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PREFACE
There is no mathematical ramp that will enable you to continuously inch your way higher and
higher in mathematics. The climb calls for a ladder consisting of discrete steps designed to take
you from one mathematical level to another. You are about to take an important step on that lad-
der, one that will take you to a plateau where mathematical abstraction abounds. Linear algebra
rests on a small number of axioms (accepted rules, or “laws”), upon which a beautiful and practi-
cal theory emerges. 

Technology can be used to reduce the time needed to perform essential but routine tasks. We fea-
ture the TI-84+ calculator, but any graphing utility or Computer Algebraic System will do. The
real value of whatever technological tool you use is that it will free you to spend more time on the
development and comprehension of the theory and its applications. In any event, if you haven’t
already discovered in other courses: 

Systems of linear equations are introduced and analyzed in Chapter 1. Graphing utilities can be
used to solve such systems, but understanding what those solutions represent plays a dominant
role throughout the text. 

We begin Chapter 2 by sowing the seeds for vector spaces in the fertile real number field, where
they soon blossom into the concept of an abstract vector. The remainder of Chapter 2 and all of
Chapter 3 are dedicated to a study of vector spaces in isolation. Functions from one vector space
to another which, in a sense, respect the algebraic structure of those spaces are investigated in
Chapters 4 and 5. The sixth chapter focuses on Eigenvalues and Eigenvectors, along with some of
their important applications.

The first six chapters may provide a full plate for most one-semester courses. If not, then Chap-
ter 7 (on inner product spaces) is offered for dessert.

We have made every effort to provide a leg-up for the step you are about to take. Our primary
goal was to write a readable book, without compromising mathematical integrity. Along the way,
you will encounter numerous Check Your Understanding boxes designed to challenge your under-
standing of each newly introduced concept. Complete solutions to the problems in those boxes
appear in Appendix B, but please don’t be in too much of a hurry to look at our solutions. You
should TRY to solve the problems on your own, for it is only through ATTEMPTING to solve a
problem that one grows mathematically. In the words of Descartes:

We never understand a thing so well, and make it
our own, when we learn it from another, as when
we have discovered it for ourselves.

 

MATHEMATICS DOES NOT RUN ON BATTERIES
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CHAPTER 1 
MATRICES AND SYSTEMS OF
LINEAR   EQUATIONS

Much of the development of linear algebra calls for the solution and
interpretation of systems of linear equations. While the “solution part”
can be relegated to a calculator, the “interpretation part” cannot. We
focus on the solution-part of the process in Section 1, and on the more
important interpretation-part in Sections 2. 

To solve the system of equations:

is to determine values of the variables (or unknowns) x, y, and z for
which each of the three equations is satisfied. You certainly solved such
systems in earlier courses, and if you take the time to solve the above
system, you will find that it has but one solution:

. We can also say that the three-tuple
 is a solution of the given system of equation, and that

 is its solution set. In general:

An (ordered) n-tuple is an expression of the form
, where each  is a real number (written

), for .

We say that the n-tuple  is a solution of the
system of m equations in n unknowns: 

if each equation in the system is satisfied when  is substi-
tuted for , for . 

The set of all solutions of a system of equations is said to be
the solution set of that system.

§1. SYSTEMS OF LINEAR EQUATIONS

Brackets are used to denote
sets. In particular,

  
denotes the set containing
but one element—the ele-
ment .

1 1 1– –  

1 1 1– – 

2x 4y 4z–+ 6=
2x 6y 4z+ + 0=

x y 2z+ + 2–= 





x 1 y– 1 z 1–= = =
1 1 1– – 

1 1 1– –  

c1 c2  cn    ci
ci  1 i n 

The s denote variables
(or unknowns), while the

’s and ’s are con-
stants (or scalars).

 xi

aij bi

c1 c2  cn   

a11x1 a12x2 a1nxn+ + b1=

a21x1 a22x2 a2nxn+ + b2=

am1x1 am2x2 amnxn+ + bm= 







...
. . .. . .. . .

ci
xi 1 i n 



2     Chapter 1    Matrices and Systems of Linear Equations                                                                                             

Consider the system of equations:

As you know, you can perform certain operations on that system which
will not alter its solution set. For example, you can:

(1) Interchange the order of the equations:

(2) Multiply both sides of the resulting top equation by 2:

(3) Multiply the resulting top equation by 3 and add it to the bottom
equation: 

The above three operations, are said to be elementary equation
operations:

Two systems of equations sharing a common solution set are said to
be equivalent. As you may recall:

EQUIVALENT SYSTEMS OF EQUATIONS

3x– y+ 2=
x
2
--- 2y+ 1

2
---=






3x– y+ 2=
x
2
--- 2y+ 1

2
---=




 x

2
--- 2y+ 1

2
---=

3x– y+ 2= 







x
2
--- 2y+ 1

2
---=

3x– y+ 2= 





x 4y+ 1=
3x– y+ 2= 






You used this third
maneuver a lot when
eliminating a variable
from a given system of
equations  For example:

EQUIVALENT SYSTEM
OF EQUATIONS

x 3y z–+ 1=
2x 5y– 3z+ 3=
3x– y 2z+ + 2= 






11y– 5z+ 1=
10y z– 5= 




(i)
(2)
(3)

multiply (1) by -2 and add it
to (2)

multiply (1) by 3 and add it
to (3)

ELEMENTARY OPERATIONS ON 
SYSTEMS OF LINEAR EQUATIONS

Interchange the order of any two equations in the system.

Multiply both sides of an equation by a nonzero number.

Add a multiple of one equation to another equation.

THEOREM 1.1 Performing any sequence of elementary opera-
tions on a system of linear equations will result
in an equivalent system of equations.

x 4y+ 1=
3x– y+ 2= 


 x 4y+ 1=

13y 5= 





3x 12y+ 3=
3x– y+ 2=

13y 5=

multiply by 3

add:
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Matrices are arrays of numbers (or expressions representing numbers)
arranged in rows and columns:

Matrix (i) contains 2 rows and 3 columns and it is said to be a 
(two-by-three) matrix. Similarly, (ii) is a  matrix, and (iii) is a

 matrix (a square matrix). In general, an  matrix is a
matrix consisting of m rows and n columns. In particular, (iv) is a 
matrix (a row matrix), and (v) is a  matrix (a column matrix).

It is often convenient to represent a system of equations in a more com-
pact matrix form. The rows of the matrix in Figure 1.1(b), for example,
concisely represents the equations in Figure 1.1(a). Note that the vari-
ables x, y, and z are suppressed in the matrix form, and that the vertical
line recalls the equal sign in the equations. Such a matrix is said to be the
augmented matrix associated with the given system of equations.

 

Figure 1.1
Switching two equations in a system of equations results in the

switching of the corresponding rows in the associated augmented
matrix. Indeed, each of the three previously introduced elementary
equation operations corresponds with one of the following elementary
matrix row operations:    

The following terminology is motivated by  Theorem 1.1:

AUGMENTED MATRICES

2 13 4
9– 7 3

         
4 7
10 6

8– 3

         
1 7 0
3 6 5
11 2 12–

         12  7  4          
10
1
9

(i)                      (ii)                   (iii)                       (iv)                (v)
2 3

3 2
3 3 m n

1 3
3 1

AUGMENTED MATRIX

ELEMENTARY MATRIX ROW OPERATIONS 

Interchange the order of any two rows in the matrix.

Multiply each element in a row of the matrix by a nonzero number.

Add a multiple of one row of the matrix to another row of the matrix.

DEFINITION 1.1
EQUIVALENT
MATRICES

Two matrices are equivalent if one can be
derived from the other by performing elemen-
tary row operations.

2x 4y 4z–+ 6=
2x 6y 4z+ + 0=

x y 2z+ + 2–= 





                
2 4 4– 6
2 6 4 0
1 1 2 2–

System of Equations             Augmented Matrix
(a)                                          (b)
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HERE IS WHERE WE ARE AT THIS POINT: 
A system of linear equations can be represented by an aug-
mented matrix, and every augmented matrix represents a sys-
tem of linear equations. Moreover:

AND HERE IS WHERE WE ARE GOING:
Suppose you want to solve the system of equations [1] in Figure

1.2. Assume, for the time being, that you can go from its augmented
matrix ([2]) to matrix [3], via elementary row operations. System [4],
which is associated with the augmented matrix [3], is easily seen to
have the solution: . But this must also be the
solution of system [1], since the two systems of equations are also
equivalent!

Figure 1.2  
The remainder of this section is designed to illustrate a method which

can be used to go from matrix [2] of Figure 1.2 to matrix [3], via ele-
mentary row operations.

Capital letters are used to represent matrices, and double subscripted
lower case letters for their entries; as in:

SYSTEMS OF EQUATIONS ASSOCIATED WITH EQUIVA-
LENT AUGMENTED MATRICES ARE THEMSELVES
EQUIVALENT (SAME SOLUTION SET).

PIVOTING ABOUT A PIVOT POINT

x 1– y 1 z 1–= = = 

       Same Solution Set                      Elementary Row Operations

[1] [2]

[4]

2x 4y 4z–+ 6=
2x 6y 4z+ + 0=

x y 2z+ + 2–= 



 2 4 4– 6

2 6 4 0
1 1 2 2–

1 0 0 1–
0 1 0 1
0 0 1 1–

x 0y 0z+ + 1–=
0x y 0z+ + 1=

0x 0y z+ + 1–= 





augmented matrix

system of equations [3]

A
a11 a12 a13 a14

a21 a22 a23 a24

a31 a32 a33 a34

=

.
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Note that the first subscript of the element  denotes its row: i, and
the second subscript, its column: j. For example, if:

then , and so on.

In the next example, we specify a location in a given matrix (called
the pivot-point), which contains a non-zero entry. We then illustrate a
process (called pivoting) designed to turn the given matrix into an
equivalent matrix with a 1 in the pivot-point, and with each entry above
or below the pivot-point equal to 0. It is a routine process that plays a
dominant role in a number of matrix applications, so please make sure
that you understand it fully. 

The following notation will be used to represent elementary
row operations:

SOLUTION:
Step 1. Get a 1 in the pivot-point position by multiplying each entry

in row 1 by :                      

PIVOT POINT
 PIVOTING

ELEMENTARY ROW OPERATION NOTATION

Switch row i with row j:

Multiply each entry in row i by a nonzero 
number c:

Multiply each entry in row i by a number 
c, and add the resulting row to row j:

EXAMPLE 1.1 Pivot the matrix: 

about the pivot point  with pivot entry 2,
and then again about the pivot point  of the
resulting equivalent matrix.

aij

A aij 
2 7 6 2
3 6 3 1
1– 2 2 3

= =

a12 7 a21 3 a34 3= = =

Ri Rj

cRi Ri

cRi Rj Rj+

A aij 
2 6 4– 2
3 6 3 15
1– 2 2 3

= =

a11
a22

1
2
---

2 6 4– 2
3 6 3 15
1– 2 2 3

                
1 3 2– 1
3 6 3 15
1– 2 2 3

1
2
---R1 R1
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Step 2. Get 0’s below (there is no above) the pivot point position.
 Multiply row 1 by  and add it to row 2 (see margin), and

then multiply row 1 by 1 and add it to row 3:

Repeating the above two-step procedure, we now pivot about
:

3 1   3   2   1– –

3R1–

R2
3R1– R2+ :

3– 9– 6 3–
3 6 3 15
0 3– 9 12

3–

3R1– R2+ R2 1 3 2– 1
0 3– 9 12
0 5 0 4

1 3 2– 1
3 6 3 15
1– 2 2 3

1 3 2– 1
0 3– 9 12
1– 2 2 3

1R1 R3+ R3

1 3 2– 1
1– 2 2 3

0 5 0 4

a22 3–=

1 3 2– 1
0 3– 9 12
0 5 0 4

1
3
---R2– R2 1 3 2– 1

0 1 3– 4–
0 5 0 4

3R2– R1+ R1 1 0 7 13
0 1 3– 4–
0 5 0 4

0 3– 9 12
1 3 2– 1
1 0 7 13

1 0 7 13
0 1 3– 4–
0 0 15 24

5R2– R3+ R3

0 5– 15 20
0 5 0 4
0 0 15 24

The TI-84+ calculator is fea-
tured throughout the text.

GRAPHING CALCULATOR GLIMPSE 1.1
We utilize a graphing calculator to perform the first of the two pivot-
ing processes in the above example, and invite you to use your calcu-
lator to address the other pivoting process.
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A matrix may have many different equivalent forms. Here is the nic-
est of them all:

These three matrices are in row-reduced-echelon form:

Though a bit tedious, reducing a matrix to its row-reduced-echelon
form is a routine task. Just focus on getting those all-important leading-
ones (which are to be positioned further to the right as you move
down), with zeros above and below them. Consider the following
example:

Answer: See page B-1.

CHECK YOUR UNDERSTANDING 1.1

Pivot about  to go from:      to    

ROW-REDUCED-ECHELON FORM

a33 15=
1 0 7 13
0 1 3– 4–
0 0 15 24

? ? 0 ?
? ? 0 ?
? ? 1 ?

A matrix satisfying (i), (ii)
and a slightly weaker form
of (i):

The first non-zero entry
in any row is 1, and  the
entries below (only) that
leading-one are 0

is said to be in  row-echelon
form.

DEFINITION 1.2
ROW-REDUCED
ECHELON FORM

A matrix is in row-reduced-echelon form
when it satisfies the following three conditions:
(i) The first non-zero entry in any row is 1

(called its leading-one), and all of the entries
above or below that leading-one are 0.

(ii) In any two successive rows, not consisting
entirely of zeros, the leading-one in the
lower row appears further to the right than
the leading-one in the row above it.

(iii) All of the rows that consist entirely of zeros
are at the bottom of the matrix.

The matrices 

are in row-echelon form

Answer: Yes: (a), (c), and (d).
               No: (b) [fails (ii)]

1 0 0 12
0 1 0 5
0 0 1 0

 and 
1 9 0 12
0 1 4 5
0 0 1 0

CHECK YOUR UNDERSTANDING 1.2
Determine if the given matrix is in row-reduced-echelon form. If not,
list the condition(s) of Definition 1.2 which are not satisfied.

A
1 0 0 12
0 1 0 5
0 0 1 0

= B
1 0 0 0
0 0 1 1
0 0 0 0

= C 1 0 3
0 1 0

=

\                                       a  
0 0 1 0
0 0 0 0
0 0 0 0

      b  
1 0 3– 0
0 0 0 1
0 1 0 0

       c  1 0 0
0 1 4

      d  
0 1 3– 0 5
0 0 0 1 3
0 0 0 0 0
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SOLUTION: Leading-one Step. We could divide the first row by 2 to
get a leading-one in that row, but choose to switch the first row and
third row instead:

Zeros-above-and-below Step: 

Next leading-one Step:

Zeros-above-and-below Step:

EXAMPLE 1.2 Perform elementary row operations to obtain
the row-reduced-echelon form for the matrix: 

2 4 4– 6
2 6 4 0
1 1 2 2–

2 4 4– 6
2 6 4 0
1 1 2 2–

1 1 2 2–
2 6 4 0
2 4 4– 6

R1 R3

1 1 2 2–
2 6 4 0
2 4 4– 6

1 1 2 2–
0 4 0 4
2 4 4– 6

2R1– R2+ R2 1 1 2 2–
0 4 0 4
0 2 8– 10

2R1– R3+ R3

2– 2– 4– 4
2 6 4 0
0 4 0 4

2– 2– 4– 4
2 4 4– 6
0 2 8– 10

1 1 2 2–
0 4 0 4
0 2 8– 10

1 1 2 2–
0 1 0 1
0 2 8– 10

1
4
---R2 R2

1 1 2 2–
0 1 0 1
0 2 8– 10

1 0 2 3–
0 1 0 1
0 2 8– 10

1R2– R1+ R1 1 0 2 3–
0 1 0 1
0 0 8– 8

2R2– R3+ R3

0 1– 0 1–
1 1 2 2–
1 0 2 3–

0 2– 0 2–
0 2 8– 10
0 0 8– 8
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Next leading-one Step:

Zeros-above-and-below Step:

We are now at a row-reduced-echelon form, and so we stop.

While not difficult, the above example illustrates that obtaining the
row-reduced-echelon form of a matrix can be a bit tedious. It’s a dirty
job, but someone has to do it: 

   

GRAPHING CALCULATOR GLIMPSE 1.2

In harmony with graphing calculators, we will adopt the notation
 to denote the row-reduced-echelon form of a matrix A.

EXAMPLE 1.3 Solve the system:

1 0 2 3–
0 1 0 1
0 0 8– 8

1 0 2 3–
0 1 0 1
0 0 1 1–

1
8
---– R3 R3

1 0 2 3–
0 1 0 1
0 0 1 1–

1 0 0 1–
0 1 0 1
0 0 1 1–

2R3– R1+ R1

0 0 2– 2
1 0 2 3–
1 0 0 1–

For for row-reduced-echelon form

rref A 

2x 4y 4z–+ 6=
2x 6y 4z+ + 0=

x y 2z+ + 2–= 
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SOLUTION: All the work has been done:

   From the above we can easily spot the solution of the given system:

 

    A bit of human-intervention was used in the pivoting process of
Example 1.2. If it is “freedom from choice” that you want, then you can
use the following algorithm to reduce a given matrix to its row-
reduced-echelon form:  

Step 1. Locate the left-most column that does not consist
entirely of zeros, and pick a nonzero element in that
column. Let the position of that chosen element be
the pivot-point.

Step 2. Pivot about the pivot-point of Step 1.

Step 3. If necessary, switch the pivot-row with the furthest
row above it (nearest the top) that does not already
contain a leading-one, to the left of the pivot col-
umn.

Step 4. If the matrix is in row-reduced-echelon form, then
you are done. If not, return to Step 1, but ignore all
rows with established leading-ones for that step of
the process.

2x 4y 4z–+ 6=
2x 6y 4z+ + 0=

x y 2z+ + 2–= 



 2 4 4– 6

2 6 4 0
1 1 2 2–

1 0 0 1–
0 1 0 1
0 0 1 1–


x 1–=
y 1=
z 1–= 






 

Example 1.2

x  y    zx  y   z
augmented matrix

These two systems of equations are equivalent (same solution sets)

x 1– y 1 z 1–= = = 

Answer:
 x 1 y 2 z 3= = =

CHECK YOUR UNDERSTANDING 1.3
Proceed as in Example 1.3 to solve the given system of equations.

x y z+ + 6=
3x 2y z–+ 4=

3x y 2z+ + 11= 





Gauss, Karl Friedrich
(1777 -1855), the great
German mathematician
and astronomer.
Wilhelm Jordan (1842-
1899) German professor
of geodesy.

Gauss-Jordan Elimination Method
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Exercises 1-2. Write down the augmented matrix associated with the given system of equations.

Exercises 3-4. Write down the system of equations associated with the given augmented matrix.

Exercises 5-8. Perform elementary row operations to obtain the row-reduced echelon form for
the given matrix.

Exercises 9-11. Solve the system of equations corresponding to the given row-reduced-echelon 
form matrix.

Exercises 12-15. Proceed as in Example 1.2 to solve the given system of equations.

EXERCISES

1.
2.

3. 4.

5. 6.
7. 8.

9. 10. 11.

12. 13.

3x 3y– z+ 2=
5x 5y 9z–+ 1–=

3x– 4y– z+ 0= 



 2x 3y 4w–+ 5=

x 4z– w+ 1–=
x 4y– 0=

x– y– z 4w+ + 9= 







5 1 4
2– 3– 1

1
2
--- 1– 0

3
4

0

2 4 1 0
0 5 5 2
2 1 3– 8

9
2
11

0 2 4
1 0 2
2 4 5

1 0 0 2
2 1 2 1
0 2 2 4

0 2 5
4 4 2
1 0 3
2 3 5

2 3 0 1
1 0 1 2
1 0 0 1
2 2 0 1

1 0  0 1
0 1  0 0
0 0  1 2

x  y  z
1 0 0 0 2
0 1 0 0 3–
0 0 1 0 1
0 0 0 1 0

x   y    z    w

1 0 0 0 0 1
0 1 0 0 0 2
0 0 1 0 0 2
0 0 0 1 0 2
0 0 0 0 1 1–

x1 x2  x3  x4  x5

x 2y– z+ 1=
3x– 5y 2z–+ 5–=
4x 8y– 3z+ 6= 




 x y– z– 2=

4x 2y– 5z– 2–=
x– 3y 6z+ + 0= 
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16. Construct a system of three equations in three unknowns, x, y, and z such that
 is a solution of the system.

17. Construct a system of four equations in four unknowns, x, y, z, and w with solution set
.

Exercises 18-20. (Row-Echelon Form) A matrix is said to be in row-echelon form if it satisfies
all of the conditions of Definition 1.2, except that elements above a leading 1 need not be zero
(the entries below leading ones must still be zero). Determine if the matrix is in row-echelon
form. If not, indicate why not.

Exercises 21-22. Perform elementary row operations to transform the given matrix to the given
row-echelon form (see Exercise 18-20).

Exercises 23-25. Determine the solution set of the system of equations corresponding to the
given row-echelon form matrix (see Exercise 18-20). 

Note: If you are using a graphing calculator, then you might as well use the row-reduced-
echelon command, for that is the most revealing form. If you are doing things by hand,
however, you may be able to save some time by going with the row-echelon form.

26. Offer an argument to justify the following claim: 
If the  column of a matrix A consists entirely of zeros, and if the matrix B is equiva-
lent to A, then the  column of B also consists entirely of zeros.

14. 15.

18. 19. 20.

21. 22.

23. 24. 25.

2x 5y 2z–+ 1–=
4x– y– z+ 4–=
x 2y z–+ 4= 




 2x y– 2z w 1+ +=

w x– y=

4y 3z+ 1
2
---–=

x 3y+ w z–= 







x 1 y 2 z 3= = =

x 1  y, 2  z, 3  w, 4= = = =  

1 2 3 1
0 1 2 3
0 0 0 1

1 0 3 2
0 1 2 0
0 0 0 2

0 0 1 2
0 1 0 0
0 0 0 1

2 4 4– 6
2 6 4 0
1 1 2 2–

1 2 2– 3
0 1 4 3–
0 0 1 1–

 2 6 4– 2
3 6 3 15
1– 2 2 3

1 3 2– 1
0 1 3– 4–

0 0 1 8
5
---



1 2  0 1
0 1  1 0
0 0  1 2

x  y  z
1 1  0 2
0 1  1 2
0 0  1 0

x  y  z
1 2 0 1 2
0 1 2 3 3–
0 0 1 1 1
0 0 0 1 0

x   y    z    w

jth

jth
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In the remaining exercises you are to decide whether the given statement is True or False. If True, then
you are to present a general argument to establish the validity of the statement in its most general setting. If
False, then you are to exhibit a concrete specific example, called a counterexample, showing that the
given statement does not hold in general. To illustrate:

                                              Prove or Give a Counterexample:
(a) The sum of any two even integers is again an even integer.
(b) Every odd number is prime.

(a) Yes, each time you add two even integers, out pops another even integer, suggesting
that statement (a) is true. But you certainly can’t check to see if (a) holds for all even
integers—case by case—as there are infinitely many such cases. A general argument
is needed:

If a and b are even integers, then  and  for some integers n
and m. We then have: . Since  is itself a
multiple of 2, it is even.

(b) Surely (b) is false. Why? Because 9 is odd, but 9 is not prime, that’s why. To be sure,
we could offer a different counterexample, say 15, or 55, but we did have to come up
with a specific concrete counterexample to shoot down the claim.

27. The system of equations  has a solution for all .

28. The system of equations  always has a solution for all .

29. The system of equations  can never have more than one solution.

30. The systems of equations associated with the two augmented matrices:

will have the same solution set only if , and .

31. If the matrix A has n rows, and if  contains less than n leading ones, then the last row
of  must consist entirely of zeros.

PROVE OR GIVE A COUNTEREXAMPLE

a 2n= b 2m=
a b+ 2n 2m+ 2 n m+ = = a b+

ax by+ 0=
cx dy+ 0= 




a b c d   

ax by+ 1=
cx dy+ 1= 




a b c d   

ax by+ 0=
cx dy+ 0= 




a b
c d

0
0

and a b
c d 

0
0

a a '  b, b'  c, c'= = = d d '=

rref A 
rref A 
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 1

A system of equations may have a unique solution, infinitely many
solutions, or no solution whatsoever. If it has no solution, then the sys-
tem is said to be inconsistent, otherwise it is said to be consistent. As
is illustrated in the following examples, the solution set of any system
of equations can be spotted from the row-reduced-echelon form of its
augmented matrix. 

SOLUTION: Proceeding as in the previous section, we have:

We see that the given system is consistent, and that it has but one
solution:  .

SOLUTION: Proceeding as in the previous section, we have:

Since the equation represented by the last row in the above rref-matrix
cannot be satisfied, the given system of equations is inconsistent. 

§2. CONSISTENT AND INCONSISTENT 
SYSTEMS OF EQUATIONS

CONSISTENT
INCONSISTENT

EXAMPLE 1.4 Determine if the following system of equations
is consistent. If so, find its solution set.

4x 2y– 7z– 5=
6x– 5y 10z+ + 11–=
3x– 2y 5z+ + 5–= 






EXAMPLE 1.5 Determine if the following system of equations
is consistent. If so, find its solution set.

4x 2y– 7z– 5=
6x– 5y 10z+ + 11–=
3x– 2y 5z+ + 5–= 




 4 2– 7– 5

6– 5 10 11–
3– 2 5 5–



x    y    z

1 0 0 6
0 1 0 1–
0 0 1 3

x 6=
y 1–=
z 3=

rref

x  y  z

x 6 y 1– z 3= = = 

3x 2y– 7z– 5=
6x– 5y 10z+ + 11–=
2x– 3y 4z+ + 3–=
3x– 2y 5z+ + 5–= 








3x 2y– 7z– 5=
6x– 5y 10z+ + 11–=
2x– 3y 4z+ + 3–=
3x– 2y 5z+ + 5–= 








           

3 2– 7– 5
6– 5 10 11–
2– 3 4 3–
3– 2 5 5–

          

1 0  0  0
0 1  0  0
0 0  1  0
0 0  0   1

x    y    z   x   y    z

0x 0y 0z+ + 1=

rref
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 SOLUTION:

   
We know that the solution set of the above system of equations coin-
cides with that of the one stemming from the row-reduced-echelon
form of its augmented matrix; namely:

As you can see, that variable w, which we moved to the right of
the equations, can be assigned any value whatsoever, after which
the values of x, y, and z (the variables associated with leading-
ones in Figure 1.3) are determined. For example, setting 
leads to the particular solution:

We can generate another solution by letting :

Indeed, the solutions set of the system of equation is obtained
by letting , where c can be any real number whatsoever:

We can arrive at a nicer representation of the solution set by
replacing each c with 2c:

and then observing that as “2c runs through all of the numbers,”
so does c:

1

2
-1/2
-5/2

EXAMPLE 1.6 Determine the solution set of the system:
3x 6y– 3w+ 9=

2x– 4y 2z w–+ + 11–=
3x 8y– 6z 7w+ + 5–= 






3x 6y– 3w+ 9=
2x– 4y 2z w–+ + 11–=

3x 8y– 6z 7w+ + 5–= 





      
3 6– 0 3 9
2– 4 2 1– 11–

3 8– 6 7 5–
       

1 0 0 0 2

0 1 0 1
2
---– 1

2
---–

0 0 1 1
2
--- 5

2
---–

x  y  z  w
x   y  z  w

 rref

Any variable that is not
associated with a leading
one in the row-reduced
echelon form of an aug-
mented matrix is said to be
a free variable. In the cur-
rent setting, the variable w
is a free variable (see rref
in Figure 1.3).

x 0y 0z 0w+ + + 2=

0x y 0z 1
2
---w–+ + 1

2
---–=

0x 0y z 1
2
---w+ + + 5

2
---–=








  or:  

x 2=

y 1
2
---– 1

2
---w+=

z 5
2
---– 1

2
---w–=









w 0=

x 2 y 1
2
---– z 5

2
---– w 0= = = = 

 

w 1=
x 2 y 0 z 3 w– 1= = = = 

w c=

x 2 y 1
2
---– c

2
--- z+ 5

2
--- c

2
---– w– c= = = =  c 

 
 
 

Read: such that

x 2 y 1
2
---– c z+ 5

2
--- c– w– 2c= = = =  2c 

 
 
 

x 2 y 1
2
---– c z+ 5

2
--- c– w– 2c= = = =  c 
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The system of equations of Example 1.4 has a unique solution, that of
Example 1.5 has no solutions, and the one in Example 1.6 has infinitely
many solutions. These examples cover all of the bases, for if a system
of equations has more than one solution then it must have infinitely
many solutions (Exercise 22).

Our concern thus far has been with systems of equations with fixed con-
stants on the right side of the equations. We now turn to the question of
whether or not a system of equations has a solution for all such constants:

SOLUTION:

Answer: (a) Inconsistent
(b) 

(c):
 

1 2r 4 5r r–+  r  

1 2r– s– r 2– 4s s r s R– 

CHECK YOUR UNDERSTANDING 1.4
Determine if the system associated with the given row-reduced-eche-
lon augmented matrix is consistent. If it is, find its solution set.

EXAMPLE 1.7 Determine if the following system of equations
is consistent for all  a, b, and c.

(a)
1 0 2–
0 1 5
0 0 0

1
4
2

           (b) 
1 0 2–
0 1 5
0 0 0

1
4
0

        (c)
1 2 0 1
0 0 1 4
0 0 0 0

1
2–

0

2x z+ a=
3x y+ b=

x– 5y– z– c= 





Unlike the TI-84+, the TI-89
and above have symbolic capa-
bilities. In particular:

2x z+ a=
3x y+ b=

x– 5y– z– c= 





               
2 0 1 a
3 1 0 b
1– 5– 1– c

                     
1 0 1

2
--- a

2
---

3 1 0 b
1– 5– 1– c

1 0 1
2
--- a

2
---

0 1   3
2
---–   3a

2
------– b+

0   5– 1
2
---– a

2
--- c+

                         

1 0 1
2
--- a

2
---

0 1   3
2
---– 3a

2
------– b+

0 0  8–   7– a 5b c+ +

               

               

1 0 1
2
--- a

2
---

0 1  3
2
---– 3a

2
------– b+

0 0  1   7a 5b– c–
8

---------------------------

                        

1 0 0 a 5b c+ +
16

------------------------

0 1 0  3a– b 3c–+
16

--------------------------------

0 0 1 7a 5b– c–
8

---------------------------

x  y  z
1
2
---R1 R1

3R1 R2 R2+–
1R1 R3 R3+

5R2 R3 R3+

1
8
---R3 R3–

1
2
---– R3 R1 R1+

3
2
---R3 R2 R2+

x  y  z
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We see that the given system of equations has a solution for all  a, b,
and c; namely: 

SOLUTION: If you go through the Gauss-Jordon elimination method
without making a mistakes you will find that: 

Figure 1.3
The last row of the above rref-matrix represents the equation:

As such, that matrix tells us that the given system of equation will
have a solution if and only if:

In particular, if you choose random numbers for a, b, c, and d, then it
is very unlikely that the system will have a solution, for what are the
odds that those four numbers will satisfy (*)?

EXAMPLE 1.8 Determine if the following system of equations is
consistent for all possible values of a, b, c, and d. 

x a 5b c+ +
16

------------------------ y 3a– b 3c–+
16

-------------------------------- z 7a 5b– c–
8

---------------------------===

2x y 2z w+ + + a=
x 2y– 3z 2w+ + b=

2y z 4w+ + c=
x z– 4w– d= 








Here, unlike with the
smaller system of equa-
tions in Example 1.8, the
TI-89 (or higher) is of lit-
tle help:

The last row of the above
rref matrix tells us that
there is no solution to the
system, but it “lies,” for
solutions do exist for cer-
tain values of a, b, c, and d
[see (*)].                                       

Answer: (a) It is consistent
for all a, b, and c.
(b) Consistent if and only if

c 3a b+ + 0=

CHECK YOUR UNDERSTANDING 1.5
Determine if the given system of equations has a solution for all a, b,
and c. If not, find some specific values of a, b, and c for which a solu-
tion does not exist.

     (a)               (b)  

2x y 2z w+ + + a=
x 2y– 3z 2w+ + b=
0x 2y z 4w+ + + c=

x 0y z– 4w–+ d= 





 2 1 2 1 a

1 2– 3 2 b
0 2 1 4 c
1 0 1– 4– d

rref

x    y    z    w

1   0   0   2– 8a 3b– 7c–
13

------------------------------

0   1   0   1 a 2b– 4c+
13

---------------------------

0   0   1   2 2a– 4b 5c+ +
13

------------------------------------

0   0   0   0   10a– 7b 12c 13d+ + +
13

---------------------------------------------------------

x     y    z        w

0x 0y 0z 0w+ + + 10a– 7b 12c 13d+ + +
13

---------------------------------------------------------=

10a– 7b 12c 13d+ + + 0    = (*)

4x 2y– z+ a=
2x– 4y 2z+ + b=

5x y– 4z+ c= 



 x 4y– 4z– a=

2x 8y 12z–+ b=
x– 12y 2z+ + c= 
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The coefficient matrix of an  system of equation is the 
matrix obtained by eliminating the last column of the augmented
matrix of the system. For example, referring to system of equations of
Examples 1.8, we have:

At this point, it behooves us to introduce a bit of notation. To begin
with, we will use S to represent a general system of linear equations.
We will then let aug(S) and coef (S) denote the augmented and coeffi-
cient matrices of S, respectively. To illustrate:

The following theorem will enable us to invoke a graphing calculator
to resolve the issues of Examples 1.7 and 1.8:

PROOF: If  does not contain a row consisting entirely of
zeros, then each row of  will have a leading one, as will
every row of . For any given values of , a
solution for S can then be obtained by setting each of the  free
variables in  to zero, and letting the variable associated
with a leading one in the  row of  equal the last entry
in that row (see margin for an illustration).

COEFFICIENT MATRIX

m n m n

2x y 2z w+ + + a=
x 2y– 3z 2w+ + b=

2y z 4w+ + c=
x z– 4w– d= 








augmented
matrix

coefficient
matrix

2 1 2 1 a
1 2– 3 2 b
0 2 1 4 c
1 0 1– 4– d

2 1 2 1
1 2– 3 2
0 2 1 4
1 0 1– 4–

2x 3y z–+ 1=
3x y– 2z+ 5=
x– 2y 3z–+ 2= 






aug S 
2 3 1– 1
3 1– 2 5
1– 2 3– 2

 and  coef S 
2 3 1–
3 1– 2
1– 2 3–

= =For S:

Let P and Q be two proposi-
tions (a proposition is a math-
ematical statement that is
either true or false). To say “P
if and only if Q,” (also writ-
ten in the form ) is to
say that if P is true then so is
Q (also written ), and
if Q is true then so is P (also
written ).   

P Q

P Q

Q P

1 2 0 0 0 3 9–
0 0 1 0 0 1 2
0 0 0 1 0 0 1
0 0 0 0 1 5 5

x1 x2 x3 x4 x5 x6 

free: set to 0

9 0 2 1 5 0    – a solution:

THEOREM 1.2
SPANNING
THEOREM

The system of equations:

has a solution for all values of  if
and only if  does not contain a
row consisting entirely of zeros.

a11x1 a12x2 a1nxn+ + b1=

a21x1 a22x2 a2nxn+ + b2=

am1x1 am2x2 amnxn+ + bm= 







...
. . .. . .. . .

S:

b1 b2  bm  
rref coef S  

rref coef S  
rref coef S  

rref aug S   b1 b2  bm  
n m–

rref aug S  
ith rref aug S  
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For the converse, assume that the last row of  consists
entirely of zeros. The only difference between  and

 is that the latter has an additional column, the last entry
of which (as was the case in Figure 1.4) must be a linear expression
involving , say :

It follows that for any values of  for which
, the resulting system of equations will not have

a solution, for here is its last equation: 

SOLUTION: 

rref coef S  
rref coef S  

rref aug S  

b1 b2  bm   F b1 b2  bm   

0   0   0 . . . 0 0   0   0 . . . 0

x1   x2   x3 .  .  . xm x1   x2   x3 .  .  . xm

rref aug S  rref coef S  

same

F b1 b2  bm   

(see Example 1.8)

b1 b2  bm  
F b1 b2  bm    0

0x1 0x2  0xn+ + + F b1 b2  bm   =

EXAMPLE 1.9 Use the spanning theorem to determine if the given
system of equations has a solution for all values of the
constants on the right side of the equations.

(a)        (b) 
2x z+ a=
3x y+ b=

x– 5y– z– c= 





See Example 1.7

2x y 2z w+ + + a=
x 2y– 3z 2w+ + b=

2y z 4w+ + c=
x z– 4w– d= 








See Example 1.8

(a)  S:  
2x z+ a=
3x y+ b=

x– 5y– z– c= 





              
2 0 1
3 1 0
1– 5– 1–

                   
1 0 0
0 1 0
0 0 1

rref coef S  

system has a solution for all values of a, b, and c
does not contain a row of zeros:

(see margin)
coef(S)

rref coef S  

system does not have a solution for all values of a, b, c, and d
 contain a row of zeros:

S:  

2x y 2z w+ + + a=
x 2y– 3z 2w+ + b=

2y z 4w+ + c=
x z– 4w– d= 








          

2 1 2 1
1 2– 3 2
0 2 1 4
1 0 1– 4–

                 

1 0 0 2–
0 1 0 1
0 0 1 2
0 0 0 0

(b)
(see margin)

coef(S)
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Note that while the matrix  in (b) shows that the system
S is not consistent for all values of a, b, c, and d, it does not reveal the
specific values of a, b, c, and d for which a solution does exist. That
information can be derived from the matrix  (see Example
1.8).

A system of linear equations is said to be homogeneous if all of the
constants on the right side of the equations are zero: 

(A homogeneous system of m equations in n unknowns)
It is easy to see that every homogeneous system is consistent, with

trivial solution: . In the event that the
homogeneous system is “wide”, then it has more than one solution:

PROOF: Having more columns than rows,  must have
free variables, and therefore the system has infinitely many solutions. 

rref coef S  

rref aug S  

Answer: (a) Yes    (b) No

CHECK YOUR UNDERSTANDING 1.6
Use the spanning theorem to determine if the given system of equa-
tions has a solution for all values of the constants on the right side of
the equations.

      (a)           (b)  

HOMOGENEOUS SYSTEMS OF EQUATIONS

3x 7y z–+ a=
13x 4y– 2z+ b=

2x 4y– 2z+ c= 





x 3y– w+ a=
3x y– 2z 3w–+ b=

x z 5w–+ c=
2x y– z 2w–+ d= 








A system with fewer equa-
tions than unknowns
(“wide”) is said to be
underdetermined.
A system with more equa-
tions than unknowns
(“tall”) is said to be overde-
termined.
A square system is a system
which contains as many
equations as unknowns.

THEOREM 1.3
FUNDAMENTAL THEO-

REM OF HOMOGENEOUS 
SYSTEMS OF EQUATIONS

Any homogeneous system S of  linear equa-
tions in n unknowns with  has nontrivial
solutions.

EXAMPLE 1.10 Determine the solution set of:

a11x1 + a12x2 +  + a1nxn = 0
a21x1 + a22x2 +  + a2nxn = 0

am1x1 + am2x2 +  + amnxn = 0 







..
...

...
...

H:

x1 0 x2 0  xn  0= = =

m
n m

rref aug S  

2x 3y 4z– 5w+ + 0=
3x– y 4z w+ + + 0=

x 7y 4z– 11w+ + 0= 
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SOLUTION: Theorem 1.3 tells us that the system has nontrivial solu-
tions. Let’s find them: 

Figure 1.4
Assigning arbitrary values to the two free variables z and w we arrive
at the solution set of the system:

If S is a homogeneous system of equations, then the last column of
 will always consist entirely of zeros (Exercise 20).  Con-

sequently, when solving a homogeneous system of equations, one
might as well start with  rather than with  (one less col-
umn to carry along in the rref-process, that’s all). In particular, the solu-
tion set of the homogeneous system of the last example can easily be
read from  (just mentally add a  column of zeros to the
right of the matrix):

2 11
17 11

2x 3y 4z– 5w+ + 0=
3x– y 4z w+ + + 0=

x 7y 4z– 11w+ + 0= 





                      
2 3 4– 5 0
3– 1 4 1 0

1 7 4– 11 0

1 0 16
11
------– 2

11
------ 0

0 1 4
11
------– 17

11
------ 0

0 0 0 0 0

      

x 16
11
------z 2

11
------w–=

y 4
11
------z 17

11
------w–=

   

x   y     z    w free variables

x   y    z   w

aug S S:

rref

16
11
------a 2

11
------b 4

11
------a 17

11
------b a b ––  a b R

 
 
 

16a 2b 4a 17b 11a 11b ––  a b R =

x   
     

        y           z  w}}

rref aug S  

coef S  aug S 

rref coef S  

2x 3y 4z– 5w+ + 0=
3x– y 4z w+ + + 0=

x 7y 4z– 11w+ + 0= 





              
2 3 4– 5
3– 1 4 1

1 7 4– 11

1  0 16
11
------–   2

11
------

0  1 4
11
------–   17

11
------

0  0  0  0

x  y     z   w
x    y    z       w

coef S 
S :

rref
0

0

0

Answer: 
4r 2r– 3r– 2r   r R 

CHECK YOUR UNDERSTANDING 1.7
Determine the solution set of:

2x 3y 4z 5w+ + + 0=
3x y 4z w+ + + 0=

x 7y 4z 11w+ + + 0= 
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We end this section with a rather obvious result, but one that will play
an important role in future developments; so much so, that we label it
accordingly: 

PROOF: Since there are n unknowns, to say that  has n
leading ones, is to say that it has no free variables.

While underdetermined (“wide”) homogeneous systems of
equations are guaranteed to always have non-trivial solu-
tions, this is not the case with overdetermined (“tall”) sys-
tems of equations [see Exercises 27-28], or with square
systems of equations [see Exercises 29-30].

THEOREM 1.4
LINEAR INDEPEN-
DENCE THEOREM

A homogeneous system S of m linear equa-
tions in n unknowns has only the trivial solu-
tion if and only if  has n leading
ones.

rref coef S  

rref coef S  
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Exercises 1-6. Determine if the system S with given  is consistent. If it is, find its
solution set.

Exercises 7-12. Determine if the system of equations is consistent. If it is, find its solution set.

Exercises 13-14. Does the system of equations have a solution for all a, and b? If not, find some
specific values of a and b for which a solution does not exist, and some specific values of a and b,
not both zero, for which a solution does exist.

Exercises 15-16. Does the system have a solution for all a, b, and c? If not, find some specific val-
ues of a, b, and c for which a solution does not exist, and some specific values of a, b, and c, not
all zero, for which a solution does exist.

EXERCISES

1.  2.  
3.  

4.  5.  
6.  

7.  8.  
9.  

10.  
11.  12.

13.  14.  

