    but .   

(b-i) Yes.               (b-ii) Yes.                (b-iii) Not reflexive nor symmetric.

CYU 2.19 Reflexive: Let . Since , given by  is a bijection, 
.

Symmetric: If  for , then there exists a bijection . Theorem 
2.4(a), page 70, tells us that  is a bijection. Hence,  

Transitive: If  and  with , then there exists bijections 
 and . Theorem 2.5(c), page 72, tells us that  is a bijec-

tion. Hence, .

CYU 2.20 (a) No: . 

(b) Yes: Every element of  is either an integer or is contained in some    for 
some integer  or in some  for some . Moreover the sets in 

 are mutually disjoint.

f a  y0 f b   d c–
b a–
------------ 
  a i+ y0

d c–
b a–
------------ 
  b i+  d c–

b a–
------------ 
  a y0 i d c–

b a–
------------ 
  b– 

a y0 i–  b a–
d c–
------------ 
  b

c                    d

L a b = M c d =
a b  F c d   Card L  Card M =

– 3  – 3  5 6  9   
Card – 3   Card   c= = Card – 3  5 6  9   c=

Card Q  Card   

S T A
A S
=

P T  P T  S P T  T
Card P T   Card T 

1~2 2~1
2~1 1~3 2~3

S P X  I: S S I s  s s S=
S S

S~T S T P X  f: S T
f 1– : T S T S

S~T T~W S T W P X 
f: S T g: T W gf: S W

S~W

1 2  2 3  

 i i 1+ 
i 0 i– i– 1–  i 1

n  n Z  i i 1+  i 0=


 i– i– 1–  i 1=
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CYU 2.21 Let’s find the equivalence classes, starting with :

Moving on to :

Conclusion: The equivalence relation partitions the integers into two disjoint pieces:
the class of even integers and the class of odd integers.

CHAPTER 3
A TOUCH OF ANALYSIS

CYU 3.1 (a) . Maximum: 7. No minimum.

(b) . Maximum: 9. Greatest lower bound and mini-
mum do not exist.

(c)

. Maximum: . No minimum.

CYU 3.2 If  is the greatest lower bound, then it is a lower bound. To establish (b-ii), we con-
sider a given . Since , and since nothing greater than  can be a lower
bound of S, there must exist some  to the left of . 

Conversely, suppose  satisfies (b-i) and (b-ii). To show that  is the greatest
lower bound of S we consider an arbitrary lower bound  of S, and show that

: Assume, to the contrary, that . Let . By (b-ii) 

Contradicting the assumption that  is a lower bound of S.

CYU 3.3 As observed in Example 3.1: . In particular: 

(a) . It follows that  is the smallest

element of S which lies to the right of .

(b) . It follows that  is the smallest ele-

ment of the set S  which lies to the right of .

CYU 3.4 (a) Theorem 3.2, with , assures us that such an integer n exists.

0 

0  b 2 3 0  7b–   b 7b is even  even integers = = =
1 

1 b 2 3 7b–   b 7b is odd  odd integers = = =

lub 3 5  4 7   7= glb 3 5  4 7   3=   

lub – 0  1 3  9    9=   

lub x 0 x2 2  x 0 x2 2   2=   

glb x 0 x2 2  x 0 x2 2   2–=   2


 0   + 

s S  +
 

b
 b  b  b  0–=

 s S s  +  b – + b= =
b

n
n 7+
------------ 1  n 7 7–


---------------–

n
n 7+
------------ 99

100
--------- 1 1

100
---------

7 7
100
---------–

1
100
---------

------------------– 693= = 694
694 7+
------------------

99
100
---------

n
n 7+
------------ 99.9

100
---------- n

7 7
1000
------------–

1
1000
------------

--------------------- 6993= 6994
6949 7+
---------------------

99.9
100
----------

a 1=
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(b) There exists a positive integer n such that  if and only if there exists a posi-

tive integer n such that . Theorem 3.2, with 1 playing the role of b and 
that of a, assures us that such an integer n exists.

CYU 3.5 Let  be given. CYU 3.4(b) assures us of the existence of a positive integer

 such that  (let x play the role of ). In particular, x is not contained in

. It follows that no  is contained in every ; or, to

put it another way: .

CYU 3.6 (a) Let x be irrational, and let  be a rational number with . Assume that  is

rational, say . Then:  — contradicting the given condition

that x is irrational. 
            (b) The sum of two irrational numbers can be rational: 

CYU 3.7 (a) If S is a finite subset of , then  for some . Since no element
of S is contained in , S is not dense in .

(b) Suppose there exists an interval  containing only finitely many elements of S.
Let  be the smallest of those finitely many elements of S. It follows that the inter-
val  contains no element of S — contradicting the given condition that S is
dense in .

CYU 3.8 (a-i) Let  be given. We want N such that: 

From the above, we see that if N is any integer greater than , then

.

(a-ii) If , then . It follows, from (i) that

 is the smallest integer for which . 

(b) For any given  we observe that: 

1
n
--- 

1 n 

x 0 1 

nx
1
nx
----- x 

Jnx
0 1

nx
----- 

 = x 0 1  Jn 0 1
n
---

=

Jn
n 1=



 =

a
b
--- a 0 a

b
---x

a
b
---x c

d
---= x c

d
--- b

a
--- cb

da
------= =

2 2– 2 1–  2 + 0= =

 S N N–  N Z+
N N 1+  

a b 
c
a c 



 0 n N 7 101
n

---------– 7– 

101
n

--------- 

n 101


---------
101


---------

n N 7 101
n

---------– 7– 

 1
100
---------= 101


---------   101  

1
100
---------

--------------- 10,100= =

N 10,101= n N 7 101
n

---------– 7– 

r 
n 5–
333
------------ r 1 n 5 333r 333+–+

n 333r 338+
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It follows that the sequence  will be larger than  for any ,
and that, consequently, the sequence does not converge to r. Since r was arbitrary, the
sequence does not converge, period. 

(Why not start the above argument with  rather than ?

CYU 3.9 Let . Taking  we choose N such that . Noting that
only the elements  can be more than 1 unit from , we let

. Taking  to be the larger of the two numbers, 1 and K, we
see that  for all n. That is, the sequence is bounded below by  and
above by .

CYU 3.10 (a) Suppose, to the contrary, that . For , let N be such that

 and . It follows that :

(b) One possible answer: For  and :

 and . 

CYU 3.11 The sequence  is a subsequence of the sequence  if ,
where  is a strictly increasing function.

CYU 3.12 Let  be Cauchy. Choose  such that . In particular:
 for every . It follows that  for every .

Letting  and , we find that
 for every .

CYU 3.13 The sequence  is Cauchy but does not converge in , since the

number 0 is not in X.

CYU 3.14 .

CYU 3.15 (a) For  let . Then .

(b) For  let . Then . 

      For  let . Then . 

n 5–
333
------------ r 1+ n 333r 338+

n 5–
333
------------ r n 5–

333
------------ r 1+

an   1= n N an – 1
a1 a2  aN   

K max ai – i 1=
N= M

an – M  M–
 M+

    –
2

-------------=

n N an –  n N bn –  aN 1+ bN 1+

                 
.    .(             )(              )


: a contradiction.

an  0 0 0    = bn  1 1
2
--- 1

3
---    

 =

0 an bn lim an lim bn 0= =

g: Z+  f: Z+  g fh=
h: Z+ Z+

an n 1=
 N n m N an am– 1

an aN 1+– 1 n N an 1 aN 1++ n N

K max ai i 1=
N= M max K 1 aN 1++ =

M an M – an

1
n
--- 
 

n 1=


X 0  =

x x y–  y+ x y– y x x y– y x y– x y–++=
triangle inequality

x a b   min x a b x–– = S x  a b 

x – a   a x–= S x  – a 

x a    x a–= S x  a  
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(c) Let  and let . For any given , since  is infinite and S is
finite . It follows that  is not contained in S.

CYU 3.16 For , .

CYU 3.17 (a) . Since both  and  are open [CYU
3.15(b)] and since unions of open sets are open [Theorem 3.13(ii)],  is open.
Consequently,  is closed. 

(b) Since  is not open [no  is contained in
],  is not closed.

CYU 3.18 If , then  — not closed since: 

 is not open [no  is contained in ].
 

CYU 3.19 (a)  is not compact: The open cover  of B has no finite

subcover (note that ).

(b) is compact: For  an open cover of B, let

 be an element of U which contains 0, and let  be such that

. Choose N such that  [CYU 3.4(b), page 115]. For each 

let  be an element of U containing . It follows that  covers B.

CYU 3.20 A consequence of CYU 3.12 (page 131), Theorem 3.10 (page 129), and Theorem
3.19.

CYU 3.21 For a given  we are to find  such that:

CYU 3.22 For given  we are to find  such that:

S x1 x2  xn   = xi S  0 S x 
S x  S – S x 

Oi
1
i
---– 1

i
--- 

 = Oi

i 1=



 0 = (not open)

a b c – a  b  = – a  b  
a b c

a b 

1 3 c – 1  3  = S 1 
– 1  3   1 3 

Hi
1
i
--- 1= Hi

i 1=



 0 1 =

0 1  c  0–  1  = S 0   0–  1  

B 1
n
---
 
 
 

n 1=



= S 1
2n
------

1
n
--- 
 

 
 
 

n 1=



S 1
2n
------

1
n
--- 
  B 1

n
---
 
 
 

=

B 0  1
n
---
 
 
 

n 1=



= U O  A=

O0
 0

0 S 0  O0
 1

N
----  n N

On

1
n
--- Oi

 i 0=
N

 0  0

 0  0
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Since we are interested in what happens near , we decide to focus
on the interval: . Within that interval

. Consequently, within that interval: .

We observe that (*) is satisfied for :

                         

CYU 3.23 (a) Let  be given. We are to find  such that:

 

(b) Let  be a fixed but arbitrary number. We are to find  such that:

     We observe (see adjacent figure) that in the chosen
interval : 

It follows that for :

                                

x 2–  5x 1+  11– 
x 2–  5x 10– 
x 2–  5 x 2– 

x 2–  x 2– 
5
--- Let  

5
---=

i.e:

x 2–  x2 1+  5– 
x 2–  x 2+  x 2–  
x 2–  x 2+ x 2–  (*)

y x 2+=

1               3

5
x 2=

1 3  x x 2– 1 =
x 2+ 5 x 2+ x 2– 5 x 2–

 min 1 
5
--- 

 =

x 2–  x 2+ x 2– 5 5 
5
--- 
   =

 0  0

x 0–  x 0–  

x  x 

x  x 2

x 0 and x 0:

Let  2=

x0  0

x x0–  x2 x0
2– 

x x0–  x x0– x x0+ i.e:

.
.

x0 1+

x0
1

–

x0
x

y x x0+=

x0–

y
x0 1 x0 1+– 

x x0+ M max 2x0 1+ 2x0 1– =

 min 1 
M
----- 

 =

x x0–  x x0– x x0+ 
M
----- M =
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CYU 3.24 We show that  is not continuous at :

Let  (the “jump” at 1), and let  be ANY positive number whatsoever.

Since, for every , , f is not continuous at 1.

CYU 3.25 For given  we are to find  such that: 

                                        

Let  be such that , and let  such that

. Letting , we see that if , then (*)

holds:  

CYU 3.26 Let  and  be continuous. We show that  is also con-
tinuous at an arbitrarily chosen :
For given  we are to find  such that:

Since g  is continuous at , we can find  such that:

Since f  is continuous at , we can find  such that:

Consequently:   

CHAPTER 4
A TOUCH OF TOPOLOGY

CYU 4.1 

CYU 4.2 For: :

f x 
x if x 1

999
1000
------------ if x 1=







= x 1=

 1 999
1000
------------– 1

1000
------------= = 

x  1  f x  f 1 – x 999
1000
------------– 1

1000
------------ = =

 0  0

x c–  f g–  x  f g–  c – 
x c–  f x  g x – f c – g c + 
x c–  f x  f c –  g c  g x – +  (*)

1 0 x c– 1 f x  f c – 
2
--- 2 0

x c– 2 g c  g x – 
2
---  min 1 2 = x c– 

f x  f c –  g c  g x – + f x  f c – g x  g c – 
2
--- 

2
---++ =

triangle inequality

f:   g:   gf:  
x0 

 0  0
x x0–  gf x gf x0– 

x x0–  g f x   g f x0  – i.e:

f x0   0

y f x0 –  g y  g f x0  –  (*)

x0  0

x x0–  f x  f x0 –  (**)

x x0–  f x  f x0 –  g f x   g f x0  – 
(**)                                (*)

y          

x x y–  y+ x y– y x x y– y x y– x y–++=
triangle inequality

d x y  1  if x y
0  if x y=




=
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:
 (i)  if and only if  (see above definition of d).      

(ii)  (see above definition of d). 

(iii) Let . If , then: .

If no two of the elements are equal, then: 

If two of the elements are equal but differ from the third element, say  and
, then: 

CYU 4.3 Since , and since 5 is the only element of  which is
within one unit of 5: .
Since every element of  falls within five units of 1: .

CYU 4.4 (a) Since for all : ,  is not open. 

Since , and since for all : , 
is not open. It follows that  is not closed.
(b).Since every subset of X is open [Example 4.2(c)], and since a set of n element has

 subsets (Theorem 2.12, page 84), X has  open subsets.

CYU 4.5 (i) Since both  and  are open, both  and  are closed. 

(ii) Let  be a collection of closed sets. Since: 

[Theorem 2.3(b), page 58], and since each  is open,  is closed.

(iii) Let  be a collection of closed sets. Since  [Theo-

rem 2.2(a), page 57] and since  is open,  is closed.

CYU 4.6 (a) True. Let A and B be bounded subsets of , bounded by  and , respec-
tively. If either A or B is empty, then  is bounded by the bound of the other. If
neither A nor B is empty, then choose elements  and . We show that

 is a bound for : 

Let . If both x and y are in either A or B, then clearly
. For  and  we have:

                 

d x y  0= x y=

d x y  d y x =

x y z X  x y z= = d x z  d x y  d y z + 0= =

d x z  1 1 1+ d x y  d y z += =

x y=
y z d x z  1 0 1+ d x y  d y z += = =

S1 5  n Z+ d n 5  1  = Z+

S1 5  5 =
Z+  S5 1  Z+=

 0 S 5  1 5  1 5 

1 5 c –  1  5  =  0 S 1  1 5 c 1 5  c

1 5 

2n 2n

Xc = c X= X 

H  A H
 A
 

 
  c

H c

 A
=

H c H
 A


Hi i 1=
n Hi

i 1=

n


 
 
 
  c

Hi c

i 1=

n

=

Hi c

i 1=

n

 Hi
i 1=

n


X d  MA MB

A B
a A b B

MA d a b  MB+ + A B

x y A B
d x y  MA d a b  MB+ + x A y B

d x y  d x a  d a b  d b y + + MA d a b  MB+ + 

triangle inequality
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 (b) False. Each of the sets  in the Euclidean space  is bounded by 1,

but the set  is not bounded.

(c) True. Let  be a collection of bounded sets in a space X. Since  is

contained in each , the bound  of any chosen  will be a bound for .

CYU 4.7 (One possible answer): Consider the discrete metric d on ;

namely:  (see CYU 4.2).  is a subset of itself, that is

closed and bounded by 1. Since the open cover  contains no finite sub-
cover, it is not compact.

CYU 4.8 (a-i) 

(a-ii) 

(a-iii) 

(a-iv) 

(b) : 

          

                : 

CYU 4.9 To show that  is continuous, we take an arbitrary open set  in
 and go on to show that  is open in :

For given  let  be such that
 is contained in the open subset O of

. Since 

the open sphere of radius  centered at  in the space

 is contained in O.

i i 1+  i 0=
 

i i 1+ 

i 0=



 0 =

S  A S
 A


S M S S
 A


Z+ 1 2 3 4     =

d n m  1  if n m
0  if n m=




= Z+ d 

S1 n  n 1=


y f x  for x A or x B=
y f A  or y f B  y f A  f B 

y f A B  y f x  for x A B =

x f 1– A  or x f 1– B  x f 1– A  f 1– B 

x f 1– A B  f x  A B f x  A or f x  B

x f 1– A  and x f 1– B  x f 1– A  f 1– B 

x f 1– A B  f x  A B f x  A and f x  B

x f 1– Ac  f x  Ac f x  A x f 1– A  x f 1– A  c 

f A  f Ac  c

y f A  y f x  for x A y f x  for x Ac= y f Ac  y f Ac  c
since f is one-to-one

f Ac  c f A  y f Ac  c y f Ac  y f x  for x A y f A =
since f is onto

I: 2 d  2 d  O
2 d  I 1– O  O= 2 d 

x0 y0 

x y 



x x0– 

x0 y0  O  0
x y  d x y  x0 y0    

2 d  d x0 y0  x y   x x0– y y0–+  + 2= =

2 x0 y0 

2 d 
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CYU 4.10 No: Let X be the set of real numbers with the discrete metric and let X and Y be the
Euclidean space . Let  be the identity map  for all  and let

 be given by . The composite function  is

continuous, since every subset of the discrete space X [in particular,  is open

for every O open in Z]. The function g is not continuous since  is not
open.