15.   16.  

rref aug S  

0 1
0 0
0 0

2
0
0

0 1 0 1
0 0 1 0
0 0 0 0

3
2–

0

1 0 0
0 1 0
0 0 1

2–
2–
2–

1 0 3
0 1 4–
0 0 0

5
2
1

1 0 0 0 1 3 0
0 0 1 0 0 2 1
0 0 0 1 2 0 1

1 0 0 0 0 5 2– 0
0 1 0 0 0 2 1– 3
0 0 1 0 0 0 1 2
0 0 0 0 1 0 0 0

2x 3y z+ + 4=
x y 2z+ + 5= 


 x 4y– 4z– 1=

2x y 2z–+ 8= 

 4x 2y– z+ 4=

2x– 4y 2z+ + 10=
5x y– 4z+ 2= 






x 4y– 4z– 1=
2x 8y 12z–+ 8=
x– 12y 2z+ + 1= 




 2x 3y z– 2w+ + 4=

x y– 2z w–+ 3=
2y z 2w–+ 1=

6x 3y– 6z+ 15= 





 x– w y z+ + + 3=

6x 4z 2y– 3w+ + 4=
5y 3x– 6w– z– 1–=

20x– 7w– 10z– 8y+ 18–= 







2x 3y z+ + a=
x y 2z+ + b= 


 x 4y– 4z– a=

2x y 2z–+ b= 



x 4y– 4z– a=
2x 8y 12z–+ b=
x– 12y 2z+ + c= 




 4x 2y– z+ a=

2x– 4y 2z+ + b=
5x y– 4z+ c= 
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Exercises 17-19. Use the Spanning Theorem to determine if the system of equations has a solu-
tion for all values of a, b, c, and d.

20. Let S is a homogeneous system of equations. Prove that the last column of 
contains only zeros.

21. Prove that if , then the system of equations:

cannot have a solution for all values of .

22. Show that if  and  are solutions of the system: ,

then,  is also a solution for any given . 

Suggestion: Substitute the above expressions for x and y into the given system.

Exercises 23-26. Determine the solution set of the given underdetermined (“wide”) homogeneous
system of equations.

Exercises 27-28. Determine if the given overdetermined (“tall”) homogeneous system of equa-
tions has a unique solution.

17.  18.  19.  

23.  24.  

25.  26.  

27.  
28.  

2x y– a=
z 3w– b=
2x 2z+ c=
y 2z+ d= 






 4x 2y– z+ a=

2x– 4y 2z+ + b=
5x y– 4z+ c=
2x y z+ + d= 








4x 2y– z+ a=
2x– 4y 2z+ + b= 




rref aug S  

m n
a11x1 a12x2 a1nxn+ + b1=

a21x1 a22x2 a2nxn+ + b2=

am1x1 am2x2 amnxn+ + bm= 







...
. . .. . .. . .

b1 b2  bm  

x x0 y y0= = x x1 y y1= =
ax by+ c=
dx ey+ f= 




x x0 k x1 x0– + y y0 k y1 y0– += = k 

2x 3y z–+ 0=
4x 6y 2z+ + 0= 


 2x 3y z–+ 0=

4x 3y 2z–+ 0= 



2x 3y z– 4w+ + 0=
3x– 5y– 2z 3w–+ 0=
x– 3y– 2z 7w+ + 0= 




 2x 3y 2z– 4w+ + 0=

3x– 5y– 2z 3w–+ 0=
x– 3y– 2z 7w+ + 0= 






2x 3y 4z–+ 0=
3x 2y z+ + 0=
x 4y 9z–+ 0=
4x– y– 6z– 0= 






 2x 3y 4z 6w+ + + 0=

x 3y 5z 2w+ + + 0=
2x y 6z 7w+ + + 0=
5x 3y 2z w+ + + 0=

2x 4y 6z 2w+ + + 0=
3x y 4z w+ + + 0= 
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Exercises 29-30. Determine if the given square homogeneous system of equations has a unique
solution.

Exercises 31-33. For what values of a  will the given homogeneous system of equations  have a
unique solution?

Exercises 34-36. For what values of a and b  will the given homogeneous system of equations
have a unique solution?

37. For what values of a, b, c, and d will the homogeneous system of equations  

have a unique solution:

38. Show that if  is a solution of a given two by two homogeneous system of equations,
then   is also a solution for any . 

39. Show that if  and  are solutions of a given two by two homogeneous system
of equations, then  is also a solution.

40. Let M be the solution set of  and let T be the solution set of the corre-

sponding homogeneous system . Show that: 

(a) If  and , then .

(b) If  and , then 

29.  30.  

31. 
32. 33. 

34. 35. 
36. 

5x 3y 4z– 5w+ + 0=
x– y– 2z 9w–+ 0=

3x 3y– 2z w–+ 0=
11x y 2z– 9w–+ 0= 






 2x 5y z 4w+ + + 0=

3x– 2y– 4z 6w+ + 0=
4x y 2z– 6w+ + 0=

9x 3y– 2z– 0w+ 0= 







x ay+ 0=
ax y+ 0= 


 x y z+ + 0=

x 2y z–+ 0=
x– y az+ + 0= 




 x y z+ + 0=

x ay z–+ 0=
x– y az+ + 0= 






x ay+ 0=
2x by+ 0= 


 x ay+ 0=

bx y+ 0= 

 x y z+ + 0=

x ay z–+ 0=
x– y bz+ + 0= 






ax by+ 0=
cx dy+ 0= 




x0 y0 

kx0 ky0  k 

x0 y0  x1 y1 

x0 x1+ y0 y1+ 

a11x a12y+ b1=

a21x a22y+ b2= 



S:

a11x a12y+ 0=

a21x a22y+ 0= 



H:

x0 y0  M x1 y1  M x0 x1– y0 y1–  T

x0 y0  M x1 y1  T x0 x1+ y0 y1+  M
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41. Let M be the solution set of  and let T be the solution set of the corre-

sponding homogeneous system . Show that for any ,

.

42. The system of equations associated with the augmented matrix  is consistent, 

independent of the values of the entries a through f.

43. The system of equations associated with the augmented matrix  is consistent, 

independent of the values of the entries a through f.

44. The system of equations associated with the augmented matrix  is consistent if 

and only if .

45. If a homogeneous system of equations has a nontrivial solution, then it has infinitely many
solutions.

46. If the homogeneous system  has only the trivial solution, then the system 

 has a unique solution for all .

47. Any system S of  linear equations in n unknowns with  has nontrivial solutions.

48. A system of n linear equations in m unknowns S is consistent if and only if  has 
m leading ones.

PROVE OR GIVE A COUNTEREXAMPLE

a11x a12y+ b1=

a21x a22y+ b2= 



S:

a11x a12y+ 0=

a21x a22y+ 0= 



H: x0 y0  M

M x0 x1+ y0 y1+  x1 y1  T =

a b c
d e f

0
a

a b c
d e f

1
0

1 6
0 d

3
0

d 0=

a11x a12y+ 0=

a21x a22y+ 0= 



a11x a12y+ b1=

a21x a22y+ b2= 



b1 b2

m n m

rref coef S  
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CHAPTER SUMMARY

N-TUPLE An (ordered) n-tuple is an expression of the form
, where each  is a real number, for .

 SOLUTION SET OF A
SYSTEM OF EQUATIONS

An n-tuple  is a solution of the system, S, of m
equations in n unknowns 

if each of the m equations is satisfied when  is substituted for
, for .

The solution set of  S  is the set of all solutions of  S .

   CONSISTENT AND
INCONSISTENT SYS-

TEMS OF EQUATIONS

A system of equations is said to be consistent if it has non-
empty solution set. A system of equations that has no solution
is said to be inconsistent.

   EQUIVALENT SYSTEMS
OF EQUATIONS

Two systems of equations are said to be equivalent if they have
equal solution sets.

OVERDETERMINED,
UNDERDETERMINED,

AND SQUARE SYSTEMS
OF EQUATIONS

A system of m equations in n unknowns is said to be:
Overdetermined  if  (more equations than unknowns).
Underdetermined  if  (fewer equations than unknowns).
Square  if .

                ELEMENTARY
EQUATION OPERATIONS

The following three operations on a system of linear equations
are said to be elementary equation operations:

Interchange the order of any two equations in the system.
Multiply both sides of an equation by a nonzero number.
Add a multiple of one equation to another equation.

Elementary row operations 
do not alter the solution sets 
of  systems of equations. 

Performing any number of elementary equation operations on a
system of linear equations will result in an equivalent system of
equations (same solution set).

c1 c2  cn    ci 1 i n 

c1 c2  cn   

a11x1 a12x2 a1nxn+ + b1=

a21x1 a22x2 a2nxn+ + b2=

am1x1 am2x2 amnxn+ + bm= 







...
. . .. . .. . .

S:

ci

xi 1 i n 

n m
n m

n m=
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MATRICES Matrices are arrays of numbers arranged in rows and columns,
such as the matrix A below:

Since A has 3 rows and 4 columns, it is said to be a three-by-
four matrix. When the number of rows of a matrix equals the
number of columns, the matrix is said to be a square matrix.

      ELEMENTARY ROW
OPERATIONS

The following three operations on any given matrix are said to
be elementary row operations:

Interchange the order of any two rows in the matrix.
Multiply each element in a row of the matrix by a nonzero num-
ber.
Add a multiple of one row of the matrix to another row of the
matrix.

EQUIVALENT MATRICES Two matrices are equivalent if one can be derived from the other
by means of a sequence of elementary row operations.

AUGMENTED MATRIX The augmented matrix of a system of equations S is that matrix
aug(S) composed of the coefficients of the equations in, along
with the constants to the right of the equations in S. For example:

Equivalent systems of equa-
tions corresponding to equiv-
alent augmented matrices.

Two systems of equations,  and , are equivalent if and
only if their corresponding augmented matrices,  and

, are equivalent.

ROW-REDUCED-ECHELON
FORM OF A MATRIX

All rows consisting entirely of zeros are at the bottom of the
matrix. All of the other rows contain a leading-1 (with zeros in
all entries above or below it), and those leading-ones “move” to
the right, as you “move” down the matrix.

Gauss-Jordan Elimination
Method.

The Gauss-Jordan Elimination Method of page 10 can be
used to obtain the row-reduced-echelon form  of a
given matrix A. 

A
a11 a12 a13 a14

a21 a22 a23 a24

a31 a32 a33 a34

  also: A3 4 aij  or A aij = = =

2x y z–+ 2–=
x 3y 2z+ + 9=

x– y– 2z+ 1= 





            
2 1 1–
1 3 2
1– 1– 2

2–
9
1

aug(S)S:

S1 S2

aug S1 

aug S2 

rref A 
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COEFFICIENT MATRIX The coefficient matrix of a system of equations S is that matrix
coef (S)  composed of the coefficients of  S. For example:

Spanning Theorem The system of equations:

has a solution for all values of  if and only if
 does not contain a row consisting entirely of

zeros.

HOMOGENEOUS SYSTEM OF
EQUATIONS

A system of equations of the form:

with zeros to the right of the equal sign, is said to be homoge-
neous.

TRIVIAL SOLUTION  is a solution of the above homoge-
neous system of equation. It is said to be the trivial solution of
the system.

Fundamental Theorem of
Homogeneous Systems

Any homogeneous system S of m linear equations in n
unknowns with  has nontrivial solutions.

You can use  to
solve a homogeneous system

of equations S

Let S be a homogeneous system of equations. The only differ-
ence between  and  is that the for-
mer contains an additional column of zeros. Being aware of
this, you might as well focus on  to derive the
solution set of S.

Linear Independence
Theorem

A homogeneous system S of m linear equations in n unknowns
has only the trivial solution if and only if  has n
leading ones.

2x y z–+ 2–=
x 3y 2z+ + 9=

x– y– 2z+ 1= 





            
2 1 1–
1 3 2
1– 1– 2

forget about the constants on the right of the equal signs

S:
coef (S)

a11x1 a12x2 a1nxn+ + b1=

a21x1 a22x2 a2nxn+ + b2=

am1x1 am2x2 amnxn+ + bm= 







...
. . .. . .. . .

S:

b1 b2  bm  

rref coef S  

a11x1 + a12x2 +  + a1nxn = 0
a21x1 + a22x2 +  + a2nxn = 0

am1x1 + am2x2 +  + amnxn = 0 







..
...

...
...

S:

x1 0 x2 0  xn  0= = =

n m

rref coef S  
rref aug S   rref coef S  

rref coef S  

rref coef S  
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 2

CHAPTER 2 
VECTOR SPACES

We begin this chapter with a geometrical consideration of vectors as
directed line segments in the plane and in three dimensional space, and
then extend the vector concept to higher dimensional Euclidean spaces.

 Abstraction is the nature of mathematics, and we let the “essence” of
Euclidean vector spaces guide us, in Section 2, to the definition of an
abstract vector space. In Section 3 we begin to uncover some of the
beautiful (and very usefull) theory of abstract vector spaces, an excava-
tion that will keep us well-occupied for the remainder of the text. Sub-
sets of vector spaces which are themselves vector spaces are considered
in Section 4. In Section 5, we return to the two and three dimensional
Euclidean spaces of the first section and derive a vector representation
for lines and planes in those spaces.

We begin by considering vectors in the plane, such as those in Figure
2.1, which are depicted as directed line segments (“arrows”). In that
geometrical setting, the arrow is pointing in the direction of the vector,
with the length of the arrow representing its magnitude.

Figure 2.1
Vectors will be denoted by boldface lowercase letters. The vector

 in Figure 2.1 is said to have initial point A, and terminal
point B. One defines two vectors to be equal if they have the same mag-
nitude and direction. If you pick up the vector v in Figure 2.1(a) and
move it in a parallel fashion as we did in Figure 2.1(b) to the vector with
initial point C and terminal point D, then you will still have the same
vector: 

In particular, the vector v in Figure 2.2 with initial point 
and terminal point  can be moved in a parallel fashion so
that its initial point coincides with the origin. When so placed, the vector
is said to be in standard position.

§1. VECTORS IN THE PLANE AND BEYOND

v AB=.
A

B

(a)

v AB=

.
A

B

.
C

D

(b)

v CD=

v AB=

v AB CD= =
A x0 y0 =

B x1 y1 =
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36 Figure 2.2

SOLUTION: The figure below tells the whole story:

Figure 2.3
A standard position vector in the plane is completely determined by

the coordinates of its terminal point. This observation enables us to
identify the vector in Figure 2.3 as an ordered pair of numbers or 2-
tuple; namely: 

In a similar fashion we may refer to the vectors v and w in Figure 2.4(a)
as   and .

Figure 2.4

EXAMPLE 2.1 Sketch the vector with initial point  and
terminal point . Position that vector in
standard position, and identify its terminal point.

A x0 y0 =
.

B x1 y1 =

x1 x0– y1 y0– 

v

v
x

y

.ve
cto

r i
n st

an
dar

d posi
tio

n

2 3– 
4 1– 

Pick up the top vector and
move it 2 units down and 3
units to the right to the right
so that its initial point

. In the process, the
original terminal point

 is also moved 2
units to the right at 3 units
down, coming to rest at

.

2 3– 

4 1– 

6 4– 

. y

     

2 3– 

4 1– 

6 4– 

   

4 2– –

   

1– 3–

v

v

6

4

4

6 terminal point

x

Note that the two-tuple in
the expression 
appears in bold-face, so as
to distinguish it from the
form  which rep-
resents  a point in the  plane.  

v 6 4– =

6 4– 

v 6 4– =

v 2 3 = w 3 2–– =

-3    -2    -1 1     2       3
x

y

x

 y
1

3

4

(a)                                                (b)

v

w

u

2 3 

3 2–– 

z

1 3 4  
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Likewise, the vector u in the 3 dimensional space of Figure 2.4(b) can
be described by the bold-faced 3-tuple 

The beauty of all of this is that while we cannot geometrically repre-
sent a vector in 4 dimensional space, we can certainly consider 4-
tuples, and beyond. With this in mind, let us agree to denote the set of
all (ordered) n-tuples  by the symbol  :

The real numbers  in the n-tuple  are said to be the
components of the n-tuple, and we define two n-tuples to be equal if
their corresponding components are identical:

Vectors evolved from the need to adequately represent quantities
which are characterized by both magnitude and direction. In a way,
these quantities themselves tell us how we should go about defining cer-
tain algebraic operations on vectors. Suppose, for example, that the vec-
tor  of Figure 2.5(a) represents a force. Doubling the
magnitude of that force without changing its direction would result in
the vector force labeled 2v in that figure, as that vector is in the same
direction as , with length twice that of v.

Figure 2.5

Similarly, if a force that is one-third that of  is applied in the
opposite direction of v, then the vector representing that new force is
the vector  in Figure 2.5(b); for that vector is in the opposite direc-
tion of , with length one-third that of v.

This stretching or shrinking of a vector, in one direction or the other,
is an important operation which we now formalize and extend to the set
of n-tuple-vectors for any positive integer n:

DEFINITION 2.1
  n-TUPLE EQUALITY

 if 
, for .

SCALAR PRODUCT AND SUMS OF VECTORS

u 1 3 4  =

a1 a2  an    n

 n a1 a2  an    ai  =

ai a1 a2  an   

a1 a2  an    b1 b2  bn   =
ai bi= 1 i n 

Length of v 3 2 :=

32 22+ 13=

Length of 1 2
3
---–– 

  :

1– 2 2
3
---– 

 2
+ 1 4

9
---+=

13
9
------ 13

3
----------= =

v 3 2 =

v 3 2 =

v 3 2 =

2v 6 4 = v 3 2 =

1
3
---– v 1– 2

3
---– =

                                                               (a)                                            (b)

v 3 2 =

1
3
---v–

v 3 2 =
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For example:  

If two people pull on an object positioned at the origin with forces v
and w, then the observed combined effect is the same as that of one
individual pulling with force z, where z is the vector coinciding with
the diagonal in the parallelogram formed by the vectors v and w [Fig-
ure 2.6(a)].

Figure 2.6
The above vector z is said to be the sum of the vectors v and w, and is

denoted by . Figure 2.6(b) reveals that: 

Generalizing, we have:

DEFINITION 2.2
SCALAR

PRODUCT

To any vector  in ,
and any , we let:

The vector  is said to be a scalar multiple
of v.

VECTOR ADDITION

v v1 v2  vn   = n

r 

rv rv1 rv2  rvn   =
rv

3 1 5  3 15 =
5 1 0 4–  – 5 0 20 – =

2 1 3 4 5–   2 3 2 4 2 5 2–  =

        

                             (a)                                                                    (b)

v
w

z

y

x

v
z

y

x

v1 v2 
w2

v2

w1

v1 w1+ v2 w2+ 

v1

w

While identical in shape,
the “+” in   differs in
spirit from that in  :
the latter represents the
familiar sum of two num-
bers, as in , while the
former represents the
newly defined sum of two
n-tuples, as in:

v w+
vi wi+

3 7+

3 2–  7 11 +

DEFINITION 2.3
VECTOR SUM

The sum of the vectors 
and  in , is denoted
by    and   is given by:

v w+
z v w+ v1 v2  w1 w2 + v1 w1+ v2 w2+ = = =

v v1 v2  vn   =
w w1 w2  wn   = n

v w+
v w+ v1 w1+ v2 w2  vn wn+ + =
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SOLUTION: 

The set of n-tuples , together with the above defined operations of
vector addition:

and scalar multiplication:

is called the Euclidean n-space. 

Every Euclidean space contains a most distinguished vector: 

For example  is the zero vector in , and
 is the zero vector in .

Every real number r has an additive inverse , namely that number
which when added to r yields 0. Similarly: 

Note that for every :

 

EXAMPLE 2.2 For ,
and , determine the vector .

v 2 3 1 5  –  w 1 5 0 2–   = =
r 2= rv w+

Answer: 15 1 4–  

CHECK YOUR UNDERSTANDING 2.1

For , determine the
vector 

EUCLIDEAN VECTOR SPACES

DEFINITION 2.4
ZERO VECTOR

The zero vector in , denoted by 0, is that
vector with each component the number 0:

No direction is associated with the zero vector. A zero force, for
example, is no force at all, and its “direction” would be a moot point.

DEFINITION 2.5
ADDITIVE INVERSE 

OF A VECTOR

For given  the

additive inverse of v   is denoted by  and is
given by:

rv w+ 2 2 3 1 5  –  1 5 0 2–   +=
4– 6 2 10    1 5 0 2–   +=
4– 1 6 5 2 0 10 2–+++ =
3– 11 2 8   =

Definition 2.2:

Definition 2.3:

v 3 2 2–   w 3 1 0 –  r 2 s 3–= = = =
rv sw+

 n

v1 v2  vn    w1 w2  wn   + v1 w1+ v2 w2  vn wn+ + =

r v1 v2  vn    rv1 rv2  rvn   =

 n

0 0 0  0   =

0 0 0 0  = 3

0 0 0 0 0   = 4

r–

v v1 v2  vn    n=

v–

v– v– 1 v– 2  vn–   =

v v1 v2  vn    n=

v v– + v1 v2  vn    v– 1 v– 2  vn–   + 0= =
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We are now in a position to list the properties of Euclidean spaces
which will morph into the definition of an abstract vector space in the
next section:

PROOF: We establish (ii) in , (v) in , and (vii) in , and
invite you to verify the rest on your own.

(ii):  (in ): 

 If , then:

THEOREM 2.1 Let u, v, and w be vectors in the Euclidean n-
space , and let r and s be scalars (real num-
bers). Then:

n

(i)                        (Commutative Property)

(ii)    (Vector Associative Property)

(iii)                                    (Zero Property)

(iv)                               (Inverse Property)

(v)    (Vector Distributive Property)

(vi)     (Scalar Distributive Property)

(vii)      (Scalar Associative Property)

(viii)                        (Identity Property)

{
{
{

Addition:

Scalar and Addition:

Scalar:

u v+ v u+=

u v+  w+ u v w+ +=

v 0+ v=

v v– + 0=

r u v+  ru rv+=

r s+ u ru su+=

r su  rs u=

1u u=

2 3 3

To emphasize the important role played by definitions, the symbol  instead of  will tem-
porarily be used to indicate a step in the proof which follows directly from a definition. In addi-
tion, the abbreviation “PofR” will be used to denote that a step follows directly from a Property
of the Real numbers, all of which will be assumed to hold; for example, the additive associative
property of the real numbers: .

 =

a b+  c+ a b c+ +=

This associative property
eliminates the need for
including parenthesis when
summing more than two
vectors. In particular,

is perfectly well defined.
u v w+ +

u v+  w+ u v w+ += 2

u u1 u2  v v1 v2   and w w1 w2 = = =

 Definition 2.3:

 Definition 2.3:

Definition 2.3:

POFR:

u v+  w+ u1 u2  v1 v2 +  w1 w2 +

u1 v1+ u2 v2+  w1 w2 +

u1 v1+  w1+ u2 v2+  w2+ 

u1 v 1+ w1 + u2 v2+ w2 + =

u1 u2  v1 v2  w1 w2 + +

u v w+ +
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(v):  (in ):

If , then:

(vii):  (in ): 

In this, and any other abstract math course:
 DEFINITIONS RULE! 

Just look at the above proof. It contains but one “logical step,”
the step labeled PofR; all other steps hinge on DEFINITIONS. 

r u v+  ru rv+= 3

u u1 u2 u3   and v v1 v2 v3  = =

r u v+  r u1 u2 u3   v1 v2 v3  + 

r u1 v1+ u2 v2 u3 v3++ 

r u1 v1+  r u2 v2+  r u3 v3+  

ru1 rv1+ ru2 rv2+ ru3 rv3+  =

ru1 ru2 ru3  rv1 rv2 rv3 +

r u1 u2 u3   r v1 v2 v3  +

ru rv+

Definition 2.3:

Definition 2.2:

Defintion 2.3:

Definition 2.2:

PofR:

r su  rs u= Rn

r su  r s u1 u2  un    

r su1 su2  sun   

r su1  r su2   r sun   

rs u1 rs u2  rs un   =

rs  u1 u2  un   

rs u

Definition 2.2:

Defintion 2.2:

Definition 2.2:

PofR:

Answer: See page B-3.

CHECK YOUR UNDERSTANDING 2.2

Establish Theorem 2.1(iv), , in  and in .v v– + 0= 3 n
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Exercises 1-6. Sketch the vector with given initial point A and terminal point B. Sketch the same
vector in standard position in the plane, identifying its terminal point.

Exercises 7-10. Express, as a 3-tuple, the vector with given initial point A and terminal point B. 

Exercises 11-14. Perform the indicated vector operations.

Exercises 15-18. Find the vector v such that:

19. For , , and , find scalars r and s such that:

20. Find scalars r, s, and t, such that: 

21. Find scalars r, s, and t, such that: 

22. Show that there do not exist scalars r, s, and t, such that 

23. Find the vector  of length 5 that has the same direction as the vector with initial
point  and terminal point .

24. Find the vector  of length 5 that is in the opposite direction of the vector with ini-
tial point  and terminal point . 

25. On page 37, we established Theorem 2.1(ii) for . Prove that theorem for  and for .

EXERCISES

1. 2. 3.

4. 5. 6.

7. 8.

9. 10.

11. 12.

13. 14.

15. 16.

17. 18.

(a) (b) (c) 

A 2– 1  B 0 1 = = A 3 3  B 0 1– = = A 1 1  B 2– 2 = =

A 1 0  B 0 1– = = A 2– 1–  B 1 1– = = A 2 2  B 1 2– = =

A 1 2 3   B 3 2 1  = = A 4 5 0 –  B 2 5 1– = =

A 0 1 9–   B 9 0 2 – = = A 3 5 3– –  B 3 5 3– = =

5 3 2–  0 1  2 4–– + + 2 5  1 3  2 3– – + +

2 3 1 5–   – 1 2 0 0 – – + 1– 2 3 4   – – 3 1 2 2–   +

v 2 4– + 4 2– = v 1 3 5  + 2 0 4–  =

4 2  v– + 3 5  1 2– – += 4 3 1–   v– + 2 1 3 2–  =

u 1 3 = v 2 4 = w 6 2– =

ru sv+ w= r– u sw+ v= rv sw– + u=

r 1 3 0   s 2 1 6   t 1 4 6  + + 7 5 6  =

r– 1 3 0   s 2 1 6   t 1 4 6  – + + 7 5 6  =

r 2 3 5   s 3 2 5   t 1 2 3  + + 1 2 4  =

a b  2
1 3  3 1 

a b  2
1 3  3 1 

2 3 n
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26. On page 37, we established Theorem 2.1(v) for . Prove that theorem for  and for  .

27. Prove Theorem 2.1(i) for:       (a)         (b)        (c) 

28. Prove Theorem 2.1(iii) for:      (a)         (b)        (c) 

29. Prove Theorem 2.1(vi) for:      (a)         (b)       (c) 

30. Prove Theorem 2.1(viii) for:     (a)        (b)          (c) 

31. Prove that if v, w, and z, are vectors in  such that , then . 

32. For , if  then .

33. For , if   then .

34. For  and , if  then . 

35. For ,  if and only if  or .

PROVE OR GIVE A COUNTEREXAMPLE

3 2 n

2 3 n

2 3 n

2 3 n

2 3 n

3 v w+ v z+= w z=

v n rv sv= r s=

v 0 n rv sv= r s=

v1 v2 n r 0 rv1 rv2= v1 v2=

v n rv 0= r 0= v 0=
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 2

One of the main objectives of abstract mathematics is to isolate and
analyze a particular structure of the real number system, so as to better
focus on its “essence.” The essence of the vector structure in  tabu-
lated in Theorem 2.1, page 36, leads us to the definition of an abstract
vector space:

While eight axioms are specifically listed in the above definition, two
more are lurking within the above so-called closure statements:

 

§2. ABSTRACT VECTOR SPACES

The elements of a vector
space V are called vec-
tors, and will be denoted
by bold-faced letters (like
v). Scalars will continue
to be denoted by non-
bold-faced letters . 
The binary operator need
not be represented with a
plus-sign—see Example
2.4, page 46.

DEFINITION 2.6
VECTOR SPACE

A (real) vector space is a nonempty set V
along with two operations, called vector addi-
tion and scalar multiplication. The binary
operation of addition assigns to any two ele-
ment u and v in V, another element  in V.
The operation of scalar multiplication assigns
to any real number r (also called a scalar), and
any element v in V, another element  in V.
These operations must satisfy the following
eight axioms for all , and all

:

n

u v+

rv

u v w V 
r s 

(i)                      (Commutative Axiom)

(ii)  (Vector Associative Axiom)

(iii) There is a vector in V, denoted
by 0 such that    
for every vector v in V. (Zero Axiom)

(iv) For every vector v in V, there
is a vector in V, denoted by 
such that . (Additive Inverse Axiom)

(v) (Vector Distributive Axiom)

(vi) (Scalar Distributive Axiom)

(vii) (Scalar Associative Axiom)

(viii) (Identity Axiom)

{
{
{

Addition:

Scalar and Addition:

Scalar:

u v+ v u+=

u v+  w+ u v w+ +=

v 0+ v=

v–
v v– + 0=

r u v+  ru  rv +=

r s+ v rv  sv +=

r sv  rs v=

1v v=

A set is said to be closed,
with respect to an operation,
if elements of that set sub-
jected to that operation
remain in the set. 

V is closed under addition: For every  in V, 

V is closed under scalar 
multiplication: For every  and , 

v and w v w V+

v V r  rv V
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It is important to note that while the two plus signs in
 are identical in appearance, they do not represent a

common operator:
The “+” in   denotes the sum of two real numbers, as
in , while the “+” in  denotes the sum
of two vectors, as in . 

By the same token, the two “products” in the expression  also denote
distinct operators:

The  in  denotes the product of two real numbers,
resulting in another number, as in , while the scalar
product  represents a vector. 

We already have infinitely many vector spaces at our disposal, namely
the Euclidean n-spaces. We now turn our attention to several others.

SOLUTION: We content ourselves with verifying Axiom (iii) (the zero
axiom), and Axiom (iv) (the additive inverse axiom).

 Axiom (iii): Let . Then, for any   we have:

Axiom (iv): For any given , we show there exists a vector ,

namely , such that :

r s+ v rv  sv +=

r s+ v
2 5+ 7= rv  sv +

2v 5v+ 7v=

We also point out that, by
convention, no meaning is
attributed to an expression
of the form , wherein a
vector v appears to the left
of a scalar r.

vr

MATRIX SPACES

EXAMPLE 2.3 The set of two-by-two matrices:

with addition and scalar multiplication given by:

is a vector space.

rs v

rs rs v
2 5 10=

10v

M2 2
a b
c d

a b c d R  
 
 
 

=

a b
c d

a b
c d

+ a a+  b b+
c c+ d d+

=

r a b
c d

ra rb
rc rd

=

We are again using   to
indicate that equality fol-
lows from a definition,
and  “PofR” for “Property
of the Real numbers.” 



0 0 0
0 0

= v a b
c d

=

v 0+ a b
c d

0 0
0 0

+ a 0+ b 0+
c 0+ d 0+

  a b
c d

v=

PofR

v a b
c d

= v–

v– a– b–
c– d–

= v v– + 0=
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Generalizing Example 2.3 to accommodate matrices of all dimen-
sions, we have:

PROOF: We content ourselves with verifying Axioms (i) and (vi).
Axiom (i): For every  and :

Axiom (vi): For scalars r and s, and :

THEOREM 2.2
MATRIX SPACE

Let  denote the set of all  matrices.

For  and  in , let: 

(The  entry of the sum matrix is the sum of the  
entry in matrix A with the  entry in the matrix B.)

For  and , let:

(The  entry in the matrix  is r
times the  entry in the matrix A.)

The set  with the above operations is a
vector space.

v v– + a b
c d

a– b–
c– d–

+ a a–  b b– 
c c–  d d– 

  0 0
0 0

0=

PofR

Mm n m n

A aij = B bij = Mm n

A B+ aij  bij + aij bij+ = =

ijth ijth

ijth

r  A aij  Mm n=

rA r aij  raij = =
ijth rA

ijth

Mm n

A aij = B bij =

A B+ aij  bij + aij bij+   bij aij+  bij  aij + B A+ =

PofR

A aij =

r s+ A r s+  aij  r s+ aij   raij saij+ =

PofR

raij  saij +

r aij  s aij + rA sA+ 

Answer: See page B-3.

CHECK YOUR UNDERSTANDING 2.3
Verify the associative axiom  for the vector space

 of Theorem 2.2.
r sv  rs v=

Mm n
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A function of the form , with
 is said to be a polynomial function of degree n. For any given

integer ,  will represent the set of polynomials of degree less
than or equal to n

We note that the polynomial:

can be written the other way around:

and can also be expressed in Sigma-notation form:

 

PROOF: We establish the two distributive axioms, and relegate the
remaining six to the exercises.

Axiom (v) : 

POLYNOMIAL SPACES

In particular:
P0 x  a0 a0   = =

p x  anxn an 1– xn 1–  a0+ + +=
an 0

n 0 Pn

anxn an 1– xn 1–  a+ 1x a0+ + +

a0 a1x a2x2  anxn+ + + +

The Greek letter 
(Sigma) is used to denote
a sum.



THEOREM 2.3
POLYNOMIAL 

SPACES

The set of polynomials  of degree less than or
equal to n, with operations:

is a vector space.

aixi

i 0=

n

 a0 a1x a2x2  anxn+ + + +=

Pn

aix
i

i 0=

n

 bix
i

i 0=

n

+ ai bi+ xi

i 0=

n

=

r aix
i

i 0=

n


 
 
 
 
 

raix
i

i 0=

n

=

r u v+  ru  rv +=

r aix
i

i 0=

n

 bix
i

i 0=

n

+
 
 
 
 

r ai bi+ xi

i 0=

n

 r ai bi+ 

i 0=

n

  xi

rai rbi+ xi

i 0=

n

 raix
i

i 0=

n

 rbix
i

i 0=

n

+=

r aix
i

i 0=

n


 
 
 
 

r bix
i

i 0=

n


 
 
 
 

+

PofR
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Axiom (vi) : 

You are probably accustomed of thinking that a function is some sort
of dynamic creature that “takes numbers to numbers.” At this point,
however, you want to think of a function as being an object, in the same
way that you see the number 5 as an object. Indeed, the set of all such
functions  from a set X (the domain of the function) to the
set  of real numbers, can be turned into a vector space: 

r s+ v rv  sv +=

r s+  aix
i

i 0=

n

 r s+ aix
i

i 0=

n

 raix
i saix

i+ 

i 0=

n

=

raix
i

i 0=

n

 saix
i

i 0=

n

+ r aix
i

i 0=

n


 
 
 
 

s aix
i

i 0=

n


 
 
 
 

+ 

PofR

Answer: See page B-3.

CHECK YOUR UNDERSTANDING 2.4
Referring to Theorem 2.3, verify the commutative axiom:

FUNCTION SPACES

aix
i

i 0=

n

 bix
i

i 0=

n

+ bix
i

i 0=

n

 aix
i

i 0=

n

+=

All “objects” in mathemat-
ics are sets, and functions are
no exceptions. The function
f given by , for
example, is that subset of the
plane, typically called the
graph of f:                

Pictorially: 

f x  x2=

f x x2  x R  =
THEOREM 2.4
FUNCTION SPACE

Let  denote the set of all real-valued
functions defined on a non-empty set X:

For f and g in , and , let , and
 be given by: 

With respect to these operations,  is a
vector space.

A function  is defined to be equal to a function
, if  for every . 

f : X 


F X 

F X  f  f : X R =

F X  r R f g+
rf

f g+  x  f x  g x +=
and   rf  x  rf x =

(*)

F X 

f : X 
g : X  f x  g x = x X
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PROOF: We verifying Axioms (i), (iii), (iv) and (v):

Axiom (i) (Commutative Axiom). For   and  :  

Since  for every , .

 Axiom (iii) (Zero Axiom). Let  be the function given by
 for every . For any  and :

Since  for every , .

Axiom (iv) (Additive Inverse Axiom). For given  let  be

the function given by . Then, for any :

Since   for every , .

Axiom (v) [Distributive Axiom (vector)]: For any ,
 and :

Since  for every , 
. 

As you will see in the next two examples, addition and scalar multi-
plication in a vector space can be somewhat “counter-intuitive.” More-
over, both the zero vector 0 and the additive inverse vector , may
appear somewhat strange in a vector space.

The fact that  is
closed under addition and
scalar multiplication is
self-evident.

F X  f g F X  x X

f g+  x  f x  g x + g x  f x + g f+  x =
PofR

f g+  x  g f+  x = x X f g+ g f+=

As you can see, we
elected to use the letter Z,
rather than the symbol 0,
for our zero vector. It’s
just that an expression
like  would strongly
suggest that a multiplica-
tion by zero  is being per-
formed, which is not the
case.

0 x 

Z : X 
Z x  0= x X f F x X

f Z+  x  f x  Z x + f x  0+  f x  f x =

PofR

f Z+  x  f x = x X f Z+ f=

f F X  f–
f–  x  f x –= x X

f f– +  x  f x  f x – + 0 Z x =
PofR

f f– +  x  Z x = x X f f– + Z=

f g F X 
x X r R

r f g+   x  r f g+  x   r f x  g x +   rf x  rg x +=
rf  x  rg  x +

PofR

r f g+   x  rf  x  rg  x += x X
r f g+  rf rg+=

Answer: See page B-3.

CHECK YOUR UNDERSTANDING 2.5

Verify the distributive axiom  for the func-
tion space of Theorem 2.4.

ADDITIONAL EXAMPLES

r s+ v rv  sv +=

v–
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SOLUTION:    is certainly closed under both of the above opera-
tions. Moreover: 

Axiom (i). For every : 

Axiom (ii). For every : 

Axiom (iii). For every : , so 1 is the zero vector. 

Axiom (iv). For every : , so  is the inverse of a.  

Axiom (v). For every , and every ,
.

You are invited to establish the remaining three axioms of Definition
2.6 in the exercises, thereby establishing the fact that , with given
operations, is a vector space.

SOLUTION: V is certainly closed under both of the above operations.
We content ourselves by establishing the zero and inverse axioms, and
leave it for you to verify the remaining six axioms in the exercises.
Zero Axiom: Does there exist a vector 0 such that  for
every ? Don’t be to quick to say “no,” basing you answer on
the observation that 

But you have no right to assume that if a zero vector exists, then it
must be the one you would like it to be! Putting partiality aside, let’s
see if we can find a vector   such that ,
for every : 

EXAMPLE 2.4 Show that the set  of positive
real numbers with a binary operator of multi-
plication: ab and scalar operation:  is a vec-
tor space.

EXAMPLE 2.5 Show that the set 
under “addition”:

and scalar multiplication

is a vector space:

+ x x 0 =

ar

+

a b + ab ba=

a b c +  a bc  ab c=

a + a 1 a=

a + a 1
a
--- 1= 1

a
---

a b + r 
ab r arbr=

+

V x y  x y  =

x y  x y + x x 1–+ y y 1+ + =

r x y  rx r– 1+ ry r 1–+ =

v 0+ v=
v V

x y  0 0 + x 0 1–+ y 0 1+ +  x 1– y 1+  x y = =

0 a b = x y  0+ x y =
x y  V
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That’s right, in this vector space, , for:

Additive Inverse Axiom: Now that we have a zero vector,
, we can ask if, for any given , there exists a

vector  such that . There does:

So, the additive inverse of  turns out to be , for:

SOLUTION: No, since V is not closed under scalar multiplication. But
we can’t just say this, for our claim has to be established. We have to
demonstrate that the scalar product involving some specific element
of V and some specific real number ends up being outside of V, and so
we shall: 

x y  0+ x y =
x y  a b + x y =

x a 1–+ y b 1+ +  x y =
x a 1–+ x a 1= =
y b 1+ + y b 1–= =





0 1 1– =
x y  1 1– + x 1 1–+ y 1–  1+ +  x y = =

0 1 1– = v x y =
v– a b = x y  a b + 1 1– =
x y  a b + 1 1– =

x a 1–+ y b 1+ +  1 1– =
x a 1–+ 1 a x– 2+= =
y b 1+ + 1– b y– 2–= =





Answer: Zero vector:

Inverse of :
1 2– 3  

x y z  
x– 2+ y– 4+ z– 6+  

CHECK YOUR UNDERSTANDING 2.6
Verify that Axioms (iii) and (iv) of Definition 2.6 are satisfied for the
set  with imposed addition:

and scalar multiplication:

x y  x– 2 y– 2–+ 
x y  x– 2+ y– 2– + x x– 2 1–+ y y– 2– 1+  1 1– = =

the zero vector

V x y z   x y z   =
x y z   x y z + x x 1–+ y y 2 z z 3–++ + =

r x y z   rx r– 1+ ry 2r– 2 rz 3z– 3+– =

x

y

V

EXAMPLE 2.6 Let V denote the upper-half plane: 

with standard addition and scalar multiplication:

Is V a vector space?

V x y  x y  y 0 =

x y  x y + x x+ y y+ =
r x y  rx ry =

5 2  V   but   7 5 2 – 35 14––  V=
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SOLUTION: X is certainly closed under both operations. We need not
challenge the first four axioms of Definition 2.6, as they involve only
the addition operator which coincides with that of Euclidean two-
space. The scalar operator, however, is a bit different from that of

, and we must therefore determine whether or not Axioms (v)
through (viii) are satisfied. What you may want to do is to quickly
check to see if they hold for some specific vectors and scalars:

Let’s Challenge Axiom (vi), ,
with , , and :

We need go no further, for the above shows that Axiom (vi) does not
hold, and can therefore conclude that under the given operations, X is
not a vector space. 

EXAMPLE 2.7 Let X be the set of two-tuples with operations:

Is X a vector space?

x y  x y + x x+ y y+ =
r x y  rx y =

2

r s+ v ru  sv +=
r 7= s 3= u 4 2– =
7 3+  4 2–  10 4 2–  40 2– = =

and  7 4 2–  3 4 2– + 28 2–  12 2– + 40 4–   Oops!= =

Answer: See page B-4.

CHECK YOUR UNDERSTANDING 2.7
THE TRIVIAL VECTOR SPACE:

Define addition and scalar multiplication on the set  and verify
that V is a vector space with respect to those operations. 

V 0 =
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Exercises 1-13. Verify that the set S, with given operations, fails to be a vector space.

1. , , and .

2. , , and .

3. , , and .

4. , , and .

5. , , and .

6. , , and .

7. , , and .

8. , , and 
.

9. , , and .

10. , , and .

11. ,  and 
.

12. ; , , ; and , .

13. , , and .

Exercises 14-16. Verify that the set V, with given operations, is a vector space.

14. , , and .

15. , , and 
.

16. , , 
.

EXERCISES

S = x y+ x y–= rx rx=

S x y  x y  = x y  x y + x x 0+ = r x y  rx ry =

S x y  x y  = x y  x y + xx yy = r x y  rx ry =

S x y  x y  = x y  x y + 0 0 = r x y  rx ry =

S x y  x y  = x y  x y + 2x 2x y y++ = r x y  rx ry =

S x y  x y  = x y  x y + x x y y++ = r x y  0 0 =

S x y  x y  = x y  x y + x y y x++ = r x y  rx ry =

S x y 0   x y  = x y 0   x y 0  + x x y y 0++ =
r x y 0   rx ry 0 =

S M2 2= a b
c d

a b
c d

+ a a+ 0
0 d d+

= r a b
c d

ra rb
rc rd

=

S M2 2= a b
c d

a b
c d

+ a c+ b d+
c a+ d b+

= r a b
c d

ra rb
rc rd

=

S ax2 bx c+ + = ax2 bx c+ +  ax2 bx c+ + + a a+ x2 b b+ x+=
r ax2 bx c+ +  ra x2 rb x rc + +=

S 0 1 = 0 0+ 0= 1 1+ 0= 0 1+ 1 0+ 1= = r0 0= r1 1=

S a  a 0 = a b+ a bln+ln= ra arln=

V 1 = 1 1+ 1= r1 1=

V x y 0   x y  = x y 0   x y 0  + x x y y 0++ =
r x y 0   rx ry 0 =

V x y  x y  = x y  x y + x x 2+ + y y+ =
r x y  rx 2r 2–+ ry =
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17. Complete the proof of Theorem 2.2.

18. Complete the proof of Theorem 2.3.

19. Complete the proof of Theorem 2.4.

20. Establish the remaining three axioms for the space of Example 2.4.

21. Establish the remaining six axioms for the space of Example 2.5.

22. A polynomial is an expression of the form  for which there exists an m such 

that   for . Show that, with respect to the following operations, the set   of all 
polynomials is a vector space: 

23. Let V be a vector space, and let . If , then .

24. Let V be a vector space, and let . If  and , then .

25. Let V be a vector space, and let . If  and , then .

26. Let V be a vector space, and let . If , then .

27. Let V be a vector space, and let . If  and , then .

PROVE OR GIVE A COUNTEREXAMPLE

p x  aixi

i 0=



=

ai 0= i m P

aixi

i 0=



 bixi

i 0=



+ ai bi+ xi

i 0=



=   and  r aixi

i 0=



 rai xi

i 0=



=

v V rv 0= r 0=

v V rv 0= v 0 r 0=

v V rv 0= r 0 v 0=

v V rv sv= r s=

v V rv sv= v 0 r s=
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 2

For the sake of convenience, we again list the vector space axioms:

For aesthetic reasons, a set of axioms should be independent, in that
no part of an axiom is a consequence of the rest. One should not, for
example, replace Axiom (iii) with: 

There is a vector in V, denoted by 0 such that
 and  for every vector v in V.

Reason: Axiom (i) already implies that the 0 of Axiom (iii) can be on
either side of the v. The same can be said about the vector  in Axiom (iv).
Bringing us to: 

 Our next theorem tells us that there is but one 0 vector in any vector
space, and that every vector v has a unique additive inverse . While
you might have taken these two facts for granted, neither is given to
you free of charge: 

§3. PROPERTIES OF VECTOR SPACES

(i)                      (Commutative Axiom)

(ii)  (Vector Associative Axiom)

(iii) There is a vector in V, denoted
by 0 such that    
for every vector v in V. (Zero Axiom)

(iv) For every vector v in V, there
is a vector in V, denoted by 
such that . (Additive Inverse Axiom)

(v) (Vector Distributive Axiom)

(vi) (Scalar Distributive Axiom)

(vii) (Scalar Associative Axiom)

(viii) (Identity Axiom)

{
{
{

Addition:

Scalar and Addition:

Scalar:

u v+ v u+=

u v+  w+ u v w+ +=

v 0+ v=

v–
v v– + 0=

r u v+  ru  rv +=

r s+ v rv  sv +=

r sv  rs v=

1v v=

THEOREM 2.5 Let V be a vector space.
(a) For every vector v in V:

(b) For every vector v in V, there exists a vector
 such that:

v 0+ v= 0 v+ v=

v–

v 0+ 0 v+ v= =

v–
v v– + v–  v+ v v+– 0= = =

v–
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PROOF:  

Let 0 and  be such that, for every vector v: 

Substituting   for v in (*), we have (i): . 

Substituting   for v in (**), we also have (ii): .

Then:

Let  and  be such that: 

Adding  to both sides of (*) we have:

The above proof illustrates the important fact that a mathematical the-
ory is based on a set of rules or axioms, on which sit logically derived
results, or theorems. Once established, a theorem can be used to prove
other theorems. At some point, the axioms and theorems kind of blend
into each other—they are just facts, with some of them being dictated
(the axioms), while others are established (the theorems).

THEOREM 2.6 Let V be any vector space, then:
(a) There is but one vector 0 which satisfies the

property that   for every v in V.
(b) For any given vector v in V, there is but one

vector  in V such that .

Strategy for (a): Assume that 0 and  are any
two zeros, and then go on to show .

v 0+ v=

v– v v– + 0=

0
0 0=

v 0+ v and v 0+ v= =

0 0=

Strategy for (b): Assume that a vector v has two additive
inverses,  and , and then go on to show that .

0

(*)  v 0+ v   and   (**) v 0+ v= =

0 0 0+ 0=

0 0 0+ 0=

0 0 0+ 0 0+ 0= = =

(i)                         (ii)

commutativity

v– v v– v=

v v– + 0 and v  v + v= =

v– v=

v– v

(*)  v v– + 0 and (**)  v  v + 0= =

v

v v v– + + v 0+=
v v+  v– + v=

0 v– + v=
v– v=

Axioms (ii) and (iii):

Axiom (i) and (**):

Theorem 2.5(a): 
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Two different zeros come into play in the following theorem: 
The real number 0 that is involved in the scalar prod-
uct at the left of the equality, and the vector 0 that
appears to the right of the equality.

PROOF: At times, as is the case here, a proof almost writes itself,
once an appropriate initial step is taken (in this case, to write 0 as

):

The end is now in sight: just add the additive inverse of the vector 
to both sides of the equation: 

In words, the above theorem tells us that:

The above CYU together with Theorem 2.7 tells us that if either
 or , then the scalar product . The converse also

hods:

Answer: See page B-4.

CHECK YOUR UNDERSTANDING 2.8
Show that in any vector space: 

THEOREM 2.7 For any vector v in a vector space V:

v z+ w z+=
v w=Then:

If:

0v 0=

0 0+

0v 0 0+ v 0v 0v+= =

PofR Axiom (ii) (Distributive Axiom)

0v

0v 0v 0v+=
0v– 0v+ 0v– 0v 0v+ +=

0 0v– 0v+  0v+=
0 0 0v+=
0 0v=

Axiom (iv) and (ii):

Axiom (iv):

Theorem 2.5:

Answer: See page B-4.

Multiplying any vector by the scalar 0 results in the vector 0.

CHECK YOUR UNDERSTANDING 2.9
Prove that in every vector space V,   for every .

THEOREM 2.8 In any vector space V:
If  then  or 

r0 0= r 

r 0= v 0= rv 0=

rv 0= r 0= v 0=
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PROOF: If , then surely the statement  or  holds,
and we are done. If , then:

Here is what the next theorem is saying:

PROOF: 

Answer: See page B-4.

CHECK YOUR UNDERSTANDING 2.10
Establish the following Cancellation Properties:

(a) If  and , then .

(b) If  and , then .

Multiplying any vector by the scalar 
results in the additive inverse of that vector.

THEOREM 2.9 For any vector v in a vector space V:

r 0= r 0= v 0=
r 0

rv 0=
1
r
--- rv  1

r
---0=

1
r
--- r 
  v 0=

1v 0=
v 0=

Axiom (vii) and CYU 2.8:

Axiom (viii):

r 0 rv rw= v w=

v 0 rv sv= r s=

1–

1v– v–=

Answer: See page B-5.

Strategy: Show that if you add 
to v you end up with the vector 0.

CHECK YOUR UNDERSTANDING 2.11
Establish the following results, for any v in a vector space V, and any

.

(a)         (b)        (c) 

1v–

1v– v+ 1v– 1v+ 1– 1+ v 0v 0= = = =

Axiom (viii) 

Axiom (vi) PofR Theorem 2.7

r 

v– – v= r– v rv –= r v–  rv –=
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We all want to replace the expression  with . Let’s do
it, but officially: 

Here are a few results featuring the operation of subtraction. They are
very reminiscent of familiar subtraction operations of real numbers.
This should come as no surprise since the real number system is itself a
vector space.

PROOF:
(a)  

(b)  

(c)  

SUBTRACTION

DEFINITION 2.7
“SUBTRACTION”

For vectors v and w in a vector space V, we
define v minus w, denoted by , to be
the vector given by:

A definition is the introduction of a new word in the language of
mathematics. As such, one must understand all of the words used
in its description. This is so in Definition 2.7, where the new word
“ ” on the left of the equal sign is described by previously
defined words “ ” on the right of the equal sign.

THEOREM 2.10 For any vectors v, w, and z in a vector space V,
and scalars r, and s in :

(a)
(b)
(c)

v w– + v w–

v w–

v w– v w– +=

v w–
v w– +


v v– 0=
v w+  z– v w z– +=
v w+  w– v=

v v– v v– + 0= =
Definition 2.7

v w+  z– v w+  z– + v w z– + + v w z– += = =

Definition 2.7

Answer: See page B-5.

CHECK YOUR UNDERSTANDING 2.12
(a) Show that for any two vectors v and w:        

(b) Use the Principle of Mathematical Induction (see Appendix A) to
show that for any n vectors :

  

v w+  w– v w w– + v 0+ v= = =

(b)                         (a)

v w+ – v– w–=

v1 v2  vn  
v1 v2

 vn+ + + – v1– v2– – vn–=
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We complete this section with a list of results; some of which we
proved, some of which appeared in Check Your Understanding boxes,
and others which you are invited to establish in the exercises. 

THEOREM 2.11 For every , , and z in a vector space V, and
every :

(i) There exists a unique vector 
.

(ii) There exists a unique vector 
such that .

(iii) If , then 

(iv) If  and , then .

(v) If  and , then .

(vi)

(vii)

(viii)  if and only if  or 

(ix)

(x)

(xi)         

(xii)

(xiii)

(xiv)

(xv)

(xvi)

(xvii)

(xviii) 

{Cancellation
Properties

v w
r s t 

0 V
v 0+ 0 v+ v= =

v V–
v v– + v– v+ 0= =

v z+ w z+= v w=

r 0 rv rw= v w=

v 0 rv sv= r s=

0v 0=

r0 0=

rv 0= r 0= v 0=

r sv tw+  rs v rt w+=

1v– v–=

v– – v=

r v–  r– v rv –= =

r v w–  rv rw –=

r s– v rv sv –=

v w+ – v– w–=

v w– w– v+=

v w z+ – v w–  z–=

v w z– – v w–  z+=
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Exercises 1-8. Prove:

1. Theorem 2.11 (iv): If  and , then .

2. Theorem 2.11 (v): If  and , then .

3. Theorem 2.11 (ix): .

4. Theorem 2.11 (xiii): .

5. Theorem 2.11 (xiv): .

6. Theorem 2.11 (xvi): .

7. Theorem 2.11 (xvii): .

8. Theorem 2.11 (xviii): .

9. Show that for any vector v in a vector space V, and any : .

10. Show that for any vector v in a vector space V and any integer : .

11. Let v, w, and z be any vectors in a vector space V, and let , with . Show that

if , then .

12. Let v and w be vectors in a vector space V, with . Show that if , then
.

13. Let v and w be vectors in a vector space V. Show that if  and , then
.

14. Show that for any v and w in a vector space V, and for any : 

15. Let v and w be non-zero vectors in a vector space V. Show that if , with not both
r and s equal to 0, then there exist unique numbers a and b such that  and .
Hint: Show that the condition that not both r and s equal 0 implies  that neither is 0. 

EXERCISES

r 0 rv rw= v w=

v 0 rv sv= r s=

r sv tw+  rs v rt w+=

r v w–  rv rw –=

r s– v rv sv –=

v w– w– v+=

v w z+ – v w–  z–=

v w z– – v w–  z+=

r  rv r– v –=

n 1 nv n 1– v v+=

a b c   a 0

av bw+ cz= v c
a
---z b

a
---w–=

v 0 rv w+ sv w+=
r s=

r 1 rv w+ v rw+=
v w=

a b 

a b+  v w+  av bv aw bw+ + +=

rv sw+ 0=
v aw= w bv=
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16. All vector spaces contain infinitely many vectors.

17. Any vector space that contains more than one vector must contain an infinite number of vec-
tors.

18. For any vector v in a vector space V and any : 

19. Let  and  be vector spaces. Let  with operations given
by:

Then  is a vector space.

20. Let  and  be vector spaces. Let  with operations given
by:

Then  is a vector space.

PROVE OR GIVE A COUNTEREXAMPLE

r  rv r 1– v v+=

V W V W v w  v V w W =

v1 w1  v2 w2 + v1 v2+ w1 w2+   and  r v w  rv rw = =

V W

V W V W v w  v V w W =

v1 w1  v2 w2 + v1 v2– w1 w2–   and  r v w  rv rw = =

V W
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 2

If S is to be a subspace of V, then it is itself a vector space and must
therefore be closed under addition and scalar multiplication:

If  and  are in S, then .

If  and , then .

In addition, the eight axioms listed in Definition 2.6, page 40, must also
hold for S. Actually, the eight axioms come “free of charge,” once clo-
sure is established; for:

PROOF: If S is a subspace of the vector space V, then it is itself a vec-
tor space and must therefore satisfy the three stated conditions. We
now show that if those three conditions hold, then S is a subspace of
V.
Of the eight axioms of Definition 2.6, we need not worry about Axi-
oms (i), (ii), (v), (vi), (vii), and (viii):

Why not? Because, since they hold for all u, v and w in the given vec-
tor space V, then they will surely hold for all u, v and w in the subset S
of V. 
Why do we have to worry about the zero axiom? Because though we
know that there is a vector 0 in V such that  for every

 (and therefore for every ), we have no assurance that 0
sits in S. To see that it does, take any vector v in S (we are given that S
is nonempty), and then scalar multiply that vector by 0:

§4. SUBSPACES

DEFINITION 2.8
SUBSPACE

A subspace of a vector space V is a non-
empty subset S of V which, together with the
imposed operations of addition and scalar
multiplication of V, is itself a vector space.

THEOREM 2.12 A subset S of a vector space V is a subspace of
V if and only if: 

1. S  is nonempty.
2. S  is closed under addition.
3. S  is closed under scalar multiplication.

(i) (ii)

(v) (vi)

(vii) (viii)

s1 s2 s1 s2+ S

s S r  rs S

v u+ u v+= u v+  w+ u v w+ +=

r u v+  ru rv+= r s+ u ru su+=

r su  rs u= 1u u=

v 0+ v=
v V s S
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We now complete the proof by showing that if , then its addi-
tive inverse  is also in S:

When challenging the “S is nonempty” condition of Theorem 2.12,
one typically looks to see if the zero vector is contained in S. For:

If , then S is certainly nonempty.
If , then S is not a subspace, period. 

SOLUTION: We show that S satisfies the three conditions of Theorem
2.12. 
1. Since the sum of the first two components of  is

equal to its third component,  (and therefore S is not empty).

2. To show that S is closed under addition, we take two arbitrary ele-
ments of S:

and consider their sum:

Since the third component of , , equals the
sum of its first two components, .

3. We now show S is closed under scalar multiplication. 
For  and :

EXAMPLE 2.8 Verify that 

is a subspace of .

0v 0 S=
Theorem 2.7, page 53

Since v S and  S is closed under scalar mutliplication

v S
v–

1– v v– S=
Theorem 2.9, page 54

Since v S and  S is closed under scalar mutliplication

0 S
0 S

S a b c   c a b+= =

3

0 0 0 0  =
0 S

The “ticket” to be in S is
that the third component
is equal to the sum of  its
first two components. 

Since  has the
“ticket,” it is in S.

s1 s2+

s1 a b a b+   s2 c d c d+  = =

s1 s2+ a b a b+   c d c d+  + a c b d a b c d+ + +++ = =

s1 s2+ a b c d+ + +
s1 s2+ S

a b a b+   S r 

r a b a b+   ra rb r a b+   ra rb ra rb+  S= =

third component is sum of first two
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The following theorem merges two of the properties of Theorem 2.12
into one:

PROOF: For S a nonempty subspace of V, let  and .
Since S is closed under scalar multiplication: . Since S is
closed under addition: .
Conversely, assume that for every  and :

  (*)
We show that S is closed under addition and scalar multiplication: 

For any given , simply choose , and apply (*):

To show that S is also closed under scalar multiplication, we
first observe that (*) implies that :

Since S is nonempty, we can choose an . Letting
, and  in (*) brings us to:

Now consider any  and . Appealing to (*)
with  and , we find that:

SOLUTION: Since , : S is not empty.

Answer: See page B-5.

CHECK YOUR UNDERSTANDING 2.13
Show that: 

is a subspace of the vector space  of Example 2.3, page 41. 

THEOREM 2.13 A nonempty subset S of a vector space V is a
subspace of V if and only if:
For every  and , .

EXAMPLE 2.9 Let u and v be any two vectors in a vector
space V. Show that the set:

is a subspace of V.

S a 2a
a– 0

a 
 
 
 

=

M2 2

s1 s2 S r  rs1 s2+ S

s1 s2 S r 
rs1 S

rs1 s2+ S
s1 s2 S r 

rs1 s2+ S

s1 s2 S r 1=

1s1 s2+ s1 s2 S+=

0 S
s S

s1 s2 s= = r 1–=

1s– s S+
0 S

s S r 
s1 s= s2 0 S=

rs 0+ rs S=

S au bv a b + =

0 0u 0v S+= 0 S



62     Chapter 2    Vector Spaces                                                                                                              

For  and , and for :

SOLUTION: As you recall, the zero in  turned out to be the
function Z given by:  for every number x. In particular,
since , . Hence, .
If  and , then:

SOLUTION: We have to establish two results: 

The “if -condition:” If , then S is a subspace of .

The “only if-condition:”  If , then S is not a subspace of .

Answer: See Page B-5.

s1 s2 S  and  r R

rs1 s2 S+

CHECK YOUR UNDERSTANDING 2.14

Show that  is a subspace of .

au bv+ S cu dv S+ r 

r au bv+  cu dv+ + rau cu+  rbv dv+ +=
ra c+ u rb d+ v S+=

It is of the form Au Bv+
(has the “ticket”)

S x y z   x y z+ + 0= = 3

The “ticket” needed for a
function  f  to get into S is
that it maps 9 to 0.

EXAMPLE 2.10 Let  denote the function space  of
Theorem 2.4, page 44, with domain .
Show that:  is a sub-
space of .

F   F X 
X =

S f F   f 9  0= =
F  

F  
Z x  0=

Z 9  0= Z S S 

Answer: Not a subspace.

f g S and r R

rf g S+

CHECK YOUR UNDERSTANDING 2.15
Let  denote the function space of Theorem 2.4, page 44 (with
domain ). Determine whether or not 

is a subspace of .

EXAMPLE 2.11 Show that for any :

 is a subspace of   if and only if .

f g S r 

rf g+  9  rf 9  g 9 + r0 0+ 0= = =

since f and g are in S

rf g+ S
(has the “ticket”)

F  
X =

S f F   f 0  9= =
F R 

S x y  ax by+ c= =
a b 

2 c 0=

c 0= 2

c 0 2
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The “only if-condition” is easily dispensed with:

If , then , for: . Since S 
does not contain 0, S is not a subspace of .

To establish the “if-condition,” we assume the , and first
observe that S is not empty: 

Since , .

We complete the proof by showing that if  and
, then:  

which is to say, that:    

Here goes:

Let S and T be subspaces of a vector space V. Is their intersection
 [Figure 2.7(a)] necessarily a subspace

of V ? Is their union  [Figure 2.7(b)] neces-
sarily a subspace of V ? The answer to the first question is “Yes” (Theo-
rem 2.14 below), while the answer to the second question is “No”
(Example 2.12 below).

c 0 0 0 0  S= a 0 b 0+ 0 c=
2

c 0=

a 0 b 0+ 0 c= = 0 0 0  S=

x1 y1  x2 y2  S
r 

r x1 y1  x2 y2 + rx1 x2+ ry1 y2+  S=

a rx1 x2+  b ry1 y2+ + 0=

Since x1 y1  x2 y2  S:

a rx1 x2+  b ry1 y2+ + arx1 ax2 bry1 by2+ + +=

r ax1 by1+  ax2 by2+ +=

r0 0+ 0= =

Answer: See page B-5.

CHECK YOUR UNDERSTANDING 2.16
In Example 1.10, page 20, we showed that: 

is the solution set of the homogeneous system of equations:

Show that S is a subspace of .

INTERSECTION AND UNION OF SUBSPACES

S 16a 2b 4a 17b 11a 11b ––  a b  =

2x 3y 4z– 5w+ + 0=
3x– y 4z w+ + + 0=

x 7y 4z– 11w+ + 0= 





4

S T v v S and v T =
S T v v S or v T =
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Figure 2.7

PROOF:  is not empty:
Since  and  (why?), .

Let  and . Being in the intersection of S and T, u
and  v are both in S and in T. Since S and T are subspaces, 
and . Being in both S and T, .

 

SOLUTION: While one can easily show that the set  is non-
empty, and that it is closed under scalar multiplication, one cannot
show that it is closed under addition, for it need not be! And how do
we show that this is the case? By exhibiting a specific vector space V,
along with two specific subspaces S and T, such that their union fails
to be closed under addition. Let’s do it:

Let , , and . We
leave it for you to verify that both S and T are subspaces of . To see
that  is not closed under addition, simply note that while

 and , 
(for  is neither in S nor in T).

S intersect T
(a)

S union T
(b)

V
S T

S T v v S and v T = S T v v S or v T =

S T
V

In the exercises you are
asked to show that the
intersection of any num-
ber of subspaces of  V is
again a subspace of V.

u v S T and r R

ru v S T+

THEOREM 2.14 If S and T are subspaces of a space V, then so
is their intersection:

EXAMPLE 2.12 Show that the union of two subspaces S and T
of a vector space V:

need not be a subspace of V.

S T v v S and v T =

S T
0 S 0 T 0 S T

u v S T r R
ru v S+

ru v T+ ru v S T+

S T v v S or v T =

Answer: See page B-6.

S

T

1

1

CHECK YOUR UNDERSTANDING 2.17
PROVE OR GIVE A COUNTEREXAMPLE:

If S and T are subsets of a vector space V, and if  is a subspace
of V, then either S is a subspace of V or T is a subspace of V.

S T

V 2= S x 0  x  = T 0 y  y  =
2

S T
1 0  S T 0 1  S T 1 0  0 1 + 1 1  S T=

1 1 

S T
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Exercises 1-6. Determine if the given subset S of the vector space  is a subspace of . Jus-
tify your answer.

Exercises 7-12. Determine if the given subset S of the vector space  is a subspace of . Jus-
tify your answer.

Exercises 13-18. Determine if the given subset S of the matrix space  of Example 2.3, page
41 is a subspace of . Justify your answer.

Exercises 19-22. Determine if the given subset S of the polynomial space  of Theorem 2.3,
page 43, is a subspace of . Justify your answer. 

EXERCISES

1. 2.

3. 4.

5. 6.

7. 8.

9. 10.  

11. 12.  

13. 14.

15. 16.

17. 18.

19. 20.

21. 22.

2 2

S x y  y 2x= = S x y  y 2x 1+= =

S x y  x y+ 0= = S x y  x y =

S x y  y x2= = S x y  xy 0= =

3 3

S x y z   z 2x y–= = S x y z   z 2x y+= =

S x y z   z 2x y–= 1+ = S x y z   z 2x y 1+ += =

S x y z   x y z+ + 0= = S x y z   y 0= =

M2 2

M2 2

S a b
c d

d 0=
 
 
 

= S a b
c d

d a b+=
 
 
 

=

S a b
c d

a d 0 c 2b= = =
 
 
 

= S a b
c d

a b+ 2c 3d–=
 
 
 

=

S a b
c d

a b c d+ + + 1=
 
 
 

= S a b
c d

a b c d+ + + 0=
 
 
 

=

P2 x 
P2 x 

S ax2 bx c a+ + 2= = S ax2 bx c b+ + 0= =

S ax2 bx c a b c+ + + + 0= = S ax2 bx c b+ + 2a= =
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Exercises 23-26. Determine if the given subset S of the polynomial space  of Theorem 2.3,
page 43, is a subspace of . Justify your answer. 

Exercises 27-38. Determine if the given subset S of the function space  of Theorem 2.4
(with ), page 44, is a subspace of . Justify your answer. 

39. Let V be a vector space. Show that:
          (a)  is a subspace of V.                           (b) V is a subspace of V.

40. (PMI) Establish the following generalization of Theorem 2.14.
(a)  If  are subspaces of a vector space V, then so is their intersection:

(b)  If  are subspaces of a vector space V, then so is their intersection:

(c) Let A be a nonempty set. If  is a subspace of a vector space V for every , then the

set  is also a subspace of V.

23. 24.

25. 26.

27.  28.  

29.  30.  

31. The subset of even functions: 

32.  The subset of odd functions: 

33.  The subset of increasing functions: 

34.  The subset of decreasing functions: 

35.  The subset of bounded functions: 

36.  (Calculus dependent) 

37.  (Calculus dependent) 

38.  (Calculus dependent) 

P3 x 
P3 x 

S ax2 bx c b+ + 0= = S ax2 bx c b+ + a– 2c+= =

S ax2 bx c a b+ + + 0= = S ax2 bx c b+ + 2a c= a 1+= =

F  
X = F  

S f f 0  0= = S f f 1  0= =

S f f 1  1= = S f f 2x  2f x = =

S f  f x–  f x = =

S f  f x–  f– x = =

S f  a b f a  f b  =

S f  a b f a  f b  =

S f f x  M  for every  x , for some M 0 =

S f  f is continuous =

S f  f is differentiable =

S f  f is integrable =

0 

S1 S2  Sn  

Si

i 1=

n

 S1 S2  Sn  =

S1 S2  Sn    

Si

i 1=



 S1 S2  Sn    =

S  A

S
 A
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41. (PMI) Let  be vectors in a vector space V. Show that 
 is a subspace of V.

42. Let S and T be subspaces of a vector space V. Show that  is a 
subspace of V.

43. Let S and T be subspaces of a vector space V, with . Show that every vector in 
the subspace  of the previous exercise can be uniquely expressed as a sum of a vector in 
S with a vector in T.
Suggestion: Show that if , then  and .

44. If S and T are both subsets of a vector space V, and if neither S nor W is a subspace of V, then 
 cannot be a subspace of V.

45. If S and T are both subsets of a vector space V, and if neither S nor W is a subspace of V, then 
 cannot be a subspace of V.

46. If  S and T  are subspaces of a vector space V,  then  (see Exercise 43).

47. If  S and T  are subspaces of a vector space V, then  (see Exercise 43).

48. If S, T, and W are subspaces of a vector space V, then    is also a subspace 
of V (see Exercise 43).

49. If S, T, and W are subspaces of a vector space V, then    (see 
Exercise 42).

50. If  S and T  are subspaces of a vector space V with , then  is a subspace 
of V. 

51. If S is a subspace of a vector space V, and if T is a subspace of S, then T is a subspace of V.

52. If a vector space has two distinct subspaces, then it has infinitely many distinct subspaces.

PROVE OR GIVE A COUNTEREXAMPLE

v1 v2  vn  
S a1v1 a2v2  anvn+ + + ai  1 i n  =

S T+ s t+ s S and t T =

S T 0 =
S T+

s t+ s1 t1+= s s1= t t1=

S T

S T

S T+ S T=

S T S T+

S T  T W +

S T W+  S T  W+=

S T 0 = S T
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 2

This chapter began with a consideration of vectors in the plane and in
three dimensional space, both from a geometrical point of view
(directed line segments, or “arrows”), and from an analytical perspec-
tive (2-tuples and 3-tuples). The main focus of this section is to deter-
mine and classify all of the subspaces of those Euclidean spaces.
Additional insight for the material of this section will surface in the fol-
lowing chapter on Dimension Theory. This section, in turn, is a nice
lead-in to the following chapter, for Euclidean spaces have a dimension
component built right into their terminology. It should come as no sur-
prise, for example, to find that the Euclidean spaces  and  will
turn out to have dimensions 2 and 3, respectively.

A subset of a vector space V that is neither V or  is said to be a
proper subset of V. The following theorem serves to characterize the
proper subspaces of :   

       PROOF: Let . Appealing to
Theorem 2.13, page 61, we first observe that S is not empty [it clearly
contains ]. Moreover, for  and :

At this point we know that S is a non-empty subspace of . Can it be
all of ? No, for the set  is the line in the plane
passing through the origin and the point  (see margin). 
Conversely, assume that T is a proper subspace of . Since it is not
empty, it contains a nonzero vector . Since T is a subspace,
every scalar multiple of  must be in T, which is to say:

. We now show that, in fact, , by
demonstrating that if T were to contain any vector  then T
must be all of  (see margin)”:

Can we find scalars A, B, such that:

 ?

Yes, providing the last row of  does not consist entirely

of zeros (see the Spanning Theorem, page 18) — and it doesn’t
(Exercise 61).

§5. LINES AND PLANES

SUBSPACES OF 

THEOREM 2.15 S is a proper subspace of  if and only if

2 3

2

0 

2

2

S t a b  t   for a b  0 0 =

For  any  vector :                                 

. a b 

t a b  a b  

v R2

v(a,b)

(c,d)

. .

.

S t a b  t   for a b  0 0 =

a b  t1 a b  t2 a b  S r 

r t1 a b   t2 a b + rt1 t2+  a b  S=

2

2 ta tb  t   
a b 

2

a b 
a b 

S t a b  t   T= S T=
c d  S

2

A a b  B c d + x y 
Aa Bc+ x=
Ab Bd+ y=

=

rref a c
b d
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While no line in the plane that does not pass through the origin can
represent a subspace of  (why not?), every line in the plane is paral-
lel to one that does pass through the origin—a translation of a subspace
of :                                                                                            

PROOF: Figure 2.8(b) may serve as a geometrical “proof” of the theo-
rem; for if you take the vector v which is in the same direction as the
line L, and stretch it every which way, then you will get a line that is
parallel to L passing through the origin. Adding the vector u to every
rv “moves” that line up to L, in a parallel fashion. 

Figure 2.8

SOLUTION: We take  to be our direction
vector, and  as our translation vector, leading us to the vec-
tor form: .

The vector v is said to be a
direction vector for the line,
and the vector u is said to be
a translation vector. 

THEOREM 2.16 Let L be the line passing through two distinct
points  and  in the
plane [Figure 2.9(a)]. Then, in terms of vectors:

where , and
, for  any chosen point on

L [see Figure 2.8(b)]. 
[(*) is said to be a vector form repre-
sentation for the line L.]

2

2

P x1 y1 = Q x2 y2 =

L u rv r + = (*)

v PQ x2 x1– y2 y1– = =
u x0 y0 = x0 y0 

Those not satisfied with
this geometrical proof
are invited to consider
Exercise 62. . . .L

u

L

(a)                                                    (b)
direction vectortra

ns
lat

ion
 ve

cto
r

x

y

x

y
x0 y0 

v rv

u rv+

P Q

Note that the set: 

This brings us to the so-
called parametric repre-
sentation of L:                                      

Answer: See page B6.

L 1 5  r 1 2–  r + =

1 r 5 2r–+  r  =

:

x 1 r y+ 5 2r–= =

EXAMPLE 2.13 Find a vector form representation for the line L
passing through the points  and 

CHECK YOUR UNDERSTANDING 2.18

(a) Referring to Example 2.13, find the vector form representation
for the line L, when v is the vector from  to , and

.
(b) Your vector form representation in (a) will look different from

that of Example 2.12: . Appear-
ances aside, show that your set of two-tuples in (a) and ours of
Example 2.13 are one and the same.

1 5  2 3 

v 2 1 3 5––  1 2– = =
u 1 5 =

L u rv r +  1 5  r 1 2–  r + = =

2 3  1 5 
u 2 3 =

L 1 5  r 1 2–  r + =
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We now move up a notch and focus our attention on the Euclidean
space . The first order of business is to arrive at vector form repre-
sentations for lines and planes in . As it was in , a line in three-
space is determined by any two points, P and Q, in . In the exer-
cises, you are invited to establish the following result (compare with
Theorem 2.16): 

   

SOLUTION: We take the vector from  to 
 as our direction vector.

Selecting the translation vector  , we have:

SUBSPACES OF 3

One cannot envision a line in
 for . We can,

however define, in vector
form, the line passing
through:

and  

in  to be the set:
                      

where:

and: 

n n 3

P a1 a2  an   =

Q b1 b2  bn   =

n

L u rv r + =

v b1 a1–  bn an–  =

u a1 a2  an   =

THEOREM 2.17 Let L be the line passing through two distinct
points  and  in
three-space. Then, in vector form:

where v is the direction vector: 

and  is a translation vector,
with  any chosen point on L.

EXAMPLE 2.14 Find a vector form representation for the line
L passing through the points  and

.

3

3 2

3

P x1 y1 z1  = Q x2 y2 z2  =

L u rv r + =

v PQ x2 x1 y2 y1–– z2 z1– = =

u x0 y0 z0  =
x0 y0 z0  

. .P
Q

v PQ=

u
x0 y0 z0  

L

x

y

z

direction vector

translation vector

. .rv

2 0 3–  
1 4 2  

The line can also be
expressed in parametric
form (see margin note
of Example 2.13):

Answer: See page B6.

x 2 r y– 4r z 3 5r+= = =

CHECK YOUR UNDERSTANDING 2.19

Consider the line . Find two
points on L, both different from , and proceed as in Example
2.14 to obtain another representation for the set L. Verify that “your
set” is equal to the set . 

2 0 3–   1 4 2  
v 1 2 4 0 2 3– –––  1 4 5 – = =

u 2 0 3–  =

L u rv r +  2 0 3–   r 1 4 5 –  r + = =

L 1 3 5   r 2 1 1–   r + =
1 3 5  

1 3 5   r 2 1 1–   r + 
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In Theorem 2.16, we noted that the line L in  which passes
through the origin and the point  (distinct from the origin) can be
expressed in vector form: , where . A sim-
ilar result, which you are invited to establish in the exercises, holds for
a plane in :

Figure 2.9
In this general setting, we have (compare with Theorem 2.17):

THEOREM 2.18 Let P be a plane in  passing through the ori-
gin [Figure 2.9(a)]. Let  and

 be any two points on P which do not
both lie on a common line passing through the
origin. Then, in vector form:

     
where  and .

THEOREM 2.19

u and v are said to be
direction vectors, and w
is said to be a translation
vector.

Let P be the plane passing through three non-
colinear (not lying on a common line) points

,  and
 [Figure 2.9(b)]. Then, in vec-

tor form:

where 

          ,
and    for  any cho-
sen point on P.

2

a b 
L rv r  = v a b =

3

3

x1 y1 z1  

x2 y2 z2  

P ru sv+ r s  =
u x1 y1 z1  = v x2 y2 z2  =

.
. .

P

u
v

0

x

y

z

.
..x0 y0 z0  

u

v

.

x

y

(a)                                                 (b)

w

A

B

C

A x1 y1 z1  = B x2 y2 z2  =
C x3 y3 z3  =

P w ru sv r R s + + =

u AB x2 x1– y2 y1– z2 z1–  = =

v AC x3 x1– y3 y1– z3 z1–  = =
w x0 y0 z0  = x0 y0 z0  
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SOLUTION: We elect  to play the role of both w and of
 in Theorem 2.19; with: 

and

Then:

We previously showed that the only proper subspaces of  are the
lines passing through the origin (as sets). The following theorem, a proof
of which is relegated to the exercises, settles the subspace issue in :

EXAMPLE 2.15 Find a vector form representation for the Plane
P passing through the points ,

 and .
3 2– 2  

2 5 3–   4 1 3–  

3 2– 2  
x1 y1 z1  

u 2 5 3–   3 2– 2  – 1– 7 5–  = =

P consists of all points
 such that: 

The above is said to be a
parametric representa-
tion of the plane (with
parameters r and s).

Answer: See page B6.

x y z  
x 3 r– s+=
y 2– 7r 3s+ +=
z 2 5r– 5s–=

CHECK YOUR UNDERSTANDING 2.20

(a) Repeat our solution to Example 2.15, but this time letting
 play the role of w, instead of  ; all of the rest

remaining as before.
(b) Your set representation for P in (a) will look different from that

of Example 2.15. Appearances aside, show that your set in (a)
and ours of Example 2.15 are one and the same.

THEOREM 2.20 S is a proper subspace of  if and only if S
is the set of points on a line that passes
through the origin, or the set of points on a
plane that passes through the origin.

v 4 1 3–   3 2– 2  – 1 3 5–  = =

P w ru sv r s + + =
3 2– 2   r 1– 7 5–   s 1 3 5–   r s + + =
3 r– s 2– 7r 3s 2 5r– 5s–+ ++  r s  =

4 1 3–   3 2– 2  

2

3

3
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Exercises 1-4. Determine a vector form representation for the line in  passing through the ori-
gin and the given point.

Exercises 5-8. Determine a vector form representation for the line in  passing through the two
given points.

Exercises 9-12. Determine two different vector form representations for the line in  passing
through the two given points, and then proceed to show that the set of points associated with the
two vector forms are one and the same.

Exercises 13-20. Determine a vector form representation for the line in  that passes through
the point  and is parallel1 to the line of:

Exercises 21-28. Determine a vector form representation for the line in  that passes through
the point  and is perpendicular2 to the line of:

Exercises 29-32. Determine a vector form representation for the line in  passing through the
origin and the given point.

Exercises 33-36. Determine a vector form representation for the line in  passing through the
two given points.

EXERCISES

1. 2. 3. 4.

5. 6. 7. 8.

9. 10. 11. 12.

13. Exercise 1 14. Exercise 2 15. Exercise 3 16. Exercise 4

17. Exercise 5 18. Exercise 6 19. Exercise 7 20. Exercise 8

1. Two lines are parallel they have equal slopes, or if both lines are vertical.

21. Exercise 1 22. Exercise 2 23. Exercise 3 24. Exercise 4

25. Exercise 5 26. Exercise 6 27. Exercise 7 28. Exercise 8

2. Two lines are perpendicular if and only if the slope of one is the negative reciprocal of the slope of the 
other, or if one line is horizontal and the other is vertical.

29. 30. 31. 32.

33. 34.

35. 36.

2

1 5  2 4–  5 1–  2 2–– 

2

1 3  2 4–  3 5  5 5  3 5  3 7  2 4  5 2–– 

2

1 3  2 4–  3 5  5 5  3 5  3 7  2 4  5 2–– 

2

3 7 

2

3 7 

3

2 4 5   1 0 0   2 4 0 –  4 4 1––– 

3

2 4 5   3 1 1   0 1 2   1 0 2  

3 4 1–   2 1 0   5 1 1––  2 2 2  
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Exercises 37-40. Determine two different vector form representations for the line in  passing
through the two given points, and then proceed to show that the set of points associated with the
two vector forms are one and the same.

Exercises 41-48. Determine a vector form representation for the line in  that passes through
the point  and is parallel to the line of:

Exercises 49-52. Determine a vector form representation for the plane passing through the origin
and the two given points. 

Exercises 53-56. Determine a vector form representation for the plane passing through the three
given points. 

Exercises 57-60. Determine two different vector form representations for the plane passing
through the two given points, and then proceed to show that the set of points associated with the
two vector forms are one and the same.

61. Complete the proof of Theorem 2.15. Incidentally:
You can also show directly that if   and  are such that  for
any , then for any  there exist  such that .

62. Prove Theorem 2.16. 

63. Prove Theorem 2.17.

64. Prove Theorem 2.18.

65. Prove Theorem 2.19.

66. Prove Theorem 2.20.

37. 38.

39. 40.

41. Exercise 29 42. Exercise 30 43. Exercise 31 44. Exercise 32

45. Exercise 33 46. Exercise 34 47. Exercise 35 48. Exercise 36

49. 50.

51. 52.

53. 54.

55. 56.

57. 58.

59. 60.

3

2 4 5   3 1 1   0 1 2   1 0 2  

3 4 1–   2 1 0   5 1 1––  2 2 2  

3

1 2 1–  

1 3 2   2 1 4   3 1 4   2 0 0  

2 0 0   0 2 0   3 2 1–––  2 4 1  

3 4 1   2 1 5   1 1 1–    2 1 0–  2 1 1–  1 2 3   

2 4 3–   5 1 5   4 1 1–    2– 1 1–  2 3 1–  1 2 1   

3 4 1   2 1 5   1 1 1–    2 1 0–  2 1 1–  1 2 3   

2 4 3–   5 1 5   4 1 1–    2– 1 1–  2 3 1–  1 2 1   

v1 a b = v2 c d = v2 rv1
r  v 2 r1 r2  v r1v1 r2v2+=
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CHAPTER SUMMARY

EUCLIDEAN VECTOR

SPACE 
The set of n-tuples, with addition and scalar multiplication
given by:

ABSTRACT VECTOR
SPACE

A nonempty set V, closed under addition and scalar multiplication,
satisfying the following eight properties:

(i)     

(ii)  

(iii) There is a vector in V, denoted by 0 such that 
for every vector v in V.

(iv) For every vector v in V, there is a vector  in V, such that
.

(v)

(vi)

(vii)

(viii)
SUBTRACTION

Uniqueness of 0 and There is but one vector 0 which satisfies the property that
 for every v in V.

For any given vector v in V, there is but one vector  in V such
that .

Cancellation Properties If , then 

If  and , then .

If  and , then .
Zero Properties

 if and only if  or 
Inverse Properties

n
v1 v2  vn    w1 w2  wn   + v1 w1+ v2 w2  vn wn+ + =

r v1 v2  vn    rv1 rv2  rvn   =

u v+ v u+=

u v+  w+ u v w+ +=

v 0+ v=

v–
v v– + 0=
r u v+  ru rv+=

r s+ u ru su+=

r su  rs u=

1u u=
v w– v w– +=

v–
v 0+ v=

v–
v v– + 0=

v z+ w z+= v w=

r 0 rv rw= v w=

v 0 rv sv= r s=
0v 0=

r0 0=

rv 0= r 0= v 0=
1v– v–=

v– – v=

r v–  r– v rv –= =
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SUBSPACE A nonempty subset S of V which is itself a vector space under
the vector addition and scalar multiplication operations of the
space V.

Closure says it all A nonempty subset S of a vector space V is a subspace of V if
and only if it is closed under addition and under scalar multipli-
cation.

A one liner A nonempty subset S of a vector space V is a subspace of V if
and only if for every  and , .

Intersection of subspaces The intersection of any collection of subspaces in a vector
space V is again a subspace of V.

     PROPER SUBSPACES A subspace of a vector space V distinct from the trivial sub-
space  and V itself is said to be a proper subspace of V.

Vector form of lines Let L be the line in  passing through the origin, and let
 be any point on L distinct from the origin, then, in vector

form: , where 

Let L be the line in the plane passing through  and
. Then, in vector form, 

where , and , with  any chosen
point on L.

Let L be the line in  passing through two distinct points
 and . Then

 where v is the direction vector
 and  is a

translation vector, with  any chosen point on L.

Vector form of planes Let P be a plane in  passing through the origin. Let
 and  be any two points on P which do not

both lie on a common line passing through the origin. Then, in
vector form:    where 
and .

Let P be the plane passing through three non-colinear points
,  and .

Then  where ,

, and  is any chosen point on P

s1 s2 S r  rs1 s2+ S

0 

2

a b 
L rv r  = v a b =

P x1 y1 =
Q x2 y2 = L u rv r + =

v PQ= u x0 y0 = x0 y0 

3

P x1 y1 z1  = Q x2 y2 z2  =
L u rv r R+ =
v PQ x2 x1 y2 y1–– z2 z1– = = u x0 y0 z0  =

x0 y0 z0  

3

x1 y1 z1   x2 y2 z2  

P ru sv+ r s  = u x1 y1 z1  =
v x2 y2 z2  =

P1 x1 y1 z1  = P2 x2 y2 z2  = P3 x3 y3 z3  =

P w ru sv r R s + + = u P1P2=

v P1P3= w x0 y0 z0  =
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 3

CHAPTER 3 
BASES AND DIMENSION

It is easy to see that every vector  in  can uniquely be
expressed in terms of the three vectors , , and

. For example: 

In this chapter, we consider an arbitrary vector space V to see if we can
find a set of vectors  in V, called a basis for V, such that
every vector  in V can be uniquely expressed in the form:

for some scalars . As you will see, while many such sets
of vectors  may exist, the number of vectors in those
sets will always be the same. For example, if you find a basis for a vec-
tor space V that contains 5 vectors, , and someone
else finds another basis, that other basis must also consist of 5 vectors.
That being the case, we will then be in a position to say that the vector
space V has dimension 5. 