CYU 4.11 Let S be a collection of metric spaces. We show that the relation , if X is isometric
to Y, is an equivalence relation on S.

(i) For every , : The identity function  is a bijection which satisfies the
condition that .

(ii) For  and  in S, if  then : Let  be a bijection such that
. The function  is a bijection (Theorem 2.4, page

70). Moreover:  [read (*) from
right to left].

(iii) For , ,  in S, if  and  then : Let  and  be
bijections such that  and .
The function  is a bijection (Theorem 2.5, page 72). Moreover:

              

CYU 4.12 (a) For . (i) X and  are certainly in .

(ii) , , .

(iii) , , .

(b) For :(i) Since  contains all subsets of X, it certainly contains X and . 
(ii) and (iii) are a consequence that unions and intersections of subsets of X are again subsets of X.

CYU 4.13 We are given that  and X are contained in . Since  contains but three elements,
one can easily check directly that it is closed under unions and intersection.

                
CYU 4.14 Since any metric space containing at least two points must contain at least four distinct

open sets (Exercise 13, page 168), the Sierpinski space is not metrizable.

CYU 4.15 (a) Since every subset of a discrete space is open, the complement of every subset
must be open. Consequently, every subset of a discrete space is closed.

(b)  Since the only open subsets of an indiscrete space X are X and , the only closed
subsets of X are  and .

 f: X Y f x  x= x X

g: Y Z g x 
1  if  x 0=
0  if  x 0




= gf: X Z

gf  1– O

g 1– 1
2
--- 3

2
--- 

  0 =

X~Y

X S X~X I: X X
d x1 x2  d I x1  I x2  =

X d  Y d  X~Y Y~X f: X Y
d x1 x2  d f x1  f x2  = (*) f 1– : Y X

d y1 y2  d f f 1– y1   f f 1– y2    d f 1– y1  f 1– y2  = =

X d  Y d  Z d̂  X~Y Y~Z X~Z f: X Y g: Y Z
d x1 x2  d f x1  f x2  = (*) d y1 y2  d̂ g y1  g y2  =     (**)

gf: X Z

d x1 x2  d f x1  f x2   d̂ g f x1   g f x1    d̂ gf  x1  gf  x1  = = =
(*) (**)

0 X  =  0

X X X 0= X  X 0=    0=

X X X 0= X   0=    0=

1 S S X = 1 

  


Xc = c X=
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(c) The Surpinski space is  with topology . Taking
complements of the elements of  we obtain the set of closed subsets of X:

.

CYU 4.16 Let  be a family of open sets in . For each i choose  such that

. Since  is a topology, . The desired result now follows

from the fact that: 

CYU 4.17 Let O be open in X, and . We already know that  is a basis
for X [Example 4.6(a)]. Since the rationals are dense in  (Theorem 3.6, page 118),
there exists  such that . It follows that .

CYU 4.18 Let  be open in the Euclidean topology. For given  choose  such

that ; which is to say: . Since ,

. At this point we know that . Since  and ,

.

CYU 4.19 If  is an open cover of a closed subset H of a compact space X, then
 is an open cover of X. Since X is compact, that cover has a finite sub-

cover . It follows that .

CYU 4.20 Let d be a metric on X . For any two distinct point x and y in X, let .

Then . 

CYU 4.21 For each  choose disjoint open sets ,  containing x and , respectively.

Since K is compact the open cover  of K has a finite subcover . It

X a b =   X a   =


c Xc a c   X  b   =

Ui i 1=
n S S  Oi 

Oi S Ui=  Oi

i 1=

n

 

Ui

i 1=

n

 Oi S 

i 1=

n

 Oi

i 1=

n


 
 
 
 

S.= =

Exercise 82(b), page 61

x O Sr x  x X r 0 


r Q+ 0 r r  x Sr x  O

O  x O r 0

x Sr x  O x r– x r+  O x x r
2
---– x r

2
---
 O+

O S  S 0 1  S 0 1  

 S

O  A
O  A Hc

Oi
 i 1=

n Hc H Oi
 i 1=

n

X   r d x y 
2

----------------=

Sr x  Sr y  =

x K Ox Ox0 x x0

Ox x K Oxi
 i 1=

n
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follows that the open neighborhood  of  is disjoint from the open set

 (note that ).

CYU 4.22 For  with topology . the function  given by
 is continuous [Example 4.8(b)]. The function  given by

 is not continuous, since  is not open in X.

CYU 4.23 Let f be any function from a topological space X to an indiscrete space Y. Since
 and  are open in X, and since  and Y are the only open sets

in Y, f is continuous.

CYU 4.24 (a) Let  with indiscrete topology, and let  with discrete
topology (see CYU 4.12, page 171). Let  and  be identity maps.

 is continuous but  is not, since  is open in Z but

 is not open in X.

(b) Let  with indiscrete topology, and let  with discrete
topology. Let  and  be identity maps.  is continuous
but  is not, since  is open in Z but  is not
open in X.

(c) Let  with topology  (three copies of the Sier-
pinski space). Let both  and  be the function which maps a to b
and b to a. Neither of these function is continuous since the inverse of the open set

 is the set  which is not open in the Sierpinski space. On the other hand
 is the identity map, which is continuous.

CYU 4.25 False. Let  be the constant function .  is
compact, but  is not.

CYU 4.26 Let  be given by  . Since the subspace
 of  is discrete, f is open and closed. It is, however, not continuous since

 is not open in .

CYU 4.27 Let  be a homeomorphism. 

Ox0 xi

i 1=

n

 x0

OK Oxi

i 1=

n

= K OK

X a b =  X a    f: X 
f a  f b  0= = g: X 
g a  0 g b  2= = g 1– 1 3  b =

f 1–   = f 1– Y  X= 

X Y a b = = Z a b =
f: X Y g: Y Z

f: X Y gf: X Z a 

gf  1– a   a =

X a b = Y Z a b = =
f: X Y g: Y Z g: Y Z

gf: X Z a  gf  1– a   a =

X Y Z a b = = =  X a   
f: X Y g: Y Z

a  b 
gf: X Z

f:   f x  0 x = f   0 =


f:  Z+ f n n 1 +  n= x n n 1 +
Z+ 

f -1 0   0 1 = 

f: X Y



                                                                                                                                                   CYU SOLUTIONS    A-25

f is continuous: If U is open in Y, then . As such, there exists  with

 [recall that ]. We then have:

 (recall that f is a bijection).

 is continuous: If O is open in X, then . As such . We

then have: .

Conversely, assume that  is a continuous bijection such that  is
also continuous. We show :

Let . Is there an  such that ? Yes, since  and

 by virtue of the continuity of f. So .

Let . Is ? Yes, since , and  is given to be

continuous. So, .

CYU 4.28 (a) Let  be a continuous open bijection. We show that  is also
continuous: 
For any O, open in X. Since the inverse of the inverse function  is the function f,
we have  which is open in Y (since f is an open map).

(b) Let  with discrete topology, and  with indiscrete topology.
The identity function  is a continuous bijection which is not a homomor-
phism since {a} is open in X but  is not open in Y.

CYU 4.29 Let  with indiscrete topology, and let  with discrete topology.
X is compact and Y is Hausdorff. The identity function  is an open and closed
bijection which is not a homomorphism.

CYU 4.30 (a) Let  with X compact. We show that Y is also compact:

Let  be a homeomorphism. If  is an open cover of Y then,

since f is continuous,  is an open cover of X. Since X is compact,

that cover contains a finite subcover . It follows that

 covers Y.

(b) Since  is compact and  is not, the two spaces are not homeomorphic.

U Y O X

f O  U= f X  f O  O X  Y= =

f 1– U  f 1– f O   O= =

f 1– O X f O  U Y=

f 1– U  f 1– f O   O= =

f: X Y f 1– : Y X

f X  f O  O X  Y= =

U Y O X f O  U= U f f 1– U  =

O f 1– U = X f X  Y

O X f O  Y f 1–  1– O  f O = f 1–

f X  Y

f: X Y f 1– : Y X

f 1–

f 1– 
1– O  f O =

X a b = Y a b =
I: X Y

I 1– a   a =

X a b = Y a b =
I: X Y

X Y

f: X Y O  A

f 1– O   A

f 1– Oi
  i 1=

n

f f 1– Oi
   i 1=

n Oi
 i 1=

n=

0 1  0 1 
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CYU 4.31 For topological spaces X, Y, and Z:
(i) Since the identity map  is a homeomorphism: .

(ii) If , then there exist a homomorphism . CYU 4.25 assures us

that  is also a homeomorphism, and that consequently: .

(iii) If  and , then there exist homeomorphisms  and
. Since both  and  are continuous

bijections: :

CYU 4.32 (a) We show that every open set in the basis  is the
union of elements of :

For , with , choose  and  with 
 and . Then .

(b) The open spheres  is a basis for the topology on ,

and the open rectangles  is a basis for . We
establish the fact that the product topology on  coincides with the Euclidean
topology on , by showing that: (i) every  is a union of the elements in  and
that: (ii) every  is a union of elements in  (in other words, that you can build
open spheres using open rectangles, and vice versa):

(i) For , choose  such that . 

Then:  for  and 

.

(ii) For  let r denote the shortest distance between  
and the boundary of the rectangle . 
Then . 

CYU 4.33 Suppose that  is compact and that either X or Y is not compact (we will arrive at
a contradiction). For definiteness, assume that X is not compact, and let  be
an open cover of X containing no finite subcover. This implies that  is
an open cover of  containing no finite subcover — contradicting the given con-
dition that  is compact.

CYU 4.34 We show that  is both open and closed. A similar argument can be use
dot show that  is also open and closed.

I: X X X X

X Y f: X Y

f 1– : Y X Y X

X Y Y Z f: X Y

g: Y Z gf: X Z gf  1– f 1–= g 1– : Z X

X Z

 U V U X V Y =
 D E A X and B Y =

x y  U V U X V Y D X E Y
x D U y E V x y  D E U V

 Sr x y  r +  x y  2= 2

 U V U and V are open in  =  

 
2 Sr x y  

U V 

x y .a b  .
r

a b  Sr x y   0 S a b  Sr x y 

a b  U V Sr x y  U a 
2

-------– a 
2

-------+ 
 =

V b 
2

-------– b 
2

-------+ 
 =

.a b 

U
V

ra b  U V a b 
U V

a b  Sr a b  U V

X Y
O  A

O Y  A
X Y

X Y

1 : X Y X
2 : X Y Y
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 is open: Let O be open in , and let . Choose 

such that . Let  be such that . Then,
.

 is closed: Let H be closed in . We show  is open in X: 

For any , . Choose  such that .

Since H is closed there exist  such that . It
follows that .

CYU 4.35 Since , and since projection maps are continuous,  is compact (Theo-
rem 4.12, page 187).

CYU 4.36 Start with the space  and let ~ be the equivalence relation repre-
sented by the partition  for  and , and 

 along with .

CHAPTER 5
A TOUCH OF GROUP THEORY

CYU 5.1 (a)  is a group, with identity 0 and  the inverse of .

(b)  is a group, with identity 0 and  the inverse of .

(c)  is not a group. It does have a multiplicative identity; namely 1:
. However,  does not have a multiplicative inverse:

there does not exist  such that .

(d)  is a group. Unlike the situation in (c) every element in 

does have an inverse; namely : .

CYU 5.2 The values in column a follow from the observation that  for . 
As for column b, row 3: , since  
As for column c, rows 2 and 3:  and , since:

                  and .
As for column d, rows 1, 2, and 3: , ,

and ,  since:  ,
 , .

1 : X Y X X Y x 1 O  y Y

x y  O U X V Y x y  U V O
x U 1 O 

1 : X Y X X Y 1 H  c

x 1 H  x  Y  H = y Y x y  H

U X V Y x y  U V Hc
x U 1 H  c

X  X = X

X 0 2  0 1 =
x y   x y  = x 0 2  y 0 1 

0 y   0 y  1 y  = x 1   x 1  x 0  =

Q +  n
m
----– n

m
---- Q

 +  r– r 

 . 
r 1 1 r r = 0 

r  0 r 1=

+ .  + r  r 0 =
1
r
--- r 1

r
--- 1 and 1r

--- r 1= =

0+n n n= 0 n 3 

  a    b    c    d  
  0 1 2 3

  0  0 1 2 3
  1  1 2 3 0
2 2 3 0 1
3 3 0 1 2

+4

3+41 0= 3 1+ 4 1 4 0+= =
2+42 0= 3+42 1=

2 2+ 4 1 4 0+= = 3 2+ 5 1 4 1+= =
1+43 0= 2+43 1=

3+43 2= 1 3+ 4 1 4 0+= =
2 3+ 5 1 4 1+= = 3 3+ 6 1 4 2+= =
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CYU 5.3 Let . By construction, the  column of G’s group table is 
precisely . The fact that every element of G appears exactly one time in 
that row is a consequence of Exercise 37, which asserts that the function  given by 

 is a bijection.

CYU 5.4 From  and we have:

CYU 5.5 (a) We know that 1 and 5 are generators of  [Example 5.2(a)]. The remaining 4 ele-
ments in  are not:

(b)  is cyclic, with generator : . 

(c) For , consider the following bijections :

Since ,

 is not abelian, and therefore not cyclic.

CYU 5.6 Since :  (Theorem 5.6).

G e a1 a2  an 1–    = ith

eai a1ai a2ai  an 1– ai   

kai
: G G

kai
g  gai=


1   2   3   4   5
1   5   2   3   4 
 = 

1   2   3   4   5
5   3   2   1   4 
 =

1   2   3   4   5
1   5  2   3   4
5   4   3   2   1 
 
 
 

: 
1   2   3   4   5
5   4   3   2   1 
 




1   2   3   4   5
5   4  3   2   1
4   3   2   5   1 
 
 
 

: 
1   2   3   4   5
4   3   2   5   1 
 




Z6

Z6

2+62 4=

2+62+62 0=
3+63 0= 4+64 2=

4+64+64 0=
0+60 0=

S2: 
1 1
2 2

  
1 2
2 1 

 
 
0        1

1 11
1 2 1 
2 1 2 

0= =

n 2   Sn

 1  2  2  1 and  i = i  for 3 i n = =
 2  3  3  2 and  i = i for i not equal to 2 or 3= =

  1    1    2  3     and      1    1    1  2= = == = =

Sn

bca  bca  bc  abc a bc e a  bca= = = bca e=



                                                                                                                                                   CYU SOLUTIONS    A-29

CYU 5. 7 (a) False: For  given by ,  and  we have:

 (b) True: 

CYU 5.8 We show that the equation  has a unique solution in :

                Existence: 

Uniqueness: If  then: 

CYU 5.9 We know that we have to consider a non-abelian group, and turn to our friend . Spe-

cifically for  given by  and  we have: , 

, and , so that:

CYU 5.10 I.  clearly holds for .

II. Assume . Then:

III. 

   S3 : 
1 2
2 3
3 1

: 
1 2
2 1
3 3

: 
1 3
2 2
3 1

: 
1 2 1 
2 3 3 
3 1 2 

and   : 
1 3 1 
2 2 3 
3 1 2 

  as well.

           

a b+ b c+= b a+ b c a+ c= =
commutativity                   Theorem5.9

a x+ b=  + 

a x+ b= a– a x+  a b+–=+ a– a+  x+  a– b+=

0 x+ a– b x+ a– b+= =

x and x a x+ b and a x+ b== a x+ a x x+ x= =
Theorem 5.8

S3

  S3 : 
1 3
2 2
3 1


1 3
2 1
3 2

=  1–
1 3
2 2
3 1

=

 1–
1 2
2 3
3 1

= 
1 3 2 
2 2 1 
3 1 3 

1 2
2 1
3 3

= =

       

  1–
1 2
2 1
3 3

   while  1–  1–
1 3 1 
2 2 3 
3 1 2 

1 1
2 3
3 2

= = =

 1–     1–

ana2a1  1– a1
1– a2

1– an
1–= n 1=

aka2a1  1– a1
1– a2

1– ak
1–=

ak 1+ aka2a1  1– ak 1+ aka2a1   1–=

aka2a1  1– ak 1+
1– a1

1– a2
1– ak

1– ak 1+
1–= =Theorem 2.10:

II
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CYU 5.11 (a) 

CYU5.12 We already know that  is a subgroup of Z. To show that it is a subgroup of  we 
need but observe that :    

CYU 5.13 False:  and  are groups, but  is not:

                                   while .