Using vector addition and scalar multiplication in , one can build
the vector  from the vectors  and :  

and we say that  is a linear combination of  
and . In general:

§1. SPANNING SETS

DEFINITION 3.1
LINEAR                

COMBINATION

A vector v in a vector space V is said to be a
linear combination of vectors  in
V, if there exist scalars  such that: 

EXAMPLE 3.1 Determine whether or not the vector  in
 is a linear combination of the vectors

 and . 

x y z   3

1 0 0   0 1 0  
0 0 1  

5 2 9–   5 1 0 0   2 0 1 0   9–  0 0 1  + +=

v1 v2  vn   

v
v c1v1 c2v2  cnvn+ + +=

c1 c2  cn  

v1 v2  vn   

v1 v2 v3 v4 v5    

2

v 9 14 = v1 3 4 = v2 1 2 =
9 14  2 3 4  3 1 2 +=

v 9 14 = v1 3 4 =
v2 1 2 =

v1 v2  vn  
c1 c2  cn  

v c1v1 c2v2  cnvn+ + +=

0 2 24  

3

1 3 8   2 5 4  
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SOLUTION: We are to see if we can find scalars a and b such that:

Equating coefficients, we come to the following system of three
equations in two unknowns:

Conclusion:  is a linear combination of the vectors 
and : 

The set of all linear combinations of
 and  is the plane in 

containing those vectors. As such, were
we to pick an arbitrary point in , say

, then there would be little
chance that it would lie in that plane, and
would therefore not be a linear combina-
tion of the two given vectors:  

0 2 24   a 1 3 8   b 2 5 4  +=

a 2b 3a 5b 8a 4b+++  0 2 24  =or:

a 2b+ 0=
3a 5b+ 2=
8a 4b+ 24= 






            
1 2 0
3 5 2
8 4 24

                
1 0 4
0 1 2–
0 0 0

S: aug S 

a   b a    b

 Solution:  a 4 b 2–= =

rref

Note that, except for the last
column, this augmented
matrix is the same as that of
Example 3.1.

Some Added Insight on Example 3.1

0 2 24   1 3 8  
2 5 4  

0 2 24   4 1 3 8   2–  2 5 4  +=

x

z 1 3 8  

2 5 4  

1 3 8   2 5 4   3

3

2 4 3  

a 2b+ 2=
3a 5b+ 4=
8a 4b+ 3= 






1 2  2
3 5 4
8 4 3

1 0  0
0 1 0
0 0 1

        

a   b a   b

rref

a 0b+ 0=
0a b+ 0=

0a 0b+ 1= 





S:
aug S 

No solution!

Answers: (a) No    (b) Yes

CHECK YOUR UNDERSTANDING 3.1

Determine if the given vector is a linear combination of the vectors
 and .

       (a)                                   (b) 

1 3 8   2 5 4  

2 3 8––  2 4 8–– 
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PROOF: Let . We first observe that
since , S is not empty. Moreover, for

 and  in
S, and : 

 

SOLUTION: We consider an arbitrary vector  in  to
see whether or not we can find scalars  such that: 

Expanding and combining the left side of the above equation brings
us to: 

Equating coefficients we come to the following system of three equa-
tions, in the unknowns r, s, and t (the a, b, and c are not variables,
they are the fixed coefficients of the polynomial ):

THEOREM 3.1 The set of linear combinations of the set of vec-
tors  in a vector space V is a sub-
space of V.

v1 v2  vn   

u w S and r 

ru w S+

DEFINITION 3.2
SPANNING

The set of linear combinations of a set of vec-
tors  in a vector space V is
called the subspace of V spanned by

 and will be denoted by
.

In the event that ,
 is said to span V.

EXAMPLE 3.2 Determine if the vectors , ,
and  span the space  of polynomi-
als of degree less than or equal to two.

S c1v1 c2v2  cnvn+ + + =
0 0v1 0v2  0vn S+ + +=

u a1v1 a2v2  anvn+ + += w b1v1 b2v2  bnvn+ + +=
r 

ru w+ r a1v1 a2v2  anvn+ + +  b1v1 b2v2  bnvn+ + + +=

ra1 b1+ v1 ra2 b2+ v2  ran bn+ vn S+ + +=

 a linear combination of the vis

v1 v2  vn   

v1 v2  vn   
Span v1 v2  vn   

V Span v1 v2  vn   =
v1 v2  vn   

2x2 3x 1–+ x 5–
x2 1– P2 x 

ax2 bx c+ + P2 x 
r s and t 

r 2x2 3x 1–+  s x 5–  t x2 1– + + ax2 bx c+ +=

2r t+ x2 3r s+ x r– 5s– t– + + ax2 bx c+ +=

System S was solved
directly in Example 1.7,
page 16. In that example,
we labeled the variables
x, y, and z, instead of r, s,
and t.

ax2 bx c+ +

2r t+ a=
3r s+ b=

r– 5s– t– c= 





S:
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Can we find values for r, s, and t such that the above three equations
hold? The Spanning Theorem (page 18), tells us that the answer is
“yes” if and only if  does not contain a row consisting
entirely of zeros. Let’s see:

Since the rref-matrix does not contain a row of zeros, system S has a
solution for all values of a, b, and c, and we conclude that the vectors

, , and  span the space . 

While the above does not tell you how to build  from
, , and , it does tell you that it can be done, for

each and every polynomial in . If you want to see how to build

any particular polynomial, say the polynomial , then
that’s not a problem, for the task reduces to finding scalars r, s, and t,
such that:

Equating coefficients, we have:

Conclusion: 

rref coef S  

2x2 3x 1–+ x 5– x2 1– P2 x 

ax2 bx c+ +
2x2 3x 1–+ x 5– x2 1–

P2 x 

4x2 10x 6–+

4x2 10x 6–+ r 2x2 3x 1–+  s x 5–  t x2 1– + +=
4x2 10x 6–+ 2r t+ x2 3r s+ x r– 5s– t– + +=Or:

2r t+ 4=
3r s+ 10=

r– 5s– t– 6–= 



 2 0 1 4

3 1 0 10
1– 5– 1– 6–

r     s     t
1 0 0 3
0 1 0 1
0 0 1 2–

rref

r    s    t

aug S S:

4x2 10x 6–+ 3 2x2 3x 1–+  1 x 5–  2–  x2 1– + +=

Answer: See page B7.

CHECK YOUR UNDERSTANDING 3.2
(a) Use the Spanning Theorem (page 18) to show that  the vectors

 span .

(b) Express  as a linear combination of the above four vectors.

1 2
3 4

1 0
1 0

0 1
0 1

0 4
2 0

   M2 2

1– 5
1 13
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SOLUTION: Let  be an arbitrary vector in . Are there
scalars x, y, z, and w such that: 

which is to say: does the following system of equations have a solu-
tion for all values of a, b, c, and d?

The Spanning Theorem tells us that it does not, as  con-
tains a row consisting entirely of zeros:

While the above argument establishes the fact that the vectors
, ,  and  do not span

, it does not define for us the subspace of  spanned by those four
vectors; bringing us to:

SOLUTION: We are to find the set of all vectors  for which
there exist scalars x, y, z, and w such that: 

which again boils down to a consideration of a system of equations:

EXAMPLE 3.3 Do the vectors , ,
 and  span ?

EXAMPLE 3.4 Determine the subspace of  spanned by
, ,  and

.

2 1 0 1    1 2– 2 0   
2 3 1 1–    1 2 4 4–    4

a b c d    4

a b c d    x 2 1 0 1    y 1 2– 2 0    z 2 3 1 1–    w 1 2 4 4–   + + +=

2x y 2z w+ + + a=
x 2y– 3z 2w+ + b=
0x 2y z 4w+ + + c=

x 0y z– 4w–+ d= 







S:

rref coef S  

2 1 0 1    1 2– 2 0    2 3 1 1–    1 2 4 4–   
4 4

4

2 1 0 1    1 2– 2 0    2 3 1 1–   
1 2 4 4–   

a b c d   

a b c d    x 2 1 0 1    y 1 2– 2 0    z 2 3 1 1–    w 1 2 4 4–   + + +=

2x y 2z w+ + + a=
x 2y– 3z 2w+ + b=
0x 2y z 4w+ + + c=

x 0y z– 4w–+ d= 







S:
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for to say that  is in the space spanned by the four given vec-
tors is to say that system S has a solution for those numbers a, b, c, and
d. That system appeared earlier in Example 1.8, page 17 where it was
noted that the given system of equation has a solution if and only if:

Bringing us to a representation for the space spanned by the four
given vectors:

The following example differs from the previous two in that it is not
confined to a specific concrete vector space, like .

SOLUTION: In any non-routine problem, it is important that you chart
out, in one way or another, what is given and that which is to be
established:

We are given that the vectors  and  are in the space
spanned by the three vectors , and are to show
that for any given scalars a and b, the vector  can
be written as a linear combination of the vectors

; which is to say that we can find scalars
 such that: 

From the given information, we know that there exist scalars
 and  such that: 

a b c d   

 10a– 7b 12c 13d+ + + 0=

Answer: See page B8.

CHECK YOUR UNDERSTANDING 3.3
Determine the space spanned by the vectors , ,

. It is not all of , exhibit a vector in  that is not in
. 

EXAMPLE 3.5 Let the set of vectors   and  
be such that   for . 
Show that .

Span 2 1 0 1    1 2– 2 0    2 3 1 1–    1 2 4 4–      
a b c d    10a– 7b 12c 13d+ + + 0= =

2 1 5   1 2– 2  
0 5 1   3 3

Span 2 1 5   1 2– 2   0 5 1    

4

v1 v2 v3   w1 w2 
wi Span v1 v2 v3   1 i 2 

Span w1 w2  Span v1 v2 v3  

w1 w2
v1 v2  and v3 

aw1 bw2+

v1 v2  and v3 
c1 c2 c3 

aw1 bw2+ c1v1 c2v2 c3v3+ +=

a1 a2 a3  b1 b2 b3 

w1 a1v1 a2v2 a3v3  and  w2+ + b1v1 b2v2 b3v3+ += =
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Consequently:

The following theorem generalizes the situation of Example 3.5.

PROOF: If  then, for some scalars :

We also know that for each , there exist scalars 
, such that: 

Consequently:

Since w can be expressed as a linear combination of ,
.

Consequently:

THEOREM 3.2 Let the set of vectors  and 
 be such that

  for .Then:

.

aw1 bw2+ a a1v1 a2v2 a3v3+ +  b b1v1 b2v2 b3v3+ + +=

aa1v1 aa2v2 aa3v3 bb1v1 bb2v2 bb3v3+ + + + +=

aa1 bb1+ v1 aa2 bb2+ v2 aa3 bb3+ v3+ +=

c1v1 c2v2 c3v3+ +=

v1 v2  vn   
w1 w2  wm   

wi Span v1 v2  vn    1 i m 

Span w1 w2  wm    Span v1 v2  vn   

w Span w1 w2  wm    ci

w c1w1 c2w2  cmwm+ + +=

1 i m 
ai1 ai2  ain  

wi ai1v1 ai2v2  ainvn+ + +=

w c1w1  cmwm+ +=

c1 a11v1  a1nvn+ +   cm am1v1  amnvn+ + + +=

c1a11  cmam1+ + v1  c1a1n  cmamn+ + vn+ +=

Answer: See page B8.

CHECK YOUR UNDERSTANDING 3.4
Prove that for any three vectors  in a vector space V:

v1 v2  vn   
w Span w1 w2  wm   

Span w1 w2  wm    Span v1 v2  vn   

v1 v2 v3 

Span v1 v2 v3   Span v1 v1 v2+ v1 v2 v3+ +  =
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Exercises 1-4. Determine whether or not the given vector in  is a linear combination of the
vectors  and .

Exercises 5-8. Determine whether or not the given vector in  is a linear combination of the

vectors . 

Exercises 9-12. Determine whether or not the given vector in  is a linear combination of the
vectors . 

Exercises 13-16. Show that the given vector in the function space  of Theorem 2.4, page 44,
is in the space spanned by the vectors . 

Exercises 17-21. Determine if the given vectors span . If not, find a specific vector in  which
is not contained in that subspace. 

17.

18.

19.

20.

21.

Exercises 22-25. Determine if the given vectors span . If not, find a specific vector in 
which is not contained in that subspace. 

26. For what values of c do the vectors  span ?

27. For what values of c do the vectors  span ?

EXERCISES

1. 2. 3. 4.

5. 6. 7. 8.

9. 10. 11. 12.

13. 14. 15. 16.

22. 23.

24. 25.

3

1– 2 1   2 0 3  

2 3 4   1 4 2–   5– 6 0   1– 10 11  

M2 2

1 2
0 3

0 1
2 3

1 2
3 0

 

5 9
7 3

4 9
7 3

11 6
6 7

6 11
7 6

P3

x3 1+ 2x2 3–  and x 1+ 

2x3 x 1+ + 3x2 x– 2– 2x3 4x2 x– 6–+ 2x3 6x2 x 6–+ +

F x 
x x sin2x cos2x cossin tan2x cot2x 

2xcos 
2
--- x– 
 sin 

7
--- x– 
 sin 

7
--- x– 
 sin

4 4

1 0 0 0    0 2 0 0    0 0 3 0    0 0 0 4     

1 0 0 0    1 1 0 0    1 1 1 0    1 1 1 1     

1 1 1 1    1 0 0 1    0 1 1 0    6 4 4 4     

2 1 3 1    1 2 1 3    3 1 1 2    1 1 2 3     

1 2 3 4––––  3 1 1 2  –  1 2 1 3    7 0 3 2––    

P3 P3

1 x 2x2 3x3  1 x2+ 1 x x– x2 1 x x2 x3+ + +++

x 1 x 1 x x2 1 x x2 x3+ + ++ ++ 1 x x2 1 x3 x2–+ 

2 1 3   4 3 5   0 0 c    3

c 2x 2x2 2x2 2x c+ + P2
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28. For what values of a and b do the vectors  and  span ?

29. Show that for any given set of vectors ,   for every 
.

30. Let the set of vectors  and  be such that  
 for  and  for . 

Prove that .

31. Show that if  span a vector space V, then for any vector  the vectors  
also span V.

32. Show that a nonempty subset S of as vector space V  is a subspace of V if and only if 
 for every .

33. Let  denote the vector space of all polynomials of Exercise 23, page 50. Show that no finite 
set of vectors in  spans .

34. Let S be a subset of a vector space V. Prove that  is the intersections of all subspaces 
of V which contain the set S.

35. If the vectors u and v span V, then so do the vectors u and .

36. If the vectors u and v span V, then so do the vectors u and .

37. If the vectors u and v are contained in the space spanned by the vectors w and z, then 
.

38. If , and if  for , then .

39. If  and  are finite sets of vectors in a vector space V, then:
 . 

40. If  and  are finite sets of vectors in a vector space V, then:
 

41. If  and  are finite sets of vectors in a vector space V, then:
.

42. If  and  are subspaces of a vector space V, then:
.

PROVE OR GIVE A COUNTEREXAMPLE

a b  b a–  2

v1 v2  vn    vi Span v1 v2  vn   
1 i n 

v1 v2  vn    w1 w2  wm   
wi Span v1 v2  vn    1 i m  vi Span w1 w2  wm    1 i n 

Span w1 w2  wm    Span v1 v2  vn   =

v1 v2 v3  v4 v1 v2 v3 v4  

Span v1 v2  vn    S v1 v2  vn    S

P
P P

Span S 

u v+

u v–

Span u v  Span w z =

Span v1 v2 v3   V= vi Span w1 w2  1 i 3  Span w1 w2  V=

S1 S2
Span S1 S2  Span S1  Span S2 =

S1 S2
Span S1 S2  Span S1  Span S2 

S1 S2
Span S1 S2  Span S1  Span S2 =

S1 S2

Span S1 S2  Span S1  Span S2 =
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 3

The subspace of  spanned by the vectors , ,
 is built from those vectors. But there is a kind of inefficiency

with the three building blocks , in that
whatever can be built from those three vectors can be built with just
two of them; as one of them, say the vector , can itself be con-
structed from the other two:  

The following concept, as you will soon see, addresses the above
“inefficiency issue:”

SOLUTION: To resolve the issue we consider the equation: 

Equating coefficients, brings us to the following system of equations:

Working from the bottom up, we see that  is the
only solution for the above system of equations, and therefore con-
clude that the given set of vectors is linearly independent.

SOLUTION: If: 

§2. LINEAR INDEPENDENCE

3 1 0 0   0 1 0  
2 5 0  

1 0 0   0 1 0   2 5 0    

2 5 0  

2 5 0   2 1 0 0   5 0 1 0  +=

Note that if each ,
then surely 
 
will equal zero. 
To say that  is
linearly independent, is to
say that no other linear
combination of the vectors
equals 0. 

ci 0=

c1v1 c2v2  cnvn+ + +

v1 v2  vn  

DEFINITION 3.3
Linearly

 Independent

A set of vectors   are  linearly
independent if:

A collection of vectors that are not linearly
independent is said to be linearly dependent.

EXAMPLE 3.6 Is  a linearly indepen-
dent set in the vector space ?

EXAMPLE 3.7
Is 

a linearly independent set in  ?

v1 v2  vn  

c1v1 c2v2  cnvn+ + + 0 each ci 0= =

x2 x2 x x2 x 1+ ++ 
P2 x 

ax2 b x2 x+  c x2 x 1+ + + + 0x2 0x 0+ +=

a b c+ + 0=
b c+ 0=

c 0= 





c 0 b 0 a 0= = =

2 1 2
3 4 0

1 2 0
1– 0 1

1 0 2–
3– 2 1

1 3– 0
2 6 1–

  
 
 
 

M2 3

a 2 1 2
3 4 0

b 1 2 0
1– 0 1

c 1 0 2–
3– 2 1

d 1 3– 0
2 6 1–

+ + + 0 0 0
0 0 0

=
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Then:

Leading us to the homogeneous system:

Since rref[coef(S)] has a free variable, the system has nontrivial solu-
tions, and we therefore conclude that the given set of vectors is lin-
early dependent.

SOLUTION: We start with:  and go
on to show that :

Since  is linearly independent: 

Most graphing calculators
do not have the capability of
“rref-ing” a “tall matrix.”
But you can always add
enough zero columns to
arrive at a square matrix:

Answer: Yes.

CHECK YOUR UNDERSTANDING 3.5

Is  a linearly independent set in ? 

EXAMPLE 3.8 Let  be a linearly independent set of
vectors in a vector space V. Show that

 is also linearly independent.

2a b c d+ + + a 2b 3d–+ 2a 2c–
3a b– 3c– 2d   + 4a 2c 6d   + + b c d–+

0 0 0
0 0 0

=

2a b c d+ + + 0=
a 2b 3d–+ 0=

2a 2c– 0=
3a b– 3c– 2d+ 0=

4a 2c 6d+ + 0=
b c d–+ 0= 








 2 1 1 1

1 2 0 3–
2 0 2– 0
3 1– 3– 2
4 0 2 6
0 1 1 1–

1 0 0 1
0 1 0 2–
0 0 1 1
0 0 0 0
0 0 0 0
0 0 0 0

S: coef(S) rref

a    b    c    da    b    c    d

x2 2x2 x+ x 3–   P2

v1 v2 v3  

v1 v2 v1+ v3 v2–  

av1 b v2 v1+  c v3 v2– + + 0=
a b c 0= = =
av1 b v2 v1+  c v3 v2– + + 0=

a b+ v1 b c– v2 cv3+ + 0=regroup:

v1 v2 v3  

a b+ 0=
b c– 0=

c 0= 





a 0 b 0 c 0= = =

Answer: See page B-8.

CHECK YOUR UNDERSTANDING 3.6

Let  be a linearly independent set of vectors in a vec-
tor space V. Show that 
is also a linearly independent set.

v1 v2 v3 v4   

v1 v1 v2+ v1  v2 v3+ + v1 v2 v3 v4+ + + 
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Here is a useful consequence of the Linear Independence Theorem of
page 22:

PROOF: For , let . To challenge linear
independence of those m vectors, we consider the vector equation:

Equating coefficients brings us to the following homogeneous system
of n equations in m unknowns:

 Applying the Linearly Independent Theorem of page 22, we con-
clude that the above homogeneous system of equations has only the
trivial solution  if and only if

 has m leading ones.

SOLUTION: 

Since the above matrix does not have 4 leading ones, the  given set of
vectors is not linearly independent. 

THEOREM 3.3
LINEAR INDEPENDENCE 

THEOREM FOR 

A set of vectors  in  is lin-
early independent if and only if the row-reduced-
echelon form of the  matrix with  col-
umn the (vertical) n-tuple  has m leading ones.

n

v1 v2  vm    n

n m ith

vi

1 i m  vi a1i a2i  ani   =

c1v1  cmvm+ + 0:=

c1 a11 a21  an1    c2 a12 a22  an2     cm a1m a2m  anm   + + + 0  0  =

c1a11 c2a12
 c+ + ma1m +  c1an1 c2an2

 c+ + manm+   0  0  =

EXAMPLE 3.9 Determine if: 

is a linearly independent set of vectors in .

a11c1 + a12c2 +  + a1mcm = 0
a21c1 + a22c2 +  + a2mcm = 0

an1c1 + an2c2 +  + anmcm = 0 







               
H:

     S:

a11 a12  a1m

a21 a22  a2m

an1 an2  anm

coef S 
..
.

..

..
.
.

c1 c2 cm

c1 c2  cm 0= = = =
rref coef S  

1 3 2 1–   2 1 3 2    1 3 1 4    4 7 2 7      

4

Answer: See page B-9.

CHECK YOUR UNDERSTANDING 3.7

Use Theorem 3.3 to show that there cannot exist a set of five linearly
independent vectors in .

1 2 1 4
3 1 3 7
2– 3 1 2

1 2 4 7

1 0 0  1
0 1 0  1
0 0 1  1
0 0 0  0

rref

4
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PROOF: Let  be a subset of a vector space V.
Since:

 is not linearly independent.

The above theorem tells us that  is a linearly dependent set in any
vector space V. As for the rest:  

PROOF: To establish the fact that linear independence implies that no
vector in the set can be expressed as a linear combination of the rest,
we show that if some vector in the set can be expressed as a linear
combination of the rest, then the set is not linearly independent (see
margin). Here goes:

Assume that one of the vectors in  can be
expressed as a linear combination of the rest. Since one can
always reorder the given vectors we may assume, without loss of
generality, that   is a linear combination of the rest:

Leading us to:

Since the coefficient of  is not zero, we conclude that
 is linearly dependent.

To establish the converse we again turn to a contrapositive proof:
If  is not linearly independent, then we can find sca-
lars , not all zero, such that: 

Assuming, without loss of generality, that  we find that we
can express  as a linear combination of the rest:

The next theorem tells us that whatever can be built from a collection
of linearly independent vectors, can only be built in one way:

THEOREM 3.4 Any set of vectors containing the zero vector 0 is
linearly dependent.

0 v 1 v2  vm   

1 0  0v2 0v3  0vm+ + + + 0=
0

0 v 1 v2  vm   

CONTRAPOSITIVE PROOF
Let P and Q be two proposi-
tions. 
You can prove that:

by showing that:

(After all if Not-Q implies Not-P,
then you certainly cannot have P
without having Q: think about it)

P Q

Not-Q Not-P

THEOREM 3.5 A finite set of vectors, distinct from , is
linearly independent if and only if no vec-
tor in the set can be expressed as a linear
combination of the rest.

0 

0 

v1 v2  vn   

v1
v1 a2= v2 a3v3

 anvn+ + +

1v1 a2v2– a3v3– – anvn– 0=
v1

v1 v2  vn   

v1 v2  vn NOT linearly  
independent

some vi can be expressed as a
linear combination of the rest

v1 v2  vn  
c1 c2  cn  

c1v1 c2v2
 cnvn+ + + 0=

c1 0
v1

v1
c2
c1
-----v2–

c3
c1
-----v3– –

cn
c1
-----vn–=

In the exercises you are
invited to establish the
converse of this theo-
rem.

THEOREM 3.6 Let  be a linearly independent set.
If , then:

, for . 

v1 v2  vn   
a1v1  anvn+ + b1v1  bnvn+ +=

ai bi= 1 i n 
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PROOF: 

A linearly independent set of vectors S  in a vector space V may not
be able to accommodate additional vectors without losing its indepen-
dence. This is not the case if :

PROOF: Let  be linearly independent, and let
. We show that  is linearly indepen-

dent by showing that no vector in   can be
expressed as a linear combination of the rest.
To begin with, we observe that v cannot be expressed as a linear com-
bination of the rest, as . Suppose then that some other
vector in , say for definiteness the vector ,  can
be expressed as a linear combination of the rest:

Since  is linearly independent,  (why?).
But then: 

again contradicting the given condition that . 

Answer: See page B-9.

aivi

i 1=

n

 bivi

i 1=

n

=

ai bi=

CHECK YOUR UNDERSTANDING 3.8

Show that the vectors  are linearly
dependent in , and that  is in the space spanned by
those vectors. Express  as a linear combination of those
vectors in two distinct ways.   

THEOREM 3.7
     EXPANSION
      THEOREM

If  is a linearly independent set
of vectors, and if , then

 is also linearly independent.

a1v1 a2v2
 anvn+ + + b1v1 b2v2

 bnvn+ + +=

a1 b1–  0 a2 b2–  0  an bn–  = 0= =
a1 b1= a2 b2  an bn= =

by linear Ind.: 

a1v1 a2v2
 anvn b1v1 b2v2

 bnvn+ + + –+ + + 0=

a1 b1– v1 a2 b2– v2
 an bn– vn+ + + 0=

2 1 3   5 0 2   11 3 11   
3 8 4 12  

8 4 12  

V Span S 

v1 v2  vn   
v Span v1 v2  vn   

v1 v2  vn v    

S v1 v2  vn   =
v Span S  v1 v2  vn v    

v1 v2  vn v    

v Span S 
v1 v2  vn v     v1

v1 c2v2 c3v3  cnvn cv+ + + +=

S v1 v2  vn   = c 0

v 1
c
---v1

c2
c
-----v2–

c3
c
-----v3– –

cn
c
-----vn–=

v Span S 

Answer: See page B-9.

CHECK YOUR UNDERSTANDING 3.9

Find a linearly independent set of four vectors in  which includes
the two vectors .

P3
x3 x and 7–+
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Exercises 1-6. Determine if the given set of vectors is a linearly independent set in .

Exercises 7-12. Determine if the given set of vectors is a linearly independent set in . 

Exercises 13-17. Determine whether the given set of vectors is a linearly independent set in .

Exercises 18-27. Determine if the given set of vectors in the function space  of Theorem
2.4, page 44, is linearly independent.

EXERCISES

1. 2.

3. 4.

5. 6.

7. 8.

9. 10.

11. 12.

13.

14.

15.

16.

17.

18.  19.

20. 21.

22. 23.

24. 25.

26. 27. , where  
denotes the set of positive numbers. 

3

2 1 5   4 1 10    0 0 0   6 4 5– –  

2 1 5   4 1 10   4 1 10–    3 2 5
2
---–  6 4– 5– –  1 2 0   

 
 
 

1 3 4   2 5 1–   0 1 0   2 2 0      1 0 1   2 0 1   1 0 2   1 2 3     

M2 2

1 2
3 4

2 1
3 4

1 2
4 3

 
 
 
  1 1

3 4
2 1
2 3

1 1–
5– 6–

 
 
 
 

1 2
3 4

2 1
3 4

1 2
4 3

2 1
2 5

  
 
 
  1 2

3 4
2 1
3 4

1 2
4 3

1 2
2 5

  
 
 
 

1 2
3 4

2 1
3 4

1 2
4 3

1 2
2 5

1 1
1 1

   
 
 
  1 1

1 1
2 2
2 1

0 1
2 0

2– 2
2 2

0 0
0 1

   
 
 
 

P3

x 1+ x2 x 1+ x3+ 

x 1+ x2 1 3x 5 17–+ 

3x3 3x2 3x 3 3x3 3x2 6x 6 3x 3++ + ++ + 

2x3 3x2 3x 3 3x3 3x2 6x 6 3x 3++ + ++ + 

2x3 3x2 3x 3 3x3 3x2 6x 6 3x 5++ + ++ + 

F X 

5 xsin  F   sin2x cos2x  F  

5 sin2x cos2x  F   sin2x cos2x 2xcos  F  

x2 xsin  F   sin2x cos2x 2  F  

ex e x–  F   ex e2x  F  

1 ex e x–+ ex e x––   F   xln x2 ln  F +  +
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28. For what real numbers a is  a linearly dependent set in ?

29. For what real numbers a is  a linearly dependent set in ?

30. For what real numbers a is  a linearly dependent

set in ?

31. Find a value of a for which  is a linearly dependent set in the function
space ?

32. Find a value of a for which  is a linearly dependent set in the func-
tion space ?

33. Let v be any nonzero vector in a vector space V. Prove that  is a linearly independent set.

34. Prove that every nonempty subset of a linearly independent set  is again lin-
early independent.

35. Prove that if  is a linearly dependent set in a vector space V, then so is the set
 for any set of vectors  in V.

36. Establish the converse of Theorem 3.6.

37. Let  be a set of vectors in a space V. Show that if there exists any vector
 which can be uniquely expressed as a linear combination of the vectors in S

then S is linearly independent.

38. Show that  is a linearly independent set in the vector space of Example 2.5,
page 47.

39. Let  and  be linearly independent sets of vectors
in a vector space V with . Prove that  is also a linearly
independent set.

1 1 a   1 a 1   a 1 1     3

2x a 1+ + x 2+  P1 x 

ax2 x
2
---– 1

2
---– x2

2
-----– ax 1

2
---–+ x2

2
-----– x

2
---– a+ 

 
 
 

P2 x 

x a+  xsincos 
F  

x a+ sin x xcossin 
F  

v 

v1 v2  vn   

v1 v2  vn   
v1 v2  vn    w1 w2  wm    w1 w2  wm   

S v1 v2  vm   =
v Span S 

1 0  0 1  

S u1 u2  un   = T v1 v2  vm   =
Span S  Span T  0 = S T
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40. If  is a linearly dependent set, then  for some scalar r.

41. If   is a linearly dependent set, then  for some scalars r and s.

42. If  is a linearly independent set of vectors in a vector space V, then
 is also linearly independent.

43. If  is a linearly independent set of vectors in a vector space V, then
 is also linearly independent.

44. For any three nonzero distinct vectors  in a vector space V,  is
linearly dependent.

45. If  is a linearly independent set of vectors in a vector space V, and if  then
 is also linearly independent.

46. If  is a linearly independent set of vectors in a vector space V, and if a is any non-
zero number, then    is also linearly independent.

47. If  and  are linearly independent sets of vectors in
a vector space V, then  is also a linearly independent set.

48. If  and  are linearly independent sets of vectors in a vector space V, then
 is also a linearly independent set.

PROVE OR GIVE A COUNTEREXAMPLE

u v  u rv=

u v w   u rv sw+=

u v w  
u u v+ u v w+ +  

u v w  
u v v w w u––– 

u v w   u v v w w u––– 

u v w   a 
au v w  

u v w  
au u av+ u v aw+ +  

S u1 u2  un   = T v1 v2  vm   =
S T

u v  v w 
u v w  
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 3

So far we have considered sets of vectors  in a
space V that satisfy one of two properties:

(1) S spans V: Every vector in V can be built from those in S. 
(2) S is linearly independent: No vector in S can be built from the rest.

In a way, (1) and (2) are tugging in numerically opposite directions: 
From the spanning point of view: 

The more vectors in S the better.
From the linear independence point of view: 

The fewer vectors in S the better.
Sometimes, the set of vectors S is not too big, nor too small — it’s just

right: 

STANDARD BASES IN 

In the exercises you are asked to verify the fact that:

 is a basis for  ,

 is a

basis for , and that, in general:
, where each entry in the n-tuple  is

0 with the exception of the  entry which equals 1, is a
basis for , called the standard basis of .

SOLUTION: Appealing to Definition 3.4, we challenge the given set of
vectors on two fronts: spanning, and linear independence. 
Spanning. For any given , we are to determine if there
exist scalars x, y, and z such that:

§3. BASES

DEFINITION 3.4
BASIS

A set of vectors  in a
vector space V is said to be a basis for V if:

(1)  spans V   

and: (2)  is linearly independent.

S v1 v2  vn   =

 v1 v2  vn   =





n

EXAMPLE 3.10 Show that  is a
basis for .

S2 e1 e2  1 0  0 1  = = 2

S3 e1 e2 e3   1 0 0   0 1 0   0 0 1    = =

3

Sn e1 e2  en   = ei

ith

n n

1 3 0   2 0 4   0 1 2    
3

a b c   3

x 1 3 0   y 2 0 4   z 0 1 2  + + a b c  =
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Expanding the left side, and equating coefficients, we come to the
following  system of equations:

Figure 3.1
Applying the Spanning Theorem (page 18) we conclude that

 spans .

Linear independence. A consequence of:

and the Linear Independence Theorem for  (page 88).
Since  is a linearly
independent set which spans , it is a basis for .

SOLUTION: The problem boils down to a consideration of the coeffi-
cient matrix of a system of equations. What system? Well, if you take
the spanning approach, then you will be looking at the vector equation:

to see if it can be solved for any given matrix . 

On the other hand, if you take the linear independent approach, then
you will consider the vector equation:

If you take the time to
solve the system directly,
you will find that:

x 2a 2b c–+
8

---------------------------=

y 6a 2b– c+
16

---------------------------=

z 6a– 2b 3c+ +
8

------------------------------------=

EXAMPLE 3.11 Determine if the following set of matrices con-
stitute a basis for the vector space :

3 3

x 2y+ a=
3x z+ b=

4y 2z+ c= 



 1  2 0

3  0 1
0  4  2

1 0 0
0 1 0
0 0 1

rrefS: coef S 

 the three given vectors

1 3 0   2 0 4   0 1 2     3

1  2 0
3  0 1
0  4  2

1 0 0
0 1 0
0 0 1

rref

 the three given vectors

n

1 3 0   2 0 4   0 1 2    
3 3

M2 2

2 1
3 0

1 1
2 2

3– 0
6– 5–

0 4
1 5

  
 
 
 

x 2 1
3 0

y 1 1
2 2

z 3– 0
6– 5–

w 0 4
1 5

+ + + a b
c d

= (*)

a b
c d
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to see if it has only the trivial solution. 
In either case, by equating entries on both sides of the vector equa-
tions, you arrive at  systems of equations:

Yes, the two systems differ to the right of the equal signs, but both
share a common coefficient matrix, which “twice” reveals the fact
that the four given vectors do not constitute a basis for  . Once,
by the Spanning Theorem of page 18, and then again by the Linear
Independence Theorem of page 22:

x 2 1
3 0

y 1 1
2 2

z 3– 0
6– 5–

w 0 4
1 5

+ + + 0 0
0 0

= (**)

2x y 3z– 0w+ + a=
x y 0z 4w+ + + b=

3x 2y 6z– w+ + c=
0x 2y 5z– 5w+ + d=

                     

2x y 3z– 0w+ + 0=
x y 0z 4w+ + + 0=

3x 2y 6z– w+ + 0=
0x 2y 5z– 5w+ + 0=

Form (*):                                         From (**):

M2 2

2 1 3– 0
1 1 0 4
3 2 6– 1
0 2 5– 5

              

1 0 0 1–
0 1 0 5
0 0 1 1
0 0 0 0

rref

only 3 leading ones

so the four vectors are not
linearly independent 

contains a zero row
so the four vectors
do not span

and 4 variables

Answer: See page B-10.

CHECK YOUR UNDERSTANDING 3.10
Determine if the following set of matrices constitute a basis for the
matrix space :M2 2

2 1
3 0

1 1
2 2

3– 0
5– 5–

0 4
1 5
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In Example 3.10 we found that the vector space  has a basis con-
sisting of three vectors, and every fiber in your body is probably sug-
gesting that each and every  basis for  must also consist of  3
vectors. Those fibers are correct. Indeed we will prove that if a vector
space V has a basis consisting of n vectors, then every basis for V must
again contain n vectors. Our proof will make use of the following fun-
damental result:

PROOF: Assume that .
(We will show that this assumption contradicts the given con-
dition that  is a linearly independent set).

We begin by expressing each  as a linear combination of the vec-
tors in the spanning set : 

Now Consider the following homogeneous system of n linear equa-
tions in m unknowns, with :

In words: There cannot
be more lineally indepen-
dent vectors than the
number of vectors in any
spanning set.

THEOREM 3.8
SPAN 

VERSES
INDEPENDENT

If  spans V, and if
 is a linearly independent sub-

set of V, then .

3

3

w1 w2  wm   

v1 v2  vn   

n m

n m

v1 v2  vn   

vi
w1 w2  wm   

v1 c11w1 c12w2  c1nwm+ + +=

v2 c21w1 c22w2  c2nwm+ + +=

vn cn1w1 cn2w2  cnmwm+ + +=

 .            .             .                     .
.            .             .                     .  

 

.            .             .                     .
(*)

n m
c11x1 c21x2  cn1xm+ + + 0=

c12x1 c22x2  cn2xm+ + + 0=

c1nx1 c2nx2  cnmxm+ + + 0=



Note that the coefficients of the
ith  equation coincide with those
of the ith  column of (*).   

(**)
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The Fundamental Theorem of Homogeneous Systems (page 20), tells
us that (**) has a nontrivial solution:  (not all of the

 are zero). We now show that  equals 0,
contradicting the assumption that  is a linearly inde-
pendent set (for some ): 

We are now in a position to show that all bases of a vector space must
contain the same number of elements:

PROOF: Since  is a basis, it spans V, and since
 is a basis, it is a linearly independent set. Applying

Theorem 3.8, we have . 
One more time: Since  is a basis, it spans V, and since

 is a basis, it is linearly independent. Applying The-
orem 3.8, we also have . 
Since  and ,  .
  

Since  is a
solution of (**):  

r1 r2  rn   

c11r1 c21r2  cn1rn+ + + 0=

c1nr1 c2nr2  cmnrn+ + + 0=

. . .

THEOREM 3.9 If  and  are
bases for a vector space V, then .

DEFINITION 3.5
DIMENSION

A vector space with basis  is
said to be finite dimensional of dimension n.
The symbol  will be used to denote
the dimension of the vector space V. 

r1 r2  rn   
ris r1v1 r2v2  rn+ + + vn

v1 v2  vn   
ri 0

r1v1 r2v2  rn+ + + vn r1 c11w1 c12w2  c1nwm+ + + =

r2 c21w1 c22w2  c2nwm+ + + +

rn cn1w1 cn2w2  cmnwm+ + + +

.

.

.

c11r1 c21r2  cn1rn+ + + w1=

c12r1 c22r2  cn2rn+ + + w2+

c1nr1 c2nr2  cmnrn+ + + wm+

0w1 0w2+=  0wn+ + 0=

From (*)

Regrouping:

.

.

.

see margin:

w1 w2  wn    v1 v2  vm   
n m=

w1 w2  wn   
v1 v2  vm   

n m
v1 v2  vm   

w1 w2  wn   
m n

n m m n n m=

v1 v2  vn   

dim V 
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The trivial vector space  of CYU 2.6, page 48, has no basis
(see Theorem 3.4, page 89). Nonetheless, it is said to be of dimension
zero. We also point out that a vector space that is not finite dimensional
is said to be infinite dimensional. 

                                    Let V be a space of dimension n. The following theorem says that any
spanning set of n vectors in V must also be linearly independent, and
that any linearly independent set of n vectors must also span V:   

PROOF: We first show that the assumption that 
spans V and is not linearly independent leads to a contradiction:

If S is not linearly independent, then some vector in S is a linear
combination of the remaining elements in S (Theorem 3.5, page
91). Assume, without loss of generality, that it is the vector : 

Let . Since S spans V:

The above argument shows that the set  spans
V — a contradiction, since a space of dimension n, which neces-
sarily contains a basis of n elements, and therefore a linearly inde-
pendent set of n elements, cannot contain a spanning set of 
vectors (Theorem 3.8).

We now show that the assumption that  is a linearly
independent set which does not span V will also lead to a contradiction:

 Let . The Expansion Theorem of
page 90 tells us that  is still a linearly inde-
pendent set. This leads to a contradiction since a space of dimen-
sion n, which necessarily contains a spanning set of n elements,

In the exercises you are
asked to show that the
polynomial space of Exer-
cise 23 of page 50 is an
infinite dimensional space. 

Answer: See page B-10.

CHECK YOUR UNDERSTANDING 3.11
Prove that  is a basis for a vector space V if and
only if every vector in V can uniquely be expressed as a linear com-
bination of the vectors in S.

V 0 =

S v1 v2 vn  =

So, if the number of vectors
equals the dimension of the
space, then to show that
those vectors is a basis you
do not have to establish both
linear independence and
spanning, for either implies
the other.

THEOREM 3.10 Let V be a vector space of dimension , and
let S be a set of n vectors in V. Then:
S spans V if and only if S is linearly independent.

n 0

S v1 v2  vn   =

vn
vn a1v1 a2v2  an 1– vn 1–+ + +=

v V
v c1v1 c2+ v2  cnvn+ +=

c1v1 c2v2  cn 1– vn 1– cn a1v1 a2v2  an 1– vn 1–+ + + + + + +=

c1 cna1+ v1 c2 cna2+ v2  cn 1– cnan 1–+ vn 1–+ + +=

v1 v2  vn 1–   

n 1–

v1 v2  vn   

vn 1+ Span v1 v2  vn   

v1 v2  vn vn 1+    



100     Chapter 3    Bases and Dimension                                                                                                    

cannot contain a linearly independent set of  vectors (Theo-
rem 3.8). 

The following result is essentially a restatement of Theorem 3.10. It
underlines the fact that you can show that a set of n vectors in an n-
dimensional vector space is a basis by EITHER showing that they span
the space, OR by showing that it is a linearly independent set—you
DON’T have to do both:

 

PROOF: We can easily show that :
: By Definition 3.4.

: By Theorem 3.10.
: By Theorem 3.10 and Definition 3.4.

A basis has to be both a spanning and a linearly independent set of
vectors. Help is on the way for any set of vectors that falls short on
either of those two counts:

n 1+

The cycle:

insures that the validity
of any of the  three prop-
ositions implies that of
the other two.

Answer: See page B-10.

(i)

(ii)(iii)

THEOREM 3.11 Let  be a set of n vectors in a
vector space V of dimension n. The following
are equivalent:

(i)  is a basis.

(ii)  spans V.

(iii)  is linearly independent.

CHECK YOUR UNDERSTANDING 3.12
Prove that the vector space of Example 2.5, page 47:

, under the operations:

                             
has dimension 2.

STRETCHING OR SHRINKING TO A BASIS

THEOREM 3.12
Expansion Theorem:

Reduction Theorem:

Let V be a nonzero space of dimension n.
(a) Any linearly independent set of vectors

in V can be extended to a basis for V.
(b) Any spanning set of vectors in V can be

reduced to a basis for V. 

v1 v2  vn   

v1 v2  vn   

v1 v2  vn   

v1 v2  vn   

i  ii  iii  i   

i  ii 

ii  iii 

iii  i 

V x y  x y  =
x y  x y + x x 1–+ y y 1+ + =

r x y  rx r– 1+ ry r 1–+ =
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PROOF: (a) Let  be a linearly independent set of vec-
tors in V. If it spans V, then it is already a basis for V and we are done.
If not, then take any vector  and add it
to the set: . This brings us to a larger set of
vectors which, by the Expansion Theorem of page 90, is again lin-
early independent. Continue this process until the set contains n lin-
early independent vectors: , and then apply
Theorem 3.11 to conclude that it is a basis for V. 
(b) Let  be a spanning set of vectors in V. Since V
contains a linearly independent set of n elements (any basis will do),

 (Theorem 3.8). If  then we are done (Theorem 3.11). If
, then the spanning set  cannot be linearly

independent; for if it were, then it would be a basis, and all bases have
n elements. Find a vector in  that is a linear combina-
tion of the rest and remove it from that set to arrive at a smaller span-
ning set. Continue this “tossing out” process until you arrive at a
spanning set consisting of n elements—a basis for V (Theorem 3.11).

SOLUTION:
(a) We are given that L is linearly independent, and need to comple-
ment it with an additional 4-tuple, while maintaining linear indepen-
dence. From earlier discussions, you know that if you randomly pick
a 4-tuple, then the probability that it will be in Span(L) is nil. Let’s go
with : 

We, of course, have to demonstrate that the “gods were not against us,”
and do so via the Linearly Independence Theorem for  of page 88:

Procedure: Keep adding
vectors, while maintaining
linear independence, till
you end up with n linearly
independent vectors.

v1 v2  vm   

vm 1+ Span v1 v2  vm   
v1 v2  vm vm 1+    

v1 v2  vm  vn     

Procedure: Keep throwing
vectors away, while main-
taining spanning, till you
end up with n spanning
vectors.

EXAMPLE 3.12 (a) Expand the linearly independent set: 

 to a basis for .
(b) Reduce the spanning set:

 to a basis for .

v1 v2  vm   

m n m n=
m n v1 v2  vm   

v1 v2  vm   

L 1 2 3 4    4 1 0 1  –  3 3 1 2     =
4

S x 1 2x2 3 2x 3 x2 4 x2 x– 3–+––+ =
P2

2 5 1 7 – 
 1 2 3 4    4 1 0 1  –  3 3 1 2    2 5 1 7 –    =

n

                

1 4– 3 2
2 1 3 5–
3 0 1 1
4 1 2 7

        rref
1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1
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The above shows that  is a linearly independent set. Since it con-
sists of 4 vectors, and since  is of dimension 4 [Exercise 1(c)], 
is a basis for .
(b) It is easy to see that  is a basis for the vector space

, and that consequently  is of dimension 3. 
Since  contains five
vectors, we have to throw two of them away in such a manner so as to
end up with three vectors that still span ; or, equivalently, with
three linearly independent vectors. We leave it for you to verify that

 is a linearly independent set. As such, it
must be a basis for the three dimensional space .

The next example reveals a systematic approach that can be used to
reduce a set of vectors S in  to a basis for :

SOLUTION: To determine which of the four vectors can be discarded,
we challenge their linear independence, and turn to the equation: 

Equating coefficients leads us to the following homogeneous system of
equations:


4 

4

1 x x2  
P2 x  P2

S x 1 2x2 3 2x 3 x2 4 x2 x– 3–+––+ =

P2

x 1 2x2 3 2x 3––+ 
P2

Answer: See page B-11.

CHECK YOUR UNDERSTANDING 3.13

(a) Expand the linearly independent set  to a
basis for 

(b) Reduce the set:

to a basis for . Dose S span ?

EXAMPLE 3.13 Find a subset of:

which is a basis for . 

L 2 1
1 2

2 2
1 1


 
 
 

=
M2 2

S 3 1 2–  9 3 6– –  1 2 2–   5 4 6– –  6 2 4–     =
Span S  3

n Span S 

S 1 2 1–   3 0 2   5 4 0   6 6 1–     =
Span S 

a 1 2 1–   b 3 0 2   c 5 4 0   d 6 6 1–  + + + 0 0 0  = (*)



                                               3.3  Bases     103

Figure 3.2
Let’s agree to call a vector in  

that occupies the same column-location in coef(S) as that of a lead-
ing-one-column in the rref-matrix, a leading-one vector [
and  are leading-one vectors]. We now proceed to show that
those leading-one vectors constitute a basis for .

Figure 3.2 tells us that system S will be satisfied for any a, b, c, and

d for which: 

Setting  and  in (**) leads us to , with

solution  and . Substituting these values in   (*) we
have: 

Setting  and  in (**) we find that   and
, bringing us to: 

Since  and  are linear combinations of
:

a 3b 5c 6d+ + + 0=
2a 0b 4c 6d+ + + 0=

a– 2b 0c d–+ + 0= 



 1 3 5 6

2 0 4 6
1– 2 0 1–

1  0  2  3
0  1  1  1
0  0  0  0

a    b    c    d a  b    c   d

Note that these are the four given
vectors, but written in column form

a 2c 3d+ + 0=
b c d++ 0= 




equivalent
systems

S: rrefcoef S 

Note that c and d are the free
variables in rref[coef (s)]

S 1 2 1–   3 0 2   5 4 0   6 6 1–     =

1 2 1–  
3 0 2  

Span S 

a 2c 3d+ + 0=
b c d++ 0= 




(**)

c 1= d 0=
a 2+ 0=
b 1+ 0= 




a 2–= b 1–=

5 4 0   2 1 2 1–   1 3 0 2  +=

Conclusion: the non-leading-one vector (5, 4, 0) can be expressed as a   
 linear combination of the two leading-one vectors. .

2– 1 2 1–   1 3 0 2  – 1 5 4 0   0 6 6 1–  + + 0 0 0  =

or:

d 1= c 0= a 3–=
b 1–=

6 6 1–   3 1 2 1–   1 3 0 2  +=

3 1 2 1–  – 1 3 0 2  – 0 5 4 0   1 6 6 1–  + + 0 0 0  =

or:
Conclusion: the non-leading-one vector (6, 6, -1) can be expressed
as a linear combination of the two leading-one vectors.

5 4 0   6 6 1–  
1 2 1–   3 0 2  

Span 1 2 1–   3 0 2   5 4 0   6 6 1–      Span 1 2 1–   3 0 2   =
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Covering up the two non-leading-one columns in the development of
Figure 3.2: 

we see that the only solution of: 
is the trivial solution, and that the vectors  are
therefore linearly independent. 

We state, without proof, a generalization of the above observation:

SUMMARIZING

To find a basis for the space spanned by the vectors
, , , and
, we constructed the  matrix

 with columns the given four-tuples. We

then showed that the leading-one vectors, namely
 and , constituted a basis

for the space spanned by the four given vectors.

THEOREM 3.13 Let  be vectors in . If A is the
 matrix whose  column is the n-tuple

, then the set consisting of those vectors ,
where the  column of  contains a
leading one, is a basis for the space spanned
by .

a 3b 5c 6d+ + + 0=
2a 0b 4c 6d+ + + 0=

a– 2b 0c d–+ + 0= 



 1 3 5 6

2 0 4 6
1– 2 0 1–

1  0  2  3
0  1  1  1
0  0  0  0

a    b    c    d a  b    c   d

a 2c 3d+ + 0=
b c d++ 0= 




S: rrefcoef S 

a 1 2 1–   b 3 0 2  + 0 0 0  =
1 2 1–   3 0 2  

v1 1 2 1–  = v2 3 0 2  = v3 5 4 0  =
v4 6 6 1–  = 3 4

A
1 3 5 6
2 0 4 6
1– 2 0 1–

=

v1 1 2 1–  = v2 3 0 2  =

v1 v2  vm   n

n m ith

vi vi

ith rref A 

v1 v2  vm  
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Answer: See page B-11.

CHECK YOUR UNDERSTANDING 3.14

Use the above theorem to address the problem of CYU 3.13(b).
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‘

1. (a) Prove that  is a basis for  . Express  as a linear 

combination of the vectors in .

(b) Prove that  is a basis for . Express

 as a linear combination of the vectors in .

(c) Prove that  is a basis for .

2. (a) Prove that  is a basis for , and express  
as a linear combinations of the vectors in .

(b) Show that  is not a basis for , and find
two different representations for the vector   as a linear combination of the vec-
tors in S.

3. (a) Prove that  is a basis for , and express  as a lin-
ear combinations of the vectors in .

(b) Show that  is not a basis for , and find two different representa-

tions for the vector  as a linear combination of the vectors in S.

Exercises 4-7. Determine if the given set of vectors is a basis for .  

8. (a) Prove that the matrix space  has dimension 4.

(b) Prove that the matrix space  has dimension .

Exercises 9-12. Determine if the given set of vectors is a basis for . 

EXERCISES

4. 5.

6. 7.

9. 10.

11. 12.

S2 e1 e2  1 0  0 1  = = 2 3 5
2
---– 

S2

S3 e1 e2 e3   1 0 0   0 1 0   0 0 1    = = 3

3 2 0   S3

Sn e1 e2  en   = n

 2 0 5   0 1 10   1 2 0    = 3 7 0 5–  


S 2 0 5   0 1 10   1 2 0   1 1 1     = 3

7 0 5–  

 2x2 3+ x2 x– x 5–  = P2 x2 3x 1–+


S 2x2 3x 5 x 4–   = P2

x2 3x 1–+

3

2 1 5   4 1 10   1 2 3     0 0 0   1 2 5– –  2 1 5––   

2 1 5   4 1 10   4 3 10     2  e    e 2   e 2     

M2 2

Mm n m n

M2 2

1 2
3 4

2 3
4 1

3 4
1 2

4 1
2 3

  
 
 
  1– 2

3 4
1 2–
3 4

1 2
3– 4

1 2
3 4–

  
 
 
 

1 2
3 0

1 2
0 4

1 0
3 4

0 2
3 4

  
 
 
  2 1

2
---

3 1–

13 11–
13
2
------ 4

1
3
--- 1–

0 1

2 1–
1
6
--- 0
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Exercises 13-15. Determine if the given set of vectors is a basis for .

16. (a) Prove that the polynomial space   is of 
dimension 4.

(b) Prove that the polynomial space:

is of dimension .

Exercises 17-20. Determine if the given set of vectors is a basis for .

Exercises 21-24. Extend the given linearly independent set of vectors to a basis for .

Exercises 25-28. Extend the given linearly independent set of vectors to a basis for .

13. 14.

15.

17.

18.

19.

20.

21. 22.

23. 24.

25. 26.

27. 28.

M3 2

0 1
3 0
0 1

1 0
0 3
1 0

0 3
0 1
0 1

3 0
1 0
1 0

0 0
0 1
0 3

1 0
0 0
0 0

    
1 1
1 1
1 1

1 0
0 0
0 0

0 1
0 0
0 0

0 0
1 1
0 0

0 0
1 1
0 0

1 1
0 0
1 1

    

1 2
3 1–
2– 3–

2 2–
2– 1–

3 4–

3 2
1 2–
3– 1–

1– 2
3 1
2– 3

1– 2–
3 1
2 3–

   

P3 a3x3 a2x2 a1x a0 ai R 0 i 3 + + + =

Pn anxn an 1– xn 1–  a+ 1x a0 ai R 0 i n + + + =

n 1+

P3

x3 1+ 2x3 x2– 2 3x 1 4x3 x2– 9x 7+ +++ 

x3 1+ 2x3 x2– 2 3x 1 4x3 x2– 9x 8+ +++ 

2x3 3x2 x 1–+ + x3– 9x2– 2x 2 x3 x2– 2x 2 3x3– 2x2 x– 1+ ++ ++ + 

2x3 3x2 x 1–+ + x3– x2– 2x 2 x3 x2– 2x 2 3x3– 2x2 x– 1+ ++ ++ + 

4

1 3 4 1    1 2 0 1  –  1 1 2 2      1 2 1 2–   1 2 1 2   1 2 3 4     

2 1 3 1–    1 3 0 2     2 2 1 1    

P4

x4 1+ x3 2x2+ 3x3 x 5–+ 9    3x 2– 3x2 2– 3x3 2– 3x4 2–   

x4 x3 x2+ + x3 x2 x+ + x2 x 1+ +   2x4 x3 x2 x 1+ + + + x4 5– 
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Exercises 29-30. Does the given set of vectors span ? If so, reduce the set  to obtain a basis
for .

Exercises 31-32. Does the given set of vectors span   ? If so, reduce the set  to obtain a basis
for . 

Exercises 33-37. Use Theorem 3.13 to find a subset of the given set of vectors S in  which is a
basis for . If necessary expand that basis for  to a basis for the corresponding
Euclidean space.   

Exercises 38-39. Find a subset of  the given set of vectors S which is a basis for .  If nec-
essary, expand that basis for  to a basis for . 

Exercises 40-41. Find a basis for the space spanned by the given set of vectors in the function
space vectors  of Theorem 2.4, page 44. 

42. Show that  is a subspace of , and then find a basis for that sub-
space.

29.

30.

31.

32.

33.   

34.

35.

36.

37.

38.

39.

40. 41.

M2 2

M2 2

1 3
1– 2

2 0
1 1–

3 3
0 1

0 1
1 2

2 1
0 1

1 2
3 4

    
 
 
 

1– 0
2 0

5 0
10– 0

1 0
0 1

1 0
0 2

0 0
0 0

0 0
0 1–

0 1
1 0

     
 
 
 

P3

P3

2x 3x2 6x2 4x+ x3 1+ 3x2 x+ x 3 3x2 x 1+ + +  

2x3 x 1–+ 4x3 2x2– 6 4x2 2 5x3 6x2 2 x3 x 1 x3 2x2 x3– 2x2–––+–++– 

n

Span S  Span S 

S 2 1 4   1 3 2 –  5 1– 6   4 2 8     =

S 1 1 3   1 3 2 –  1 5 8   3 2 1–     =

S 1 1 3   1 3 2 –  1 5 8   3 2 1–     =

S 2 1 3 0    0 4 4 2    2 3 1 2  –  1 1 5 8    3 2 8 8       =

S 1 3 1 3 2     2 4 1 4 2     1 1 0 1 0     1 1 2 0 2     2 2 1 1 1     1 2 3 4 5         =

Span S 
Span S  P4

S 2x4 x3 3x 1 x4– x3– x2 x3 2x3– 2x2 3x 2x4– 2x3– 2x2 1–++ +++ + + =

S 5 x3– x x4 x3 x2 x 1 2x4 2x2 2x4 2x2+–+ + + +– =

F  

5 x x sincossin 2x cos2x 5 x+ sin  x x sincossin 2x cos2x 2x 2xsincos 

a b c   a 2b c+ + 0=  3
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43. Show that  is a subspace of , and then find a basis for that sub-
space.

44. Show that  is a subspace of , and then find a basis for that sub-
space.

45. Show that  is a subspace of , and then find a
basis for that subspace.

46. Find all values of c for which  is a basis for .

47. Find all values of c for which  is a basis for .

48. Find a basis for the vector space of Example 2.5, page 47.

49. Suppose  is a basis for a vector space V. For what values of a and b is
 a basis for V?

50. Let S is a subspace of V with . Prove that .

51. Suppose that  is a linearly independent set of vectors in a space V of dimen-
sion n, and that  spans V. Prove that .

52. A set of vectors S in a finite dimensional vector space V is said to be a maximal linearly
independent set if it is not a proper subset of any linearly independent set. Prove that a set of
vectors is a basis for V if and only if it is a maximal linearly independent set.

53. A set of vectors S in a finite dimensional vector space V is said to be a minimal spanning set
if no proper subset of S spans V. Prove that a set of vectors is a basis for V if and only if it is a
minimal spanning set.

54. Let H and K be finite dimensional subspace of a vector space V with , and let
. Prove that . (Note:

you were asked to show that  is a subspace of V in Exercise 42, page 67.)

55. Let H and K be finite dimensional subspace of a vector space V, and let
. Prove that: 

       Suggestion: Start with a basis for  and extend it to a basis for .

56. Prove that the polynomial space  of Exercise 22, page 50, is not finite dimensional by show-
ing that it does not have a finite base.

57. (Calculus dependent) Show that  is a subspace of the polynomial
space P of Exercise 22, page 50. Find a basis for S. 

58. Prove that a vector space V is infinite dimensional (not finite dimensional) if and only if for
any positive integer n, there exists a set of n linearly independent vectors in V.

a b c d    a b+ c d–=  4

ax2 bx c+ + a b c–=  P2

ax3 bx2 cx d+ + + a b c a b d+ += =  P3

1 1 0   c2 1 0   0 c 1     3

c 1
0 0

1 2c
1 0

0 1
c– 0

c 0
0 c

  
 
 
 

M2 2

v1 v2 v3  
av1 bv2 a b– v3 

dim S  dim V  n= = S V=

v1 v2  vs   
w1 w2 wt   s n t 

H K 0 =
H K+ h k+ h H and k K = dim H K+  dim H  dim K +=

H K+

H K+ h k+ h H and k K =

dim H K+  dim H  dim K  dim H K –+=
H K H K+

P

S p P p 0  0= =
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59. If  is a basis for a vector space V, and if , , and  are nonzero scalars, then
 is also a basis for V.

60. If  is a linearly independent set of vectors in a space V of dimension n, and
if , then  is a basis for V.

61. If  is a linearly independent set of vectors in a space V of dimension n, and
if , then  is a basis for V.

62. If  is a spanning set of vectors in a space V of dimension n, then
  is a basis for V.

63. If  is a spanning set of vectors in a space V of dimension n, and if
, then   is a basis for V.

64. If  is a basis for a vector space V, then  is also a basis
for V.

65. It is possible to have a basis for the polynomial space  which consists entirely of poly-
nomials of degree 2.

66. Let  be a spanning set for a space V of dimension n satisfying the property
that . If you delete any vector from the set , then
the resulting set of n vectors will be a basis for V. 
Note: In set notation, an element cannot be repeated. In particular, no two of the vs in

 are the same.

67. If V is a space of dimension n, then V contains a subspace of dimension m for every integer
.

PROVE OR GIVE A COUNTEREXAMPLE

v1 v2 v3   c1 c2 c3

c1v1 c2v2 c3v3  

v1 v2  vn 1–   

vn v1 v2  vn 1–    v1 v2  vn 1– vn    

v1 v2  vn 1–   

vn Span v1 v2  vn 1–    v1 v2  vn 1– vn    

v1 v2  vn vn 1+    

v1 v2  vn   

v1 v2  vn vn 1+    

vn 1+ Span v1 v2  vn    v1 v2  vn   

v1 v2 v3   v1 v1 v2+ v1 v2 v3+ +  

P2 x 

v1 v2  vn 1+   

v1 v2  vn 1++ + + 0= v1 v2  vn 1+   

v1 v2  vn 1+   

0 m n 
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CHAPTER SUMMARY

                      LINEAR
COMBINATION

A vector v in a vector space V is said to be a linear combination
of vectors  in V, if there exists scalars 
such that: 

SPANNING The set of linear combinations of  is a subspace
of V. It is said to be the subspace of V spanned by those vectors,
and is denoted by : 

If , then  is said to
span the vector space V.

If every vector in a set  is
contained in the space
spanned by another set ,
then  is a subset
of .

Let the set of vectors  and  be
such that   for . Then:

If  and 
then:                           

LINEARLY INDEPENDENT
SET

The vectors  are  linearly independent if:

If the vectors  are not linearly independent then
they are said to be linearly dependent.

Unique representation. The vectors  are linearly independent if and only if 

implies that  , for .
No vector can be built from
the rest.

A collection of two or more vectors is linearly independent if
and only if none of those vectors can be expressed as a linear
combination of the rest.

Expanding a linearly inde-
pendent set.

Let  be a linearly independent set. If
, then  is again a linearly indepen-

dent set.

v1 v2  vn   c1 c2  cn  

v c1v1 c2v2  cnvn+ + +=

v1 v2  vn   

Span v1 v2  vn   
Span v1 v2  vn    c1v1 c2v2  cnvn+ + + =

V Span v1 v2  vn   = v1 v2  vn   

S1

S2

Span S1 

Span S2 

v1 v2  vn    w1 w2  wm   

wi Span v1 v2  vn    1 i m 

Span w1 w2  wm    Span v1 v2  vn   

v1 v2  vn    Span w1 w2  wm    w1 w2  wm    Span v1 v2  vn   

Span v1 v2  vn    Span w1 w2  wm   =

v1 v2  vn  

a1v1
 anvn+ + 0 ai 0 1 i n = =

v1 v2  vn  

v1 v2  vn  

a1v1  anvn+ + b1v1  bnvn+ +=

ai bi= 1 i n 

S v1 v2  vn   =
v Span S  v1 v2  vn v    
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Linear Independence Theo-
rem.

A homogeneous system of m linear equations in n unknowns S has
only the trivial solution if and only if  has n leading
ones.

Linear independence in . A set of vectors  in  is linearly independent if
and only if the row-reduced-echelon form of the   matrix
whose  columns is the (vertical) n-tuple  has m leading ones.

BASIS A set of vectors  in a vector space V is said
to be a basis for V if:

(1)  spans V   

and: (2)  is linearly independent.

A spanning set can’t have
fewer elements than the
number of elements in any
linearly independent set.

If  spans V, and if  is a linearly
independent subset of V, then .

All bases for a vector space
contain the same number of
vectors.

If  and  are bases for a vector
space V, then .

You can show that a set of
n vectors in an n-dimen-
sional vector space is a
basis by EITHER showing
that they span the space, OR
by showing that it is a lin-
early independent set—you
DON’T have to do both: 

Let  be a set of n vectors in a vector space V of
dimension n. The following are equivalent:

(i)  is a basis.

(ii)  spans V.

(iii)  is linearly independent.

Expansion Theorem

Reduction Theorem

Any linearly independent set of vectors in V can be extended to a
basis for V.
Any spanning set of vectors in V can be reduced to a basis for V. 

Reducing a set of vectors S
in  to a basis for
Span(S) 

Let  be vectors in . If A is the  matrix
whose  column is the n-tuple , then the set consisting of
those vectors , where the  column of  contains a
leading one, is a basis for the space spanned by .

rref coef S  

Rn v1 v2  vm    n

n m
ith vi

 v1 v2  vn   =





w1 w2  wm    v1 v2  vn   

n m

w1 w2  wn    v1 v2  vm   

n m=

v1 v2  vn   

v1 v2  vn   

v1 v2  vn   

v1 v2  vn   

n
v1 v2  vm   n n m

ith vi

vi ith rref A 
v1 v2  vm  
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 4115

CHAPTER 4 
LINEARITY

In this chapter we turn our attention to functions from one vector space
to another which, in a sense, preserve the algebraic structure of those
spaces. Such functions, called linear transformations, are introduced in
Section 1. As you will see, each linear transformation  gives
rise to two important subspace; one, called the kernel of T, resides in the
vector space V, while the other, called the image of T, lives in W. Those
two subspaces are investigated in Section 2. Linear transformations
which are also one-to-one and onto are called isomorphisms, and they
are considered in Section 3. 

Up to now we have focused our attention exclusively on the internal
nature of a given vector space. The time has come to consider functions
from one vector space and another:

Let’s focus a bit on the statement:  

for . There are two plus signs in the equation, but the one on
the left is happening in the space V, while the one on the right takes
place in the space W. What the statement is saying is that you can per-
form the sum in the vector space V and then carry the result over to the
vector space W via the transformation T, or you can first carry those
two vectors  and  over to W (via T) and then perform their sum in
the space W. In the same fashion,  is saying that you
can perform scalar multiplication in V and then carry the result over to
W, or you can first carry the vector v to W and then perform the scalar
multiplication in that vector space.

§1. LINEAR TRANSFORMATIONS

T: V W

A linear transformation is
also called a linear func-
tion, or a linear map.  A
linear map  from a
vector space to itself is said
to be a linear operator.

T: V V

DEFINITION 4.1
LINEAR

TRANSFORMATION

A function  from a vector space V to
a vector space W is said to be a linear trans-
formation if for every  and :

EXAMPLE 4.1 Show that the function  given by
 is linear.

T: V W

v v V r 

(1):  T v v+  T v  T v +=
and (2):  T rv  rT v =

T v v+  T v  T v +=
T: V W

v v
T rv  rT v =

T: 3 2
T a b c   2a b+ c– =
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SOLUTION: Let  and  .

 

SOLUTION: If you are undecided on whether or not f is linear, you
may want to challenge its linearity with a couple of specific voters

The above establishes nothing. It certainly does not show that the
function f is not linear, nor does it establish its linearity since we have
but demonstrated that it “works” for the two chosen vectors 
and . Let’s try another pair: 

Since , the func-
tion is not linear. 

A smoother approach: 
T a b c   a  b  c  + 

T a a  b b  c c +++ =
2 a a +  b b + + c c + – =
2a 2a  b b + + + c– c – =
2a b+ c–  2a  b + c – +=

T a b c   T a  b  c  +=

EXAMPLE 4.2 Determine if the function  given
by  is linear.

You can also show that the above function is not linear by
demonstrating, for example, that . To
show that a function is not linear you need only come up with a
specific counterexample which “shoots down” EITHER (1) or
(2) of Definition 4.1.

a b c   a b c  3 r 

T a b c   a b c +  T a a+ b b c c++ =
2 a a+  b b+ + c c+ – =
2a 2a b b+ + + c– c– =

T a b c   T a b c + 2a b+ c–  2a b+ c– +=
2a b 2a b+ + + c– c– =

sam
e

T preserves sums:

T a b c   2a b+ c– :=

and:

T r a b c    T ra rb rc  2ra rb+ rc– = =

r 2a b+ c–  rT a b c  = =

T preserves scalar products:

f: 3 3
f a b c   2c b2 a–  =

f 2 1 3   4 0 1  +  f 2 1 3   f 4 0 1  +=
?

8 1 6–   6 1 2–   2 0 4–  +=

?

8 1 6–   8 1 6–  = Yes!

f 6 1 4   f 2 1 3   f 4 0 1  +=

f a b c   2c b2 a–  :=
?

2 1 3  
4 0 1  

f 3 2– 5   4 9 3–  +  f 3 2– 5   f 4 9 3–  +=
?

f 7 7 2   f 3 2– 5   f 4 9 3–  +=
?

4 49 7–   4 85 7–  = No!

4 49 7–   10 4 3–   6– 81 4–  +=
?

?

f 3 2– 5   4 9 3–  +  f 3 2– 5   f 4 9 3–  +

f 2 1 2 3    2f 1 2 3  
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Given that a linear transformation preserves vector space structures, it
may come as no surprise to find that it maps zeros to zeros, and
inverses to inverses:   

PROOF: (a) Note that three different zeros are featured below: 

 (b) 

The following Theorem compresses the two conditions of Definition
4.1 into one:

PROOF: If T is linear, then for all    and :

Answer: See page B-12.

CHECK YOUR UNDERSTANDING 4.1

Is the function  given by 
linear? Justify your answer.

f: 2 3 f a b  a b 2b a b–+ =

In order to distinguish
where the different
zeros preside, we are
using  and  to
indicate the  zero is in
the vector space V and
W, respectively.

0V 0W

THEOREM 4.1 If  is linear, then:

(a) 

(b) 

T: V W

T 0V  0W=

zero in the space V       

zero in the space W

T v–  T v –=
inverse of v
in the space V

inverse of the vector 
T v  in the space W 

T 0V  T 0 0V  0T 0V  0W= = =
Theorem 2.7, page 53

by linearity

T v–  T 1– v  1– T v  T v –= = =
Theorem 2.8, page 54

by linearity

Answer: See page B-12.

CHECK YOUR UNDERSTANDING 4.2

Use Theorem 4.1(a) to show that the function  given
by  is not linear.

f: 2 P2 x 

f a b  ax2 bx 1+ +=

You can perform the
vector operations in V
and then apply T to that
result: , or
you can first apply T
and then perform the
vector operations in W:

. Either
way, you will end up at
the same vector in W.

T rv w+ 

rT v  T w +

THEOREM 4.2   is linear if and only if:

for all   and 

T: V W

T rv v+  rT v  T v +=
v v V r 

v v V r 

T rv v+  T rv  T v + rT v  T v += =
(1) of Definition 4.1 (1) of Definition 4.1
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Conversely, if  for all  and
, then:

(1): 

(2): 

You are invited to establish the following generalization of the above
result in the exercises:

The following theorem tells us that linear transformations map sub-
spaces to subspaces:

PROOF: For , and :

Suppose you have a run-of-the-mill function , and you
know that  and that . What can
you say about ? Nothing. But if  is linear, with

 and , then:

THEOREM 4.3 Let  be linear. For any vectors
 in V, and any scalars
:

T rv v+  rT v  T v += v v V
r 

T v v+  T 1v v+  1T v  T v + T v  T v += = =
Axiom (viii), page 40

T rv  T rv 0+  rT v  T 0 + rT v  0+ rT v = = = =
Axiom (iii), page 40

Theorem 4.1(a)

T: V W
v1 v2  vn  

a1 a2  an  

T a1v1  anvn+ +  a1T v1   anT vn + +=

Answer: See page B-12.
CHECK YOUR UNDERSTANDING 4.3

Use Theorem 4.2 to establish the linearity of the function of CYU 4.1.

See Theorem 2.13, page 61

THEOREM 4.4 Let  be linear. If S is a subspace of V,
then  is a subspace of W.

CHECK YOUR UNDERSTANDING 4.4
PROVE OR GIVE A COUNTEREXAMPLE: Let  be linear,
and . If  is a subspace of W, then S must be a subspace of V.

A LINEAR MAP IS COMPLETELY DETERMINED 
BY ITS ACTION ON A BASIS

T: V W
T S  T s  s S =

T s1  T s2  T S  r 

rT s1  T s2 + T rs1 s2+  T S =
since T is linear since S is a subspace,

rs1 s2 S+

T: V W
S V T S 

f: 2 3
f 1 0  1 2 3  = f 0 1  2 3 5–  =

f 3 5  T: 2 3
T 1 0  1 2 3  = T 0 1  2 3 5–  =
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In particular, if you have two linear transformations that act identi-
cally on a basis, then those two transformations must, in fact, be one
and the same:

PROOF: Let . Since  is a basis for V, there exist
scalars  such that: 

We then have:

The next theorem gives a method for constructing all linear maps
from one vector space to another:

Yes: A linear transformation  is COMPLETELY
DETERMINED by its action on a basis of V

THEOREM 4.5 Let V be a finite dimensional space with basis
. If  and 

are linear maps such that  for
, then  for every .

T 3 5  T 3 1 0  5 0 1 + =
3T 1 0  5T 0 1 +=
3 1 2 3   5 2 3 5–  + 13 21 16–  = =

by linearity:

T: V W

v1 v2  vn    T: V W L: V W

T vi  L vi =
1 i n  T v  L v = v V

v V v1 v2  vn   

a1 a2  an  

v a1v1 a2+= v2  avn+ +

T v  T a1v1 a2+ v2  anvn+ +  a1T v1  a2T v2   anT vn + + += =

a1L v1  a2L v2   anL vn + + +=

L a1v1 a2+ v2  anvn+ +  L v = =

linearity of T

Since T vi  L vi :=

linearity of L:

Answer: See page B-12.

CHECK YOUR UNDERSTANDING 4.5
PROVE OR GIVE A COUNTEREXAMPLE: Theorem 4.5 still holds if

 is a spanning set for V (not necessarily a basis).

THEOREM 4.6
LINEAR

CONSTRUCTION

Let  be a basis for a vector
space V, and let  be n arbitrary
vectors (not necessarily distinct) in a vector
space W. There is a unique linear transforma-
tion  which maps  to  for

; and it is given by:

v1 v2  vn   

v1 v2  vn   
w1 w2  wn  

T: V W vi wi
1 i n 

T a1v1  anvn+ +  a1w1  anwn+ +=
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PROOF: From Theorem 4.4, we know that there can be at most one
linear transformation  such that  for .
We complete the proof by establishing the fact that the above func-
tion T is indeed linear:

For  and  in V,
and :

 

SOLUTION: (a) It is easy to see that  is a basis for .
We express  as a linear combination of the vectors in that basis:

Applying the linear transformation to  we
have:

(b) Repeating the above process for , we have:

T rv v+ 

rT v  T v +

EXAMPLE 4.3 Let  be the linear transformation
which maps  to  and  to

. Determine:

    (a)                         (b) 

T: V W T vi  wi= 1 i n 

v a1v1  anvn+ += v b1v1  bnvn+ +=
r 

T rv v+  T r aivi
i 1=

n

 bivi
i 1=

n

+
 
 
 
 

=

T rai bi+ vi
i 1=

n


 
 
 
 

rai bi+ wi

i 1=

n

= =

r aiwi

i 1=

n

 biwi

i 1=

n

+ rT v  T v += =

definition of T

T: 2 3
1 1  3 2 4   4 1 

1 0 5–  

T 9 6  T a b 

1 1  4 1   2

9 6 

9 6  r 1 1  s 4 1 += 9 r 4s+=
6 r s+=
3     3s s 1= =
6 r 1 r+ 5= =

_ :

9 6  5 1 1  1 4 1 +=

T 9 6  T 5 1 1  1 4 1 +  5T 1 1  1T 4 1 += =
5 3 2 4   1 0 5–  +=
15 10 20   1 0 5–  +=
16 10 15  =

a b 

a b  r 1 1  s 4 1 += a r 4s+=
b r s+=

a b–     3s s a b–
3

------------= =

b r a b–
3

------------ r+ 4b a–
3

---------------= =

_:
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Consequently:

As you may recall from earlier courses, for given functions 
and , the composition of f followed by g is that function,
denoted by , that is given by  (first apply f, and
then apply g):

The following theorem tells us that the composition of linear functions
is again a linear function:

PROOF: For  and  we show that the function  sat-
isfies the condition of Theorem 4.1: 

T a b  rT 1 1  sT 4 1 + 4b a–
3

--------------- 3 2 4   a b–
3

------------ 1 0 5–  += =

2a– 11b+
3

-------------------------- 2a– 8b+
3

----------------------- 9a– 21b+
3

--------------------------  
 =details omitted:

Answer: See page B-12.

CHECK YOUR UNDERSTANDING 4.6

Let  be the linear transformation which maps

 and  to  , and maps  to .
Determine: 

        (a)                                (b)  . 

COMPOSITION OF LINEAR FUNCTIONS

THEOREM 4.7 If  and  are linear, then
the composition  is also linear.

T: R3 P2 x 

1 0 0   0 2 0   2x2 x+ 1 1 1   x 5–

T 3 4 2   T a b c  

f: X Y
g: Y Z

gf gf  x  g f x  =

x. . .y z

f gX Y Z

gf

T: V W L: W Z
LT: V Z

LT  rv v+ 

r LT  v  LT  v +

v v V r  LT

LT  rv v+  L T rv v+   L rT v  T v + = =

rL T v   L T v  +=
r LT  v  LT  v +=Definition of composition:

linearity of T

linearity of L:
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SOLUTION: Linearity of T:

Linearity of L:

The composite function :

EXAMPLE 4.4 Let  and  be
given by:

and: 

(a) Show that T and L are linear.
(b) Show directly that the composite function

 is again linear. 

T: 3 M2 2 L: M2 2 P2

T a b c   a b+ 0
c b–

=

L a b
c d 

 
 

bx2 a c– x c+ +=

LT: 3 P2

T r a b c   a' b' c'  +  T ra a' rb b' rc c'+++  =

ra a'+  rb b'+ + 0
rc c'+ rb b'+ –

=

r a b+ 0
c b–

a' b'+ 0
c' b'–

+=

rT a b c   T a' b' c'  +=

L r a b
c d

a' b'
c' d '

+
 
 
 

T ra a'+ rb b'+
rc c'+ rd d '+ 

 
 

=

rb b'+ x2 ra a'+  rc c+ – x rc c'+ + +=
r bx2 a c– x c+ +  b'x2 a' c'– x c'+ + +=

rT a b
c d 

 
 

T a' b'
c' d ' 

 
 

+=

LT: 3 P2

LT  a b c   L T a b c    L a b+ 0
c b– 

 
 

= =

0x2 a b+  c– x c+ +=
a b c–+ x c+=



                                                                                          4.1  Linear Transformations     119

Linearity of :LT: 3 P2

LT  r a b c   a' b' c'  +  LT  ra a' rb b' rc c'+++  =
r a a'  r b b'  rc c'+ –+ + + x rc c'+ +=

r a b c–+ x c+  a' b' c'–+ x c'+ +=
r LT  a b c   LT  a' b' c'  +=

Answer: See page B-13.

CHECK YOUR UNDERSTANDING 4.7

(a) Show that  and  are
bases for  and , respectively. 

(b) Let  be the linear transformation which maps 
to  and  to . Let  be the linear
transformation which maps  to  and both  and

 to . Determine the map .

1 0  1 1   0 1 0   1 1 0   0 1 1    
2 3

T: 2 3 1 0 
0 2 0   1 1  1 0 1   L: 3 2

0 1 0   0 1  1 1 0  
0 1 1   1 0  LT: 2 2



120     Chapter 4    Linearity                                                                                                    

Exercises 1-18. Determine whether or not the given function  f is a linear transformation. 

EXERCISES

1. , where .

2. , where .

3. , where .

4. , where .

5. , where .

6. , where .

7. , where .

8. , where .

9. , where .

10. , where .

11. , where .

12. , where .

13. , where .

14. , where .

15. , where .

16. , where .

17. , where .

18. , where , and V is the vector space of Example 2.5, page 47.

f:   f x  5x–=

f:   f x  0=

f:   f x  1=

f: 2  f x y  2x 3y–=

f: 2  f x y  xy=

f: 2 2 f x y  x y x y–+ =

f: 2 3 f x y  x xy y =

f: 2 3 f x y  x
2
--- y y

2
---  =

f: 3 P2 x  f a b c   ax2 bx c+ +=

f: P2  f ax2 bx c+ +  a b c+ +=

f: P2  f ax2 bx c+ +  abc=

f: P2 P2 f ax2 bx c+ +  a x 1+ 2 b x 1+  c++=

f: P2 P3 f ax2 bx c+ +  ax3 bx2 cx+ +=

f: 3 M2 3 f a b c   0 a b
c b a

=

f: M2 2  f a b
c d 

 
 

ad bc–=

f: M2 2 M2 2 f a b
c d 

 
  a b– 0

0 cd
=

f:   f x  xsin=

f:  V f x  2x=
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19. Let the linear map  be such that:

Find: (a)                   (b) 

20. Let the linear map  be such that: 

Find:   (a)              (b)  

21. Let the linear map  be such that: 

Find:   (a)                 (b) 

22. Let the linear map be such that:

Find:     (a)                (b) 

23. Show that there cannot exist a linear transformation  such that: 

24. Show that there cannot exist a linear transformation  such that: 

25. Show that the identity function , given by  for every v in V, is linear.

26. Show that the zero function , given by  for every v in V, is linear. (Refer-
ring to the equation , where does 0 live?)

27. In precalculus and calculus, functions of the form  are typically called linear
functions. Give necessary and sufficient conditions for a function of that form to be a linear
operator on the vector space .

28. Show that for any  the function , where  is linear. (See
Theorem 2.4, page 44.)

29. (Calculus Dependent) Let  be the subspace of the function space  consisting of
all differentiable functions. Let  be given by , where  denotes
the derivative of f.  Show that T is linear.

T: 2 3
T 1 1  1 2 0   T 0 2  1 0 2  = =

T 5 3  T a b 

T: 3 2

T 1 0 0   3 2  T 0 1 0   2 3   and T 0 0 1   1 1 = = =
T 5 3 2–   T a b c  

T: 2 M2 2

T 1 0  1 0
2 1

T 1 1  2 1
3 2

= =

T 5 3  T a b 

T: 2 M2 2

T 1 1  1 0
2 1

T 3 1  2 1
3 2

= =

T 5 3  T a b 

T: R2 R2

T 1 2  5 3  T 5 3  1 2   and T 1 1  2 2 = = =

T: R2 P2

T 1 2  x2 2+ T 5 3  5x 3+  and T 1 1  x2 x 1+ += = =

I: V V I v  v=

Z: V W Z v  0=
Z v  0=

y ax b+=



a  Ta: F    Ta f  f a =

D   F  
T: D   F   T f  f = f 
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30. (Calculus Dependent) Show that the function , given by

 is linear.

31. (Calculus Dependent) Show that if the linear function  is such that
, and , then T is the derivative function.

32. (Calculus Dependent) Let  denote the vector space of all real-valued functions that

are integrable over the interval . Let  be given by .
Show that T is linear.

33. Let  be linear and let S be a subspace of V. Show that  is a subspace
of W.

34. (PMI) Use the Principle of Mathematical Induction to prove Theorem 4.3. 

35. Let , with addition and scalar multiplication given by:

Show that  is a vector space.

36. (a) Show that if a function  satisfies the property that  for every
 and , then  is a linear function: which is ti say, that it must also satisfy the

property that  for every . 

(b) Give an example of a function  satisfying the property that
 for every  and every  but which does not satisfy the

property that . 
(Note: It is by no means a trivial task to establish the existence of a non-linear function  which
satisfies the property that  for every .)

37. Let  satisfy the condition that  for every .
Show that:

(a)  for every .                 (b)   for every . 

38. Let  satisfy the condition that  for every .
Show that:

(a) (PMI)  for every , and for every integer n. 

(b)  for every , and for every rational number .

T: P2 P4

T p x   5x3
xd

d px 5+ =

T: P2 P1

T x2  2x T x  1= = T 1  0=

I a b 

a b  T: I a b   T f  f x 
a
b
 dx=

T: V W T v  v S 

L V W  T: V W T is linear =

T1 T2+  v  T1 v  T2 v   and  rT  v + r T v  = =

L V W 

f:   f rx  rf x =
r  x  f

f x1 x2+  f x1  f x2 += x1 x2 

f: 2 2
f r a b   rf a b = r  a b  2

f: a b  c d +  f a b  f c d +=
f: V W

f v1 v2+  f v1  f v2 += v1 v2 V

f: V W f v1 v2+  f v1  f v2 += v1 v2 V

f 3v  3f v = v V f 2
3
---v  2

3
--- f v = v V

f: V W f v1 v2+  f v1  f v2 += v1 v2 V

f nv  nf v = v V

f a
b
---v  a

b
--- f v = v V a

b
---
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Exercises 39-44. Determine the indicated composition of the given linear functions, and then
directly verify its linearity. 

39. , where  is given by  and  by
.

40. , where  is given by  and 
by 

41. , where  is given by  and  by
.

42. , where  is given by  and

 by .

43. , where  is given by ,  by
, and  by .

44. , where  is given by ,
 by , and  by .

45. (PMI) Let  be linear, for . Show that  is
linear. 

46. For any  the function  given by  is linear.

47. For any  the function  given by  is linear.

48. Let  be linear. If  is a linearly independent subset of W 
then  is a linearly independent subset of V.

49. Let  be linear. If  is a linearly independent subset of V then 
 is a linearly independent subset of W.

50. If for given functions  and  the composite function  is lin-
ear, then both  f and g must be linear.

51. If for given functions  and  the composite function  is lin-
ear, then f must be linear.

52. If, for given functions  and , the composite function  is lin-
ear, then g must be linear.

PROVE OR GIVE A COUNTEREXAMPLE

LT: 2 2 T: 2  T a b  a b+= L:  2
L a  2a a– =

LT: 2  T: 2 2 T a b  a– a b+ = L: 2 
L a b  a 2b+=

LT: 2 P2 T: 2  T a b  3a b+= L:  P2

L a  ax2 2a+=

LT: P2 M2 2 T: P2 3 T ax2 bx c+ +  a b c  =

L: 3 M2 2 L a b c   2a b
0 c–

=

KLT:  3 T:  2 T a  a a– = L: 2 2

L a b  2a a b+ = K: 2 3 K a b  a 2b a b+– =

KLT: 3 P2 T: 3 2 T a b c   a b a c–+ =
L: 2  L a b  a b–= K:  P2 K a  ax2 2ax 3a+ +=

Li: Vi Vi 1+ 1 i n  LnL2L1: V1 Vn 1+

a  Ta: V V Ta v  av=

v0 V Tv0
: V V Tv0

v  v v0+=

T: V W T v1  T v2   T vn    

v1 v2  vn   

T: V W v1 v2  vn   

T v1  T v2   T vn    

f: V W g: W Z gf: V Z

f: V W g: W Z gf: V Z

f: V W g: W Z gf: V Z
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 4

For any given transformation , we define the kernel of T to
be the set of vectors in V which map to the zero vector in W [see Figure
4.1(a)], and we define the set of all vectors in W which are “hit” by
some  to be the image of T [see Figure 4.1(b)].