CYU 5.14 We show that  by demonstrating that every ele-
ment of  is a multiple of 3:

          

Claim: : . Fine, but can we pick up other ele-
ments of  by taking additional multiples of 4? No: 

The division algorithm assures us that  for any , with
. From the above we know that  and  are in , and

surely . The only possible loose end is . Let’s tie it up:
 

CYU 5.15 False. In  both the permutations  and  have order 2. 

Does  have order 4? No, it has order 3:

              

 

1   2   3   4   
2   3   4   1   
3   4   1   3   
4   1   2   3   
1   2   3   4    
 
 
 
 
 
 

2

3

4

e

 has order 4

1 4  4=
2 4  4+244 8  = =

3 4  8+244 12= =

4 4  12+244 16= =

5 4  16+244 20= =

6 4  20+244 0: 4 has order 6= =

(b)

6Z 3Z
6Z 3Z n 6Z n 6m for m Z=

n 3 2m  n 3Z=

2Z 3Z 2Z 3Z

2 3 2Z 3Z 2 3+ 5 2Z 3Z=

3  Z8 0 1 2 3 4 5 6 7       = =
Z8

1 3 3  2 3 3 +83 6   3 3 3 +83 +83 1   4 3 3 +83 +83 +83 4= = = = = = =

5 3 3 +83 +83 +83 +83 7   6 3 2   7 3 5   8 3 0= = = = =

4  0 4 = 1 4 4   2 4 4 +84 0= = =
Z8

n q4 r+= n Z
0 r 4 1 4 2 4 0 4 

0 4 0 4  3 4
3 4 4 +84  +84 0 +84 4= = =

S3  1 2 3
3 2 1 

 
 

=  1 2 3
2 1 3 

 
 

=

 =

1 2 3
2 1 3
2 3 1 

 
 
 
 

 1 2 3
2 3 1 

 
 

=







1 2 3
2 3 1
3 1 2
1 2 3 

 
 
 
 
 



2

3
eThen:
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     (By the way, as you can easily verify, if G is abelian, then the assertion in CYU 5.15 does hold)

CYU 5.16 (a) Let  be given by . Since for every ,
,  is a homomorphism.

(b) Let  be given by . Since for every ,
,  is a homomorphism.

CYU 5.17 For  we have: 

CYU 5.18 Homomorphism:
 

.

CYU 5.19 Let  be such that . We establish that  is one -to-
one by showing that  (Theorem 5.24):

Assume that  (we want to show that ). Consider the element . 

Since  is a homomorphism: . Letting  play
the role of b in (*) we have:

                                           

CYU 5.20 (a) We show that the relation  given by  if  is isomorphic to  is an
equivalence relation (see Definition 2.20, page 88):

Reflexive  since the identity map  is clearly an isomorphism.

Symmetric : Let  be an isomorphism. Theorem 1.1(a),
page 5, assures us that the map  is a bijection. We show that it is also a
homomorphism:

For  let  be such that  and . Since
, We then have: .

Transitive : Follows from Theorem 1.2(c),
page 7, and CYU 2.19.

(b) Let . The map  is a bijection: 

One-to one: 

Onto: For , 

: G G  a  e= a b G
 ab  e ee  a  b = = = 

: Z +  +  n  n= n m Z
 n m+  n m+ nm  n  m = = = 

a b G

  a b+    a b+     a   b +    a     b  += = =

  a    b +=Definition of composition

 2n1 2n2+   2 n1 n2+   8 n1 n2+  8n1 8n2+  2n1   2n1 += = = =

Ker   2n  2n  0=  2n 8n 0=  0 = = =

Im    2n   8n  8Z= = =

a G  b   a  b a= = (*) 
Ker   e=

 c  e= c e= ca

  ca   c  a  e a   a = = = ca

ca a ca a 1– e c e= = =

 G G G G

G G I g  g=

G G G G : G G
 1– : G G

a b G a b G  a  a=  b  b=
 ab  ab=  1– ab  ab  1– a   1– b  = =

G1 G2 and G2 G3 G1 G3

g G ig: G G

ig a  ig b = gag 1– gbg 1–= g 1– gag 1– g g 1– gbg 1– g a b= =

a G ig g 1– ag  g g 1– ag g 1– a= =
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 is a homomorphism: 

CYU 5.21 Let  be an isomorphism. Assume that G is abelian. For  let 
 be the elements in G such that  and . Then:

The same argument can be used to show that if  is abelian, then so is G.

ig: G G ig ab  gabg 1– gag 1–  gbg 1–  ig a ig b = = =

: G G a b G
a b G  a  a=  b  b=

ab  a  b   ab   ba   b  a  ba= = = = =

G
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Appendix B
Answers to Selected Exercises

Chapter 1
A logical Beginning

1.1 PROPOSITIONS
1. True     3. True      5. True     7. False    9. False     11. False      13. False       15. True       17. False
19. False   21. True   23. True    25. True   27. False     29. False   31. False     33. Yes       35. No 
37. Yes       39. Yes      45. No      47. No     49. Yes    51. No     53. No     55. No    57. No    59. No
63. True   65. False     67. Joe or Mary is not a math major.       69. Joe is a math or biology major.
71.   or x and y are not both integers.     
73. x is divisible by 2 and 3 or it is not divisible by 7. 

1.2 QUANTIFIERS
1. False    3. True       5. False     7. True      9. False     11. True     13. True    15. False    17. False
19. False    21. False       23. True       25. True       27. True     29. False       31. True     33. True
35. False    37. True    39. False    41. True     43. False    45. False    47. False   49. False    51. False
53. There is a road that does not lead to Rome.  
59.  Sometimes it rains  but not pennies from heaven.           57.  
59.              61.      
63.          65.  For every boy there is not some girl. 
67.         69.         71. 

Statement:
 

contrapositive:
 

converse inverse

75. If it rains, then I will
stay home.

If it dose not rain,
then I will not stay
home.

If I stay home, then it
will rain.

If it does not rain then
I will not stay home.

77. If Nina feels better,
then she will either go to
the library or go shop-
ping.

if Nina does not go to
the library or go shop-
ping, then she will tot
feel better.

If Nina goes to the
library or shopping,
then Nina feels better.

If Nina does not feel
better then she will not
go to the library nor go
shopping.

79. If  then . If  then . If  then . If  then .

81. If  then  or N
is a solution of the equa-
tion.

If M and N are not
solutions of the equa-
tion, then .

  or N is a solution
of the equation, then

.

If  then neither
nor N is a solution of
the equation.

83. If  then the
equation has no solution.

If the equation has a
solution, then .

If the equation has no
solution, then .

If  then the
equation has a solution

3x 5 5+

p q ~q ~p q p ~p ~q

X Z= M N M N X Z M N X Z= X Z M N

X Z M

X Z=

M

X Z

X Z=

X Z
X Z X Z

X Z

n Z n a
n Z n a or n b x X ~p x  ~q x  ~s x 
x X ~p x  ~q x  ~s x    
n Z n a n Z n a or n b x X ~p x  ~q x  ~s x 
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73.              75. There is somebody that loves nobody.
77. There is someday with no special moment.         79.       
81.       83. 
85.  For every opera there exists a symphony not longer than that opera.
87.  For every person there is someone that is greater than that person.
89.       91.       
93. 

1.3 METHODS OF PROOF
Each exercise calls for a verification or proof.

1.4 PRINCIPLE OF MATHEMATICAL INDUCTION
Each exercise calls for a verification or proof.

1.5 THE DIVISION ALGORITHM AND BEYOND

1.          3.          5. 1

Chapter 2
A Touch of Set Theory

2.1 BASIC DEFINITIONS

1. U         3.          5. B       7. D        9. U         11. C         13. F         15. D
17.            19.         21.   
23. 

2.2 FUNCTIONS

1. Not a function       3. Range:         5. Range: 
7. Not one-to-one, not onto.     9. Both one-to-one and onto.     11. One-to-one and not onto.
13. Onto and not one-to-one.     15. Both one-to-one and onto.     17. One-to-one and not onto.
19. Not one-to-one, not onto.    21. One-to-one and not onto.    23. One-to-one and not onto.
25. Both one-to-one and onto.     27.  Not one-to-one, not onto.          29. Not one-to-one, not onto.

31. Not one-to-one, not onto.     33.          35.          

37.       39.          41. 

x X ~p x  ~q x  ~s x  
x X y Y x y+ 0

a b S m n Z a b+ mn x X a b Y a x b and b+ a x+ 

x X y Y x y+ 0 a b S m n Z a b+ mn
x X a b Y a x b and b+ a x+ 

q r 0= = q 27 r– 0= =

15n n U 
1 2 4 5 7 8 10 11 13 14          16 17 18      1  2  1 2    
   

A B D   A B C D   

f 1– y  y 2+
3

------------= f 1– y  y
2 y–
-----------=

f 1– a b  a
5
--- b 3– 
 = f 1– a b

c d

c d–

a b
2
---

= f 1– a b c  

a
2
---

1
2
--- s 2b– 

1
2
--- a– 2b 2c–+ 

=
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2.3 INFINITE COUNTING
Each exercise calls for a verification or proof.

2.4 EQUIVALENCE RELATIONS
1. No     3. Yes      5. No     13. Yes    15. No    17. No     19. No       31. Yes      33. Yes
35. No         43. Yes         45. Yes         57. Yes         59. Yes         61. Yes         71. Yes        73. No
75. Yes      77. Yes       79. Yes         81. No         93. Yes         95. No        97. Yes         99. No

101.           103.        105. 

107.         113. 
115. , , for  , 
        

Chapter 3
A Touch of Analysis

3.1 THE REAL NUMBER SYSTEM
1. Least upper bound: 7, no max or min.         3. Least upper bound: 10, no max or min. 

5. No Least upper bound: 7, no max, min: 7.        7. 1         9. 2         11. 

3.2 SEQUENCES

1.          3.          5.           7. 0         9.          11. 1

13. 2         15. 1         23. 0             25. Does not exist        27. 1            29. 0         31. 

3.3 METRIC SPACE STRUCTURE OF 
1. Neither open nor closed, bounded below and above, not compact.
3. Open, bounded below and above, not compact.
5. Open, bounded below and above, not compact.
7. Closed, bounded below and above, compact.

3.4 CONTINUITY 
Each exercise calls for a verification or proof.

a  a a– 2– = a
b
--- a

d
--- gcd a d  1=
 
 
 

= r  r r– =

x y   x y  y  = n  n 10k n 10k 100+ + =
   = 1 2 3    1 2 3   = n 1 2 or 3: = n  n =

1 2   1 3   2 3   1 2  1 3  2 3   = = =

124
25
---------

n
n 1+
------------ 1  if n is even

2  if n is odd



n
2
--- 
  2

  if n is even

n 1+
2

------------  if n is odd








1–

1
2
---
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Chapter 4
A Touch of Topology

4.1 METRIC SPACES
7. Fails property (i) of Definition 4.1.         9. Fails Properties (i) and (iii) of Definition 4.1. 
9. Fails Properties (i), (ii),  and (iii) of Definition 4.1.

4.2 TOPOLOGICAL SPACES
1(a). Yes       1(b). Yes       1(c). No      1d). No       1(e). Yes      1(f). No     1(g). No     1(h). Yes

17(b) No    17(c) No       27. , , , ,

                                              , ,  

33. (a)     (b)      (c)     (d)      (e)        37. 

4.3 CONTINUOUS FUNCTIONS AND HOMOMORPHISMS 
Each exercise calls for a verification or proof.

4.4 PRODUCT AND QUOTIENT SPACES

1(a).       1(b).        1(c).  

Chapter 5
A Touch of Group Theory

5.1 DEFINITIONS AND EXAMPLES
1. A cyclic group with generator 2.             2. Not a group. It does not contain an identity.
3. Not a group. It does not contain an identity.      5. Not a group. It does not contain an identity.
7. Not a group. 1 is the identity, but 2 has no inverse.        9. Abelian group. Not cyclic.    
11.  Abelian group. Not cyclic.    

13. ,          15.           17. 

19. ,        21.        23. 

a  a b c d   = b  b e = c  c d = d  d c =

e  e = c e  c e d  = b e  b e =

1 3  Z+  1 3  5  0  1
n
--- n Z+
 
 
 

 Z+

1 1 1 2 2 2

3
2 e= 3

3 3= 1
n

e if n 0 mod 3
1 if n 1 mod 3

2 if n 2 mod 3





= 3
n– e if n is even

3 if n is odd



=

2
2 1= 2

3 e= 2
n

e if n 0 mod 3
2 if n 1 mod 3

1 if n 2 mod 3





= 2
n–

e if n 0 mod 3
1 if n 1 mod 3

2 if n 2 mod 3





=
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25.      27.      29. 

31.              33. 

35. Abelian      37. Abelian     45. Not Abelian

5.2 ELEMENTARY PROPERTIES OF GROUPS

1.(a)      (b) a     (c)       (d) 

5.3 SUBGROUPS
1. Yes      3.  No      5.  Yes      7. Yes         9. Yes         11. Yes         13. No          15. Yes        17. No

5.4 HOMOMORPHISMS AND ISOMORPHISMS

1. Yes              3.  No               5.  Yes               7. Yes                  9. Yes                 11. Yes  

 1 2 3 4 5 6
1 3 3 6 5 2 

 
 

=  1 2 3 4 5 6
5 6 3 4 1 2 

 
 

= 5  1– 1 2 3 4 5 6
6 1 2 3 4 5 

 
 

= =

101 5  1– 1 2 3 4 5 6
6 1 2 3 4 5 

 
 

= = = 101 5  1– 1 2 3 4 5 6
2 1 4 3 6 5 

 
 

= = =

e a 1– cb 1– aba 1–
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A
Abelian Group, 209
Addition Modulo n, 208
Alexander’s Subbase Theorem, 177
Algebra of Functions, 150
Algebra of Sequences, 126
Alternate Principle of Induction, 38
Archimedian Principle, 114
Automorphism, 242
Axiom of Choice, 110

B
Base, 175
Biconditional Statement, 4
Bijection, 70
Binary Operator, 2
Bolzano-Weierstrass Theorem, 129
Bound, 112

Greatest Lower, 112
Least Upper, 112
Lower Bound, 112
Upper Bound, 112

Bounded Sequence, 125
Bounded Set, 164

C
Cardinality, 77
Cartesian Product, 63
Cayley’s Theorem, 244
Cauchy Sequence, 130
Closed Function, 188
Closed Set, 137, 162, 176
Compact, 139, 164, 181
Complete Ordered Field, 111
Completion Axiom, 112
Composition, 64
Compound Proposition, 2
Conditional Statement, 3

Converse, 9
Inverse, 9
Negation, 8

Congruence Modulo n, 90
Conjunction, 2
Cantor Theorem, 85
Cantor-Bernstein-Schroder Theorem, 82
Continuity at a point, 147

Continuous Function, 149, 166, 185
Contrapositive, 8
Converse, 9
Countable Set, 78
Convergent Sequence, 123
Cyclic Group, 214

Generator, 214

D
Decreasing Sequence, 125
De Morgan’s Laws, 6, 57, 58
Dense Subset, 118
Discrete Metric Space, 161
Discrete Topological Space, 171
Disjunction, 2
Division Algorithm, 43
Divisibility, 27
Domain, 63

E
Equivalence Class, 91
Equivalence Relation, 88
Euclidean Metric, 135
Even Integer, 23
Existential Proposition, 16

F
Finite Complement Space, 171
Finite Subcover, 139, 164
Function, 63

Bijection, 70
Closed, 188
Continuous, 149, 166, 170
Domain, 63
Composition, 64
Homeomorphism, 199
Homomorphism, 237
Inverse, 70
Isomorphism, 241
One-to-One, 65
Onto, 66
Open, 188
Range, 63

Fundamental Counting Principle, 7
Fundamental Theorem of Arithmetic, 48
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Generator, 214
Greatest Common Divisor, 44
Greatest Lower Bound, 112
Group, 207

Abelian, 209
Cyclic, 214
    Generator, 215, 230
Elementary Properties, 220
Invariant Property, 244
Klein, 209
Order, 209
Subgroup, 228
Symmetric, 213
Table, 209

H
Hausdorff Space, 178
Heine-Borell Theorem, 140
Homeomorphic Spaces, 190
Homeomorphism, 190
Homomorphism, 237

Image, 239
Kernel, 239

Hypothesis, 3

I
Image, 152, 165
Incompleteness Theorem, 110
Increasing Sequence, 125
Indiscrete Topological Spaces, 171
Induction 33
Integer, 23

Even, 23
Odd, 23
Prime, 47
Relatively Prime, 46

Inverse Function, 70
Isometry, 167
Isometric Spaces, 167
Isomorphism, 241
Isomorphic Spaces, 241
Interval Notation, 59
Invariant Property, 191, 244
Inverse Function, 70
Inner Automorphism, 242

K
Kernel, 240
Klein Group, 209

L
Lagrange’s Theorem, 230
Least Upper Bound, 112
Limit of a Sequence, 123
Logically Equivalent, 5
Lower Bound, 112