Figure 4.1
More formally:

Both the kernel and image of a linear transformation turn out to be
subspaces of their respective vector space:

PROOF: We employ Theorem 2.13, page 61 to establish both parts of
the theorem.

(a) Since ,  is nonempty. 
Let  and . Then:

Since T maps  to 0, .

§2. KERNEL AND IMAGE

DEFINITION 4.2
KERNEL

IMAGE

Let  be linear. The kernel (or null
space) of T is denoted by  and is
given by:

The image of T is denoted by  and is
given by: 

THEOREM 4.8 Let  be linear. Then:

(a)  is a subspace of V.

(b)  is a subspace of W.

T: V W

T v 

.
0

V W

Kernel of T

V W

Image of T

T
T

(a)                                                             (b)

T: V W
Ker T 

Ker T  v V T v  0= =

Im T 

Im T  w W T v  w for some v V= =

T: V W

Ker T 

Im T 

v1 v2 Ker T  and r R

rv1 v2+ Ker T 

T 0  0= Ker T 
v1 v2 Ker T  r 

T rv1 v2+  rT v1  T v2 + r 0 0+ 0= = =
linearity

since v1 v2 ker T 

rv1 v2+ rv1 v2+ Ker T 
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(b) Since ,   is nonempty. 
Let  and . Choose vectors  such that

 and  (how do we know that such vec-
tors exist?). Then:

Since we found a vector in V which maps to ,
.

The following theorem will be useful in determining the rank of a lin-
ear transformation.

PROOF: We show that any  can be written as a linear com-
binations of the vectors :

Let , and let  be such that . Since
 spans V, we can express v as a linear

combination of the vectors in  S:. 

By linearity:

w1 w2 Im T  and r R

rw1 w2+ Im T 

DEFINITION 4.3
NULLITY

RANK

Let  be linear. 
The dimension of   is called the nul-
lity of T, and is denoted by . 

The dimension of  is called the rank
of T, and is denoted by .

T 0  0= Im T 
w1 w2 Im T  r R v1 v2

T v1  w1= T v2  w2=

T rv1 v2+  rT v1  T v2 + rw1 w2+= =
rw1 w2+

rw1 w2+ Im T 

T: V W
Ker T 

nullity T 

Im T 
rank T 

In particular, if  

is a basis for V, then 

will span .

 v1 v2  vn   =

T v1  T v2   T vn    

Im T 

THEOREM 4.9 Let  be linear. If  

Then: 

T: V W

Span v1 v2  vn    V=

Span T v1  T v2   T vn    Im T =

w Im T 

w aiT vi 

i 1=

n

=

EXAMPLE 4.5 (a) Show that the function  given by:

 is linear.

(b) Determine  and .

(c) Determine  and .

w Im T 
T v1  T v2   T vn   

w Im T  v V T v  w=
S v1 v2  vn   =

v a1v1 a2v2  anvn+ + +=

T v  w a1T v1  a2T v2   anT vn + + += =

T: 3 P2

T a b c   a b+ x2 cx c+ +=

Im T  rank T 

Ker T  nullity T 
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SOLUTION: (a) For  and :

(b) By Theorem 4.9, we know that the vectors: 

span the image of T. Since  and  are linearly independent,
 is a basis for . Consequently, .

(c) By definition:

This leads us to the following system of equations:

Thus: . Since  is a
basis for , .

PROOF: Start with a basis  for  and extend it (if
necessary) to a basis  for V [see Theo-
rem 3.12(a), page 100], where: —the dimension of V.
We will show that the t vectors  constitute a
basis for . This will complete the proof, for we will then have:

a b c   a b c  3 r 

T r a b c   a b c +  T ra a+ rb b+ rc c+  =

ra a+  rb b+ + x2 rc c+ x rc c+ + +=

r a b+ x2 cx c+ +  a b+ x2 cx c+ + +=
rT a b c   T a b c +=

regrouping:

T 1 0 0   x2= T 0 1 0   x2 T 0 0 1   x 1+= =
x2 x 1+

x2 x 1+  Im T  rank T  2=

Ker T  a b c   T a b c   0= =

a b c   a b+ x2 cx c+ + 0x2 0x 0+ += =

a b+ 0=
c 0= 




c 0 and a b–= =

Answer: (a) See page B-13.
(b) ,
       

rank T  3=
nullity T  0=

CHECK YOUR UNDERSTANDING 4.8

(a) Show that the function  given by:

 is linear.

(b) Determine  and .

THEOREM 4.10
DIMENSION
THEOREM

Let V be a vector space of dimension n, and
let  be linear. Then:

Ker T  a a 0–  a R = 1 1 0–  
Ker T  nullity T  1=

T: P2 M2 2

T ax2 bx c+ +  a b
c a

=

rank T  nullity T 

T: V W

rank T  nullity T + n=

v1 v2 vk   Ker T 
v1 v2  vk vk 1+  vk t+      

k t+ n=
T vk 1+   T vk t+   

Im T 

rank T  nullity T + k t+ n= =
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As you know, to establish the fact that  is a
basis for  we have to verify that:

(1) The vectors  span the space .   

And that:

(2) The vectors  are linearly independent.

Let’s do it:

(1) Let . Choose  such that .
Since  is a basis for V, we can

express v as a linear combination of those  vectors:  

By linearity:

 
(2): Assume that: 

By linearity:

And therefore: 

Since  is a basis for , we can then find scalars
 such that:

Or: 

Since  is a basis, it is a linearly inde-
pendent set of vectors. Consequently those c’s and b’s must all be
zero; in particular: . 

Why can’t you simply
show just one of the two?

T vk 1+   T vk t+   

Im T 

T vk 1+   T vk t+   Im T 

T vk 1+   T vk t+  

w Im T  v V T v  w=
v1 v2  vk vk 1+  vk t+      

k t+

v a1v1 a2v2
 akvk ak 1+ vk 1++ + + +=  ak t+ vk t++ +

w T v  a1T v1  a2T v2   akT vk  ak 1+ T vk 1+   ak t+ T vk t+ + + + + + += =

0 ak 1+ T vk 1+   ak t+ T vk t+ + + + ak 1+ T vk 1+   ak t+ T vk t+ + += =

Since v1 v2  vk Ker T   

a linear combination of the vectors T vk 1+   T vk t+  

b1T vk 1+   btT vk t+ + + 0=

b1 0 b2 0  bt  0= = =

b1T vk 1+  b2T vk 2+   btT vk t+ + ++ 0=

T b1 vk 1+  b2 vk 2+   bt vk t+ + ++  0=

b1 vk 1+  b2 vk 2+   bt vk t+ + ++ Ker T 

v1 v2 vk   Ker T 
c1  ck 

b1 vk 1+   bt vk t+ ++ c1 v1   ck vk + +=

c– 1  v1   c– k  vk  b1 vk 1+   bt vk t+ +++ + + 0=

v1 v2  vk vk 1+  vk t+      

b1 0 b2 0  bt  0= = =
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SOLUTION: We go for the kernel, as it is generally easier to find than
the image apace:

Equating coefficients leads us to a homogeneous system of equations:

From the above, we see that: 

Conclusion:   is a basis for .

Knowing that , we turn to Theorem 4.10 and con-
clude that 

At this point, the easiest way to find a basis for  is to apply T to
3 vectors in  making sure that you end up with 3 linearly indepen-
dent vectors in —a basis for . Which 3 vectors should
we start with? Basically, you can take any 3 randomly chosen vec-
tors, and the chances are that they will do fine (think about it); we
will go with the 3 vectors , , and :

EXAMPLE 4.6 Determine bases for the kernel and image of
the linear function  given by:T: P3 M2 2

T ax3 bx2 cx d+ + +  a b– c
2c a d+

=

To say that: T ax3 bx2 cx d+ + +  0=

Is to say that:   a b– c
2c a d+

0 0
0 0

=

System S is certainly easy
enough to solve directly.
Still:

a b– 0=
c 0=

2c 0=
a d+ 0= 








                  

1 1– 0 0
0 0 1 0
0 0 2 0
1 0 0 1

           

1 0 0 1
0 1 0 1
0 0 1 0
0 0 0 0

         

a d–=
b d–=
c 0=

d is free 







rrefS: coef[S]

a    b    c   d

each of these four
 equations is equal to 0.

a    b    c   d

Ker T  dx3– dx2– d d R+  d x3– x2– 1+  d R = =
x3– x2– 1+  Ker T 

nullity T  1=

rank T  dim P3  nullity T – 4 1– 3= = =

See Exercise 16, page 105

Recall that:
T ax3 bx2 cx d+ + +  =

a b– c
2c a d+

Im T 
P3

Im T  Im T 

x3 x2 x 1+

T x3  1 0
0 1

T x2  1– 0
0 0

T x 1+  1 1
2 1

= = =

1x3 0x2 0x 0+ + + 0x3 0x2 1x 1+ + +0x3 1x2 0x 0+ + +
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We leave it to you to verify that above three vectors, which are cer-
tainly in Im(T) (why?), are linearly independent, and therefore consti-
tute a basis for the 3-dimensional space Im(T).

As you may recall:  

When dealing with a linear transformation, we have:

PROOF: (a) Let T be one-to-one, and suppose that . Since
 [Theorem 4.1(a), page 113], and since there can be but one

 that is mapped to  (T is one-to-one), .

Conversely, assume that . Then: 

(b) Follows directly from the definition of onto (Definition 4.4) and
the definition of  (Definition 4.2).

Answer: See page B-14.

CHECK YOUR UNDERSTANDING 4.9

Determine bases for the kernel and image of the linear function
 given by .

ONE-TO-ONE AND ONTO FUNCTIONS

T: 3 4 T a b c   2a b c c b + =

The first part of this theorem
is telling is that if a linear
map is “one-to-one at 0,”
then it is one-to-one every-
where. Certainly not true for
other functions:

. ..
. . ... .

.

A B
one-to-one

. .. .. .
.

A B
not one-to-one

.

.. ..
.

A B
  onto

.. .. .
.

A B
not onto

.. ..

DEFINITION 4.4
ONE-TO-ONE

ONTO

A function  from a set A to a set B is said
to be one-to-one if:

 A function  from a set A to a set B is said to
be onto if for every  there exist 
such that .

THEOREM 4.11 (a) A linear transformation  is one-
to-one if and only if .

(b) A linear transformation  is onto
if and only if .

f

f a  f a  a a= =

f
b B a A

f a  b=

T: V W
Ker T  0 =

T: V W
Im T  W=

T v  0=
T 0  0=
v V 0 W v 0=

T v  0= v 0=

T v1  T v2 =

T v1  T v2 – 0=

T v1 v2–  0=

v1 v2– 0=

v1 v2=
T v  0= v 0:=

T is linear:

Im T 
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SOLUTION: We show that :

Applying Theorem 4.11, we conclude that T is one-to-one.

Consider the adjacent graph of the func-
tion . As you can see, there
are some y’s which are only “hit by one x”
(like ), and there are some y’s
which are “hit by more than one x” (like

) — the function is kind of one-to-
one in some places, and not one-to-one in
other places. Linear transformations are
not so fickle; if a linear transformation is “one-to-one anywhere” (not
just at 0) then it is one-to-one everywhere:

EXAMPLE 4.7 Show that the linear function 
given by  is
one-to-one.

T: 3 3
T a b c   a c 3b c b–+ =

T a b c   0=

a b c   0=

T v  0 v 0= =
T a b c   a c 3b c b–+  0 0 0  = =

3b 0 b 0= =
c b– 0 c b c 0= = =

 a c+ 0 a c a– 0= = =

equating coefficients:

1

2

1
-1

-2

-1
..

.

.
f x  x3 x–=

y 2=

y 0=

Answer: See page B-14.

CHECK YOUR UNDERSTANDING 4.10

Let  be linear. Show that if there exists  such that
 then T is one-to-one.

      (So, one-to-one anywhere implies one-to-one everywhere.)

T: V W v V
T v  T v  v v= =
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Exercises 1-18. Determine if the given function is linear. If it is, find a basis for its kernel and its
image space.

EXERCISES

1. , where 2. , where 

3. , where 4. , where 

5. , where 6. , where 

7. , where 8. , where 

9. , where 

10. , where 

11. , where 

12. , where 

13. , where 

14. , where 

15. , where 

16. , where 

17. , where 

18. , where 

f:   f x  5x–= f:  2 f x  x 2x =

f:  2 f x  x x– = f:  2 f a  a a2 =

f: 2 2 f a b  ab a = f: 2 2 f a b  2b a– =

f: 2 P1 f a b  ax b+= f: 3 3 f a b c   0 b c  =

f: M2 2 P2 f a b
c d

a b–  b c– x c a– x2+ +=

f: 2 M2 2 f a b  a b
a b+ a b–

=

f: 4 M2 2 f a b c d    a 2b
cd c d+

=

f: P2 3 f p x   p 1  p 2  p 3  =

f: P2 2 f p x   p 0  p 1  =

f: P3 P4 f p x   xp x =

f: P3 P3 f p x   p x  p 1 +=

f: P3 M2 2 f p x   p 1  p 2 
p 3  p 4 

=

f: 3 M2 2 f a b c   a b– b c–
a b+ b c+

=

f: 4 M2 2 f a b c d    2a c d+
c d– b

=
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Exercises 19-27. (Calculus Dependent) Show that the given function is linear. Find a basis for its
kernel and its image space.

28. Let  be given by .
(a) Which, if any of the following 3-tuples are in the kernel of T?

(i)          (ii)      (iii) 

(b) Which, if any of the following 3-tuples are in the image T?
(i)          (ii)      (iii) 

29. Let  be given by .

(a) Which, if any of the following 3-tuples are in the kernel of T?
(i)          (ii)      (iii) 

(b) Which, if any of the following 3-tuples are in the image of T?
(i)          (ii)      (iii) 

30. Determine a basis for the kernel and image of the linear transformation  which
maps  to ,  to , and  to .

31. Determine a basis for the kernel and image of the linear transformation 

which maps  to ,  to , and  to .

19. , where 

20.  , where 

21.  , where 

22.  , where 

23. , where 

24.  where 

25.  where 

26.  where 

27.  where 

f: P3 P3 f p x   p x =

f: P3 P3 f p x   p x =

f: P3 P3 f p x   p x  p x +=

f: P2 P f p x   p x =

f: P2 P3 f p x   2p x  3p x –=

f: P1  f p x   p x  xd
0

1

=

f: P2  f p x   p x  xd
0

1

=

f: P1 P2 f p x   p t  td
0

x

=

f: P2 P3 f p x   p t  td
0

x

=

T: 3 3 T a b c   a b– a c+ c  =

3 3 0 –  0 3 3––  3 0 0  

3 3 0 –  0 3 3––  3 0 0  

T: 3 P3 T a b c   ax3 ax b c+ + +=

1 0 0   0 3 3–  0 0 1  

x3 x+ 5 x3 5+

T: 3 3
1 0 0   1 1 1   0 1 0   3 2 5–  0 0 1   2 3 4– – 

T: 3 M2 2

1 0 0   2 1
0 1

0 1 0   2 2
1 3

0 0 1   0 1
1 0
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32. Determine a basis for kernel and image of the linear transformation  which

maps   to ,  to ,   to 5, and  to .

33. Find, if one exists, a linear transformation  such that:

(a)   is a basis for .

(b)  is a basis for .

(c)  is a basis for .

34. Find, if one exists, a linear transformation  such that:

(a)   is a basis for .

(b)  is a basis for .

(c)  is a basis for .

35. Let , and let   be the linear operator , for . Enumer-
ate the possible values of  and .

36. Let  be linear with  and . Enumerate the possible val-
ues of  and . 

37. Let  be linear with  and . Enumerate the possible val-
ues of  and . 

38. Let  be a one-to-one linear map. Determine the rank and nullity of T.

39. Let  be an onto linear map. Determine the rank and nullity of T.

40. Let  be a linear operator, with . Prove that  if and only if
T is one-to-one.

41. Let  be linear, with . Prove that  is a basis for
V if and only if  is a basis for W.

42. Give an example of a linear transformation  such that .

43. Let  be a linear transformation, with . Prove that T is one-to-one if
and only if .

44. Let  be linear, with . Prove that  T is one-to-one if and only if
T is onto.

45. Let  and  be linear. 

(a) Prove that .

(b) Give an example for which .

(c) Give an example for which .

T: M2 2 P4

1 0
0 0

2x4 1+ 1 1
0 0

x4 x– 1 1
1 0

1 1
1 1

x2

T: 2 3

9 1 3    Im T 

9 0 0   0 1 0    Im T 

9 1 3   3 1 9   9 3 1     Im T 

T: 3 3

9 1 3    Ker T 

9 0 0   0 1 0    Ker T 

9 1 3   3 1 9   9 3 1     Ker T 

dim V  n= T: V V T v  rv= r 
nullity T  rank T 

T: V W dim V  2= dim W  3=
nullity T  rank T 

T: V W dim V  3= dim W  2=
nullity T  rank T 

T: P3 5

T: 5 P3

T: V V dim V  n= Im T  V=

T: V W dim V  dim W = v1 v1  vn   

T v1  T v2   T vn    

T: V W Im T  Ker T =

T: V W dim V  n=
rank T  n=

T: V W dim V  dim W =

T: V W L: W Z

Ker T  Ker LT 

Ker T  Ker LT =

Ker T  Ker LT 
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46. If  then .

47. There exists a one-to-one linear map .

48. There exists a one-to-one linear map .

49. There exists an onto linear map .

50. There exists an onto linear map .

51. If  is linear and , then T cannot be onto.

52. If  is linear and , then T cannot be one-to-one.

53. If  is linear and , then T cannot be onto.

54. If  is linear and , then T cannot be one-to-one.

55. There exists a linear transformation  such that .

56. There exists a linear transformation  such that .

57. There exists a linear transformation  such that .

58. There exists a linear transformation  such that .

59. If  is linear and if W is finite dimensional, then V is finite dimensional.

60. If  is linear and if V is finite dimensional, then W is finite dimensional.

61. If  is linear and if V is finite dimensional, then  is finite dimensional.

62. If  is linear and if   is finite dimensional, then V is finite dimensional.If
 is linear and if   is finite dimensional, then either V or W is finite dimen-

sional.

63. Let  and  be linear. If  , and ,
then  . 

64. Let  and  be linear. If  , , and
, then . 

65. Let  and  be linear. If  , , and
, then . 

66. Let  and  be linear, with  and  . If T is one-
to-one and L is onto, then .

PROVE OR GIVE A COUNTEREXAMPLE

span T v1  T v2   T vn    Im T = span v1 v2  vn    V=

T: M2 3 P4

T: P4 M2 3

T: M2 3 P4

T: P4 M2 3

T: V W dim V  dim W 

T: V W dim V  dim W 

T: V W dim V  dim W 

T: V W dim V  dim W 

T: 2 4 rank T  nullity T =

T: 3 4 rank T  nullity T =

T: 2 4 rank T  nullity T 

T: 2 4 rank T  nullity T 

T: V W

T: V W

T: V W Im T 

T: V W Im T 
T: V W Ker T 

T: V W L: W Z dim V  3 dim W  2== nullity T  1=
rank LT  1

T: V W L: W Z dim V  3 dim W  3== rank T  1=
nullity L  2= rank LT  1=

T: V W L: W Z dim V  3 dim W  3== rank T  1=
nullity L  2= rank LT  1

T: V W L: W Z dim W  n= dim Z  m=
dim V  n m–=
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 4

We can all agree that there is little difference between the vector
space  with its horizontal n-tuples, and the space  of “vertical
n-tuples”. In this section, we show that there is, in fact, little difference
between the vector space  and any n dimensional vector space what-
soever.

One-to-one and onto functions were previously defined on page 129.
Of particular interest are functions that satisfy both properties: 

Roughly speaking:

PROOF:  is one-to-one:

 is onto: Let  be given (see margin). Since g is onto there

exists  such that . Since f is onto, there
exists  such that . We then have:

Figuratively speaking, if you reverse the arrows of the bijection
 of Figure 4.2(a), you end up with the

bijection  of Figure 4.2(b), which is
called the inverse of  f.

§3. ISOMORPHISMS

BIJECTIONS AND INVERSE FUNCTIONS

n Mn 1

n

.
. . .

..... .
a bijection

A                  B

gf  a  gf  b =

a b=

DEFINITION 4.5
BIJECTION

A function  that is both one-to-one
and onto is said to be a bijection.

A bijection  serves to pair of each
elements of A with those of B (see margin).

THEOREM 4.12 If  and  are bijections,
then the composite function  is
also a bijection.

f: A B

f: A B

f: A B g: B C
gf: A C

gf
gf  a  gf  b =
g f a   g f b  =

f a  f b =
a b=

Definition of composition:

Since g is one-to-one:

Since f is one-to-one:

... c
ba

f g

gf
A                B              C

this a “does the trick”

gf c C

b B g b  c=
a A f a  b=

gf  a  g f a   g b  c= = =

f: 1 2 3 4    6 5 1 0   

f 1– : 6 5 1 0    1 2 3 4   
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Figure 4.2
The relationship between the functions f and  depicted in the mar-

gin reveals the fact that each function “undoes” the work of the other.
For example:

In general:

PROOF: Let  and  be given. Let   be
such that  and . Then:

Only bijections
  

have inverses

 

f: X Y

f 1– : Y X

. ...
... .1

2
3

4

6

5

0

1 . . .1
2

3

4

6

5

0

1... ..
(a)                                                               (b)

f f 1–

. .2
5

1

3
4

.
..

6

1
0

.
..

f

f 1–

f 1–

f 1–  f  2  f 1– f 2   f 1– 5  2= = =
and

f f 1–  5  f f 1– 5   f 2  5= = =

Answer: See page B-14.

DEFINITION 4.6
INVERSE

FUNCTIONS

The inverse of a bijection  is the

function  such that:

 for every x in X
and 

 for every y in Y.

CHECK YOUR UNDERSTANDING 4.11

Prove that if  is a bijection, then so is .

BACK TO LINEAR ALGEBRA

THEOREM 4.13 If the bijection  is linear, then its
inverse,  is also linear.

f: X Y

f 1– : Y X

f 1–
 f  x  x=

ff
1–  y  y=

f: X Y f 1– : Y X

T: V W
T 1– : W V

w w W r  v v V
T v  w= T v  w=

T 1– rw w+  T 1– rT v  T v +  T 1– T rv v+  = =
T 1– T  rv v+  rv v+ rT 1– w  T 1– w += = =

linearity of T

since T v  w  and  T v  w= =
Definition 
of composition Definition 4.6
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SOLUTION: 
T IS ONE-TO-ONE. We start with  and go on
to show that  (see Definition 4.4, page 129):

T IS ONTO. We start with  and find an  such that
 (see Definition 4.4, page 129):

Equating coefficients brings us to the system of equations:

Let’s make sure that  works: 

FINDING THE INVERSE OF T. Since 

Dropping the primes, we show, directly, that  given by

 IS LINEAR:

EXAMPLE 4.8 Show that the linear map  given by:
 

is a bijection. Find its inverse and show, directly,
that   is linear.

T: 3 3
T a b c   a c 3b c b–+ =

T 1–

T a b c   T a b c  =
a b c   a b c  =

T a b c   T a b c   a c 3b c b–+  a c 3b c b–+ ==

a c+ a c+=
3b 3b=

c b– c b–= 



 a a=

b b=
c c=

 
then

then

. .
T

a b c  a b c  

a b c   a b c  
T a b c   a b c  =

T a b c   a c 3b c b–+  a b c  = =

a c+ a=
3b b=

c b– c= 



 a a c– b

3
----–=

b b
3
----=

c c b
3
----+=


then

then

a b c   a c– b
3
----– b

3
---- c b

3
----+  

 =

T a b c   T a c– b
3
----– b

3
---- c b

3
----+  

 =

a c– b
3
----– 

  c b
3
----+ 

 + 3 b
3
---- 
  c b

3
----+ 

  b
3
---- 
 –  a b c  = =

T a c– b
3
----– b

3
---- c b

3
----+  

  a b c  :=

T 1– a b c   a c– b
3
----– b

3
---- c b

3
----+  

 =

T 1– : 3 3

T 1– a b c   a c– b
3
---– b

3
--- c b

3
---+  

 =
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Roughly speaking, two vector spaces will be considered to be the
“same” if the vectors of one space can be pared off with those of the
other, while preserving the vector space structures of those spaces.
More formally: 

SOLUTION: We start off by establishing linearity, for we can then
take advantage of previously established theory to show that the
function is one-to-one and onto:
Linearity: 

One-to-one: We show that  [see Theorem 4.11(a),
page 129]:

  
Equation coefficients:

                         or:          

T 1– r a b c   a b c  + 

rT 1– a b c   T 1– a b c +

=

T 1– r a b c   a b c  +  T 1– ra a+ rb b rc c++ =

ra a rc– c– rb
3
----- b

3
----––+ rb

3
----- b

3
----+ rc c rb

3
----- b

3
----+ + +  

 =

r a c– b
3
---– b

3
--- c b

3
---+  

  a c– b
3
----– b

3
---- c b

3
----+  

 +=

rT 1– a b c   T 1– a b c +=

Answer: See page B-14.

CHECK YOUR UNDERSTANDING 4.12

Show that the linear map  given by:
 

is a bijection. Find its inverse, and show directly that it is linear.

DEFINITION 4.7
ISOMORPHISM

A linear map  which is one-to-one
and onto is said to be an isomorphism from
the vector space V to the vector space W. 

EXAMPLE 4.9 Show that the function  given by: 

is an isomorphism.

T: 2 P1

T a b  a b+ x a–=

T: V W

T: 3 P2

T a b c   ax2– b c+ x 3c+ +=

T r a b c   a b c  +  T ra a rb b rc c'+++ =

ra a+ x2– rb b+  rc c+ + x 3 rc c+ + +=

r a– x2 b c+ x 3c+ +  a– x2 b c+ x 3c+ + +=
rT a b c   T a b c  +=

Ker T  0=

T a b c   0 ax2– b c+ x 3c+ + 0x2 0x 0+ += =

a– 0 b c+ 0 3c 0= = =
a b c 0= = =
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Onto: We show that  [see Theorem 4.11(b)]:
The Dimension Theorem of page 126, tells us that:

Knowing that the nullity is 0, we conclude that .
Since  is of dimension 3:  (Exercise 50, page 107).
 

PROOF: (a) The identity map  is easily seen to be an iso-
morphism.
(b) To say that V is isomorphic to W is to say that there exists an iso-
morphism . Since  is also a linear bijection
(CYU 4.12 and Theorems 4.13), W is isomorphic to V.
(c) Let  and  be isomorphisms. Since

 is both a bijection (Theorem 4.12) and linear (Theorem
4.7, page 117), V is isomorphic to Z. 

Theorem 4.14(b) enables us to formulate the following definition:

 The following lovely result says that all n dimensional vector spaces
are isomorphic to the Euclidean n-space. 

PROOF: Let  be a basis for V, and let 
be the standard basis for  (see page 94). Consider the function

, given by: .
Theorem 4.6, page 115 assures us that T is linear. We complete the
proof by showing that T is both one-to-one and onto (and therefore an
isomorphism).

Im T  P2=

rank T  nullity T + 3=
rank T  3=

P2 Im T  P2=

This theorem asserts that
“isomorphic” is an equiv-
alence relation on any set
of vector spaces. See Exer-
cises 37-39.

THEOREM 4.14 (a) Every vector space is isomorphic to itself.

(b) If V is isomorphic to W, then W is isomor-
phic to V.

(c) If V is isomorphic to W, and W is isomor-
phic to Z, then V is isomorphic to Z.

IV : V V

T: V W T 1– :W V

T: V W L: W Z
LT: V Z

Answer: See page B-15.

DEFINITION 4.8
ISOMORPHIC

 SPACES

Two vector spaces V and W are isomorphic,
written , if there exists an isomor-
phism from one of the vector spaces to the
other. 

CHECK YOUR UNDERSTANDING 4.13

Prove that . (You have to exhibit an isomorphism from
one of the spaces to the other, whichever you prefer).

THEOREM 4.15 If V is a vector space of dimension n, then: 

V W

4 M2 2

V n

v1 v2  vn    e1 e2  en   

n

T: V n T a1v1  anvn+ +  a1e1  anen+ +=
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T is one-to-one: Let , for: 

Then:

Since  is a linearly independent set of vectors
we have, by Theorem 3.6, page 89, that , for

; in other words: .

                                       T is onto: For :

Let  be an isomorphism. Being a bijection it links every
element in V with a unique element in W (every element in V has its
own W-counterpart, and vice versa). Moreover, if you know how to
function algebraically in V, then you can also figure out how to function
algebraically in W. Suppose, for example, that you forgot how to add or
scalar multiply in the space W, but remember how to add and scalar
multiply in V. To figure out  in W you can take the “
bridge” back to V and find the vectors  and  such that 
and . Do the calculations  in V and then take the
“T bridge” back to W to find the value of the vector , for it
coincides with the vector : 

Indeed, the intimacy between isomorphic vector spaces is so great
that isomorphic spaces are said to be equal up to an isomorphism. Basi-
cally, if a vector space W is isomorphic to V, then the two spaces can
only differ from each other in “appearance.” For example,  looks
different than , but you can easily link its elements with those of V: 

And that linkage preserving the algebraic structure:

T v  T v =

v v=

T v  T v =
v a1v1  anvn  and  v+ + b1v1  bnvn+ += =

T a1v1  anvn+ +  T b1v1  bnvn+ + =

a1T v1   anT vn + + b1T v1   bnT vn + +=

a1e1  anen+ + b1e1  bne1n+ +=
e1 e2  en   

ai bi=
1 i n  v v=

Answer: See page B-15.

For X Rn

T v  X=
CHECK YOUR UNDERSTANDING 4.14

Let V and W be finite-dimensional vector spaces. Show that  if
and only if .

A ROSE BY ANY OTHER NAME

X a1e1  anen+ + n=
T a1v1  anvn+ +  a1T v1   anT vn + +=

a1e1  anen+ + X= =

V W
dim V  dim W =

w1

w2
rw1 w2+

v1

v2

rv1 v2+

T 1–
T 1–

T

T: V W

rw1 w2+ T 1–

v1 v2 T v1  w1=
T v2  w2= rv1 v2+

rw1 w2+
T rv1 v2+ 

T rv1 v2+  rT v1  T v2 + rw1 w2+= =

M2 2

4

a b
c d

             a b c d   link

r a b
c d

a b
c d

                  r a b c d    a b c d + +link
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We note that all vector space properties are preserved under an iso-
morphisms. In particular, as you are asked to verify in the exercises, a
linear map  maps:

    Linearly independent sets in V to linearly independent sets in W.
   And it maps spanning sets in V to spanning sets in W.

At times, one can take advantage of established properties of Euclid-
ean spaces to address issues in other vector spaces: 

SOLUTION: Lets move the elements of S over to  via the isomor-

phism :

Applying Theorem 3.13, page 103, to the vectors in  we see that
the first, second, and fifth vector in  constitute a basis for

:

Utilizing the result of the CYU 4.16, we conclude that the corre-
sponding first, second, and fifth matrix in S constitute a basis for

.

T: V W

Answer: See page B-16.

CHECK YOUR UNDERSTANDING 4.15

Let  be an isomorphism. Prove that if  is a
basis for V, then  is a basis for W.

EXAMPLE 4.10 Find a subset of the set:

which is a basis for . 

L: V W v1 v2  vn   
L v1  L v2   L vn    

S 1 2
3 2–

3– 2
1 3

11 2–
3 13–

3 6
9 6–

6– 14
6– 4

   
 
 
 

=

Span S 

For  , and  : f: X Y S X

f S  f s  s S =

4

T a b
c d 

 
 

a b c d   =

T S 
1 2 3 2–    3– 2 1 3    11 2– 3 13–    
3 6 9 6–    6– 14 6– 4    

 
 

=

T S 
T S 

Span T S  

1 3– 11 3 6–
2 2 2– 6 14
3 1 3 9 6–
2– 3 13– 6– 4

                 

1 0 2 3 0
0 1 3– 0 0
0 0 0 0 1
0 0 0 0 0

rref

Answer: See page B-16.

CHECK YOUR UNDERSTANDING 4.16
Proceed as in Example 4.10 to find a subset of the set

 in  which is a basis for Span (S).

Span S 

S 2x3 3x2– 5x 1–+ x3 x2– 8x 3–+ x2 11x 5 x3– 2x2 3x 2–+ +–+  =

P3
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Let f be a bijection from a vector space V (with addition denoted by
 and scalar multiplication by ) to a set X. Just as the bijection

f can be thought of as simply “renaming” each   with its counter-
part in X, so then can f be used to “carry” the vector space structure of
V onto the set X; specifically:

PROOF: The set X is clearly closed with respect to both (*) and (**)
operations. We will content ourselves by verifying the zero and inverse
axioms of Definition 2.6, page 40:

Zero Axiom. Let 0 be the zero vector in V. We show that  is the
zero vector in X.

For , let v be the vector in V such that . Then: 

Inverse Axiom: For , let v be the vector in V such that
. We show that  is the inverse of :

. 

In the exercises you are invited to verify that the remaining axioms of
Definition 2.6 are also satisfied, thereby establishing the fact that X
with the above specified addition and scalar multiplication is indeed a
vector space. We now show that the given bijection f from the vector
space V to the above vector space X is an isomorphism. Actually, since
f was given to be a bijection, we need only establish the linearity of f.
Let’s do it:

For , let . Then, for any
:

v1 v2+ rv
v V

THEOREM 4.16 Let f be a bijection from a vector space V to a set X. With
addition and scalar multiplication on X defined as follows:

the set X evolves into a vector space. Moreover f itself
turns out to be an isomorphism from the vector space V to
the vector space X.

x1 x2 f f 1– x1  f 1– x2 +    and  r x f rf 1– x  ==
  

  

                                                             

       (**)

Go back to V and and sum in V.

(*)

Then carry the sum back to X.
Similarly

 turns out to
be the zero in X.

 turns out to be
the inverse of .

f 0 

f v– 
f v 

f 0 

x X f v  x=
f 0  x f 0  f v  f f 1– f 0   f 1– f v  + = =

f 0 v+  f v  x= = =

x X
f v  x= f v–  x f v =

x f v–  f v  f v–  f f 1– f v   f 1– f v–  + = =

f v v– +  f 0 = = the zero in X

v1 v2 V x1 f v1  and x2 f v2 = =
r 

f rv1 v2+  r x1 x2 rf v1  f v2 += =
by (*) and (**)



                                                                                           4.3  Isomorphisms     143

SOLUTION: (a) f is one-to-one:

 f is onto: Let . Then:

From the above we can easily see that:
 

(b) Theorem 4.16 assures us that the set X achieves “vector space-
hood” when it is augmented with the following operations:

(c) Theorem 4.16 assures us that  is a linear
map (in fact an isomorphism). That being the case,

 must be the zero vector in X. Less there be any
doubt: 

EXAMPLE 4.11 Let  denote the Euclidean two-space, and
let X be the set . 

(a) Show that the function  given
by  is a bijection, and
find its inverse .
(b) Determine the vector space structure on X
induced by the function f, as is described in
Theorem 4.16. 
(c) Identify the zero in the above vector space
X, and the inverse of the vector .

2

X x y  x y R =

f: 2 X
f x y  x 1– x y+ =

f 1– : X 2

x y  X

f x1 y1  f x2 y2 =

x1 1– x1 y1+  x2 1– x2 y2+ 
x1 1– x2 1–=

x1 y1+ x2 y2+=

 x1 x2=

y1 y2=



 =

x y  X
f x 1 y x– 1–+  x 1 1–+ x 1 y x– 1– + +  x y = =

f 1– x y  x 1+ y x– 1– =

x1 y1  x2 y2  f x1 1+ y1 x1– 1–  x2 1+ y2 x2– 1– + =

f x1 x2 2+ + y1 y2 x1 x2–– 2–+ =

x1 x2 1+ + y1 y2+ =f x y  x 1– x y+ :=

r x y  f r x 1+ x– y 1–+  =
f rx r+ rx– ry r–+  rx r 1 ry–+ = =

f x y  x 1– x y+ =

f 0 0  1 0– =

1 0–  x y  f f 1– 1 0–  f 1– x y + =
f 0 0  x 1 x– y 1–++ + =
f x 1+ x– y 1–+  x y = =

f 1– x y  x 1+ y x– 1– :=

f x y  x 1– x y+ =
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As for the inverse of :

Let’s challenge the above formula with the vector . The
formulas tells us that . If that is
correct, then  has to be the zero vector ,
and it is:

 

  

It can be shown that there exists a bijection from  to R for any
positive integer n. Consequently:

PROOF: A direct consequence of Theorem 4.16.

x y  X
x y – f f 1– x y –  f x 1+ y x– 1– – = =

f x– 1– y– x 1+ +  x– 2– y– = =f 1– x y  x 1+ y x– 1– :=

f x y  x 1– x y+ =

3 2  X
3 2 – 3– 2– 2–  5– 2– = =

3 2  5– 2–  1– 0 

3 2  5– 2–  f f 1– 3 2  f 1– 5– 2– + =
f 4 2–  4– 2 +  f 0 0  1– 0 = = =

Answer: See page B-16.

CHECK YOUR UNDERSTANDING 4.17

Let  denote the Euclidean three-space, and let X be the set
. 

(a) Show that the function  given by
 is a bijection, and find its inverse.

(b) Determine the vector space structure on X induced by the func-
tion f, as is described in Theorem 4.16. 
(c) Identify the zero in the above vector space X, and the inverse of
the vector .

THEOREM 4.17 Every Euclidean vector space  (and there-
fore every finite dimensional vector space) sits
(isomorphically) in the set R of real numbers.

3

X x y z   x y R =

f: 3 X
f x y z   2x x z z–+ =

x y z   X

n

n
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Exercises 1-6. Determine if the given linear function f is a bijection. If so, find its inverse  and
show directly that it is also linear. 

Exercises 7-17. Determine if the given function is an isomorphism.

EXERCISES

1. , where .

2. , where .

3. , where .

4. , where .

5. , where .

6. , where .

7. , where .

8. , where .

9. , where .

10. , where .

11. ,where .

12. , where .

13. , where .

14. , where .

15. , where .

16. , where .

17. , where .

f 1–

f:   f x  5x–=

f:  2 f x  x x– =

f: 2 2 f a b  2b a– =

f: 2 P1 f a b  ax b+=

f: 3 P2 f a b c   bx2 cx a–+=

f: 2 M2 2 f a b  a b
a b+ a b–

=

f:   f x  5x–=

f:   f x  x 1+=

f: 2 P1 f a b  a b+ x=

f: 2 P1 f a b  ax b+=

f: 3 P2 f a b c   cx2 bx a–+=

f: P2 P2 f p x   p x 1+ =

f: P2 P3 f p x   xp x =

f: P2 3 f p x   p 1  p 2  p 3  =

f: P3 P3 f p x   p x  p 1 +=

f: P3 M2 2 f p x   p 1  p 2 
p 3  p 4 

=

f: 4 M2 2 f a b c d    2a c
d b

=
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Exercises 18-22. (Calculus dependent) Determine if the given function is an isomorphism.

Exercises 23-24. As is done in Example 4.11, show that the given function f is a bijection and find
its inverse. Determine the vector space structure on the given set X induced by f and identify the
zero and the inverse of the vector  in the resulting space X.

25. Show that if the functions  and  have inverses, then the function
 also has an inverse and that .

26. For , let  be given by . For what values of r is  an isomor-
phism?

27. For  a vector in the space V let  be given by .

(a) Show that  is a bijection.

(b) Give necessary and sufficient conditions for  to be an isomorphism.

28. Find a specific isomorphism from  to .

29. Show that the vector space  of Example 2.4, page 46, is isomorphic to the vector space of
real numbers, .

30. Find an isomorphism between the vector space of Example 2.5, page 47 and .

31. Suppose that a linear transformation  is one-to-one, and that    is a
linearly independent subset of V. Show that  is a linearly indepen-
dent subset of W. (In particular, the above holds if T is an isomorphism.)

32. Suppose that a linear transformation  is onto, and that  is a span-
ning set for V. Show that  is a spanning set for W. (In particular,
the above holds if T is an isomorphism.)

18.  , where .

19.  , where .

20.  , where .

21. , where .

22. , where .

23.   given by .

24.   given by .

f: P2 P2 f p x   p x =

f: P2 P2 f p x   p x  p x +=

f: P2 P2 f p x   p x =

f: P2 P2 f p x   2p x  3–=

f: P2 P2 f p x   p x  p x  xd
0

1

+=

x y  X

f: 2 X x y  x y R = f x y  x y 3+ + x 4– =

f: 3 X x y z   x y z R = f x y z   x 1+ 2y 2– 3z 4+  =

f: X Y g: Y Z
gf: X Z gf  1– f 1–

g 1–=

r  fr: V V fr v  rv= fr

v0 fv0
: V V fv0

v  v v0+=

fv0

fv0

V ax3 a b+ x c a b c  + + = 3

+



2

T: V W v1 v2  vn   
T v1  T v2   T vn    

T: V W v1 v2  vn   
T v1  T v2   T vn    
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33. Prove that a linear transformation  is an isomorphism if and only if for any given
basis  for V,  is a basis for W.

34. Let V be a vector space of dimension n, and let  be the vector space of linear trans-
formations from  to  (see Exercise 35, page 122). Prove that  is also of dimen-
sion n and is therefore isomorphic to V. (The space  is called the dual space of V.)

Suggestion: For  a basis for V, show that  is a basis for

, where  is the linear transformation given by: . 

35. Let V be a vector space of dimension n, and let W be a vector space of dimension m. Let 
be the vector space of linear transformations from  to W (see Exercise 35, page 122). Prove
that . 

Suggestion: For  a basis for V, and  a basis for W, show that
 is a basis for , where  is the linear transformation given by:

.

Exercises 37-39. (Equivalence Relation) A relation on a set X is a set . If
, then we will say that a is related to b, and write . An equivalence relation on a

set X is a relation which satisfies the following three properties:

(i) Reflexive property: .

(ii) Symmetric property: If , then .

(iii) Transitive property: If  and , then .

36. A partition of a set X is a collection of mutually disjoint (nonempty) subsets of X whose
union equals X. (In words: a partition breaks the set X into disjoint pieces.) 

(a) Let  be an equivalence relation of a set X, and for any given  define the
equivalence class of x to be the set of all elements of X that are related to x:

. Prove that  is a partition of X.

(b) Let S be a partition of a set X. Prove that there exists an equivalence relation  on X
such that the , where .

37. Show that the relation defined by  if and only if  is an equivalence relation

on the set Q of rational numbers (“fractions”).

38. Show that the relation  if the vector space V is isomorphic to the vector space W is
an equivalence relation on any set of vector spaces.

T: V W
v1 v2  vn    T v1  T v2   T vn    

L V  
V  L V  

L V  

v1 v2  vn    T1 T2  Tn   

L V   Ti Ti vj  1 if i j=
0 if i j




=

L V W 
V

L V   Mm n

v1 v2  vn    w1 w2  wn   
Tij  L V W  Tij

Tij vj  wj if i j=
0 if i j




=

S a b  a b X =
a b  S a b

a a

a b b a

a b b c a c

 x X

x  x X x x = x  x X 


S x  x X = x  x X x x =

a
b
--- c

d
--- ad bc=

V W
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39. (a) If  is an onto function, then so is the function  onto for any function
.

(b) If   is an onto function, then so is the function  onto for any func-
tion .

40. (a) Let  and . If  is onto, then f must  also be onto.

(b) Let  and . If  is onto then g must  also be onto.

41. (a) If  is a one-to-one function, then so is the function  one-to-one for
any function .

(b) If   is a one-to-one function, then so is the function  one-to-one for
any function .

42. If   and  are isomorphisms, then .

43. If  is an isomorphism, and if , then  given by   is
also an isomorphism.

44. Let  and  be linear. If  is an isomorphism, then T and W
must both be isomorphisms.

45. If  and  are isomorphisms, then so is the function  given
by  an isomorphism.

PROVE OR GIVE A COUNTEREXAMPLE

f: X Y gf: X Z

g: Y Z

g: Y Z gf: X Z

f: X Y

f: X Y g: Y Z gf: X Z

f: X Y g: Y Z gf: X Z

f: X Y gf: X Z

g: Y Z

g: Y Z gf: X Z

f: X Y

T: V W L: V W T L=

T: V W a 0 Ta: V W Ta v  aT v =

T: V W L: W Z gf: V Z

T: V W L: V W T L: V+ W
T L+ v T v  L v +=
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CHAPTER SUMMARY

 LINEAR
TRANSFORMATION

A function  from a vector space V to a vector space W is
said to be a linear transformation if for all  and :

The two conditions for 
linearity can be incor-
porated into one state-
ment. 

  is linear if and only if:

for all   and .

The above result can be 
extended to encompass 
n-vectors and scalars.

Let  be linear. For any vectors  in V, and any
scalars :

Linear transformations 
map zeros to zeros and 
inverses to inverses.

If  is linear, then:
   and  

A linear transformation
is completely deter-
mined by its action on a
basis.

Let V be a finite dimensional space with basis . If
 and  are linear maps such that 

for , then  for every .

A method for construct-
ing all linear transfor-
mations from a finite
dimensional vector
space to any other vec-
tor space.

Let  be a basis for a vector space V, and let
 be n arbitrary vectors (not necessarily distinct) in a

vector space W.  There is then a unique linear transformation
 which maps  to  for ; and it is given by:

The composition of lin-
ear maps is linear.

If  and  are linear, then the composition
 is also linear.

KERNEL

IMAGE

Let  be linear. The kernel (or null space) of T is denoted
by  and is defined by:

The image of T is denoted by  and is defined by: 

Both the kernel and  
image  of a linear 
transformation are sub-
spaces.

Let  be linear. Then:  

T: V W
v w V r 

T v w+  T v  T w  and T rv + rT v = =

T: V W
T rv w+  rT v  T w +=

v w V r 

T: V W v1 v2  vn  
a1 a2  an  

T a1v1  anvn+ +  a1T v1   anT vn + +=

T: V W
T 0  0= T v–  T v –=

v1 v2  vn   
T: V W L: V W T vi  L vi =

1 i n  T v  L v = v V

v1 v2  vn   
w1 w2  wn  

L: V W vi wi 1 i n 

L a1v1  anvn+ +  a1w1  anwn+ +=

T: V W L: W Z
LT: V Z

T: V W
Ker T 

Ker T  v V T v  0= =

Im T 
Im T  w W T v  w for some v V= =

T: V W

Ker T  is a subspace of V
Im T  is a subspace of W
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NULLITY

RANK

Let  be linear. The dimension of    is called the nul-
lity of T, and is denoted by . 

The dimension of   is called the rank of T, and is denoted by
.

The Dimension
 Theorem.

Let V be a vector space of dimension n, and let  be linear.
Then:

ONE-TO-ONE A function  from a set A to a set B is said to be one-to-one if:

ONTO A function  from a set A to a set B is said to be onto if for every
 there exist  such that .

A linear transformation  is one-to-one if and only if
.

A linear transformation  is onto if and only if .

BIJECTION A function  that is both one-to-one and onto is said to be a
bijection.

The composite of bijec-
tions is again a bijec-
tion. 

If  and  are bijections, then the composite function
 is also a bijection.

INVERSE FUNCTION The inverse of a bijection   is the function  such
that  for every x in X, and  for every y
in Y.

The inverse of a linear
bijection is again lin-
ear.

If the bijection  is linear, then its inverse,  is
also linear.

ISOMORPHISM A bijection  that is also a linear transformation is said to be
an isomorphism from the vector space V to the vector space W. 
If there exists an isomorphism from V to W we then say that  V and W
are isomorphic, and write: .

Every vector space is isomorphic to itself. If V is 
isomorphic to W, then W is isomorphic to V. If V is 
isomorphic to W, and W is isomorphic to Z, then V 
is isomorphic to Z.

All n-dimensional vector spaces are isomorphic to 
Euclidean n-space. If , then .

T: V W Ker T 
nullity T 

Im T 
rank T 

T: V W

rank T  nullity T + n=

f
f a  f a  a a= =

f
b B a A f a  b=

T: V W
Ker T  0=

T: V W Im T  W=

f: A B

f: A B g: B C
gf: A C

f: X Y f 1– : Y X
f 1–  f  x  x= ff 1–  y  y=

T: V W T 1– : W V

T: V W

V W

V V
V W W V

V W and W Z V Z

dim V  n= V Rn
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 5

CHAPTER 5 
MATRICES AND LINEAR MAPS

It turns out that linear transformations can, in a sense, be represented
by matrices. Such representations are developed and scrutinized in Sec-
tions three and four — a development that rests on the matrix theory
presented in the first two sections of the chapter. 

The matrix space  of Theorem 2.2, page 42, comes equipped
with a scalar multiplication. We now turn our attention to another form
of multiplication, one that involves a pair of matrices (instead of a sca-
lar and a matrix). 

Left to one’s own devices, one would probably define the product of
matrices in the following fashion:

The above might be “natural,” but as it turns out, not very useful.
Here, as you will see, is a most useful definition:

§1. MATRIX MULTIPLICATION

Take two matrices of equal
dimension, and simply mul-
tiply corresponding entries
to obtain their product.

As with: 

Mm n

2 3
5 4

5 3
0 6

10 9
0 24

=

In general, we will use:
 or    

to denote an m by n matrix
with entries .

Am n aij = aij m n

aij

ai1air

b
1j 

b
rj

cij aibj
 1=

r

=

DEFINITION 5.1
MATRIX

MULTIPLICATION

If   and , then:            

where:

Using Sigma notation, we have:

IN WORDS: To get  of , run across the   row of A and
down the  column of B, multiplying and adding along the way (see
margin).
Note: The above is meaningful only if the number of columns of the
matrix on the left equals the number of rows of the matrix on the right.

Am r aij = Br n bij =

Am r  Br n Cm n cij = =

cij ai1b1j ai2b2j ai3b3j
 airbrj+ + + +=

cij aibj

 1=

r

=

cij C AB= i th

j th
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SOLUTION: Since the number of columns of A equals the number of
rows of B, the product AB is defined:

Below, we illustrate the process leading to the value of  (run
across the first row of A and down the first column of B), and for 
(run across the second row of   A and down the third column of B):

At this point, we are confident that you can find the remaining entries: 

In any event:

EXAMPLE 5.1 Find the product , if:

GRAPHING CALCULATOR GLIMPSE 5.1

C AB=

A 2 0 1
5 2 4

       and       B
1 2 3 5
2 0 4 3
1 5 3 2

= =

 
same

A2 3  B3 4 C2 4=

c11

c23

2 0 1
5 2 4

1 2 3 5
2 0 4 3
1 5 3 2

3                2 0 1
5 2 4

 
1 2 3 5
2 0 4 3
1 5 3 2

3
35

= =

5 3 2 4 4 3+ +2 1 0 2 1 1+ +

2 0 1
5 2 4

1 2 3 5
2 0 4 3
1 5 3 2

3 9 9 12
13 30 35 39

=

Answers:

(a) 

(b) See page B-18.

33 37
30 26
54 36

CHECK YOUR UNDERSTANDING 5.1
(a) Perform the product AB for:

(b) Explain why the product BA is not defined.

A
3 5
4 2
9 0

     and     B 6 4
3 5

= =
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In some ways, matrices behave differently than numbers. For one
thing, even when both products AB and BA are defined, as is the case
when the matrices A and B are square matrices of the same dimension,
those products need not be equal: 

Some familiar multiplication properties do however carry over to
matrices:

PROOF: We establish (i): ,   and invite you to
verify the rest in the exercises. Let:

We need to show that . Let’s do it:

If A is a square matrix, what should  represent? That’s right:
. In a more general setting, we have: 

Matrix multiplication is
not commutative.

THEOREM 5.1 Assuming that the matrix dimensions are such
that the given operations are defined, we have:
(i)

(ii)

(iii)

(iv)

1 2
3 4

5 6
7 8

19 22
43 50

  while  5 6
7 8

1 2
3 4

23 34
31 46

= =

Associative

{
Properties{

Distributive
Properties

A B C+  AB AC+=

A B+ C AC BC+=

A BC  AB C=

r AB  rA B A rB = =

The properties of this
theorem are not particu-
larly difficult to estab-
lish. The trick is to
carefully keep track of
the entries of the matri-
ces  along the way,

A B C+  AB AC+=

Am r aij                  Br n bij    Cr n cij =          ==

Dm n A B C+  dij               Em n AB AC+ eij = == =

dij eij=

dij ait btj ctj+ 

t 1=

r

 aitbtj

t 1=

r

 aitctj

t 1=

r

+ eij= = =

 run across the ith row of A

and down the jth column of B C+

across the i th colum
 of A

dow
n the j th colum

n of B

across the i th colum
 of A

dow
n the j th colum

n of C

distribute

Why we are restricting this
discussion to square matrices?
Because:

2 1
3 5
4 2

2

?=

POWERS OF SQUARE MATRICES

DEFINITION 5.2
POWERS

For A a square matrix:

A2

A2 AA=

A2 AA= A3 AAA  and  An AAn 1–= =
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While the definition of  mimics that of  for , not all of the
familiar properties of exponents hold for matrices, even when the matrix
expressions are well-defined. The property , for example,
does not carry over to matrices:

The following familiar properties are, however, a directly consequence
of Definition 5.2:

The following result may be a bit surprising in that the rows and col-
umns of the matrix  need not even live in the same Euclid-

ean spaces: The rows of A are in  while its columns are in :

In , .
 Why not for ?
 M1 1= ab ba=

M2 2

An an a R

ab n anbn=

1 2
0 2

2 2
1 0 

 
  2

4 2
2 0

2
4 2
2 0

4 2
2 0

20 8
8 4

= = =

while: 1 2
0 2

2
2 2
1 0

2
1 2
0 2

1 2
0 2 

 
  2 2

1 0
2 2
1 0 

 
 

=

1 6
0 4

6 4
2 2

18 16
8 8

= =

And we see that: 1 2
0 2

2 2
1 0 

 
  2

1 2
0 2

2
2 2
1 0

2



Answer: See page B-18.

THEOREM 5.2 For A a square matrix, and positive integers n
and m:

CHECK YOUR UNDERSTANDING 5.2
PROVE OR GIVE A COUNTEREXAMPLE: 

For any two matrices :    

COLUMN AND ROW SPACES

DEFINITION 5.3
COLUMN AND 
ROW SPACE 

The columns space of a matrix ,
is the subspace of  spanned by the col-
umns of A.
The row space of a matrix , is the
subspace of  spanned by the rows of A. 

AnAm An m+   and  An m Anm= =

A B M2 2

A B+ 2 A2= 2AB B2+ +

A Mm n
m

A Mm n
n

A Mm n

n m
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PROOF: We know, from Theorem 3.13, page 103, that the dimension
of the column space of  equals the number of leading ones
in . To see that the dimension of the row space of A is also equal
to the number of leading ones in  we reason as follows:

 Let  be a matrix obtained by performing any of the three ele-
mentary row operations on A. Since each row in  is a linear
combination of the rows in A, and vice version, the space
spanned by the rows of A equals that spanned by the rows of

. Since  is derived from A through a sequence of ele-
mentary row operations, the row space of A equals that of

, which is easily seen to be the non-zero rows of
; each of which contains a leading one.

SOLUTION: .

A basis for the row space of A: .

A basis for the column space of A:  
                                                       (see Theorem 3.13, page 103)

While Theorem 3.13 assures us that he columns of A associated with
the leading one columns of  constitute a basis for the column
space of A, the rows of A associated with the leading one rows of

 need not be a basis for the row space of A. A case in point:

THEOREM 5.3 The dimension of the column space of any
matrix  equals the dimension of its
row space.

DEFINITION 5.4
RANK OF A MATRIX

For , the rank of A, denoted by
 is the common dimension of the

row and column space of .

EXAMPLE 5.2 Find a basis for both the row and the column

space of .

A Mm n

A Mm n

rref A 
rref A 

B
B

B rref A 

rref A 
rref A 

A Mm n
rank A 

A Mm n

A
3 9– 1 5– 6
1– 3 2 4 2–

2 6– 2– 6– 4
=

A
3 9– 1 5– 6
1– 3 2 4 2–

2 6– 2– 6– 4
             

1 3– 0 2– 2
0 0 1 1 0
0 0 0 0 0

= rref

1 3– 0. 2– 2    0 0 1 1 0     

3 1– 2   1 2 2–   

rref A 

rref A 
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As you know, a system of equations can take the form of an augmented
matrix [see page 3, and Figure (a) and (b) below]. That system can also
be represented as the product of its coefficient matrix with a (column)
variable matrix [see Figure 5.1(c) and margin]. 

Figure 5.1
The next result tells us that the product of  with a column

variable matrix  is a linear combination of the columns of A. Spe-
cifically:

PROOF: For , and :

Answer: See page B-18.

CHECK YOUR UNDERSTANDING 5.3

Find a basis for the column and the row space of:

 .

SYSTEM OF EQUATIONS REVISITED

A
2 5 3– 4
4– 10– 6 8–

0 1 2 4–
=

2 4 4–
2 6 4
1 1 2

x
y
z

6
0
2–

=

2x 4y 4z–+
2x 6y 4z+ +

x y 2z+ +

6
0
2–

=

2x 4y 4z–+ 6=
2x 6y 4z+ + 0=
x y 2z+ + 2–= 






m
atrix m

ultiplication

2x 4y 4z–+ 6=
2x 6y 4z+ + 0=

x y 2z+ + 2–= 





                
2 4 4– 6
2 6 4 0
1 1 2 2–

System of Equations            Augmented Matrix         Matrix Product Form
(a)                                        (b)                                   (c)

2 4 4–
2 6 4
1 1 2

x
y
z

6
0
2–

=

a11 a12 a1n

a21 a22 a2n

am1 am2 amn

x1

x2

xn

=

x1

a11

a21

am1

x2

a12

a22

am2

xn

a1n

a2n

amn

+ +

C1 C2 Cn

C1   C2      Cn THEOREM 5.4 Let . For each  let
 (the  “column matrix” of A).

Then, for any :

  (see margin).

A Mm n

Xn 1

Am n aij = 1 j n 
Cj aij m 1= jth

X xi n 1=

AX xiCi

i 1=

n

=

B AX bi m 1= = D xiCi

i 1=

n

 di m 1= =

bi aijxj =
j 1=

m

 xjaij
j 1=

m

 di= =
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Consider the following system of equations : 

Invoking Theorem 5.2, we find that:

It follows that the given system  is consistent if and only if

 is in the column space of A.

In general: 

While matrix spaces only come equipped with vector addition and sca-
lar multiplication, matrix multiplication can serve to define a linear map
between such spaces — providing their dimensions “match up:” 

PROOF: For  and 

AX B=

2 1 3 4
1 8 3 5–
1 2– 1 6

x
y
z
w

b1

b2

b3

=
2x 1y 3z 4w+ + +
1x 8y 3z 5w–+ +
1x 2y– 1z 6w+ +


b1

b2

b3

=

A             X        B

x
2
1
1

y
1
8
2–

z
3
3
1

w
4
5–

6
+ + +

b1

b2

b3

=

AX B=
b1

b2

b3

Answer: See page B-18.

THEOREM 5.5 A system of linear equations  is consis-
tent if and only if B is in the column space of A.

CHECK YOUR UNDERSTANDING 5.4

Prove that the solution set of any homogeneous system of m
equations in n unknowns is a subspace of .

FROM MATRICES TO LINEAR TRANSFORMATIONS

AX B=

n

Note that:
 Am n Xn z Mm z

THEOREM 5.6 For  and any positive integer z, the
map  given by

 is linear.

A Mm n

TA: Mn z Mm z 

TA B  AB=

B1 B2 Mn z r 

TA rB1 B2+  A rB1 B2+  A rB1  AB2+= =
r AB1  AB2+ rTA B1  TA B2 += =Theorem 5.1(iv):

Theorem 5.1(iv):
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For notational convenience we will let the symbol  denote the
space  (“vertical n-tuples”). We then have: 

PROOF: Simply set  in Theorem 5.6
 

PROOF: Follows from Theorem 4.8(a), page 124, and the fact that:

 

SOLUTION: By definition, the null space of A is the solution set of the
homogeneous system of equations:

          From:  

Note that X is a  “ver-
tical n-tuple,” and that

 is a vertical m-
tuple.

n 1

TA X 
THEOREM 5.7 For  the map  given

by  is linear.

DEFINITION 5.5
NULL SPACE

For , the null space of A, denoted 
by , is the set:

THEOREM 5.8 The null space of  is a subspace of . 

Note: The dimension of the null space of A is called the nullity of A.
[Approproate terminology, in that ]

EXAMPLE 5.3 Find a basis for the null space of the matrix:

n

Mn 1

A Mm n TA: n m

TA X  AX=

z 1=

A Mm n

null A 

null A  X n AX 0= =

A Mm n n

null A  Ker TA =

null A  Ker TA =

A
2 1 3 4
1 8 3 10–
1 2– 1 6

=

2 1 3 4
1 8 3 10–
1 2– 1 6

x
y
z
w

0
0
0

=

2 1 3 4
1 8 3 10–
1 2– 1 6

               

1 0 7
5
--- 14

5
------

0 1 1
5
--- 8

5
---–

0 0 0 0

rref

x     y      z      w
x     y    z    w
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We see that: 

Letting  and  we obtain the vector .

Letting  and  we arrive at the vector . 

The above two vectors are clearly independent, and also span :

It follows that  is a basis for . 

We arrived at the two vectors in the basis for  in the above
example by setting each of the two free variables to 1 and the other free
variable to 0. Generalizing: 

You get to draw the final curtain of this section:

null A  7
5
---a–

 14
5
------b 1

5
---a 8

5
---+– b a b – a b R

 
 
 

=

7a– 14b a 8+– b 5a 5b –  a b R =

vertical 3-tuple

a 1= b 0= 7 1– 5 0  – 

a 0= b 1= 14 8 0 5  – 

null A 

7a– 14b a 8+– b 5a 5b  – a 7 1– 5 0  –  b 14 8 0 5  – +=

7 1– 5 0  –  14 8 0 5  –   null A 

Answer: See page B-18.

THEOREM 5.9 The nullity of  equals the number
of free variables in . 

CHECK YOUR UNDERSTANDING 5.5

Find a basis for:

 

null A 

A Mm n

rref A 

null
2 1 3 0
1 4 2– 7–
3 0 1 2– 

 
 
 
 

Answer: See page B-18.

CHECK YOUR UNDERSTANDING 5.6

Let  and let  be the linear map given by
. Show that:

  and 

A Mm n TA: n m
TA X  AX=

nullity A  nullity TA = rank A  rank TA =
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Exercises 1-5. Perform the given matrix operations.

Exercises 5-8. Find a basis for the null space of A. Determine  along with a basis for the
column and row space of A.

9. (a) Show that each column of  (as a vertical two-tuple) is a linear combination

of the columns of .

(b) Show that each row of  (as a horizontal three-tuple) is a linear combination

of the rows of .

10. Let  and let  be the column matrix whose  entry is 1 and all other

entries are 0. Show that  is the  column of A, for .

11. (a) (Dilation and Contraction) Let  for . Show that  maps

every point in the plane to a point r times a far from the origin. 

(b) (Reflection about the x-axis) Let . Show that  reflects every

point in the plane about the x-axis.

EXERCISES

1. 2.

3.

4.  

5. 
6. 7. 8. 

1 2
0 1–
1 3

2 3
1– 4

2 3 0
1– 4 0

1 2
0 1–
1 3

0 1 0
2 0 0
0 0 3

1 0 0
0 0 2
0 3 0

 and 
1 0 0
0 0 2
0 3 0

0 1 0
2 0 0
0 0 3

1 3
2 2

0 3 1
1 2 3

2 1 1
4 2 0

+
 
 
  1 2

1 3
0 1

 and 1 3
2 2

0 3 1
1 2 3

1 2
1 3
0 1

1 3
2 2

2 1 1
4 2 0

1 2
1 3
0 1

+

rank A 

A
3 2 1 5

10 6 1 10
4 2 1– 0

=
A

2 0 1
3 1– 0
6 3 3
1 4 2

= A

1 1 0 1
1– 0 1– 4

5 3 2– 7
5 2 1– 2

= A

1 1– 5 5
1 0 3 2
0 1– 2– 1–
1 4 7 2

=

2 5
1 3

3 7 1
2 0 4

2 5
1 3

2 5
1 3

3 7 1
2 0 4

3 7 1
2 0 4

A Mm n Xi Mn 1 ith

AXi ith 1 i n 

A r 0
0 r

= r 0 TA: 2 2

A 1 0
0 1–

= TA: 2 2
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(c) Find the matrix A for which  reflects the point  to the point twice the
length of  and reflected about the y-axis. 

(d) (Rotation about the Origin) Let . Show that

 rotates the vector  by  in a counterclock-
wise direction.

Suggestion: Start with  and .

12. Show that for any given linear transformation  there exists a unique matrix
 such that .

13. Let . Prove that if  for every , then .

14. Determine all  such that  for every .

15. Prove Theorem 5.1(ii).
16. Prove Theorem 5.1(iii).
17. Prove Theorem 5.1(iv).

18.  A square matrix  for which  if  is said to be a diagonal matrix.
Show that if  is a diagonal matrix and if  is a column matrix,

then . For example: .

19. The transpose of a matrix  is the matrix , where
. In other words, the transpose of A is that matrix obtained by interchanging the rows

and columns of A.
(a) Show that for any matrix A, .
(b) Show that for any matrix A and any scalar r, .
(c) Show that for any , .

(d) Show that for any , .

(e) Show that for , .

(f) Show that for  and , .

20. A square matrix A is symmetric if the transpose of A equals A:  (see Exercise 19). 
(a) Show that the set of symmetric matrices in the space  is a subspace of .

(b) Let  be symmetric matrices. Show that  is symmetric.

(c) Let . Show that  is symmetric.

(d)  Let . Show that  is symmetric.

(e) Let  be symmetric. Show that  is symmetric if and only if 

TA: 2 2 x y 
x y 



v x y =..


TA v  x y =

r
r

y

x

A cos sin–
sin cos

=

TA: 2 2 x y  

x r  + cos= y r  + sin=

T: n m
A Mm n T X  AX=

A B Mm n AC BC= C Mn 1 A B=

A M2 2 AB BA= B M2 2

A aij n n= aij 0= i j
A aij n n= X xi  n=

AX aiixi  n=
2 0 0
0 5 0
0 0 7

9
6
1–

18
30

7–
=

A aij  Mm n= AT aij  Mn m=
aij aji=

AT T A=
rA T rAT=

A B Mm n A B+ T AT BT+=

A B Mm n A B– T AT BT–=

A Mn n AA T ATAT=

A Mm n B Mn r AB T BTAT=

AT A=
Mn n Mn n

A B Mm n A B+

A Mn n A AT+

A Mn n AAT

A B Mn n AB AB BA=
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21. A square matrix A is said to be skew-symmetric if  (see Exercise 19).
(a) Show that if the square matrix  is skew symmetric, then each diagonal entry

 must be zero.
(b) Show that the square matrix  is skew symmetric if and only if  for

all i, j.
(c)  Let . Show that  is skew symmetric. 
(d) Show that every square matrix  can be uniquely written as , where S is a

symmetric matrix and K is a skew symmetric matrix.

22. A matrix  is said to be idempotent if .
(a) Find an idempotent  matrix A containing no zero entry.
(b) Let A and B be idempotent square matrices of the same dimension. Prove that if

, then AB is idempotent. 

23. A matrix  is said to be nilpotent if  for some integer k.
(a) Find a nilpotent   matrix A distinct from the zero matrix.
(b) Let A and B be two nilpotent matrices of the same dimension. Prove that if ,

then  is again nilpotent.

24. The sum of the diagonal entries in the matrix  is called the trace of A and is

denoted by : .

(a) Show that for any square matrix A:  (see Exercise 19).
(b) Show that for any two square matrices A and B of the same dimension:

 
(c) Show that for any two square matrices A and B of the same dimension:

Exercises 25-30.  (PMI) Determine  for the given matrix A. Use the Principle of Mathematical
Induction to substantiate your claim.

31. (PMI) Show that if , then for any positive integer n, .

32. (PMI) Let  and . Show that if , then  for every
positive integer n. 

33. (PMI) Show that if the entries in each column of  sum to 1, then the entries in

each column of  also sum to 1, for any positive integer m.

25. 26. 27.

28. 29. 30.

AT A–=
A aij =

aii
A aij = aij aji–=

A Mn n A AT–
A A S K+=

A Mn n A2 A=
2 2

AB BA=

A Mn n Ak 0=
2 2

AB BA=
AB

A aij = Mn n

trace A  trace A  a11 a22 ann+ + aii

i 1=

n

= =

trace A  trace AT =

Trace A B+  Trace A  Trace B +=

Trace AB  Trace BA =

An

1 1
0 1

1 1
1 1

1 0
0 2

a 0
0 b

1 0
2 1

1 a
0 1

AB BA= AB n AnBn=

A Mm m B Mm s AX X= AnX X=

A Mn n

Am
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34. (PMI) Show that if  is a diagonal matrix, then so is . (See Exercise 18.)

35. (PMI) Show that if  is an idempotent matrix, then  for all integers .
(See Exercise 22.)

36. (PMI) Show that for any , and for any positive integer n, . (See
Exercise 19.)

37. (PMI) Let , for . Show that:

 . (See Exercise 19.)

38. (PMI) Let  for . show that:

 . (See Exercise 19.) 

39. For  and , if  then either  or .

40. Let A and B be two-by-two matrices with . If , then .

41. If A and B are square matrices of the same dimension, and if AB is idempotent, then
. (See Exercise 22.)

42. For all  , .

43. For any given matrix , all entries in the matrix  are nonnegative. 

44. For  and , if A has a column consisting entirely of 0’s, then so does AB.

45. For  and , if A has a row consisting entirely of 0’s, then so does AB.

46. For  and , if A has two identical columns, then so does AB.

47. For  and , if A has two identical rows, then so does AB.

48. For ,  is a subspace of .

49. For ,  is a subspace of .

50. For ,  is a subspace of . (See Exercise 24.)

51. If A is a nilpotent matrix, then so is . (See Exercise 23.)

52. A is idempotnet if and only if  is idempotent. (See Exercise 22 and 19.) 

PROVE OR GIVE A COUNTEREXAMPLE

A Mn n An

A Mn n An A= n 1

A Mn n An T AT n=

Ai Mm n 1 i n 

A1 A2  An+ + + T A1
T A2

T  An
T+ + +=

Ai Mn n 1 i n 

A1 A2 An T An
T An 1–

T A1
T=

A Mm n B Mn r AB 0= A 0= B 0=

A 0 AB AC= B C=

AB BA=

A B M2 2 A2 B2– A B+  A B– =

A M2 2 A2

A Mm n B Mn r

A Mm n B Mn r

A Mm n B Mn r

A Mm n B Mn r

A Mn n B Mn n AB 0=  Mn n

A Mn n B Mn n AB BA=  Mn n

A Mn n B Mn n Trace AB  0  Mn n

A2

AT
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 5

The identity matrix of dimension n, denoted by , is the 
matrix that has 1’s along its main diagonal (top-left corner to bottom-
right corner), and 0’s elsewhere. In the event that the dimension n of
the identity matrix is understood, we may simply write I rather than . 

Just as  and  for any number a, so it is that for any
: . In particular, for any square

matrix : .  

SOLUTION: Let us see if there exists a matrix  such that

: 

Equating corresponding entries leads us to the following pair of sys-
tems of two equations in two unknowns:

Since all identity matrices
are square we can get away
by specifying just one of
its dimensions, as with:

instead of .

We will soon show, that a
matrix A can have but one
inverse.

I3

1  0  0
0  1  0
0  0  1

=

I3 3

§2. INVERTIBLE MATRICES

INVERTIBLE MATRICES

DEFINITION 5.6
INVERTIBLE 

MATRIX 

A square matrix  is said to be
invertible if there exists a matrix 
such that:

The matrix B is then said to be the inverse of
A, and we write . If no such B
exists, then A is said to be non-invertible, or
singular.

EXAMPLE 5.4
Determine if the matrix  is

invertible. If it is, find its inverse.

In n n

In

1 a a= a 1 a=
A Mm n ImA A  and  AIn A= =

A Mn n InA AIn A= =

A Mn n
B Mn n

AB BA I= =

B A 1–=

A 5– 2
9 4–

=

B a b
c d

=

AB I2=

5– 2
9 4–

a b
c d

1 0
0 1

=

5a– 2c    + 5b– 2d+
9a 4c    – 9b 4d–

1 0
0 1

=

5a– 2c+ 1=
9a 4c– 0= 


 5b– 2d+ 0=

9b 4d– 1= 
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If you take the time to solve the above systems, you will find that the
one on the left has solution , ; and the one on the

right has solution , and ; which is to say: 

We leave it for you to verify that both AB and AB equal I and that there-

fore  (see margin).

SOLUTION: As we did in the previous example, we again try to find a

matrix  such that :

Equating corresponding entries of the two matrices leads us to the
following two systems of equations:

Multiplying the equation  in the system on the left by 2,
and adding it to the bottom equation, leads to an absurdity:

We have just observed that there does not exist a matrix  such that

, which tells us that   is a singular matrix.

EXAMPLE 5.5
Determine if the matrix  is

invertible. If it is, find its inverse.

a 2–= c 9
2
---–=

b 1–= d 5
2
---–=

B
2– 1–
9
2
---– 5

2
---–

=

A 1– 2– 1–
9
2
---– 5

2
---–

=

A 2 3
4– 6–

=

B a b
c d

= AB I2=

2 3
4– 6–

a b
c d

1 0
0 1

=

2a 3c    + 2b 3d+
4a– 6c     – 4b– 6d–

1 0
0 1

=

The system of equation on
the right also has no solution.

2a 3c+ 1=
4a– 6c– 0= 


 2b 3d+ 0=

4b– 6d– 1= 



2a 3c+ 1=

4a 6c+ 2=
4a– 6c– 0=

0 2=add:

a b
c d

2 3
4– 6–

a b
c d

1 0
0 1

= 2 3
4– 6–
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While a square matrix need not have an inverse (Example 5.5), if it
does, then it is unique:

PROOF: We assume that B and C are inverses of the invertible matrix
A and then go on to show that :

Here are three additional results pertaining to invertible matrices:

PROOF: (i) We must suppress the temptation to appeal to the familiar
exponent rule , for we are now dealing with
matrices and not numbers. What we do, instead, is to turn to Defini-
tion 5.6 which tells us that:

GRAPHING CALCULATOR GLIMPSE 5.2

Ex
am

pl
e 

5.
4

Ex
am

pl
e 

5.
5

Answer: See page B-19.

CHECK YOUR UNDERSTANDING 5.7

Determine if  is invertible. If it is, find its inverse.

THEOREM 5.10 An invertible matrix has a unique inverse.

THEOREM 5.11 (i) If A is invertible, then so is , and:

(ii) If A is invertible and , then  is also
invertible, and:

(iii) If A and B are invertible matrices of the
same dimension, then AB is also invertible,
and: 

3 2–
4 1–

B C=
B BI B AC  BA C IC C= = = = =

since C is an
inverse of A 

since B is an
inverse of A 

This is sometimes refered
to  as  the
  shoe-sock theorem

   Can you guess why?

A 1–

A 1–  1– A=

r 0 rA

rA  1– 1
r
---A 1–=

AB  1– B 1– A 1–=

a 1–  1– a 1–  1–  a= =
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If  for some matrix in the box, then the
matrix  is invertible, and the matrix in the box is its
inverse: . Now put A in the box:

We have shown that .

(ii) Exercise 25.
(iii) Returning to our “box game,” we see that:

The above shows that . In words:

As you know, for any nonzero number a:

(i)  and (ii)  (for )

While we can adopt the notation in (i) for invertible matrices, we can-

not do the same for (ii), since the expression  is simply not defined

for a matrix A. We can however rewrite (ii) in the form ,
and use that form to define : 

A 1–             A 1–=
A 1–

A 1–  1– =

A 1–  A A A 1– I= =

A 1–  1– A=

From the given condi-
tions, we know that 
and  exist. What we
do here is to show that the
product  is, in
fact, the inverse of AB.

B 1–

A 1–

B 1– A 1–

The inverse of a product of invertible matrices is
the product of their inverses, in the reverse order.

AB  B 1– A 1–  A BB 1– A 1– AIA 1– AA 1– I= = = =

and:  B 1– A 1–  AB  B 1– A 1– A B B 1– IB B 1– B I= = = =

AB  1– B 1– A 1–=

Answer: See page B-19.

CHECK YOUR UNDERSTANDING 5.8
Use the Principle of Mathematical Induction to show that if

 are invertible, then so is their product, and: 

DEFINITION 5.7 For A, an invertible matrix, and n a positive
integer, we define: 
(i)

(ii)

A1 A2  An  

A1A2
An  1– An

1– An 1–
1– A1

1–=

a0 1= a n– 1
an
-----= a 0

1
A
---

a n– a 1– n=
A n–

A0  and  A n–
A0 I=

A n– A 1– n=
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Here are some examples of elementary matrices:

The situation in the above Check Your Understanding box is not a
fluke. You are invited to establish the following theorem in the exercises:

Consider the row operation that is performed in the first and second
line of Figure 5.2. As you can see in line 3, the matrix resulting from
performing the elementary row operation on A coincides with the prod-
uct matrix :

ELEMENTARY MATRICES

Elementary row operations
were introduced on page 3.

DEFINITION 5.8
ELEMENTARY 

MATRIX

An elementary matrix is a matrix that is
obtained by performing an elementary row
operation on an identity matrix.

Answer: See page B-19.

CHECK YOUR UNDERSTANDING 5.9
Show that the above three elementary matrices, ,  and  are
invertible, and that the inverse of each is itself an elementary matrix.

THEOREM 5.12 Every elementary matrix is invertible, and its
inverse is also an elementary matrix. Indeed: 
(a) If E is the elementary matrix obtained by

interchanging rows i and j of the identity
matrix I, then  is the elementary matrix
obtained by again interchanging rows i and
j of I.

(b) If E is obtained by multiplying row i of I
by , then  is obtained by multi-
plying row i of I by .

(c) If E is obtained by adding c times row i to
row j of I, then  is obtained by adding

 times row i to row j.

E1

0 1  0
1 0  0
0 0  1

=

Interchange
the first and
second row of  I3

E2

1 0 0  0
0 5 0  0
0 0 1  0
0 0 0  1

=

Multiply the second
row of      by 5I4

E3
1  6
0  1

=

Add 6 times the
second row of 
to the first row of

I2
I2

E1 E2 E3

E 1–

c 0 E 1–

1
c
---

E 1–

c–

EA
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Figure 5.2
The following theorem, a proof of which is relegated to the exercises,

tells us that the situation depicted in Figure 5.1 holds in general:

We remind you that two matrices are equivalent if one can be derived
from the other via a sequence of elementary row operations (Definition
1.1, page 3). The following theorem asserts that if a matrix A is invert-
ible, then every matrix equivalent to A is also invertible.  

PROOF: Since A and B are equivalent, there exist elementary matrices
 such that:

A
2 1 0 3
1 3 2 6
3 3 4 1

                    
4– 5– 8– 1

1 3 2 6
3 3 4 1

=
2R3– R1+ R1

multiply row 3 by -2 and add it to the first row
 

I3

1 0  0
0 1  0
0 0  1

                    
1 0  2–
0 1  0
0 0  1

E= =
2R3– R1+ R1

EA
1 0  2–
0 1  0
0 0  1

2 1 0 3
1 3 2 6
3 3 4 1

4– 5– 8– 1
1 3 2 6
3 3 4 1

= =

SA
M

E

Answer: See page B-19.

THEOREM 5.13 The matrix obtained by performing an elemen-
tary row operation on a matrix 
equals that matrix , where E is the matrix
obtained by performing the same elementary
row operation on the identity matrix .

CHECK YOUR UNDERSTANDING 5.10
(a) Switch the first and third rows of the matrix A of Figure 5.1 to

arrive at a matrix B, and then find the elementary matrix E such
that  .

(b) Multiply the second row of the matrix A of Figure 5.1 by 2 to
arrive at a matrix B, and then find the elementary matrix E such
that  .

THEOREM 5.14 If A and B are equivalent square matrices, then
 A is invertible if and only if B is invertible.

A Mm n
EA

Im

EA B=

EA B=

E1 E2  Es  
B Es

E2E1A=
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Theorem 5.11 tells us that each  is invertible. Consequently, if A is
invertible then so is B, for it is a product of invertible matrices. By sym-
metry we also have that if B is invertible then so is A. 
You can quickly determine whether or not a matrix is invertible by

looking at its row-reduced-echelon form:

PROOF: If  then, sine I is invertible, A is also invertible
(Theorem 5.14).
We establish the converse by showing that if , then A is
not invertible:

Let . Since  has less than n leading
ones (otherwise it would be ), its last row must consist
entirely of zeros. This being the case, for any given 
matrix , the product matrix  cannot be
the identity matrix, as its lower-right-corner entry is not 1: 

Since there does not exist a matrix D such that ,
 is not invertible. It follows, from Theorem 5.14,

that A is not invertible.

The following theorem provides a systematic method for finding the
inverse of an invertible matrix:

PROOF: Let  be the elementary matrices correspond-
ing to elementary row operations which take A to I:

Since elementary matrices are invertible, their product is also invert-
ible and we have: 

 Thus: 
We have shown that  is the inverse of the matrix A; to put
it another way: 

Ei

Any matrix A is equivalent
to .rref A 

THEOREM 5.15  is invertible if and only if:
                   

THEOREM 5.16 If a sequence of elementary row operations
reduces the invertible matrix A to I, then
applying the same sequence of elementary
row operations on I will yield .

A Mn n

rref A  In=

rref A  In=

rref A  In

rref A  C In= C cij =
In

n n
D dij = CD eij =

enn cndn

 1=

n

 0 dn

 1=

n

 0 1= = =

CD I=
rref A  C=

A 1–

E1 E2  Es  

Es
E2E1A I=

A EsE2E1  1– I EsE2E1  1– E1
1– E2

1– Es
1–= = =

EsE2E1I
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The exact same sequence of row operations that trans-
form A to I can also be used to transform I to .

We now illustrate how the above theorem can effectively be used to
find, by hand, the inverse of an invertible matrix:

SOLUTION: We know that A is invertible if and only if .
Rather than obtaining the row-reduced-echelon form of A, we will
find the row-reduced echelon form of the matrix  which is that
matrix obtained by “adjoining” the  identity matrix to A:

This will feed two birds with one seed:
First bird: A is invertible if and only if  

 (By Theorem 5.14)

Second bird: If A is invertible, then 
 (By Theorem 5.16)

Using the Gauss-Jordan Elimination Method (page 10), we have:

EXAMPLE 5.6
Determine if  is invertible. If it

is, find its inverse.

A 1– E1
1– E2

1– Es
1–  1– Es

1–  1–  E2
1–  1– E1

1–  1–= =

EsE2E1 EsE2E1I= =

A 1–

A
1 2  3
2 5  3
1 0  8

=

rref A  I=

A I 
3 3

A I 
1 2  3 1 0 0
2 5  3 0 1 0
1 0  8 0 0 1

=

rref A I   I =

rref A I   I A 1– =

1 2  3 1 0 0
2 5  3 0 1 0
1 0  8 0 0 1

1 0  9 5 2– 0
0 1  3– 2– 1 0
0 0  1– 5– 2 1

1 0  9 5 2– 0
0 1  3– 2– 1 0
0 0  1 5 2– 1–

1 0  0 40– 16 9
0 1  0 13 5– 3–
0 0  1 5 2– 1–

I A 1– =

               
1 2  3 1 0 0
0 1  3– 2– 1 0
0 2–  5 1– 0 1

2R2 R3+ R3

1R3– R3

3R3 R2+ R2

A I =

Oh well:

2R2– R1+ R12R1– R2 R2+

1R1– R3 R3+

9R3– R1+ R1
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Theorem 5.15 says that a matrix A is invertible if and only .
Here are some other ways of saying the same thing:

PROOF: We show :

: Let A be invertible. For any given equation , we
have:

: If  has a unique solution for any B, then 
has a unique solution. But  has the trivial solution . It
follows that  has only the trivial solution.

: Assume that  has only the trivial solution.
Since A and  are equivalent matrices,  has
only the trivial solutions. This tells us that  does not have a
free variable, and must therefore have n leading ones. As such:

.

Answer: See page B-19.

CHECK YOUR UNDERSTANDING 5.11

Determine if  is invertible. If it is, find its inverse.

THEOREM 5.17 Let . The following are equivalent:

(i) A is invertible.

(ii)  has a unique solution for
every .

(iii)  has only the trivial solution.

(iv) .

(v) A is a product of elementary matrices.

A
1 0 1  2
0 2 1  4
1 1 1  0
0 3 1  1

=

rref A  I=

A Mn n

AX B=
B Mn 1

AX 0=

rref A  I=

i  ii  iii  iv  v  i     

i  ii  AX B=

AX B=

A 1– AX  A 1– B=

A 1– A X A 1– B=

IX A 1– B=

X A 1– B= unique solution

ii  iii  AX B= AX 0=
AX 0= X 0=

AX 0=

iii  iv  AX 0=
rref A  rref A  X 0=

rref A 

rref A  I=
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 : If  then: 

for some elementary matrices . Since elementary
matrices are invertible, their product is also invertible and we have: 

: If A is a product of elementary matrices, then it is a product
of invertible matrices, and is therefore invertible [CYU 5.9].

We defined a matrix A to be invertible if there exists a matrix B such that
. As it turns out, B need only “work” on the left (or right

side) of A:

PROOF: Assume that , and consider the equation . 

 

Since the equation  has only the trivial solution, the matrix A
is invertible (Theorem 5.17). Upon multiplying both sides of 

on the right by , we have: 

In a similar fashion:

THEOREM 5.18 Let . If there exists 
such that , then A is invertible and

.

iv  v  rref A  I=
Es
E2E1A I=

E1 E2  Es  

A EsE2E1  1– I EsE2E1  1– E1
1– E2

1– Es
1–= = =

a product of elementary matrices
(see CYU 5.9)

v  i 

AB BA I= =

A Mn n B Mn n

BA I=
A 1– B=

BA I= AX 0=

AX 0=
B AX  B0=
BA X B0=

IX 0=
X 0=

AX 0=
BA I=

A 1–
BA A 1– IA 1–=

B AA 1–  A 1–=
B A 1–=

Answer: See page B-20.

CHECK YOUR UNDERSTANDING 5.12
Let . Show that if there exists  such that

, then B is invertible and  .

A Mn n B Mn n

AB I= B 1– A=
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Exercises 1-6. Find the inverse of the given invertible matrix A, and then check directly that

.

Exercises 7-15. Determine if the given matrix A is invertible and if so, find its inverse.

Exercises 16-18. (a) Find elementary matrices  and  such that  for the given
matrix A.   (b) Find two elementary row operations which will take A to I.

Exercises 19-24. Assume that A, B, and X are square matrices of the same dimension and that A
and B are invertible. (a) Solve the given matrix equation for the matrix X.

(b) Challenge your answer in (a) using  and .  

EXERCISES

1. 2. 3.

4. 5. 6.