M
Matrix, 68
Maximum, 112
Metric, 160
Metric Space, 159

Compact, 16a
Discrete, 161
Euclidean, 135

Metrizable Space, 172
Minimum, 112
Monotone Sequence, 125

N
n-tuple, 68
Negation of a Proposition, 2

of a Conditional Proposition, 8
of a Quantified Proposition, 18

Nested Closed Interval Property, 115

O
Odd Integer, 23
One-to-One, 65
Onto, 66
Open Cover, 139, 164
Open Sphere, 161
Open Function, 188
Open Set, 135, 162
Order of a Group, 209
Order of an Element, 224

P
Partition, 92
Path Connected Spaces, 191
Permutation, 212
Power Set, 83
Pre-Image, 152, 165
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Proposition, 1
Compound, 2

Power Set, 83
Prime, 47
Principle of Mathematical Induction, 33
Product Space, 2196, 198, 199
Projection Function, 199, 200
Proof, 23

by Contradiction, 26
Contrapositive, 24
Direct, 23

Proposition, 1
Compound, 2
Containing Multiple Quantifiers, 16
Existential, 15
Universal, 14

Q
Quantifiers, 14

Existential, 15
Universal, 14

Quotient Space, 201
Quotient Topology, 201

R
Range, 63
Relation, 88

Equivalence, 88
Reflexive, 88
Symmetric, 88

Relatively Prime, 46

S
Sequence, 122, 166

Algebra of, 126
Bounded, 125
Cauchy, 130, 167
Convergent, 123, 166
Decreasing, 125
Divergent, 123
Increasing, 125
Monotone, 125
Subsequence, 129

Set, 10 
Bounded, 164
Closed, 137, 162, 173
Compact, 139, 164, 176
Complement, 54
Dense, 118
Disjoint, 54
Equality, 53
Intersection, 53
Notation, 10
Open, 139, 169, 178
Subset, 53

               Proper, 53
Union, 53

Sierpinski Space, 172
Sphere of Radius of r , 123, 161
Statement, 1
Subbase, 175
Subgroup, 227

Generated by an Element, 228
Subsequence, 129
Subspace, 174
Subset, 55
Successor Set, 103
Symmetric Group, 211

T
Tautology, 4
Topology, 171
Topological Space, 171

Base, 175
Compact, 139
Discrete, 164, 171
Finite-Complement, 171
Hausdorff, 178
Half-Open, 176
Indiscrete, 171
Metrizable, 172
Sierpinski, 172
Subbase, 175
Subspace 174

Topologically Invariant Property, 191
Tychonoff’s Product Theorem, 200

Sr x  
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U
Uncountable Set, 81
Union, 53
Unary Operation, 2 
Universal Proposition, 14
Upper Bound, 112

W
Well Ordering Principle, 39
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	EXAMPLE 1.5

	(a), (c), and (d) are True.
	(b) is False.
	The four mathematical sentences of this example are nice and compact. Their interpretation may call for a less compact consideration. Please try to arrive at each answer before looking at our solution.
	EXAMPLE 1.6

	We had to exhibit a particular n, and went with . Any non-positive integer would do as well.
	(a), and (d) are True.
	(b) and (c) are False
	EXAMPLE 1.7

	Answer: See page A-4.
	EXAMPLE 1.8

	Answer: See page A-4.
	The notation is used to indicate that the truth value of the proposition, p, is a function of two variables, x and y.
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	Answer: See page A-4.
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	Answer: See page A-4.
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	53. All roads lead to Rome.
	54. Every cloud has a silver lining.
	55. Every time it rains, it rains pennies from heaven.
	56. All good things must come to an end.
	57. for
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	64.
	65. There is a reason for everything.
	66. There is no room for error.
	67. for
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	69. for
	70. for
	71.
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	74.
	75. Everybody loves somebody.
	76. All dogs go to heaven.
	77. Every day contains a special moment.
	78. Every good deed has a reward.
	79.
	80.
	81.
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	83.
	84.
	85. Some operas are longer than every symphony.
	86. There is a solution to every problem.
	87. Someone is greater than everyone else.
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	Throughout this section we will be dealing exclusively with integers.
	(a touch of Number Theory)
	Let us accept the fact that:
	n is odd if and only if it is not even.
	The direct method of proving is to assume that p is True and then apply mathematical reasoning to deduce that q is True.
	DEFINITION 1.11

	A proof is like a journey, which begins at a given point (the hypothesis), and ends at a given point (the conclusion). You must be mindful of both the beginning and the end of the journey. For if you know where you want to go (the conclusion), but do...
	EXAMPLE 1.11

	n and m are even
	is even
	Let n and m be even integers.
	By Definition 1.11, such that:
	Then:
	Thus: is even (Definition 1.11).
	Note how Definition 1.11 is used in both directions in the above proof. It was used in one direction to accommodate the given information that n and m are even integers, and was then used in the other direction to conclude that is even.
	Answer: See page A-4.
	EXAMPLE 1.12

	Answer: See page A-4.
	EXAMPLE 1.13

	A proof which established the validity of by showing that is said to be a Contrapositive Proof.
	Answer: See page A-5.
	This method of proof is called: proof by contradiction or, if you prefer Latin: reductio ad absurdum.
	Contrapositive Proof:
	We show :
	Proof by Contradiction:
	Suppose is even (given condition), and assume that n is odd, say for some k. Then:
	— contradicting our stated assumption that is even.
	(a)
	(b)
	Figure 1.1

	Direct Proof
	Contrapositive Proof
	Proof by Contradiction
	EXAMPLE 1.14

	Contrapositive Proof:
	Proof by Contradiction:
	Let be even (given condition)
	Assume that n is odd, say .
	Then:
	— contradicting the stated condition that is even.
	Answer: See page A-5.
	Note that while is the number 3. is not a number; it is the statement that there exists an integer k (in this case 3) such that .
	DEFINITION 1.12

	Typically:
	A general argument is needed to establish the validity of a statement.
	A (specific) counterexample is needed to establish that a statement is False.
	Note how Definition 1.12 is used in both directions in the above proof.
	EXAMPLE 1.15

	Answer: See page A-6.
	DEFINITIONS RULE!
	They are the physical objects in the mathematical universe.
	1. 0 is even and 1 is odd.
	2. The product of any two even integers is even.
	3. The product of any two even integers is divisible by 4.
	4. The sum of any two odd integers is even.
	5. If then .
	6. if and only if .
	7. If , and then for every n and m.
	8. If , and then .
	9. If is even then n is odd.
	10. is even if and only if n is odd.
	11. If then either n and m are both even or they are both odd.
	12. is odd for all n.
	13. is even if and only if n is odd.
	14. is even if and only if n is even.
	15. If is even then so is 3n.
	16. is even if and only if is even.
	17. is even if and only if is even.
	18. If is even, then either n and m are both even or they are both odd.
	19. The square of every odd integer is of the form for some .
	20. If then .
	21. Let . Prove that if and , then .
	22. If bc is not a multiple of a, then neither b nor c can be a multiple of a.
	23. If is a multiple of a, and b is a multiple of a, then c is a multiple of a.
	24. If a and b are odd positive integers and if , then c is even.
	25. If a is odd and b is even and if , then c is odd.
	26. The sum of any two even integers is divisible by 4.
	27. The sum of any three odd integers is divisible by 3.
	28. The product of any two even integers is divisible by 6.
	29. If then .
	30. If is odd then both m and n are odd.
	31. If is even then both m and n are even.
	32. If or then .
	33. If and then .
	34. If n is odd and m is even then is odd.
	35. If is odd then neither n nor m can be even.
	36. If is even then neither n nor m can be odd.
	37. If is odd then n or m must be odd.
	38. If is even then n or m must be even.
	39. If is even then so is .
	40. If is even then so is .
	41. If is even then so is .
	42. If is even then so is .
	43. If is odd then so is .
	44. If is odd then so is .
	45. If is odd then so is .
	46. If is odd then so is .
	47. If a is even and b is odd then is even.
	48. If a is even and b is odd then is odd.
	49. If a is odd then so is .
	50. If a is odd then so is .
	51. If a is even and b is odd then is even.
	52. If then
	53. If is even then a or b has to be even.
	54. If , then .
	55. If , then or or .
	§4. Principle of Mathematical Induction

	A form of the Principle of Mathematical Induction is actually one of Peano’s axioms, which serve to define the positive integers.
	[Giuseppe Peano (1858-1932).]
	PMI
	Let denote a proposition that is either true or false, depending on the value of the integer n.
	If:
	I. is True.
	And if, from the assumption that:
	II. is True
	one can show that:
	III. is also True.
	then the proposition is valid for all integers

	The Principle of Mathematical Induction might have been better labeled the Principle of Mathematical Deduction, for inductive reasoning is used to formulate a hypothesis or conjecture, while deductive reasoning is used to rigorously establish whether...
	Figure 1.2

	The sum of the first 3 odd integers is: The sum of the first 4 odd integers is: Suggesting that the sum of the first k odd integers is:
	(see Exercise 1).
	EXAMPLE 1.16
	Answer: See page A-6.
	EXAMPLE 1.17
	EXAMPLE 1.18

	What motivated us to write in the form ? Necessity did:
	We had to do something to get “” into the picture (see II).
	Clever, to be sure; but such a clever move stems from stubbornly focusing on what is given and on what has to be established.
	EXAMPLE 1.19

	Answer: See page A-7.
	Recall that:.
	EXAMPLE 1.20

	Answer: See page A-7.
	Edouard Lucas formalized the puzzle in 1883, basing it on the following legend:
	In a temple at Benares, there are 64 golden disks mounted on one of three diamond needles. At the beginning of the world, all the disks were stacked on the first needle. The priests attending the temple have the sacred obligation to move all the disk...
	EXAMPLE 1.21

	Answer: See page A-7.
	Two Alternate Forms of the Principle of Mathematical Induction


	API is often called the Strong Principle of Induction. A bit of a misnomer, since it is, in fact, equivalent to PMI.
	Let denote a proposition that is either true or false, depending on the value of the integer n.
	PMI
	API
	If is True, and if:
	(*) True True
	then is True for all integers
	(a)
	If is True, and if
	(**): True for True
	then is True for all integers
	(b)
	Figure 1.3
	EXAMPLE 1.22

	Note that subsets of Z need not have first elements. A case in point
	Nor does the bounded set:
	contain a smallest element (note that 5 is not in the above set).
	The Well-Ordering Principle for
	Every nonempty subset of has a smallest (or least, or first) element.
	Answer: See page A-8.
	1. The odd integer is .
	2. For every integer , .
	3. For every integer , .
	4. For every integer , .
	5. For every integer , .
	6. For every integer , .
	7. For every integer , .
	8. For every integer , .
	9. For every integer , .
	10. For every integer and any real number , .
	11. For every integer , and any real number , .
	12. For every integer : .
	13. For every integer : .
	14. For every integer : .
	15. For every integer : .
	16. For every integer : .
	17. For every integer , is divisible by 8.
	18. For every integer , is divisible by 5.
	19. For every integer , is divisible by 21.
	20. For every integer , is divisible by 64.
	21. For every integer , .
	22. For every integer , .
	23. For every integer , .
	24. For every integer , .
	25. For every integer , is an odd integer.
	26. For every integer , .
	27. (Calculus Dependent) Show that the sum of n differentiable functions is again differentiable.
	28. (Calculus Dependent) Show that for every integer , .
	29. Let and . Show that .
	30. Let and . Show that .
	31. For every integer , .
	32. For any positive number x, for every .
	33. For every integer , there exist integers such that .
	34. Let be any nonnegative integer. Use the Well-Ordering Principle to show that every nonempty subset of the set contains a smallest element.
	35. Use the Principle of Mathematical Induction to show that there are different ways of ordering n objects, where .
	36. What is wrong with the following “Proof” that any two positive integers are equal:
	§5. The Division Algorithm and Beyond

	All letters in this section will be understood to represent integers.
	Here is a “convincing argument” for your consideration:
	Mark off multiples of d on the number line:
	Case 1. If , then let .
	Case 2. If a is not a multiple of d, then let be such that . We then have , where:
	In either case .
	THEOREM 1.6

	This is a common mathematical theme:
	To establish that something is unique, consider two such “somethings” and then go on to show that the two “somethings” are, in fact, one and the same.
	EXAMPLE 1.23

	Using Induction
	We show that the proposition:
	holds for all (thereby covering all odd integers n).
	I. Valid at : .
	II. Assume valid at ; that is:
	or
	for some integer t.
	III. We are to establish validity at ; that is, that:
	for some integer s. Let’s do it:
	Using the Division Algorithm
	We know that for any n there exists q such that:
	While (*) and (**) may not lead us to a fruitful conclusion, the bottom line does. Specifically:
	For any n:
	If n is odd, then there are but the two possibilities:
	We now show that, in either case .
	Answer: See page A-8.
	DEFINITION 1.13
	EXAMPLE 1.24

	Divide 1680 into 4942 to arrive at:
	(1)
	Divide into 1680:
	(2)
	Divide into :
	(3)
	Divide into :
	(4)
	Since each resulting remainder is strictly smaller than its predecessor, the algorithm must eventually terminate, as it did in step (4), with a zero remainder.
	Figure 1.4

	In the above illustration:
	THEOREM 1.7

	(1) Applying the Division Algorithm we have:
	with .
	Substituting in (*) brings us to:
	Since r is of the form with , it cannot be in G, and must therefore be 0 [see (**)]. Consequently , and .
	The same argument can be used to show that .
	(2) If , then, by Theorem 1.5(b) and (c), page 28: .
	(a) 5 (b)
	(c) See page A-8
	DEFINITION 1.14
	THEOREM 1.8
	THEOREM 1.9


	Answer: See page A-8.
	Prime Numbers
	DEFINITION 1.15


	So, 2 is the oddest prime (sorry).
	THEOREM 1.10

	Answer: See page A-8.
	THEOREM 1.11

	A pairs of prime number, such as , , and , that differ by 2 are said to be twin primes. Whether or not there exist infinitely many twin primes remains an open question.
	THEOREM 1.12

	Answer: See page A-9.
	1.
	2.
	3.
	4.
	5.
	6.
	7. Prove that if 3 does not divide n, then or for some .
	8. Let n be such that . Show that .
	9. Show that if n is not divisible by 3, then for some integer m.
	10. Show that an odd prime p divides if and only if p divides n.
	11. Prove that if for some n, then for some m.
	12. Show that if and only if .
	13. Prove that any two consecutive odd positive integers are relatively prime.
	14. Let a and b not both be zero. Prove that there exist integers s and t such that if and only if is a multiple of .
	15. Prove that the only three consecutive odd numbers that are prime are 3, 5, and 7.
	16. Show that a prime p divides if and only if p divides n.
	17. Prove that every odd prime p is of the form or of the form for some n.
	18. Prove that every prime is of the form or of the form for some n.
	19. Prove that every prime is of the form , , , or for some n.
	20. Prove that a prime p divides if and only if or .
	21. Prove that every prime of the form is also of the form .
	22. Prove that if n is a positive integer of the form , then n has a prime factor of this form as well.
	23. Prove that a and b are relatively prime if and only if the prime decompositions of a and b do not share a common prime.
	24. Prove that is prime if and only if n is not divisible by any prime p with .
	25. There exists an integer n such that for some m.
	26. If for some m, then for some n.
	27. If m and n are odd integers, then either or is divisible by 4.
	28. For any a, and b not both 0, there exist a unique pair of integers s and t such that .
	29. For every n, . GIO move to induction or state not to use induction
	30. For every , .
	31. There exists such that .
	CHAPTER 2
	A Touch of Set Theory

	A bit of set notation has already been introduced in the previous chapter.
	(See page 10)
	We remind you that the symbol is read “is an element of.”
	DEFINITION 2.1
	DEFINITION 2.2

	If someone asks you if you want tea or coffee, you are being offered one or the other, but not both: the exclusive-or is being used.
	In mathematics and science, however, the inclusive-or is generally used. In particular, to say that x is in A or B, allows for x to be both in A and in B.
	DEFINITION 2.3

	The adjacent visual representations of sets are called Venn diagrams.
	[John Venn (1834-1923)].
	Figure 2.1
	DEFINITION 2.4
	DEFINITION 2.5

	As it is with numbers, set subtraction is not a commutative operation: need not equal .
	Note that:
	DEFINITION 2.6

	(a-1) (a-ii)
	(a-iii)
	(a-iv)
	(a-v)
	True: (b-i), (b-ii), (b-iii), (b-iv), (b-vii) False: (b-v), (b-vi)
	And so we positioned a 1 in the first two columns of Row 1 to indicate containment.
	And so we positioned a 0 in the second column of Row 3 to indicate non-containment.
	0 and then 1 appear in the first two columns of Row 4.
	0 and 0 appear in the first two columns of Row 5.
	You can turn this membership table into a truth table by replacing the sets A and B with the propositions
	respectively.
	A
	B
	1
	1
	0
	0
	0
	1
	0
	1
	1
	1
	0
	1
	0
	1
	0
	0
	0
	0
	0
	0
	Figure 2.2
	EXAMPLE 2.1

	A
	B
	1
	1
	1
	0
	0
	1
	1
	0
	0
	1
	1
	1
	0
	1
	0
	1
	0
	0
	0
	0
	0
	0
	0
	0
	A
	B
	C
	1
	1
	1
	0
	0
	0
	1
	0
	1
	1
	0
	0
	1
	0
	0
	1
	1
	0
	1
	1
	0
	0
	0
	1
	0
	1
	1
	0
	0
	0
	1
	0
	1
	0
	0
	1
	1
	1
	0
	1
	0
	1
	0
	0
	0
	0
	0
	0
	0
	0
	1
	0
	0
	0
	0
	0
	0
	0
	0
	0
	0
	0
	0
	0
	EXAMPLE 2.2

	Answer: See page A-9.
	(b)
	A
	B
	1
	1
	0
	0
	0
	1
	0
	1
	0
	0
	1
	0
	1
	0
	0
	1
	1
	0
	0
	1
	0
	0
	0
	1
	1
	1
	0
	1
	Answer: See page A-10.

	Similarly , , and represent the intersection of n sets, sets indexed by the positive integers, and sets indexed by the set A, respectively.
	The containment table approach cannot be used to establish this result. Why not?
	Answer: See page A-10.
	Interval Notation
	Geometrical Representation
	All real numbers strictly between 1 and 5 (not including 1 or 5)
	All real numbers between 1 and 5, including both 1 and 5.
	All real numbers between 1 and 5, including 1 but not 5.
	All real numbers between 1 and 5, including 5 but not 1.
	All real numbers greater than 1.
	All real numbers greater than or equal to 1.
	All real numbers strictly less than 5.
	All real numbers less than or equal to 5.
	The set of all real numbers.
	Figure 2.3

	(a) (b)
	(c)
	1.
	2.
	3.
	4.
	5.
	6.
	7.
	8.
	9.
	10.
	11.
	12.
	13.
	14.
	15.
	16.
	17.
	18.
	19.
	20.
	21.
	22.
	23.
	24. Establish the following set identities (all capital letters represent subsets of a universal set U):

	Domination Laws
	Complementation Law
	Commutative Laws
	Associative Laws
	Distributive Laws
	25.
	26.
	27.
	28.
	29.
	30.
	31.
	32.
	33.
	34.
	35.
	36.
	37.
	38.
	39.
	40.
	41.
	42.
	43.
	44.
	45.
	46.
	47.
	48.
	49.
	50.
	51.
	52.
	53.
	54.
	55.
	56.
	57.
	58.
	59.
	60. For n an integer distinct from 0, let . Determine the set:
	61. Prove that for any given set A, and .
	62. Prove that if and , then .
	63. Prove that if , , and then .
	64. Prove that for any sets A and B of a universal set U: .
	65. Prove that if and only if .
	66. Prove that and .
	67. Prove that and that .
	68. Prove that if and only if for every .
	69. Prove that if and only if for every .
	70. Prove that the three statements
	71. Let be any collection of sets. Prove that for any set X:
	72. If and , then .
	73. If or , then .
	74. If and , then .
	75. If , then .
	76. If , then .
	77. If , then either or .
	78. .
	79. .
	80. if and only if .
	81. If and , then .
	82. .
	83. If no element of a set A is contained in a set B, then A cannot be a subset of B.
	84. Two sets A and B are equal if and only if the set of all subsets of A is equal to the set of all subsets of B.
	85. .

	All “objects” in mathematics are sets, and functions are no exceptions. The function f given by , is the subset of the plane. Pictorially:
	A function such as
	is often simply denoted by . Still, in spite of their dominance throughout mathematics and the sciences, functions that can be described in terms of algebraic expressions are truly exceptional. Scribble a curve in the plane for which no vertical line...
	Note that the set S below, is not a function:
	Why not?
	DEFINITION 2.7
	DEFINITION 2.8

	When not specified, the domain of a function expressed in terms of a variable x is understood to consist of all values of x for which the expression can be evaluated.
	(a) No (b) Range:
	(c) No (d) No
	Composition of Functions
	Figure 2.4

	DEFINITION 2.9

	In set notation:
	EXAMPLE 2.3

	(a-i) (a-ii)
	(a-iii) (a-iv)
	(b)
	DEFINITION 2.10
	EXAMPLE 2.4

	Equivalently, f is one-to-one if
	In words:
	different x’s are mapped to different y’s.
	DEFINITION 2.11

	In set notation:
	Figure 2.5
	EXAMPLE 2.5

	Recall that the solutions of the quadratic equation:
	are given by the quadratic formula:
	Answer: See page A-11.
	In words:
	is onto if every element in Y is “hit” by some .
	DEFINITION 2.12

	In set notation:
	Figure 2.6
	EXAMPLE 2.6

	We need to consider two elements in . They have to look different; and so we called one of the elements and the other . (We could have labeled the other , or whatever. The two 4-tuples just have to look different, that’s all.
	Answer: See page A-11.
	So:
	A bijection pairs off each element of X with an element of Y.
	DEFINITION 2.13
	Figure 2.7

	DEFINITION 2.14

	Recall that to say that is to say that (see Definition 2.8).
	Answer: See page A-12.
	EXAMPLE 2.7

	Answer:
	For the rest: See page A-11.
	This is an example of a so- called “shoe-sock theorem.” Why the funny name?
	1.
	2.
	3.
	4.
	5.
	6.
	7.
	8.
	9.
	10.
	11.
	12.
	13.
	14.
	15.
	16.
	17.
	18.
	19.
	20.
	21.
	22.
	23.
	24.
	25.
	26.
	27.
	28.
	29.
	30.
	31.
	32.
	33. , and .
	34. , and .
	35. , and .
	36. , and .
	37. , and .
	38. , and .
	39. , and .
	40. , and .
	41. , and .
	42. Prove that a function is one-to-one if and only if the function given by is one-to-one.
	43. Prove that for any given : .
	44. Let be given, with h a bijection.
	45. Let , , and be given. Prove that there exists a function such that for every . (That is, a function g which “extends” f to all of X.)
	46. Let , , and be given. Prove that there exists a function such that for every . (That is, a function g which is the “restriction” of f to the subset S.)

	if
	47. Prove that for any and : and .
	48. Exhibit , , such that .
	49. Exhibit one-to-one functions , , such that is not one-to-one.
	50. Exhibit onto functions , , such that is not onto.
	51. Exhibit one-to-one functions , , such that is not one-to-one.
	52. Exhibit onto functions , , such that is not onto.
	53. For and , if is one-to-one, then both f and g must be one-to-one.
	54. For and , if is one-to-one, then f or g must be one-to-one.
	55. For and , if is one-to-one, then both f and g must be one-to-one.
	56. For and , if is one-to-one, then f or g must be one-to-one.
	57. (a) If is an onto function, then so is the function onto for any function .
	58. (a) Let and . If is onto, then f must also be onto.
	59. (a) If is one-to-one, then so is the function for any .
	60. For any X and , there exists at least one function .
	61. For any , there exists at least two functions .

	Note that if there exists a bijection then there also exists a bijection going the other way; namely: [see Theorem 2.4(a), page 70]
	DEFINITION 2.15
	THEOREM 2.7

	EXAMPLE 2.8

	Answer: See page A-12.
	DEFINITION 2.16
	EXAMPLE 2.9

	To evaluate f, follow the stated instructions:
	EXAMPLE 2.10
	Figure 2.8
	THEOREM 2.8


	Answer: See page A-12.
	THEOREM 2.9

	Answer: See page A-12.
	We also say that the cardinality of B is greater than or equal to that of A, and write:
	It is reasonable to say that a set A has cardinality less than or equal to that of a set B if the elements of A can be paired off with those of a subset of B:
	DEFINITION 2.17

	Georg Cantor (1845-1916)
	Felix Bernstein (1878-1956)
	Ernst Schroeder (1841-1902)
	THEOREM 2.10

	Answer: See page A-13.
	THEOREM 2.11
	Figure 2.9


	Answer: See page A-13.
	We point out that is said to have cardinality c (for the continuum).
	The assertion that there does not exists a set X such that is called the continuum hypothesis.
	DEFINITION 2.18

	Due to this theorem, the power set of a given set A is often denoted by the symbol .
	THEOREM 2.12

	The function given by is certainly one-to-one.
	THEOREM 2.13

	Answer: See page A-13.
	The assertion that for any infinite set X there does not exist a set Y for which is called the generalized continuum hypothesis.
	1. ,
	2. ,
	3. ,
	4. ,
	5. ,
	6. ,
	7. ,
	8. ,
	9. For given : , .
	10. For given : , .
	11. For given , with and : , .
	12. For given , with and : , .
	13. to
	14. to
	15. to
	16. to
	17. to
	18. to
	19. to
	20. to
	21. Prove that the set of intervals is countable.
	22. Prove that there are only countably many polynomials with rational coefficients.
	23. Prove that there are only countably many solutions to the set of all polynomials with rational coefficients.
	24. Prove that the set of irrational numbers is not countable.
	25. Prove that there are uncountably many lines in the plane.
	26. Prove that there are only countably many lines of the form , where .
	27. Prove that there are uncountably many circles in the plane.
	28.
	29.
	30.
	31.
	32. Prove that: .
	33. Use the Principle of Mathematical Induction to show that for any positive integer n.
	34. Let (functions that assigns to each integer in the set the value of 0 or the value of 1. Prove that F contains elements, and that therefore
	35. Let (functions that assigns to each integer in the set the value of 0 or the value of 1). Use the Principle of Mathematical Induction to show that F contains elements.
	36. Let (functions that assign to each positive integer either 0 or 1). Prove that .
	37. Prove that for any given set X, .
	38. If and , then .
	39. If and , then .
	40. If and , then .
	41. If and , then .
	42. If and , then .
	43. If and , then .
	44. If and , then .
	45. If and , then .
	46. The set of intervals is countable.
	47. The set of intervals is countable.
	48. There can be at most countably many mutually disjoint circles (with positive radius) in the plane.
	49. There can be at most countably many mutually disjoint lines in the plane.

	Recall that , called the Cartesian Product of X with Y, is the set of all ordered pairs , with and .
	DEFINITION 2.19
	DEFINITION 2.20
	EXAMPLE 2.11

	As you know, when it comes to rational numbers, one simply writes
	rather than .
	In general, equivalence relations enable one to establish a somewhat “fuzzy” sense of equality — a “fuzzyness” which is all but ignored in the above example; for, as you know, when it comes to the set of rational numbers, one simply writes ...
	Recall that means that a divides b (see Definition 1.7, page 15).
	EXAMPLE 2.12

	An expression of the form is unacceptable in the solution process, since we are involved with the set Z of integers and not “fractions.”
	Answer: See page A-13
	DEFINITION 2.21
	EXAMPLE 2.13

	To put it roughly:
	A partition of a set S chops S up into disjoint pieces.
	DEFINITION 2.22 Partition
	Figure 2.10


	(a): No (b): Yes
	In the event that , we say that:
	a is congruent to b modulo n and write
	Answer: See page A-13
	Answer: See page A-14.
	1. if .
	2. if .
	3. if .
	4. if .
	5. if .
	6. if .
	7. if .
	8. if .
	9. if .
	10. if .
	11. if .
	12. if .
	13. if .
	14. if .
	15. if .
	16. if .
	17. if .
	18. if .
	19. if .
	20. if .
	21. if and .
	22. if .
	23. if .
	24. if .
	25. if .
	26. if .
	27. if .
	28. if .
	29. if .
	30. if .
	31. if .
	32. if .
	33. if .
	34. if .
	35. if .
	36. if for every .
	37. if for every .
	38. if for every .
	39. if for every .
	40. if for every .
	41. if for every .
	42. Exercise 1
	43. Exercise 3
	44. Exercise 5
	45. Exercise 9
	46. Exercise 15
	47. Exercise 17
	48. , .
	49. , .
	50. , .
	51. , .
	52. , .
	53. If for , then .
	54. If for , then .
	55. if a and b are of the same sex.
	56. if a is at least as old as b.
	57. if a and b have the same biological parents.
	58. if a and b have a common biological parent.
	59. if a and b are of the same blood-type.
	60. if a and b were born within three days of each other.
	61. For , if a and b end in the same digit.
	62. For , if a and b end in the same digit.
	63. For , if the number of elements in S equals the number of elements in T.
	64. For , if the sum of the elements in S equals the sum of the elements in T.
	65. The union of any two equivalence relations on any given nonempty set X is again an equivalence relation on X.
	66. The intersection of any two equivalence relations on any given nonempty set X is again an equivalence relation on X.
	67. The union of any two reflexive relations on any given nonempty set X is again a reflexive relation on X.
	68. The union of any two symmetric relations on any given set X is again a symmetric relation on X.
	69. The union of any two transitive relations on any given set X is again a transitive relation on X.
	70. For , let and denote the set of equivalence classes associated with the equivalence relations if and if , respectively. If , then .
	71. If , if is an equivalence relation on . (see Definition 2.18, page 83)
	72. There exists an equivalence relation on the set for which each equivalence class contains an even number of elements.
	73. For , let and denote the set of equivalence classes associated with the equivalence relations if and if , respectively. If , then .
	74. If , then every integer is congruent modulo n to exactly one of the integers .
	75. There exists an equivalence relation on the set for which each equivalence class contains an even number of elements.

	Bertrand Russell 1872- 1970). British Mathematician and Logician.
	This argument is reminiscent of that found in Cantor’s Theorem, page 84.
	This definition previously appeared on page 53.
	DEFINITION 2.23

	In particular, if , then the successor of A is the set .
	DEFINITION 2.24

	This definition previously appeared on page 53.
	DEFINITION 2.25
	DEFINITION 2.26

	There is a distinction between a Theorem and an Axiom. Axioms are dictated. They are the initial building blocks from which mathematics is constructed. Theorems, on the other hand, are mathematical constructions, built from axiomatic bricks and logic...
	DEFINITION 2.27

	Note: The adjacent argument shows that any intersection of successor sets is again a successor set.
	The formal birth of set theory occurred in 1874 with the publication of the first purely set theoretic work: Uber ene Eigenschaft des Inbegriffes aller Reelen Algebraishen Zahlen (On a Property of the Collection of all Real Algebraic Numbers). Within...
	Cantor’s valuable contributions were far from universally accepted by the mathematical community of his time. Many disagreed vehemently with his work which, to them, appeared to rest on little more than intuition and empty fabrications based on non...
	And then came the paradoxes, which naturally served to further fan the flames of discontent. Cantor’s reliance on precise statements to generate his sets simply would not do, and Bertrand Russell (1872-1970), in 1902 demonstrated that Cantor’s ow...
	The sensitive Cantor did not recover from the onslaught of criticisms from his peers. Particularly disturbed by what he felt to be Kronecher’s malicious and unjust persecutions, he suffered a complete nervous breakdown in 1884, and, to some degree,...
	In 1908, Ernst Zermelo (1871-1953) published his Untersuchungen ueber die Grundlagen der Mengenlehre (Investigations into the Foundations of Set Theory). In that work, an axiomatic system for set theory is presented. After postulating the existence o...
	Yes, there is no universal axiomatic system. Though it is certainly true that the overwhelming majority of mathematics is globally accepted, there remain important results which depend on axioms accepted by some and rejected by others. In an attempt ...
	Two axiomatic systems are equivalent if each axiom in either system is a consequence of those in the other. It follows that though the axioms in one system might be quite distinct from those in the other, both in form and number, any proposition whic...
	One appealing property is that the system be efficient in the sense that each of its axioms is really needed — that none of its axioms is a consequence of the others. Such a system is said to be independent.
	Another nice property, admittedly more vague than the previous one, is that the system should, as much as possible, consist of “intuitively valid” axioms. After all, axioms are the building blocks from which the theory is developed, and, as such,...
	The five axioms of this chapter are independent, and fundamental in nature. We began by stipulating the existence of a set, the empty set. Then, with the introduction of other axioms, arrived at an axiomatic system sufficiently rich to allow for the ...
	We expanded all along. Very little theory could be based on our first axiom: is a set. And so we expanded by introducing the axiom on sets of sets, thus assuring the existence of a lot of singleton sets. There was then a need for a greater variety of...
	If we continue to play with , we may very well come across some statement S which, for some reason or other, we would like to be True. If it can be determined that neither S nor its negation is a consequence of the axioms in , then we say that S is i...
	We now turn our attention to a couple of interesting statements that are independent of . The first of these appeared as one of the axioms posed in Zermelo’s 1908 paper on the Foundations of Sets:
	The Axiom of Choice: Given any non-empty collection C of non-empty sets, there exists a set consisting of exactly one element from each set in C.
	(This amounts to being able to “choose” and element from each of the sets in C)
	The motivation for the above axiom may, in part, be attributed to Cantor. In 1883 he asserted that every set can be well-ordered; which is to say, that an order relation can be imposed on any set, under which each of its non-empty subsets contains a ...
	The above Well-Ordering Principle has such a wide range of applications that it was one of the famous twenty-three unsolved problems formally offered for consideration to the mathematical community by David Hilbert (1862-1943), at the 1900 Internatio...
	It was for Zermelo, in 1904, to offer a proof in the affirmative, a proof that depended on the principle set forth within his Axiom of Choice. In other words, given the Axiom of Choice, the Well-Ordering Principle follows. Moreover, it is easy to see...
	In 1931, a twenty five year old student at the University of Vienna, Kurt Gӧdel (1906-1978) showed that if the Zermelo-Fraenkel axiom system excluding the Axiom of Choice is consistent, then adding the Axiom of Choice will not lead to a contradictio...
	This conviction of the solvability of every mathematical problem is a powerful incentive to the worker. We hear within us the perpetual call: There is the problem. Seek its solution. You can find it by pure reason, for in mathematics there is no: we ...
	Oh yes there is! For in 1931 Gӧdel published his famous Incompleteness Theorem:
	In any mathematical system rich enough to encompass the natural numbers, there is an assertion expressible within the system that is true, yet is not provable within that system.
	And just in case that was not bad enough, he then went on to prove that the consistency of such a system is itself an undecidable proposition.
	What a double whammy! First, there will always be undecidable propositions. And, worse than that, we can never gain assurance that our mathematics is based on a firm foundation. It should be underlined, however, that just because we are not able to p...
	Yes, there are potential flaws in modern mathematics. Perhaps some drastic fundamental changes, possibly in the field of logic, will remedy the situation. Or, perhaps, imperfection is within the very nature of things; not only in our physical univers...
	CHAPTER 3
	A Touch of Analysis

	Commutative Axiom:
	Associative Axiom:
	Distributive Axiom:
	Additive Identity Axiom:
	Additive Inverse Axiom:
	Multiplicative Identity Axiom:
	Multiplicative Inverse Axiom:
	Trichotomy Axiom:
	Additive Inequality Axiom:
	Multiplicative Inequality Axiom:
	Completeness Axiom:
	(See Definition 3.2 below)
	DEFINITION 3.1

	In Exercise 12 you are invited to verify that if a least upper bound (or greatest lower bound) exists, then it is unique.
	DEFINITION 3.2

	(a) lub: 7, glb: 3, Max: 7
	(b) lub: 9, Max: 9
	(c) lub: , glb: ,
	Max:

	The Greek letter epsilon is generally used to denote a “small” unspecified number.
	Note that:
	is first given.
	then: s is to be found to accommodate that particular .
	THEOREM 3.1
	Answer: See page A-14.
	We remind you that:
	EXAMPLE 3.1

	(a) (b)
	Note that the smaller is, the larger becomes, and that therefore no one element of S will lie to the right of for all . But for any given an element of S does exist to “accommodate” that .
	THEOREM 3.2

	Answer: See page A-14.
	THEOREM 3.3

	Note that these nested intervals are not closed.
	Answer: See page A-15.
	So, in the real number system:
	exists for every .
	THEOREM 3.4

	Since and :
	It follows, from CYU 3.4(b), that for some N.
	You are not insulting a number by calling it irrational — you are just saying that it is not the ratio of two integers.
	THEOREM 3.5

	Any rational number can be expressed in lowest terms (a and b share no common factor).
	EXAMPLE 3.2

	Answer: See page A-15.
	In other words: between any two distinct real numbers, one can always find an element of D.
	DEFINITION 3.3
	THEOREM 3.6


	Answer: See page A-15.
	1.
	2.
	3.
	4.
	5.
	6.
	7.
	8.
	9.
	10.
	11.
	12. (a) Prove that if a subset S of has a least upper bound, then it is unique.
	13. (a) Prove that if a subset S of has a maximum element, then it equals .
	14. Prove that any finite subset of contains a maximum and minimum element.
	15. Prove that every nonempty subset of that is bounded from below has a greatest lower bound.
	16. Prove that if A is a nonempty bounded subset of , then .
	17. (a) Let A and B be nonempty subsets of , bounded above, with . Show that .
	18. For and , let . Prove that:
	19. (a) Prove that if a subset S of has a least upper bound , then the set of all upper bounds of S is .
	20. Prove that every number is both an upper bound and a lower bound of .
	21. Prove that A is bounded if and only is bounded.
	22. (a) Prove that if , with , then .
	23. (a) Prove that if , with , then .
	24. (a) Let A and B be nonempty bounded sets of real numbers such that for every there exists such that , and for every there exists such that . Prove that and .
	25. (a) Let A and B be nonempty bounded sets of real numbers such that for every and every . Prove that .
	26. Let A be bounded above, and let . Prove that:
	27. Let A be a nonempty subset of which is bounded above but does not have a maximum element. Prove that A cannot be finite.
	28. Let A be a nonempty subset of which is bounded below but does not have a minimum element. Prove that A cannot be finite.
	29. Let A be a nonempty subset of which is bounded above but does not have a maximum element. Prove that for any , .
	30. Let A be a nonempty subset of which is bounded below but does not have a minimum element. Prove that for any , .
	31. Let A be a nonempty subset of which is bounded above but does not have a maximum element, and let . Show that .
	32. Let A be a nonempty subset of which is bounded below but does not have a minimum element, and let . Show that .
	33. Show that any subset of that contains a dense subset of is itself dense.
	34. Give an example of an infinite subset of that is not dense in .
	35. Prove that if x and y are rational and is irrational then is irrational.
	36. Prove that for any positive integer n, is rational if and only if is an integer.
	37. Show that there exists irrational numbers x and y such that is rational.
	38. If , and if B is bounded, then A is bounded.
	39. If , and if B is bounded, then or .
	40. If , then there exists an element that is an upper bound of A.
	41. If , then there exists an element that is a lower bound of B.
	42. For and , let . If and , then .
	43. For and , let . If and , then .
	44. For and , let . If A and B are bounded, then so is .
	45. For and , let . If and , then .
	46. For and , let . If and , then .
	47. Every infinite subset of is dense in .
	48. Let A and B be subsets of . If is dense in then A or B must be dense in .
	49. Let A and B be subsets of . If is dense in then A and B must be dense in .
	50. Let A and B be subsets of . If A and B are dense in then is also dense in .
	51. Let A and B be subsets of . If A and B are dense in then is also dense in .
	52. The product of any irrational numbers and any rational number is again irrational.
	53. If x and y are irrational and is rational then is irrational.
	54. If x and y are irrational and is rational then is irrational.
	55. If x and y are irrational and is rational then is rational.
	56. If then x must be rational.
	57. (a) If one solution of the quadratic equation is rational then the other solution is also rational.
	DEFINITION 3.4

	Unlike the set , elements in a sequence can appear more than once, as is the case with the sequence .
	We remind you that the absolute value function
	denotes the distance between the number a and the origin on the number line, and that represents the distance between the numbers a and b. For example: is the distance between 2 and 7, while is the distance between 3 and .
	DEFINITION 3.5

	In words: By going far enough in the sequence, , you can get the terms of the sequence to be as close as you want to , .
	Additional Notation: For given and , we will use the symbol to denote the set of numbers that lie within units of a:
	:
	In anticipation of higher dimensional spaces, we call the (open) sphere of radius about a.
	EXAMPLE 3.3

	Note how N is dependent on — the smaller the given , the larger the N.
	Answer: See page A-15.
	DEFINITION 3.6

	Answer: See page A-16.
	Let the positive number play the role of in Definition 3.5.
	Answer: See page A-16.
	DEFINITION 3.7

	Answer: See page A-16.
	Bernhard Bolzano (1781- 1841), Karl Weierstrass (1815-1897).
	Augustin Louis Cauchy (1789-1857).
	DEFINITION 3.8

	Answer: See page A-16.
	Answer: See page A-16.
	1.
	2.
	3.
	4.
	5.
	6.
	7.
	8.
	9.
	10.
	11.
	12.
	13.
	14. , for
	15.
	16.
	17. , for
	18.
	19.
	20.
	21.
	22. Prove that if and only if .
	23.
	24.
	25.
	26.
	27.
	28.
	29.
	30.
	31.
	32. Let for . Prove that if , then .
	33.
	34.
	35. Prove that every decreasing sequence, bounded below, converges.
	36. (a) Give an example of two converging sequences and such that .
	37. Prove that the sequence converges if and only for .
	38. Prove that if and only if, for any given , contains all but finitely many terms of .
	39. Prove that if and if for all , then .
	40. Prove that a sequence converges if and only if converges for any positive integer N.
	41. Prove that if and if then .
	42. Write down the first four terms of the sequence , if and . Show that the sequence converges. Suggestion: Consider Theorem 3.8.
	43. (a) Prove that if and if is bounded, then .
	44. Establish the following “Squeeze Theorem:”
	45. Prove that if , then every subsequence of also converges to .
	46. Prove that every subsequence of a Cauchy sequence is itself a Cauchy sequence.
	47. Prove that if a sequence contains two subsequences with different limits, then the sequence diverges.
	48. Give an example of a divergent sequence that contains:
	49. Every bounded sequence converges.
	50. If converges, then so does .
	51. If converges, then so does .
	52. If and converge, then must converge.
	53. If converges, then and must both converge.
	54. If diverges, then and must both diverge.
	55. If , then .
	56. If , then .
	57. If and if for all , then .
	58. If and , and if for all , then .
	59. If and are Cauchy sequences, then is a Cauchy sequence.
	60. If and are Cauchy sequences, then is a Cauchy sequence.

	If then:
	Here: and .
	Answer: See page A-16.
	We remind you that
	DEFINITION 3.9
	EXAMPLE 3.4

	Answer: See page A-16.
	See the indexing remarks that follow CYU 2.3, page 58.
	Answer: See page A-17.
	We remind you that for a given set A, denotes the complement of A.
	DEFINITION 3.10
	EXAMPLE 3.5

	Answer: See page A-17.
	Answer: See page A-17.
	This is a generalization of Theorem 3.3, page 115.
	DEFINITION 3.11
	EXAMPLE 3.6

	This theorem does not hold in a general topological space.
	For , choose rational numbers and such that:
	Then:
	Heinrich Heine (1821- 1881). Emile Borel (1871-1958)
	(a) No (b) Yes
	Answer: See page A-17.
	If then:
	Here: and .
	Answer: See page A-16.
	We remind you that
	DEFINITION 3.9
	EXAMPLE 3.4

	Answer: See page A-16.
	See the indexing remarks that follow CYU 2.3, page 58.
	Answer: See page A-17.
	We remind you that for a given set A, denotes the complement of A.
	DEFINITION 3.10
	EXAMPLE 3.5

	Answer: See page A-17.
	Answer: See page A-17.
	This is a generalization of Theorem 3.3, page 115.
	DEFINITION 3.11
	EXAMPLE 3.6

	This theorem does not hold in a general topological space.
	For , choose rational numbers and such that:
	Then:
	Heinrich Heine (1821- 1881). Emile Borel (1871-1958)
	(a) No (b) Yes
	Answer: See page A-17.
	The Greek letter is pronounced “delta.” Note the similarities between this definition and Definition 3.5, page 123.
	In a calculus course continuity is typically defined in terms of the limit concept. Specifically:
	f is continuous at c if
	DEFINITION 3.12

	If a particular “works” for a given , then any smaller will also work for that . However, a smaller , may call for a smaller .
	Compare with Example 3.3(a), page 124.
	EXAMPLE 3.7
	1. at
	2. at
	3. at
	4. at
	5. at
	6. at
	7. at
	8. at
	9. at
	10. at
	11. at
	12. at
	13.
	14.
	15.
	16.
	17.
	18.
	19.
	20.
	21.
	22.
	23. Prove Theorem 3.21(d).
	24. Let . Prove that if , then (see Definition 3.15).
	25. Use the Principle of Mathematical Induction to prove that if f is continuous at c, then so is the function given by .
	26. Use the Principle of Mathematical Induction to prove that, for all , if the functions are continuous at c, then so is the function:
	27. Prove that every polynomial function, , is continuous.
	28. Use the Principle of Mathematical Induction to prove that if is continuous for , then so is the function .
	29. Prove that every rational function, where and are polynomials with , is continuous. (Recall that a function is continuous if it is continuous at each point in its domain.)
	30. Prove that every function is continuous.
	31. Prove that every function is continuous.
	32. Give an example of a function that is not continuous.
	33. Let . Prove that a function is continuous at c if and only if , with each implies .
	34. (a) Let be closed and let be continuous. Prove that if is a convergent sequence with each , then the sequence must converge.
	35. Prove that is closed if and only if every convergent sequence , with each , converges to a point in H.
	36. Let and be continuous. Prove that the set is closed.
	37. Let and be continuous. Prove that if for every rational number x, then .
	38. Display a function with domain which fails to be continuous everywhere.
	39. For given functions f and g, if is continuous at c, then both f and g must be continuous at c.
	40. For given functions f and g, if is continuous at c, then f or g must be continuous at c.
	41. For given functions f and g, if and f are continuous at c, then g is continuous at c.
	42. For given functions f and g, if fg is continuous at c, then both f and g must be continuous at c.
	43. For given functions f and g, if fg is continuous at c, then f or g must be continuous at c.
	44. For given functions f and g, if fg and f are continuous at c, and g must be continuous at c.
	45. For given functions f and g, if is continuous at c, then both f and g must be continuous at c.
	46. For given functions f and g, if is continuous at c, then f or g must be continuous at c.
	47. For given functions f and g, if and f are continuous at c, and g is continuous at c.
	48. For given functions f and g, if is continuous at c, then g must be continuous at c, and f at .
	49. For given functions f and g, if and g are continuous at c, then f must be continuous at .
	50. For given functions f and g, if is continuous at c, and f is continuous at , then g must be continuous at c.
	51. is continuous if and only if is closed for every closed set H.

	CHAPTER 4

	While a number of references to Chapter 3 appear in this chapter, they are only included to underline the fact that an abstract metric space stems from the standard Euclidean space .
	A Touch of Topology
	§1. Metric Spaces

	This theorem appears in Chapter 3, page 135. It is reproduced here for the sake of “chapter-independence.”
	Answer: See page A-19.
	DEFINITION 4.1 Metric

	and
	EXAMPLE 4.1

	Note how the definition of ; in used in both directions in this development.
	One direction:
	Other direction:
	Yes:
	Definitions Rule
	Answer: See page A-19.
	Compare with the notation introduced at the bottom of page 123.
	DEFINITION 4.2

	Answer: See page A-20.
	DEFINITION 4.3
	EXAMPLE 4.2

	(a) See page A-20.
	(b)
	Answer: See page A-20.
	Answer: See page A-20.
	DEFINITION 4.4

	See the indexing remarks that follow CYU 2.3, page 58.
	Compact Spaces

	Compare with Definition 3.11, page 139
	Compare with Theorem 3.18, page 140.
	DEFINITION 4.5

	Answer: See page A-21.
	Continuity

	This is a generalization of Definition 3.15, page 152.
	DEFINITION 4.6

	Answer: See page A-21.
	DEFINITION 4.7
	EXAMPLE 4.3

	Answer: See page A-21.
	This is the proof of Theorem 3.23, page 153.
	Answer: See page A-21.
	Isometries

	If two spaces are isometric, then they are the “same, up to appearances” (the naming of elements, for example).
	DEFINITION 4.8
	EXAMPLE 4.4

	Answer: See page A-22.
	1. , where and:
	2. , where and:
	3. , where and:
	4. , where and:
	5. (Calculus Dependent). , where and:
	6.
	7.
	8.
	9.
	10.
	11.
	12. Let be any two distinct elements of a metric space X. Show that there are disjoint open sets with and .
	13. Prove that if a metric space contains at least two points, then it must contain at least four distinct open sets.
	14. Let S be an unbounded subset of a metric space . Prove that for any and any given there exists such that .
	15. Let X be a discrete space. Prove that every function is continuous for any metric space Y.
	16. Let X, and Y be metric spaces. Prove that for any the constant function given by for every is continuous.
	17. Prove that the continuous image of a compact metric space is compact.
	18. Let and be two metric spaces. Prove that , where and is a metric space.
	19. Prove that a space X is compact if and only for any collection of closed subsets of X with one can choose a finite subcollection such that
	20. Let H be a compact subset of a metric space X. Show that for any given there exist disjoint open sets with and .
	21. Let and be two disjoint compact subsets of a space X. Show that there exist two disjoint open sets with and .
	22. Let X and Y be isometric spaces.Prove that X is bounded if and only if Y is bounded.
	23. Let X and Y be isometric spaces.Prove that X is compact if and only if Y is compact.
	24. (Set theory). Let. Prove:
	25. (Set theory). Let . Prove that for, :
	26. Determine , for the given subset A of the Euclidean space .
	27. Prove that for , is the smallest closed subset of X that contains A, in that is a subset of every closed set containing A.
	28. Prove that is closed for every .
	29. Prove that if A is closed if and only if .
	30. Prove that if and only if for every open set O containing x.
	31. Let be any two distinct elements of a metric space X. Show that there exists such that .
	32. Let x be an element of an open subset O of a metric space X. Show that there exists such that .
	33. , where is a metric space for any .
	34. , where and is a metric space.
	35. A function f from a metric space X to a metric space Y is continuous if and only if is closed in X for every closed subsets H of Y.
	36. Let be a bijection from the metric space X to the metric space Y. If f is continuous, then f is an isometry.
	37. Let be a bijection from the metric space X to the metric space Y. If f and are continuous, then f is an isometry.
	38. (Closure: See Exercises 26-32) If is a subset of a metric space X, for , then:

	The Greek letter , spelled “tau” — rhymes with “cow.”
	DEFINITION 4.9

	Answer: See page A-22.
	EXAMPLE 4.5

	Answer: See page A-22.
	In the Euclidean space , is called the standard or Euclidean topology on ).
	DEFINITION 4.10

	Answer: See page A-22.
	DEFINITION 4.11

	Answer: See page A-22.
	DEFINITION 4.12

	Answer: See page A-23.
	(gamma) is the Greek letter for C.
	DEFINITION 4.13

	is open in X if for every there exists such that .
	EXAMPLE 4.6

	Answer: See page A-23.
	Let X be a metric space. Show that , where denotes the set of positive rational numbers, is a base for the topology of X.
	If you start with any collection S of subsets of X, and then take all unions of the finite intersections of the sets in S, you will end up with a topology on X.
	Answer: See page A-23.
	DEFINITION 4.14
	EXAMPLE 4.7

	Answer: See page A-23.
	James W. Alexander (1888-1971).
	The above result can be shown to be equivalent to the Axiom of Choice (see page 109).
	Felix Hausdorff (1868-1942).
	Distinct points in a Hausdorff space can be separated by disjoint open sets. Additional separation properties are introduced in the exercises.
	Answer: See page A-23.
	DEFINITION 4.15

	This result along with CYU 4.19 tell us that:
	A subset of a compact Hausdorff space is compact if and only if it is closed.
	Answer: See page A-23.
	1. Let . Determine whether or not the given collection of subsets of X is a topology on X.
	2. Show that the topology of Example 4.6 is a proper subset of the standard Euclidean topology on .
	3. Prove that if is a base for a discrete space X, then for every .
	4. Prove that if is a base for a topological space , and if , then is also a base for .
	5. Let be a subspace of a topological space . Prove that is closed in if and only if there exists a closed subset H of X such that .
	6. Exhibit three topologies on the set with .
	7. (a) Let be topologies on a set X. Prove that is also a topology on X.
	8. Let S be open in the topological space X. Prove that is open in the subspace S if and only if O is open in X.
	9. Show that where is a topology on .
	10. Let X be an uncountable set. Prove that the collection is a topology on X.
	11. Prove, without appealing to Theorem 4.8, that a space X is compact if every open cover of X by sets taken from a base of X has a finite subcover.
	12. Prove that is a subbase for .
	13. Prove that a subbase of a topological space is a base for the space if an only if it is closed under finite intersections.
	14. Show that for any collection of subsets of a set X, the set:
	15. (Rational-Real Topology) Let denote the standard Euclidean topology on and Q the set of rational numbers. Let denote the topology on generated by . Prove that:
	16. (Half-Open Interval Topology)
	17. (Tangent Disc Topology) Consider the upper closed plane . For any with let , and let for any consist of those sets of the form where D is an open disk in T tangent to q (see adjacent figure).
	18. Let be a function from a non-empty set X to a topological space . Show that is a topology on X. (See Definition 3.15, page 152.)
	19. (a) Let , be two topological spaces. Prove that , where is also a topological space.
	20. Let S be a subset of a topological space X. Prove that the subspace S is compact if and only if every cover of S by sets open in X contains a finite subcover.
	21. (a) Show that every infinite subset S of a compact space X contains a point whose every neighborhood contains infinitely many elements of S.
	22. Prove that a topological space X is compact if and only if for any given collection of closed sets such that , there exists a finite subcollection with .
	23. (a) Give an example of a convergent sequence in a topological space which has more than one limit point.
	24. (a) Let H be a closed subset of a topological space. Prove that if a sequence with each converges to , then .
	25. Prove that if and only if for every open set O containing x.
	26. For the topology on :
	27. For the topology on :
	28. Prove that is closed for every .
	29. Prove that for every .
	30. Prove that if with H closed, then .
	31. Prove that if S is closed if and only if .
	32. (a) Prove that for any finite collection of subsets of a topological space X:
	33. Determine , for the given subset A of the topological space .
	34. Prove that is dense if and given any and any neighborhood O of x, .
	35. Prove that the set Q of rational numbers is dense in .
	36. For the topology on , determine the dense subsets of X.
	37. For the topology on , determine the dense subset of .
	38. A is a topological space in which for any two distinct points there is an open set containing one of the points and not the other.
	39. A is a topological space in which for any two distinct points there is a neighborhood of each point not containing the other point.
	40. or Hausdorff space (see Definition 4.14).
	41. A or regular space is a (see Exercise 40) in which for any closed set H and any point there exist disjoint open sets with and
	42. A or normal space is a (see Exercise 40) in which for any two disjoint closed sets there exist disjoint open sets with and .
	43. Prove that any compact Hausdorff space is normal (see Exercise 42).
	44. Prove that a topological space X is connected if and only if the only subsets of X that are both open and closed are and X.
	45. Prove that any discrete space consisting of 2 or more elements is not connected.
	46. Show that the space , where and is connected.
	47. Show that with the standard Euclidean topology is connected. (You will need to invoke the completion axiom of Definition 3.1, page 111.)
	48. Show that the subspace Q (rational numbers) of the Euclidean space is not connected.
	49. Prove that if A is a connected subspace of a space X, then the closure of A in X is also connected. (See Exercises 25-33).
	50. If are topologies on a set X, then so is a topology on X.
	51. If is a subbase for a topological space , and if , then is also a subbase for .
	52. If is a base for a topological space , and if , then is also a base for .
	53. If X is an indiscrete space (CYU 4.11), then any base for X must contain two elements.
	54. If X is an indiscrete space (CYU 4.11), then any base for X cannot contain more than two elements.
	55. (See Exercises 26-34) For subsets and of a topological space X:
	56. (See Exercises 44-49) If A and B are connected subspaces of a space X, then:
	57. The set of open subsets of a topological space and that of the closed subsets of the space are of the same cardinality (see Definition 2.15, page 77).
	§3 Continuous Functions and Homeomorphisms
	DEFINITION 4.16
	EXAMPLE 4.8


	Answer: See page A-24.
	Answer: See page A-24.
	We just copied the proof of Theorem 4.4.
	Answer: See page A-24.
	Answer: See page A-24.
	Open and Closed Functions
	DEFINITION 4.17
	EXAMPLE 4.9


	Answer: See page A-24.
	Homeomorphic Spaces

	Recall that is a bijection if it is both one- to-one and onto (Definition 2.13, page 70).
	Answer: See page A-24.
	DEFINITION 4.18

	Answer: See page A-25.
	Answer: See page A-25.
	Topological invariant properties

	Properties of a topological space which are preserved under homeomorphisms are said to be topological invariant properties. Exhibiting a topologically invariant property possessed by one space and not by another can serve to show that the two spaces ...
	DEFINITION 4.19

	Answer: See page A-25.
	Some casual remarks

	Answer: See page A-25.
	1. Let f be a function from a topological space X to . Prove that f is continuous if and only if for any both the sets and are open.
	2. Let Y be any space that is not indiscrete. Show there exists a space X and a function that is not continuous.
	3. Let X be any space that is not discrete. Show there exists a space Y and a function that is not continuous.
	4. Let be a topological space and let be a metric space. Prove that a function is continuous at if and only if for any there exists a neighborhood O of x such that for every .
	5. Let f and g be continuous functions from a topological space X to . Prove that:
	6. Give an example of a function that is continuous and open, but not closed.
	7. Give an example of a function that is continuous and closed, but not open.
	8. Let be a bijection. Prove that f is open if and only if is continuous.
	9. (a) Show that a function is open in Y if is open in Y for every B in a base for the topology of X.
	10. (a) Prove that a bijection is a closed function if and only if it is an open function.
	11. Let be a collection of continuous functions. Use the Principle of Mathematical Induction to show that is also continuous.
	12. Closure (See Exercises 25-33, page 182)]. Establish the equivalence of the following three properties:
	13. [Closure (See Exercises 25-33, page 182)]. Prove that is closed if and only if for every .
	14. Let be closed. Show that for any and any open set U containing there exists an open set V containing A such that .
	15. Let be open. Show that for any and any closed set H containing there exists a closed set V containing A such that .
	16. Give an example of a set X, and two topologies and such that the identity function is:
	17. (a) Show that given by is a homeomorphism.
	18. Is the closed unit interval homeomorphic to the open interval ? Justify your answer.
	19. Give an example of an open bijection from a compact Hausdorff space to a Hausdorff space that is not a homeomorphism.
	20. Give an example of a closed bijection from a compact Hausdorff space to a Hausdorff space that is not a homeomorphism.
	21. [Let be a bijection. Show that the following properties are equivalent:
	22. Show that the Sierpinski space (CYU 4.13, page 172) is not homeomorphic to the discrete space of two points (CYU 4.12, page 171).
	23. Show that the subspace of is path connected, and that is not.
	24. (Fixed Point Property). A nonempty space X satisfies the fixed point property if for any continuous function there exists such that . Prove that the fixed point property is a topological invariant.
	25. (a) Prove that the existence of a proper subset of a topological space X that is both open and closed is a topological invariant property.
	26. Prove that connectedness is a topological invariant property (see Exercise 44-49, page 184).
	27. Prove that the cardinality of the set of subsets of a topological space that are both open and closed is a topological invariant property.
	28. Prove that metrizable is a topological invariant property.
	29. Prove that each of the separation properties: of Exercises 38-42, page 183, is a topological invariant property.
	30. If Y is an indiscrete space, then every function is continuous for every space X.
	31. Any continuous open bijection is a homeomorphism.
	32. Two topological spaces, X and Y, are homeomorphic if and only if .
	33. If the space X is homeomorphic to a space Y, then .
	34. (See Exercises 34-37, page 183.) If is a homeomorphism, and if is dense in Y, then is dense in Y.
	35. (See Exercises 34-37, page 183.) If is continuous, and if is dense in X, then is dense in Y.
	36. (See Exercises 34-37, page 183.) If is onto and continuous, and if is dense in X, then is dense in Y.
	37. (See Exercises 34-37, page 183.) If is continuous, and if is dense in X, then is dense in Y.

	See Definition 2.7, page 63.
	DEFINITION 4.20

	Answer: See page A-26.
	Figure 4.1

	Answer: See page A-26.
	DEFINITION 4.21

	Answer: See page A-26.
	DEFINITION 4.22
	DEFINITION 4.23
	DEFINITION 4.24
	Figure 4.2


	Andrey Tychonoff
	(1906-1993)
	Answer: See page A-27.
	While every point in the open interval is identified with itself only, the two end points of the closed interval are identified with each other. The visual effect is that of gluing one end point of the interval to the other.
	Figure 4.3

	Visually, we are gluing the left and right edges of the square together.
	Answer: See page A-27.
	Figure 4.4
	1. Let and be two topologies on the set . Determine the topology on the product space:
	2. (a) Let and be topological spaces. Prove that is closed under finite intersections.
	3. Prove that a space X is Hausdorff if and only if is closed in .
	4. (a) Prove that the product of two Hausdorff spaces is Hausdorff.
	5. (a) Prove that the product of two regular spaces is regular (see Exercise 41, page 183).
	6. Let f and g be functions from a topological space X to a topological space Y. Let be given by . Prove that h is continuous if and only if both f and g are continuous.
	7. For given functions and , let be given by . Prove that is continuous if and only if f and g are continuous.
	8. (a) Let U and V be a subspaces of X and Y, respectively. Prove that is a subspace of .
	9. (a) Let U and V be subsets of the spaces X and Y, respectively. Prove that is dense in if and only if U is dense in X, and V is dense in Y. (See Exercises 34-37, page 183.)
	10. (a) Let X and Y be topological spaces. Prove that the projection functions and are open.
	11. (a) Prove that for any functions and , the function given by is continuous if and only if f and g are both continuous.
	12. (a) Let X, , and be topological spaces. Prove that a function is continuous if and only if and are continuous.
	13. (a) Let and be closed subsets of the topological spaces and , respectively. Prove that is a closed subset of .
	14. (a) Let and be subsets of the topological spaces and , respectively. Prove that . (See Exercises 25-33, page 182.)
	15. Prove that for any two topological spaces X and Y, .
	16. (a) Prove that if is homeomorphic to , and if is homeomorphic to , then is homeomorphic to .
	17. (a) Let ~ be an equivalence relation on a space X. Prove that is if and only if each equivalence class is closed in X. (See Exercise 39, page 183.)
	18. Let ~ be the equivalence relation on the space given by if and only if . Describe the quotient space and show that it is not a Hausdorff space.
	19. (a) Let X and Y be topological spaces. Let ~ be the equivalence relation given by if and only if . Prove that is homeomorphic to X.
	20. Let ~ be an equivalence relation on a compact space X. Prove that is compact.
	21. Let ~ be the equivalence relation on the subspace of induced by the partition for every , and (see Figure 4.4). Show that the function given by is a homeomorphism.
	22. Let ~ be the equivalence relation on the space induced by the partition for , , and for (see Figure 4.4). Let denote the unit circle: . Show that the function given by is a homeomorphism.
	23. The Cartesian Product of two metrizable spaces is again metrizable.
	24. The Cartesian Product of any collection of metrizable spaces is again metrizable.
	25. For any two topological spaces X and Y, the projection functions and are closed.
	26. For any three topological spaces X, , and , a function is open if and only if and are open.
	27. For any four nonempty topological spaces , , , and , if is homeomorphic to , then is homeomorphic to and is homeomorphic to .
	28. For any three nonempty topological spaces X, , and , if is homeomorphic to , then is homeomorphic to .

	CHAPTER 5
	A Touch of Group Theory

	Property
	Example:
	Closure
	Associative
	1.
	Identity
	2.
	Inverse
	3.
	A binary operator on a set X is a function that assigns to any two elements in X an element in X. Since the function value resides back in X, one says that the operator is closed.
	Evariste Galois defined the concept of a group in 1831 at the age of 20. He was killed in a duel one year later, while attempting to defend the honor of a prostitute.
	We show, in the next section, that both the identity element e and the inverse element of Axioms 2 and 3 are, in fact, both unique and “ambidextrous:”
	DEFINITION 5.1

	Yes, there is a number whose product with 2 is 1:
	, but .
	(a), (b), and (d) are groups.
	(c) is not a group.
	THEOREM 5.1

	You are invited to formally establish this result in Exercise 51.
	THEOREM 5.2

	Answer: See page A-27.
	DEFINITION 5.2
	Figure 5.1


	Abelian groups are also said to be commutative groups.
	DEFINITION 5.3
	THEOREM 5.3


	Answer: See page A-27.
	Figure 5.2
	Figure 5.3
	Figure 5.4

	This “appearances aside” concept is formalized in Section 4.
	Figure 5.5

	The composition operator “” is defined on page 64.
	THEOREM 5.4

	The elements (functions) in are said to be permutations (on X), and is said to be the symmetric group on X.
	For , is called the symmetric group of degree n, and will be denoted by .
	Directly below each elements of the first row appears its image under the permutations. The fact that 3 lies below 1 in , for example, simply indicates that the permutation maps 1 to 3: .
	Figure 5.6
	THEOREM 5.5
	EXAMPLE 5.1

	From Figure 5.6:
	Answer:
	Original Form
	Product Form
	Sum Form
	(Reserved only for abelian groups)
	Referring to the product form, do not express in the form (there is no “division” in the group).
	From its very definition we find that the following exponent rules hold in any group G:
	For any:
	In the sum form, it is acceptable utilize the notation . By definition:
	.
	For any positive integer n:
	represents
	and
	We also define to be e.
	For any positive integer n:
	represents
	and
	We also define 0a to be 0.
	DEFINITION 5.4
	EXAMPLE 5.2
	THEOREM 5.6


	Answer: See page A-28.
	1. The set of even integers under addition.
	2. The set of odd integers under addition.
	3. The set of integers Z, with , where c is the smaller of the two integers a and b (the common value if ).
	4. The set of positive rational numbers, with .
	5. The set , with .
	6. The set under the operation of addition modulo 10.
	7. The set under multiplication modulo 4. (For example: , since ; and , since .)
	8. The set under multiplication modulo 5. (See Exercise 7.)
	9. The set under addition.
	10. The set under the usual multiplication of real numbers.
	11. The set , with .
	12. and
	13. and
	14. for .
	15. for .
	16. and
	17. for .
	18. for .
	19. and
	20. for .
	21. for .
	22. and
	23. for .
	24.
	25.
	26.
	27.
	28.
	29.
	30.
	31.
	32.
	33.
	34. Let . Show that with is a group. Is the group abelian? Cyclic?
	35. Is with a group? If so, is it abelian? Cyclic?
	36. Is with a group? If so, is it abelian? Cyclic?
	37. Is with a group? If so, is it abelian? Cyclic?
	38. Let along with the binary operator: . Is a group?
	39. Let along with the binary operator: . Is a group?
	40. Let . Show that with is a group. Is the group abelian?
	41. For , let denote the set of polynomials of degree less than or equal to n. Show that with is a group. Is the group abelian?
	42. Let . Show that with is a group. Is the group abelian?
	43. Let denote the set of rational numbers. Show that with is not a group.
	44. Let . Show that with is a group. Is the group abelian?
	45. Let . Show that the function given by is a bijection
	46. (a) Give an example of a group G in which the exponent law does not hold in a group G, for .
	47. Let G be a group and . Show that if , then .
	48. Show that the group of Theorem 5.1 is cyclic for any .
	49. Let denote the set of all real-valued functions. For f and g in , let be given by . Show that is a group. Is the group abelian?
	50. Let be a group. Show that the function is a bijection.
	51. Prove Theorem 5.2.
	52. Let G and be groups. Let with:
	53. Let X be a set and let be the set of all subsets of X. Is a group if:
	54. The set of real numbers under multiplication is a group
	55. The set of positive real numbers under multiplication.
	56. Let G be a group and . If , then .
	57. Let G be a group and . If , then for every .
	58. Let G be a group and . If , then for every .
	59. The cyclic group has exactly two distinct generators.

	For aesthetic reasons, a set of axioms should be independent, in that no axiom or part of an axiom is a consequence of the rest. One should not, for example, replace Axiom 2 in Definition 5.1, page 207:
	with:
	Product Form
	Sum Form
	(Typically reserved for abelian groups)
	Answer: See page A-28.
	Sum form:
	Just in case you are asking yourself:
	What if b is 0 and has no inverse?
	Tisk, every element in a group has an inverse.
	(a)
	(b)
	Answer: See page A-28.
	(a)
	(b)
	Answer: See page A-29.
	This is another shoe-sock theorem (see page 73).
	Answer: See page A-29.
	THEOREM 5.12

	Answer: See page A-29.
	In the additive notation, translates to ; which is to say:
	DEFINITION 5.5
	EXAMPLE 5.3

	Answer: (a) 4 (b) 6
	Note: There is no “subtraction” in a group . For convenience, however, for given , we define the symbol as follows:
	(add the additive inverse of b to a)
	There is no “division” in a group . In this setting, however, one does not ever substitute the symbol for . Why not? Convention.
	1. Let G be a group and . Solve for x, if:
	2. Let G be a group. Prove that for every .
	3. Prove that for any element a in a group G the functions given by and the function given by are bijections.
	4. Let a be an element of a group G. Show that
	5. Let G be a group and let . Show that if there exists one element for which , then .
	6. Let a be an element of a group G for which there exists such that . Prove that .
	7. Prove that a group G is abelian if and only if for every .
	8. Let G be group for which for every . Prove that G is abelian.
	9. Let G be group for which for every . Prove that G is abelian.
	10. Let G be a finite group consisting of an even number of elements. Show that there exists , , such that .
	11. (a) Let G be a group. Show that if, for any , there exist three consecutive integers i such that then G is abelian.
	12. Let * be an associative operator on a set S. Assume that for any there exists such that , and an element such that . Show that is a group.
	13. Let G be a group and . Define a new operation * on G by for all . show that is a group.
	14. Let G be a group and . Use the Principle of Mathematical Induction to show that for any positive integer n: .
	15. Let be of order n. Find .
	16. List the order of each element in the Symmetric group of Figure 5.6, page 213.
	17. Let be of order n. Prove that if and only if n divides .
	18. Prove that if for every element a in a group G, then G is abelian.
	19. Let * be an associative operator on a finite set S. Show that if both the left and right cancellation laws of Theorem 5.9 hold under *, then is a group.
	20. If are elements of a group such that , then .
	21. In any group G there exists exactly one element a such that .
	22. In any group G: .
	23. Let G be a group. If then .
	24. Let G be a group. If then .
	25. Let G be a group. If then .
	DEFINITION 5.6

	Group Axioms
	Closure:
	Axiom 1.
	Axiom 2.
	Axiom 3.
	When challenging if is a subgroup, we suggest that you first determine if it contains the identity element. For if not, then S is not a subgroup, period. If it does, then and you can then proceed to challenge (i) and (ii) of Theorem 2.14.
	For example:
	EXAMPLE 5.4

	We remind you that, under addition, rather than is used to denote the inverse of a.
	Answer: See page A-29.
	Answer: See page A-30.
	Answer:
	A group G is cyclic if there exists such that .
	DEFINITION 5.7

	Joseph-Louis Lagrange (1736-1813)
	While the converse of Theorem 5.17 holds for abelian groups, it does not hold in general. In particular, there exists a group of order 12 that does not contain a subgroup of order 6 (The so called alternating group of degree 4).
	To illustrate: If a group G contains 35 elements, it cannot contain a subgroup of 8 elements, as 8 does not divide 35.
	The symmetric group is an example of a non- abelian group of order 6.
	We remind you that denotes the order of a.
	(Definition 5.5, page 223).
	If , then
	Answer: See page A-30.
	See Definition 2.20 page 88.
	See Definition 2.21 page 91.
	1.
	2.
	3.
	4.
	5.
	6.
	7.
	8.
	9.
	10.
	11.
	12.
	13.
	14.
	15.
	16.
	17.
	18.
	19.
	20.
	21.
	22.
	23.
	24.
	25.
	26.
	27.
	28.
	29.
	30.
	31.
	32.
	33.
	34.
	35. Prove that all subgroups of Z are of the form .
	36. Find all subgroups of .
	37. Prove that if and G are the only subgroups of a group G, then G is cyclic of order p, for p prime.
	38. Show that a nonempty subset S of a group G is a subgroup of G if and only if
	39. Show that for any group G the set is a subgroup of G.
	40. Let G be an abelian group. Show that for any integer n, is a subgroup of G.
	41. Prove that the subset of elements of finite order in an abelian group G is a subgroup of G (called the torsion subgroup of G).
	42. Let G be a cyclic group of order n. Show that if m is a positive integer, then G has an element of order m if and only if m divides m.
	43. Let a be an element of a group G. The set of all elements of G which commute with a:
	44. Let H be a subgroup of a group G. The centralizer of H is the set of all elements of G that commute with every element of H: . Prove that is a subgroup of G.
	45. The center of a group G is the set of all elements in G that commute with ever element of G: .
	46. Let H and K be subgroups of an abelian group G. Verify that is a subgroup of G.
	47. Let H and K be subgroups of a group G such that for every . Show that is a subgroup of G.
	48. Let G be a finite group, and .
	49. Prove that H is a subgroup of a group G if and only if .
	50. Let H and K be subgroups of an abelian group G of orders n and m respectively. Show that if , then is a subgroup of G of order nm.
	51. (a) Prove that the group contains an infinite number of subgroups.
	52. Let S be a finite subset of a group G. Prove that S is a subgroup of G if and only if for every .
	53. (a) be subgroups of a group G. Show that is also a subgroup of G.
	54. If H and K are subgroups of a group G, then is also a subgroup of G.
	55. It is possible for a group G to be the union of two disjoint subgroups of G..
	56. In any group G, is a subgroup of G.
	57. In any abelian group G, is a subgroup of G.
	58. Let G be a group with . If and , then .
	59. If H and K are subgroups of a group G, then is also a subgroup of G.
	60. In any group G, is a subgroup of G.
	61. No nontrivial group can be expressed as the union of two disjoint subgroups.

	The word homomorphism comes from the Greek homo meaning “same” and morph meaning “shape.”
	DEFINITION 5.8

	You can easily verify that , under standard multiplication
	is a group.
	EXAMPLE 5.5

	Since is abelian, we need not consider and
	See page 208 for a discussion of the group .
	EXAMPLE 5.6

	See page 212 for a discussion on the symmetric group .
	EXAMPLE 5.7

	Answer: See page A-30.
	THEOREM 5.22

	Answer: See page A-30.
	Figure 5.7

	Utilizing the notation of Definition 2.8, page 63:
	DEFINITION 5.9
	THEOREM 5.23


	Answer: See page A-31.
	A homomorphism must map e to . What this theorem is saying is that if e is the only element that goes to , then no element of is going to be hit by more that one element of G. This is certainly not true for arbitrary functions:
	THEOREM 5.24

	Answer: See page A-31.
	In other words: for a homomorphism to be one-to-one, it need only behave “one-to-one-ish” at any one-point in G.”
	The word isomorphism comes from the Greek iso meaning “equal” and morph meaning “shape.”
	DEFINITION 5.10 Isomorphism
	EXAMPLE 5.8

	In this discussion we are not using e to denote the identity element in (which is 1). Here, e is the transcendental number .
	Answer: See page A-31.
	A rose by any other name
	THEOREM 5.25

	Answer: See page A-31.
	Arthur Cayley (1821-1885)
	THEOREM 5.26
	1. and .
	2. and .
	3. and where n is the smallest integer greater than or equal to x.
	4. and .
	5. and where with .
	6. and if n is even and if n is odd.
	7. and for .
	8. with G abelian, and for .
	9. with G abelian, , and for .
	10. , and where with .
	11. , and where with .
	12. and .
	13. and .
	14. and .
	15. Let denote the group of all real numbers under addition, and the group of all positive real numbers under multiplication. Show that the map given by is an isomorphism.
	16. Let be a homomorphism and let . Prove that for every .
	17. Let be a homomorphism. Prove that for all :
	18. Let be a homomorphism, Show that:
	19. Prove that a group G is abelian if and only if the function given by is a homomorphism.
	20. Let be cyclic and let be any group. Let be a homomorphism. Prove that is cyclic.
	21. Let be a homomorphism. Show that if , then for every .
	22. Let be cyclic and let be any group. Prove that for any chosen there exists a unique homomorphism such that .
	23. Let be a homomorphism. Prove that, for any given :
	24. Let A, B, C, and D be groups. Show that if and , then (see Exercise 52, page 218).
	25. Let G and be groups. Show that (see Exercise 52, page 218).
	26. (a) Show that the set , with is a group.
	27. For , , let be given by .
	28. Let denote the additive group of real valued function (see Exercise 49, page 218), and let denote the additive group of real numbers. Prove that for any the function given by for is a homomorphism (called an evaluation homomorphism.)
	29. Let denote the set of differentiable functions from to .
	30. Let denote the set of continuous real valued functions.
	31. Show that for any , the function given by is a homomorphism. Is it necessarily an isomorphism?
	32. Show that the function given by is a homomorphism. Determine the image and kernel of
	33. Let G be a group. Prove that is a group.
	34. — the order of a finite group G.
	35. G contains a nontrivial cyclic subgroup.
	36. G contains an element of order n for given .
	37. G contains m elements of order n for given .
	38. G contains a subgroup of order of order n for given .
	39. The number of elements in (see Definition 5.5, page 224).
	40. The number of elements in — the center of a finite group G. (See Exercise 45, page 235.)
	41. The additive group is isomorphic to the additive group Q of rational numbers)
	42. The additive group Z is isomorphic to the additive group Q of rational numbers)
	43. If is a homomorphism from a group G to a cyclic group , then is a cyclic subgroup of G.
	44. If is an isomorphism from a group G to a cyclic group , then is a cyclic subgroup of G.
	45. For the group of continuous real valued functions under addition the function given by is a homomorphism.
	46. If , and are not isomorphic.
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	Contrapositive Proof:
	Proof by Contradiction:
	Let be odd (given condition)
	Assume that n is even, say .
	Then:
	— contradicting the stated condition that is odd.
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	Appendix B
	Answers to Selected Exercises
	Chapter 1
	A logical Beginning
	1.1 Propositions
	1. True 3. True 5. True 7. False 9. False 11. False 13. False 15. True 17. False
	19. False 21. True 23. True 25. True 27. False 29. False 31. False 33. Yes 35. No
	37. Yes 39. Yes 45. No 47. No 49. Yes 51. No 53. No 55. No 57. No 59. No
	63. True 65. False 67. Joe or Mary is not a math major. 69. Joe is a math or biology major.
	71. or x and y are not both integers.
	73. x is divisible by 2 and 3 or it is not divisible by 7.
	1.2 Quantifiers
	1. False 3. True 5. False 7. True 9. False 11. True 13. True 15. False 17. False
	19. False 21. False 23. True 25. True 27. True 29. False 31. True 33. True
	35. False 37. True 39. False 41. True 43. False 45. False 47. False 49. False 51. False
	53. There is a road that does not lead to Rome.
	59. Sometimes it rains but not pennies from heaven. 57.
	59. 61.
	63. 65. For every boy there is not some girl.
	67. 69. 71.
	73. 75. There is somebody that loves nobody.
	77. There is someday with no special moment. 79.
	81. 83.
	85. For every opera there exists a symphony not longer than that opera.
	87. For every person there is someone that is greater than that person.
	89. 91.
	93.
	1.3 Methods of Proof
	1.4 Principle of Mathematical Induction
	1.5 The Division Algorithm and Beyond
	1. 3. 5. 1
	Chapter 2
	A Touch of Set Theory
	2.1 Basic Definitions
	17. 19. 21.
	23.
	2.2 Functions
	1. Not a function 3. Range: 5. Range:
	7. Not one-to-one, not onto. 9. Both one-to-one and onto. 11. One-to-one and not onto.
	13. Onto and not one-to-one. 15. Both one-to-one and onto. 17. One-to-one and not onto.
	19. Not one-to-one, not onto. 21. One-to-one and not onto. 23. One-to-one and not onto.
	2.3 Infinite Counting
	2.4 Equivalence Relations
	1. No 3. Yes 5. No 13. Yes 15. No 17. No 19. No 31. Yes 33. Yes
	35. No 43. Yes 45. Yes 57. Yes 59. Yes 61. Yes 71. Yes 73. No
	75. Yes 77. Yes 79. Yes 81. No 93. Yes 95. No 97. Yes 99. No
	101. 103. 105.
	107. 113.
	115. , , for ,
	Chapter 3
	A Touch of Analysis
	3.1 The Real Number System
	1. Least upper bound: 7, no max or min. 3. Least upper bound: 10, no max or min.
	5. No Least upper bound: 7, no max, min: 7. 7. 1 9. 2 11.
	3.2 Sequences
	1. 3. 5. 7. 0 9. 11. 1
	13. 2 15. 1 23. 0 25. Does not exist 27. 1 29. 0 31.
	3.3 Metric Space Structure of
	1. Neither open nor closed, bounded below and above, not compact.
	3. Open, bounded below and above, not compact.
	5. Open, bounded below and above, not compact.
	7. Closed, bounded below and above, compact.
	3.4 Continuity
	Chapter 4
	A Touch of Topology
	4.1 Metric Spaces
	7. Fails property (i) of Definition 4.1. 9. Fails Properties (i) and (iii) of Definition 4.1.
	9. Fails Properties (i), (ii), and (iii) of Definition 4.1.
	4.2 Topological Spaces
	1(a). Yes 1(b). Yes 1(c). No 1d). No 1(e). Yes 1(f). No 1(g). No 1(h). Yes
	17(b) No 17(c) No 27. , , , ,
	, ,
	33. (a) (b) (c) (d) (e) 37.
	4.3 Continuous Functions and Homomorphisms
	4.4 Product and Quotient Spaces
	1(a). 1(b). 1(c).
	Chapter 5
	A Touch of Group Theory
	5.1 Definitions and Examples
	1. A cyclic group with generator 2. 2. Not a group. It does not contain an identity.
	3. Not a group. It does not contain an identity. 5. Not a group. It does not contain an identity.
	7. Not a group. 1 is the identity, but 2 has no inverse. 9. Abelian group. Not cyclic.
	11. Abelian group. Not cyclic.
	13. , 15. 17.
	19. , 21. 23.
	25. 27. 29.
	31. 33.
	35. Abelian 37. Abelian 45. Not Abelian
	5.2 Elementary Properties of Groups
	1.(a) (b) a (c) (d)
	5.3 Subgroups
	1. Yes 3. No 5. Yes 7. Yes 9. Yes 11. Yes 13. No 15. Yes 17. No
	5.4 Homomorphisms and Isomorphisms
	1. Yes 3. No 5. Yes 7. Yes 9. Yes 11. Yes