7. 8. 9.

10. 11. 12.

13. 14. 15.

16. 17. 18.

19. 20. 21.

22. 23. 24.

AA 1– A 1– A I= =

2 0
0 5

1 2
3 2

2 2
1 3

1 0  0
1 2  0
1 2  3

0 1  1
1 2  0
0 1  2

2 1  3
1 2  3
2 0  4

2 3
4– 6–

3 2
3 1

1– 4
5 20–

1 2  3
2 3  2
3 3  3

1 4 0
2 2– 3

13 2 12

1 3  0
2 2–  3
1 2  1

1 0 1  2
0 2 1  4
1 1 2  2
0 3 1  8

1 0 1  1–
0 2 1   0
1 1– 2   0
0 3 1  1

4 0 4  8
0 1 1   0
0 1 2   0
2 1 1  2–

E1 E2 E2E1I A=

A
1  0 0
0 3–  0
0  0  1

= A
0  0  1
0 1  0
5  0  0

= A
1  0  0
0 0  1
7  1  0

=

A 1 2
0 1

= B 2 1
3 1

=

2XA AB= 2XA BA= AXB 1– BA=

BXA B2= BXB BAB 2= AXB A2 BA  1–=
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25. Prove Theorem 5.11(ii).
26. Prove Theorem 5.12.
27. Prove Theorem 5.13.

28. Prove that if A is invertible, then .

29. Let . Prove that there exists an invertible matrix  such that 
.

30. Let  be a linearly independent set of vectors in , and let  
be invertible. Show that  is linearly independent.

31. Let  be a basis for , and let  be invertible. Show that 
 is also a basis.

32. Show that a (square) matrix that has a row consisting entirely of zeros cannot be invertible.

33. Show that a (square) matrix that has a columns consisting entirely of zeros cannot be invertible.

34. Show that if a row of a (square) matrix is a multiple of one of its other rows, then it is not 
invertible.

35. State necessary and sufficient conditions for a diagonal matrix to be invertible. (See Exercise 
18, page 161.)

36. Prove that  is invertible if and only if the rows of A constitute a basis for .

37. Prove that the transpose of an invertible matrix A is invertible, and that 
. (See Exercise 19, page 161.)

38. Prove that  is invertible if and only if the columns of A constitute a basis for .

39. Prove that if a symmetric matrix is invertible, then its inverse is also symmetric. (See Exer-
cise 20, page 161.)

40. Prove that if  is an idempotent invertible matrix, then . (See Exercise 22, 
page 162.)

41. Prove that every nilpotent matrix is singular. (See Exercise 23, page 162.)

42. (a) Prove that  is invertible if and only if .

(b) Assuming that  is invertible, find  (in terms of a, b, c, and d).

43.  Let  be such that . Show that A is invertible.

44.  Let  be such that , with . Show that A is invertible.

A 2– A 3– A 5–=

A Mm n C Mm m
CA rref A =

A1 A2  As    Mn n A Mn n

AA1 AA2  AAs   

A1 A2  An2    Mn n A Mn n

AA1 AA2  AAn2   

A Mn n n

AT

AT  1– A 1– T=

A Mn n n

A Mn n A In=

A a b
c d

= ad bc– 0

A a b
c d

= A 1–

A Mn n A2 2A– I+ 0=

A Mn n A2 sA tI+ + 0= t 0
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45.  Let  be such that . Show that A is invertible.

46. (PMI) Show that if  is invertible, then so is  for every positive integer n.

47. (PMI) Let A and B be invertible matrices of the same dimension with . Sow that:
(a)  for every positive integer n.

(b)  for every positive integer n.

48. If A is invertible, then so is , and .

49. If  is a linearly independent set in the vector space , and if 
 is not the zero vector, then  is linearly independent.

50. Let A be an  invertible matrix, and . If , then .

51. Let  be invertible, and . If , then 

52. If A and B are  invertible matrices, then  is also invertible, and 
.

53. If  and , then A is not invertible.

54. If a square matrix A is singular, then .

55. If A and B are  matrices, and if  is invertible, then both A and B are invertible.

56. If A and B are  matrices, and if  is singular, then both A and B are singular.

PROVE OR GIVE A COUNTEREXAMPLE

A Mn n A3 3A– 2I+ 0=

A An

AB BA=
B 1– nA 1– A 1– B 1– n=

AB  n– A n– B n–=

A– A–  1– A 1––=

A1 A2  As    Mn n
A Mn n AA1 AA2  AAs   

n n B Mn m AB 0= B 0=

A Mn n B Mm n BA 0= B 0=

n n A B+
A B+  1– A 1– B 1–+=

A Mn n A2 0=

A2 0=

n n AB

n n AB
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 5

The main objective of this section is to associate to a general linear
transformation , where  and , a
matrix  which can be used to find the value of , for every

. The importance of all of this is that, in a way, the linear transfor-
mation T is “linked to a finite object:” an  matrix A. 

The notion of an ordered basis for a vector space plays a role in the
current development. The only difference between a basis and an
ordered basis is that, in the latter, the listing of the vectors is of conse-
quence. For example, while  and  are
one-and-the-same bases, they are not the same ordered bases (different
ordering of the elements). 

Choosing an ordered basis for a vector space V of dimension n enables
us to associate vertical n-tuple to each vector of V: 

SOLUTION: As is often the case, the problem boils down to that of
solving a system of linear equations:

§3. MATRIX REPRESENTATION 
OF LINEAR MAPS

DEFINITION 5.9
COORDINATE

 VECTOR

Let  be an ordered
basis for a vector space V, and let

 

We define the coordinate vector of v rela-
tive  to be the column vector:

 

EXAMPLE 5.7 In Example 3.10, page 94, we showed that
 is a basis

for . Find the coordinate vector of
 with respect to .

T: V W dim V  n= dim W  m=
A Mm n T v 

v V
m n

1 2  3 5   3 5  1 2  

 v1 v2  vn   =

v c1v1= c2v2  cnvn+ + +



v 

c1
c2

cn

=



 1 3 0   2 0 4   0 1 2    =
3

1 11 8   

If: 1 11 8   a 1 3 0   b 2 0 4   c 0 1 2  , then:+ +=

a 2b 0c+ + 1=
3a 0b c+ + 11=

0a 4b 2c+ + 8= 




           

1 2 0 1
3 0 1 11
0 4 2 8

        

1 0 0 2

0 1 0 1
2
---–

0 0 1 5

         

a 2=

b 1
2
---–=

c 5=

1 11 8   

2
1
2
---–

5

=

a  b c                   a b  c

rrefS: aug S 
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PROOF: For  and  in V, and , we

have:

                                  Consider a linear transformation , with  and
. If we fix a basis  for V and a basis

 for W, then for every  we can determine
the coefficient matrix  of v with respect to , as well as the coeffi-
cient matrix  of  with respect to . The following defini-
tion provides an important relation between  and :

Answer: 
1 4–
3 8–

7 4

CHECK YOUR UNDERSTANDING 5.13

Find the coordinate vector of  with respect to:1– 1 2   3

 1 3 0   2 0 4   0 1 2    =

Throughout this sec-
tion the term “basis”
will be understood to
mean “ordered basis.”

We remind you that we are
using  to denote n Mn 1

THEOREM 5.19 If  is a basis for a vector

space V, then the function  given
by  (a vertical n-tuple) is linear. 

[Indeed, it is an isomorphism (Exercise 32).]

 v1 v2  vn   =

L: V n

L v  v =

L rv v+ 

rL v  L v +=

v aivi

i 1=

n

= v bivi

i 1=

n

= r 

L rv v+  L r aivi

i 1=

n

 bivi

i 1=

n

+
 
 
 
 

L rai bi+ vi

i 1=

n


 
 
 
 

= =

ra1 b1+

ran bn+

ra1

ran

b1

bn

+ r
a1

an

b1

bn

+= = =

rL aivi

i 1=

n


 
 
 
 

= L bivi

i 1=

n


 
 
 
 

+ rL v  L v +=

    

 (gamma) is the Greek
letter  c.


T: V W dim V  n=
dim W  m=  v1 v2  vn   =
 w1 w2  wm   = v V

v  

T v   T v  

v  T v  
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The above definition looks intimidating, but appearances can be mis-
leading. Consider the following example.

SOLUTION: Definition 5.10 tells us that the first column of  is
the coefficient matrix of  with respect to  [entries are the
values of a, b, c stemming from (1) below], the second column is

 [values of a, b, c stemming from (2)], and the third column is
 [values stemming from (3)]:

Equating coefficients in each of the above we come to the following
three systems of equations:

DEFINITION 5.10
MATRIX REPRESEN-

TATION OF A LIN-
EAR MAP

Let  be a linear map from a vector
space V of dimension n to a vector space W
of dimension m. Let 
and  be bases for V
and W, respectively. We define the matrix
representation of T with respect to  and 

to be the matrix  whose 
column is .

EXAMPLE 5.8 Let  be the linear map given by: 

Determine the matrix representation  of
T with respect to the bases: 

 and   

T: V W

 v1 v2  vn   =
 w1 w2  wm   =

 

T  Mm n ith

T vi  

T: 3 P2

T a b c   2ax2 a b+ x c+ +=
T 

 1 3 0   2 0 4   0 1 2    =

 2x2 x 3x2 1–+ x =

T 
T 1 3 0   

T 2 0 4   
T 0 1 2   

(1):  T 1 3 0   2x2 4x 0+ + a 2x2 x+  b 3x2 1–  c x + += =
(2):  T 2 0 4   4x2 2x 4+ + a 2x2 x+  b 3x2 1–  c x + += =
(3):  T 0 1 2   0x2 1x 2+ + a 2x2 x+  b 3x2 1–  c x + += =

(1): 
2 3 0 2
1 0 1 4
0 1– 0 0

      (2): 
2 3 0 4
1 0 1 2
0 1– 0 4

      (3): 
2 3 0 0
1 0 1 1
0 1– 0 2

2x2 1x 0+ +
3x2 0x 1–+

0x2 1x 0+ +

a    b    c                        a    b    c
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We want the solutions of the above systems of three equations in the
three unknowns a, b, c. Noting that the coefficient matrix of all three
systems are one and the same, we can “compress” all three systems
into a single matrix form:

Figure 5.2

To know the coordinates of a vector v in a finite dimensional vector
space V with respect to a fixed ordered basis for that space is the same
as knowing the vector v itself. This being the case, the following theo-
rem tells us that the action of a linear transformation  can, in
effect, be realized by means of a matrix multiplication. 

PROOF: Since  and  are both
linear, it suffices to show that  for each 
(Theorem 4.6, page 115). They are:

 is the  column of , namely:  (see
margin and Exercise 10, page 160). By Definition 5.10,

 is also the  column of the matrix .

Answer: 

T 

1 2 3 4 – 1 4
1 0 1 8– 23 8
0 1 13 4 5 4

CHECK YOUR UNDERSTANDING 5.14

Let  be the linear map given by:

 

Determine  for:

 

                    and  .

2 3 0 2 4 0
1 0 1 4 2 1
0 1– 0 0 4 2

           
1 0 0 1 8 3
0 1 0 0 4– 2–
0 0 1 3 6– 2–

system (1)

a    b    c

system (2)
system (3)

solutions of system (1)
solutions of system (2)

solutions of system (3)

rref
T 

1 8 3
0 4– 2–
3 6– 2–

=

T: M2 2 3

T a b
c d

b a c d+  = =

T 

 3 3
2 2

7 2
1 1

1 1–
5 1

2 6
5 9

  
 
 
 

=

 1 3 0   2 0 4   0 1 2    =

Note that the dimensions
match up:

T v   T  v =

M
m

1




M
m

n




N
n

1




THEOREM 5.20 Let  be a linear map from a vector
space V of dimension n to a vector space W of
dimension m. Let  and

 be bases for V and W,
respectively. Then, for every :

T: V W

T: V W

 v1 v2  vn   =
 w1 w2  wm   =

v V
T v   T  v =

Since  
vi 0v1

 1vi  0vn,+ + + +=

vi  =

0
0

1

0


 ithposition

T  v : V m T v   : V m
T  vi  T vi  = 1 i n 

T  vi  ith T  T vi  

T vi   ith T 
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SOLUTION: Proceeding as in Figure 5.2 of Example 5.8 we find
. Since :

Finding . Since :

Finding :

We leave it for you to verifying that

; that is: .

EXAMPLE 5.9 Let  be the linear map given by: 

Determine  of T with respect to the bases: 

 and   

and then show directly that:

T: 2 3
T a b  a b+ b 2a  =
T 
 1 2  3 0  =

 1 0 0   1 1 0   1 1 1    =

T 5 7   T  5 7  =

INCIDENTALLY, noting
that the coefficient matrix
of system (*) is identical
to that of (**) we could
save a bit of time by
doing this

T 
T 5 7  

T  T 1 2  3 2 2     and   T 3 0  3 0 6  = =

1 1 1 3 3
0 1 1 2 0
0 0 1 2 6

           
1 0 0 1 3
0 1 0 0 6–
0 0 1 2 6

The three vectors in  Solving the two systems of equations:

a 1 0 0   b 1 1 0   c 1 1 1  + +
3 2 2  
3 0 6  




=

a  b  c
T 

rref(*)

T 5 7   T 5 7  12 7 10  =

1 1 1 12
0 1 1 7
0 0 1 10

            
1 0 0 5
0 1 0 3–
0 0 1 10

rref

T 5 7  

(**)

5 7  

1 3 5
2 0 7

         
1 0 7

2
---

0 1 1
2
---

rref

5 7  

The two vectors in 

T 5 7   T  5 7  =
5
3–

10

1 3
0 6–
2 6

7
2
---

1
2
---

=
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The next result is particularly nice — it tells us that a matrix of a com-
posite of linear transformations is a product of the matrices of those
transformations:

PROOF: For any  we have:  

The result now follows from Exercise 34 which asserts that if A is a
matrix such that  for every , then the
matrices  and A must be one and the same.

Answer: See page B-20.

CHECK YOUR UNDERSTANDING 5.15
Referring to the situation described in CYU 5.15, verify directly that:

 T 1 3
2 0 

 
 



T 
1 3
2 0 

=

V W             Z
T              L

  

LT  L  T =
LT

THEOREM 5.21
THE COMPOSITION 

THEOREM

Let  and  be linear
maps, and let , and  be bases for the
finite dimensional spaces V, W, and Z, respec-
tively. Then:

EXAMPLE 5.10 Let  and  be the
linear maps given by: 

and 

Show directly that:

For bases:   

T: V W L: W Z
  

LT  L  T =

v V

LT  v  LT  v  =

L T v    L  T v   L  T  v = = =

Theorem 5.20

LT  v  A v = v V
LT 

T: 2 M2 2 L: M2 2 P2

T a b  a a b+
0 2b

=

 L a b
c d 

 
 

ax2 bx c d+ + +=

LT  L  T =

 1 2  0 4  =

 1 1
0 0

0 2
1 0

0 0
1 1

0 0
0 1

  
 
 
 

=

 x2 x2 x+ x2 x 1+ +  =
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SOLUTION: Determining :

Determining :

Determining :

And it does all fit nicely together, as you can easily check:

T 

1  0 0 0 1 0
1 2 0 0 3 4
0 1 1 0 0 0
0 0 1 1 4 8

          

1  0 0 0 1 0
0 1 0 0 1 2
0 0 1 0 1– 2–
0 0 0 1 5 10

T 

1 0
1 2
1– 2–

5 10

=

1 1
0 0

0 2
1 0

0 0
1 1

0 0
0 1

T 1 2  1 3
0 4

=

T 0 4  0 4
0 8

=

L 

1  1 1 1 0 0 0
0 1 1 1 2 0 0
0 0 1 0 1 2 1

       
1  0 0 0 2– 0 0
0 1 0 1 1 2– 1–
0 0 1 0 1 2 1

L 
0 2– 0 0
1 1 2– 1–
0 1 2 1

=
1x 2

0x
0

+
+

1x 2
1x

0
+

+
1x 2

1x
1

+
+

L
1

1
0

0






1x 2

=
1x

0
+

+

L
0

2
1

0






0x 2

2x
1

+
+

=

L
0

0
1

1






0x 2

0x
2

+
+

=

L
0

0
0

1






0x 2

0x
1

+
+

=

rref

LT 

1  1 1 1 0
0 1 1 3 4
0 0 1 4 8

           
1 0 0 2– 4–
0 1 0 1– 4–
0 0 1 4 8

LT 
2– 4–
1– 4–

4 8
=

1x 2
0x

0
+

+
1x 2

1x
0

+
+

1x 2
1x

1
+

+

rref

LT 1 2  L T 1 2   L 1 3
0 4 

  x2 3x 4+ += = =

LT 0 4  L T 0 4   L 0 4
0 8 

  0x2 4x 8+ += = =

2– 4–
1– 4–

4 8

0 2– 0 0
1 1 2– 1–
0 1 2 1

1  0
1  2
1–  2–

5  10

=

LT  L  T 
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A proof of the following result is relegated to the exercises:

As might be expected:

PROOF: We have: 

Answer: See page B-21.

CHECK YOUR UNDERSTANDING 5.16

Let  and  be the linear maps given by: 

and 

Show directly that:

for bases:   

T: 3 P2 L: P2 2 

T a b c   bx2 ax c+ +=

 L ax2 bx c+ +  a a b c+ + =

LT  L  T =

 1 1 1   1 1 0   1 0 0    =
 x2 x 2  =
 0 1  1 1  =

We recall that  denotes
the identity matrix of
dimension n, and that 
denotes the identity map
from V to V.

In

IV

THEOREM 5.22 Let  be a basis for a vector space V of
dimension n. Then:

THEOREM 5.23 Let  be an isomorphism. Let  and
 be bases for V and W, respectively. Then:



IV  In=

T: V W 


T 1–  T 
1–=

Answer: See page B-21.

CHECK YOUR UNDERSTANDING 5.17

Show that if the matrix representation of  with respect to
any chosen basis  for V and  for W is invertible, then the linear
map T is itself invertible (an isomorphism).

V                             W                          VT T 1–

 

T 1–
T IV=

T 1–
T  IV =

T 1–  T  I=

T 1–  T 1–=

Theorems 5.21 and 22:

T: V W
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Exercises 1-3. Let  be the linear operator given by . Find
 and  for the given (ordered) basis .

Exercises 4-5. Let  be the linear operator given by . Find
 and  for the given basis .

Exercises 6-7. Let  be the linear map given by . Find
 and  for the given bases  and .

Exercises 8-9. Let  be the linear map given by .

Find  and  for the given bases  and .

Exercises 10-11. Let  be the linear map given by . Find 
with respect to the given bases  and , and show directly that .

Exercises 12-13. Let  be the linear map given by . Find
 with respect to the given bases  and , and show directly that .

EXERCISES

1. 2. 3.

4. 5.

6.

7.

8.

9.

10.

11.

12.

13.

T: 2 2 T a b  a b+ 2b =
2 3   T 2 3   

 1 0  0 1  =  0 1  1 0  =  1 2  2– 1  =

T: 3 3 T a b c   a b+ b a c– =
2 3 1    T 2 3 1    

 1 0 0   0 1 0   0 0 1    =  1– 0 1   0 1 0   2– 1 1    =

T: R2 P2 T a b  ax2 bx– a b– +=
1 2   T 1 2    

 2 1  1 0    2x2 x 2– = =

 3 1–  1 2    2x2 1 2x x2 x 1+ ++ = =

T: P3 M2 2 T ax3 bx2 cx d+ + +  a d–
b c

=

x2 x 1+ +  T x2 x 1+ +    

 x3 2x2 x 1+ x 1–     1 1
1 1

0 1
1 1

0 0
1 1

0 0
0 1

  
 
 
 

= =

 x3 x2+ x2 x x 1 1++   1 1
1 1

0 1
1 1

0 0
1 1

0 0
0 1

  
 
 
 

= =

T: 3 2 T a b c   a b+ 2c = T 
  T 1 2 1    T  1 2 1   =

 1 1 0   1 0 1   1 1 1      2 2  0 1  = =

 0 1 1   1 0 1   1 1 0      0 1  2 2  = =

T: 2 P2 T a b  ax2 bx– a b– +=
T    T 1 2   T  1 2  =

 2 2  0 1    x x2 x 1+  = =

 1 2  2 1    x x2 x+ x2 x 1+ +  = =
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Exercises 14-15. Let  be the linear map given by . Show
directly that  for the given bases  and .

Exercises 16-17. Let  be the identity map on . Find  with respect to the
given bases  and , and show directly that  

Exercises 18-19. Let  be the linear map given by . Find

 for the given bases  and , and show directly that .

Exercises 20-22. Let  be the linear operator given by . Find
 with respect to the given basis , and show directly that .

23. (Calculus Dependent) Let  be the linear map given by  and let
 be the differentiation linear function: . Determine the given

matrices for the basis  of , and the basis  of .

(a)                                     (b)                               (c)         

(d)                                (e)                        (f) 

24. (Calculus Dependent) Let V be the subspace of  spanned by the three vectors 1, ,
and . Let  be the differentiation operator. Determine  for

, and show directly that .

25. (Calculus Dependent) Let  be the differentiation operator. Determine  for
, and show directly that .

14.

15.

16.
17.

18.

19.

20. 21. 22.

T: P1 P2 T p x   xp x  p 0 +=
T 2x 1+   T  2x 1+ =  

 4 2x   4 2x 4x2 = =

 x 1 2x 3++   x x2 x+ x2 x 1+ +  = =

I3: 3 3 3 I3 
  I3 1 2 1    I3  1 2 1   =

 1 1 0   1 0 1   1 1 1      1 1 0   1 0 1   1 1 1    = =
 1 1 0   1 0 1   1 1 1      1 0 1   1 1 1   1 1 0    = =

T: M2 2 M2 2 T a b
c d 

  1 2
0 1

a b
c d

=

T    T 1 2
2 1– 

 


T 
1 2
2 1– 

=

 1 1
1 1

0 1
1 1

0 0
1 1

0 0
0 1

  
 
 
 

 0 1
1 1

0 0
0 1

1 1
1 1

0 0
1 1

  
 
 
 

= =

 0 1
1 1

0 0
0 1

1 1
1 1

0 0
1 1

  
 
 
 

 1 0
0 1

0 0
1 1

0 1
0 0

0 1
0 1

  
 
 
 

= =

T: 2 2 T a b  a b+ 2b =
T   T 1 3   T  1 3  =

 1 0  0 1  =  0 1  1 0  =  1 2  2– 1  =

T: P2 P3 T p x   xp x =
D: P3 P2 D p x   p x =

 1 x x2  = P2  1 x x2 x3   = P3

T  D  DT 
TD  TDT  DTD 

F   xsin
xcos D: V V D 

 1 x xcossin = D 5 2 xsin+   D  5 2 xsin+ =

D: P3 P3 D 
 1 2x 3x2 4x3   = D 5x3 3x2+   D  5x3 3x2+ =
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26. Find the linear function , if  for .

27. Find the linear function  if  for  and

.

28. Find the linear function  if  for  and

.

29. Find the linear function  if  for 

 and .

30. Let  and  be the linear maps given by:  

and . Show directly that  for bases:

31. Let  and  be the linear maps given by: 

and . Show directly that  for bases:

32. Prove that the linear function of Theorem 5.21 is an isomorphism.

33. Prove Theorem 5.24.

34. Let  be a linear map from a vector space V of dimension n to a vector space W of
dimension m. Let  and  be bases for V and W, respectively. Show that if  is such
that  for every , then .

Exercises 35-36. Prove that the function  given by  is an isomor-
phism. Find the linear map . Determine  and  for the given bases 
and , and show directly that .

35.

36.

T: 2 2 T 
1 1
0 2

=  1 2  2 0  =

T: 2 2 T 
1 1
0 2

=  1 2  2 0  =

 1 1  1 2  =

T: 2 P2 T 
1 0
0 1
1 1

=  1 2  2 0  =

 2 2x 1 x2+ =

T: M2 2 M2 2 T 

1 1 1 1
0 1 1 1
0 0 1 1
0 0 0 1

=

 1 0
0 0

1 1
0 0

1 1
1 0

1 1
1 1

  
 
 
 

=  1 0
0 0

0 1
0 0

0 0
1 0

0 0
0 1

  
 
 
 

=

T: 2 M2 2 L: M2 2 3 T a b  a b–
a– 0

=

 L a b
c d 

 
 

b a c d+  = LT  L  T =

 1 2  0 1  =  1 1
0 0

0 2
1 0

0 0
1 1

0 0
0 1

  
 
 
 

 1 1 1   1 1 0   1 0 0    ==

T: 2 3 L: 3 P2 T a b  a– 0 a b+  =

 L a b c   bx2 cx– a+= LT  L  T =
 1 2  0 1  =  1 1 1   1 1 0   1 0 0      x2 x 1+ 3  ==

T: V W
  A Mm n

A v  T v  = v V A T =

T : 2 P1 T a b  ax 2b+=
T 1– : P1 2 T  T 1–  

 T 1–  T 
1–=

 2 2  0 1    x x 1+ = =

 1 2  2 1    x 2 = =
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Exercises 37-38. Prove that the function  given by  is an

isomorphism. Find the linear map . Determine  and  for the
given bases  and , and show directly that .

39. Let  be given by  (See Exercise 19, page 161). Let:

 , .

(a) Determine .

(b) Show that L is an isomorphism, and use Theorem 5.25 to find .

40. Let  be a linear operator. A nontrivial subspace  of V is said to be invariant
under T if . Assume that  and . Show

that there exists a basis  for V such that , where  is the zero 
matrix.

41. Let  be a linear function and let  and  be bases for the finite dimensional vec-
tor spaces V and W, respectively. Let . Show that:

(a)  if and only if .

(b)  if and only if  is in the column space of A.

42. Let V and W be vector spaces of dimensions n and m, respectively. Prove that the vector
space  of Exercise 35, page 122, is isomorphic to .
Suggestion: Let  and  be bases for V and W, respectively. Show that the function 

 given by  is an isomorphism.

43. (PMI) Let  be vector spaces and let  be a basis for , . Let 
 be a linear map, . Use the Principle of Mathematical Induction 

to show that .

37.

38.

T : 4 M2 2 T a b c d    a a b+
d c d–

=

T 1– : M2 2 R4 T  T 1– 
  T 1–  T 

1–=

 1 1 0 0    0 1 1 0    0 0 1 1    1 0 0 0        1 1
1 1

0 1
1 1

0 0
1 1

0 0
0 1

  
 
 
 

==

 1 1 1 1    1 1 1 0    1 1 0 0    1 0 0 0        0 1
1 1

0 0
1 1

0 0
0 1

1 1
1 1

  
 
 
 

==

L: M3 2 M2 3 L A  AT=


1 1
1 1
1 1

1 1
1 1
1 0

1 1
1 1
0 0

1 1
1 0
0 0

1 1
0 0
0 0

1 0
0 0
0 0

    

 
 
 
 
 

=  1 0 0
0 0 0

1 1 0
0 0 0

1 1 1
0 0 0

1 1 1
1 0 0

1 1 1
1 1 0

1 1 1
1 1 1

    
 
 
 

=

L 
L 1– 

T: V V S
T S  T v  v S  S= dim V  n= dim S  m=

 T 
A B
0 C

= 0 n m–  m

T: V W  
A T =

v Ker T  v  null A 

w Im T  w 

L V W  Mm n
 

: L V W  Mm n  T  T =

V1 V2  Vn   i Vi 1 i n 
Ti: Vi Vi 1+ 1 i n 1– 

Tn 1– Tn 2– T1 n1
Tn 1– nn 1–

Tn 2– n 1– n 2–
 T2 32

T1 21
=
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44. Let  be an isomorphism, and let  be a basis for V. Then, for 
every , , where .

45. Let  be linear, and let  and  be bases for V and W, respectively. Let 
 be defined by . Then: .

46. Let  be a basis for V, and let . If  is 
a linear operator on V, then .

47. If  is the zero transformation from the n-dimensional vector space V to the m-
dimensional vector space W, then  is the  zero matrix for every pair of bases  
and  for V and W, respectively.

48. Let  be the identity map on a space V of dimension n, and let  and  be 
(ordered) basis for V. Then  if and only if .

49. Let  be given by . There exists a basis  such that 
 is a diagonal matrix (See Exercise 18, page 161).

50. Let  be given by . There exists a basis  such 
that  is a diagonal matrix (See Exercise 18, page 161).

51. For  and  and any basis  for : .

PROVE OR GIVE A COUNTEREXAMPLE

T: V W  v1 v2  vn   =
v V v  T v  =  T v1  T v2   T vn    =

T: V W  
rT: V W rT  v  r T v  = rT  r T =

 v1 v2  vn   =  2v1 2v2  2vn   = T: V V

T  2 T =

Z: V W
Z  m n 



IV : V V  

IV  In=  =

T: 2 2 T a b  a 3b 2a 2b++ = 
T 

T: 2 2 T a b  a 3b 2– a 2b++ = 
T 

T: n n T: n n  n T L+  T  L +=
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 5

In the previous section we observed that by choosing a basis  in an
n-dimensional vector space V one can associate to each vector its coor-
dinate vector relative to  (Definition 5.9, page 177). The following
result tells us how the coordinate vector of  changes when
switching from one basis to another:

PROOF: Consider the identity map  along with accompa-
nying chosen bases  and : 

Applying Theorem 5.20, page 180 we have our result:

SOLUTION: Definition 5.10, page 179, tells us that the first column of
 is the coefficient matrix of  with respect to , the

second column is , and the third column is ;
bringing us to the following three vector equations:]

§4. CHANGE OF BASIS

THEOREM 5.24 For  and  bases for the finite dimensional
vector space V, and for  we have:

where  denotes the identity map from V to V.




v V

 
v V

v  IV  v =

IV

IV: V V

 

V                               V

 
v. IV v.

v  IV v   IV  IV v   IV  v = = =

CHANGE OF BASE
MATRIX

The above matrix  is called the
change of base matrix from  to .

EXAMPLE 5.11 Find the change-of-base matrix  for the

basis , 
of , and then verify directly that

 for .

IV 
 

IP2
 

 x2 x 1  =  1 x x x2 x++ =
P2

v  IP2
  v = v 2x2 3+=

IP2
  IP2

x2  

IP2
x   IP2

x  

IP2
x2  x2 a 1 x+  b x x2+  c x + += =

IP2
x  x a 1 x+  b x x2+  c x + += =

IP2
1  1 a 1 x+  b x x2+  c x + += =
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Noting that we also have to find  we might as well throw
in the fourth vector equation:

Equating coefficients in each of the above four vector equations we
come to the following four systems of equations in the three
unknowns a, b, and c:

At this point we have two of the three matrices in the equation 

As for , it is simply , since  . 

We leave it for you to verify that, indeed:

2x2 3+ 

2x2 3+ a 1 x+  b x x2+  c x + +=

0  1 0 1 0 0 2
1 1 1 0 1 0 0
1 0 0 0 0 1 3

              
1  0 0 0 0 1 3
0 1 0 1 0 0 2
0 0 1 1– 1 1– 5

x
0x 2

1x
0

+
+

=

x
x 2

+
1x 2

1x
0

+
+

=
1

x
+

0x 2
1x

1
+

+
=

IP2
x2  x2 1x2 0x 0+ += =

IP2
x  x 0x2 1x 0+ += =

IP2
1  1 0x2 0x 1+ += =

2x2 3+ 2x2 0x 3+ +=

a    b   c

IP2
 

}

2x2 3+ 

rref

2x2 3+  IP2
  2x2 3+ =

2x2 3+ 
2
0
3

 x2 x 1  =

Answer: See page B-21.

CHECK YOUR UNDERSTANDING 5.18

Let , , and .
Determine the change-of-base matrix  and verify directly

that .

EXAMPLE 5.12 Find the coordinates of the point 
with respect to the coordinate axes obtained
by rotating the standard axes by  in a
counterclockwise direction. 

3
2
5

0 0 1
1 0 0
1– 1 1–

2
0
3

=

V 2=  1 2  2 1  =  0 3  2 1–  =
I
2 



2 3   I
2 


2 3  =

P 1 3 =

45
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SOLUTION: We are to find the coordinate vector of the point 
with respect to vectors of length 1 (unit vectors) in the direction of the

- and  depicted in Figure 5.3.

Figure 5.3
We begin by finding the change-of-base matrix , for

 and :

Applying Theorem 5.20, page 180, we have:

 

Conclusion: In the -coordinate system of Figure 5.3:

Check: 

1 3 

x y-axis

1

.P 1 3  x y = =

x

y

xy

45

2
1

1..
1

45cos 45sin  1
2

------- 1
2

------- 
 =45cos– 45sin  1

2
-------– 1

2
------- 

 =

45

1

I
2 



 1 0  0 1  =  1
2

------- 1
2

------- 
  1

2
-------– 1

2
------- 

 
 
 
 =

1
2

------- 1
2

-------– 1 0

1
2

------- 1
2

------- 0 1
            

1 0 2
2

------- 2
2

-------

0 1 2
2

-------– 2
2

-------

 I
2 1 0  1 0 =

I
2 0 1  0 1 =

rref

1 3   I  1 3  

2
2

------- 2
2

-------

2
2

-------– 2
2

-------

1
3

2 2
2

= = =

x y

P 2 2 2 =

Answer: See page B-21.

CHECK YOUR UNDERSTANDING 5.19
Find the coordinates  of the point  with respect to
the coordinate axes obtained by rotating the standard axes by  in
a clockwise direction.

2 2 1
2

------- 1
2

------- 
  2 1

2
-------– 1

2
------- 

 + 2 1– 2 1+  2 3 = =

x y  P 1 3 =
60
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PROOF: A direct consequence of Theorem 5.23, page 184, with
 playing the role of  (note that ).

We now turn our attention to the matrix representations of a linear
operator .

PROOF: Consider the following figure:

Figure 5.4
Since the identity map  does not move anything, we have:

Applying Theorem 5.21, page 182, to the above equation, we have:

The adjacent identity map is pointing
in two directions. The left-to-right
direction gives rise to the change-of-
base matrix , while the right-to-
left directions brings us to . Are

 and  related? Yes: 

IV 
IV 

IV  IV 

V                               V

 
v. IV v.

In other words: 

and  are invert-
ible, with each being the
inverse of the other.

IV 
IV 

THEOREM 5.25 Let  and  be two bases for a finite
dimensional vector space V. Then:

 

IV  IV   1–=

IV: V V T: V W IV
1– IV=

A generalization of this
result appears in Exer-
cise 24.

THEOREM 5.26
CHANGE OF BASIS

Let  be a linear operator on a finite
dimensional space V. Let  and  be two
bases for V. Then: 

 

T: V V

T: V V
 

T  IV  T  IV =

In reading the composition
of functions, you kind of
have to read from right to
left: the right-most func-
tion being performed first.





T

T

IV IV

T IV TIV=
Top path





V                                                    V

V                                                     V

Dotted path:   IV  at left of figure, then T, then IV at right  of figure

IV
T IVTIV=

T  IVTIV =and therefore:

T  IV  T  IV =

      dotted path in Figure 5.4

this function first
then this function

and finally this function

top path in Figure 5.4 }
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SOLUTION: We determine the four matrices:

EXAMPLE 5.13 Verify, directly, that Theorem 5.26 holds for
the linear operator  given by:

 
and bases: 

T: 3 3

T a b c   2a b c 0+ =

 1 1 1   1 1 0   1 0 0    =
 1 0 1   0 1 0   0 0 1    =

T           T          I3            I3 

1 0 0   2 0 0
0 1 0 1 1 1
1 0 1 0 0 0

           
1 0 0   2 0 0
0 1 0 1 1 1
0 0 1 2– 0 0

For T 


T 1 0 1   2 1 0  =

T 0 1 0   0 1 0  =
T 0 0 1   0 1 0  =

rref

1 1 1   2 2 2
1 1 0  2  1 0
1 0 0  0 0 0

           
1 0 0   0 0 0
0 1 0  2 1 0
0 0 1  0 1 2

For T 


T 1 1 1   2 2 0  =

T 1 1 0   2 1 0  =
T 1 0 0   2 0 0  =

rref

1 0 0   1 1 1
0 1 0   1  1 0
1 0 1  1 0 0

           
1 0 0   1 1 1
0 1 0  1 1 0
0 0 1  0 1– 1–

For I3 


I 1 1 1   1 1 1  =

I 1 1 0   1 1 0  =
I 1 0 0   1 0 0  =

rref
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Theorem 5.26 tells us that if  is a linear operator on a vector
space of dimension n, and if  and  are basis for V, then  and

 are similar matrices. The following result kind of goes in the oppo-
site direction:

PROOF: Since A is similar to , there exist a matrix  such

that . In Exercise 22 you are asked to verify that
, where , is a

basis for V. Applying Theorem 5.26 we have:
 .

As advertised:

1 1 1   1 0 0
1 1 0   0  1 0
1 0 0  1 0 1

           
1 0 0   1 0 1
0 1 0 1– 1 1–
0 0 1  1 1– 0

For I3 


I 1 0 1   1 0 1  =

I 0 1 0   0 1 0  =
I 0 0 1   0 0 1  =

rref

I  T  I 
1 1 1
1 1 0
0 1– 1–

0 0  0
2 1  0
0 1  2

1 0 1
1– 1 1–

1 1– 0

2 0 0
1 1 1
2– 0 0

T = = =

Answer: See page B-21.

CHECK YOUR UNDERSTANDING 5.20
Verify, directly, that Theorem 5.26 holds for the linear operator

 given by , and bases: 

DEFINITION 5.11
SIMILAR MATRICES

 are similar if there exists an
invertible matrix  such that

.

THEOREM 5.27 Let  be a basis for V, and
let T be a linear operator on V. If A is similar
to , then there exists a basis  for V,
such that . 

T: P2 P2 T ax2 bx c+ +  bx2 ax– 2c+=

 x2 x2 x+ x2 x 1+ +  =  x2 1+ x2 x– 1  =

A B Mn n
P Mn n

B P 1– AP=

T: V V
  T 

T 

 v1 v2  vn   =

T  
A T =

T  P pij =

A P 1– T P=
 v1 v2  vn   = vi p1iv1 p2iv2  pnivn+ + +=

T  IV  T  IV =
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 By its very construction:  (see margin). Moreover:

 (Theorem 5.23, page 184). Hence: 

SOLUTION: (a): 

(b) We determine  such that 

The above leads us to a homogeneous system of four equations in
four unknowns:

The  column of ,
namely:

 

equals the  column of P,
since:

ith IV 

IV vi   vi =

ith

vi p1iv1 p2iv2  pnivi+ + += EXAMPLE 5.14 Let  be the linear map given by
.

(a) Find  for . 

(b) Show that  is similar to .

(c) Find a basis  for  such that

IV  P=

IV  P 1–=

T  IV  T  IV  P 1– T P A= = =

T: 2 2
T a b  3a 6b+ 6a =

T   1 2  2 1  =

12– 8
18– 15

T 

 2

T 
12– 8
18– 15

=

1 2 15 12
2 1 6 12

              1 0 1– 4
0 1 8 4


T 1 2  15 6 =

T 2 1  12 12 =

rref

T 

P a b
c d

=

12– 8
18– 15

a b
c d

1–
1–  4

8  4
a b
c d

=

a b
c d

12– 8
18– 15

1–  4
8  4

a b
c d

=

12a– 18b– a– 4c+=
8a 15b+ b– 4d+=
12c– 18d– 8a 4c+=
8c 15d+ 8b 4d+= 






 11a– 18b– 4c– 0d+ 0=

8a 16b 0c 4d–+ + 0=
8a– 0b 16c– 18d–+ 0=
0a 8b– 8c 11d+ + 0= 










11– 18– 4– 0
8 16 0 4–
8– 0 16– 18–

0 8– 8 11

          

1 0 2 9
4
---

0 1 1– 11
8
------–

0 0 0 0
0 0 0 0

a    b       c     d a    b     c     d                 

rref (*)
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Matrix (*) has two free variables, telling us that there are infinitely

many  for which . Letting

 and , we arrive at a solution, namely:
. And so we have:

(c) Following the procedure spelled out in the proof of Theorem 5.27,

with , and , we determine a basis

 such that :

Let’s verify that  for :

a b
c d

12– 8
18– 15

a b
c d

1– 1–  4
8  4

a b
c d

=

d 0= c 1=
a 2 b– 1 c 1 d 0= = = =

12– 8
18– 15

2– 1
1 0

1–
1–  4

8  4
2– 1

1 0
=

P 2– 1
1 0

=  1 2  2 1  =

 v1 v2 = T 
12– 8
18– 15

=

v1 2 1 2 – 2 1 + 0 3– = =

v2 1 1 2  0 2 1 + 1 2 = =

T 
12– 8
18– 15

=  0 3–  1 2  =



T 0 3–  18– 0 =
T 1 2  15 6 =

rref0 1  18– 15
3– 2  0 6

          1 0  12– 8
0 1  18– 15

T 

Answer: See page B-21.

CHECK YOUR UNDERSTANDING 5.21
Referring to Example 5.14, determine a basis,  distinct from 

, for which . 



 0 3–  1 2  = T 
12– 8
18– 15

=
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Exercises 1-7. Verify directly that  holds for the given vector space V, the
vector , and the bases  and :

8. Find the coordinates of the point  in the xy-plane with respect to the coordinate axes
obtained by rotating the standard axes  in a counterclockwise direction. (See Example 5.12.)

Exercises 9-13. Verify directly that  holds for the given vector

space V, the linear operator T, and the bases  and :

EXERCISES

1. , , , and .

2. , , , and .

3. , , , and 
.

4. , , , and 
,

5. , , , and .

6. , , , and .

7. , , , and 

.

9. ,  given by , , and 
.

10. ,  given by , 
, and .

11. ,  given by , , and 

.

12. ,  given by , 

, and .

v  IV  v =
v V  

V 2= v 2 5 =  1 0  0 1  =  1 2  2– 1  =

V 2= v 3 1– =  1 0  0 1  =  1 2  2– 1  =

V 3= v 2 3 1–  =  1 1 0   1 0 1   1 1 1    =
 1 0 0   0 1 0   0 0 1    =

V 3= v 3 0 2–  =  1 0 2   0 0 1   1 1 2    =
 1 0 1   0 1 1   1 1 0    =

V P2= v 2x2 x 1+ +=  x2 x x 1+  =  x x2 x+ x2 x 1+ +  =

V P2= v x2 1+=  2 2x 2x2 =  1 x 1+ x2 x+  =

V M2 2= v 2 0
1 1

=  1 1
1 1

1 1
1 0

1 1
0 0

1 0
0 0

  
 
 
 

=

 0 0
0 1

0 0
1 1

0 1
1 1

1 1
1 1

  
 
 
 

=

P x y =


T  IV  T  IV =

 

V 2= T: V V T a b  b– a =  1 0  0 1  =
 1 2  2– 1  =

V 3= T: V V T a b c   b– a c  =
 0 1 0   1 0 1   1 1 1    =  1 2 0   0 2– 1   1 0 1    =

V P2= T: V V T ax2 bx c+ +  cx2 b+=  x2 x 1+ 1  =

 2 x 1 x2+  =

V M2 2= T: V V T a b
c d 

 
  b– c

d a–
=

 1 1
1 1

1 1
1 0

1 1
0 0

1 0
0 0

  
 
 
 

=  0 0
0 1

0 0
1 1

0 1
1 1

1 1
1 1

  
 
 
 

=
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14. Let  be the linear operator given by . Find a basis  for 

such that , where  and .

15. Let  be a linear operator. Find the basis  for  such that

, where:  and .

16. Let  be a linear operator. Find the basis  for  such that

, where  and .

17. Show that  and  are similar.

18. Show that  and  are not similar.

19. Find all matrices that are similar to the identity matrix .

20. Let  be the linear map given by .

(a) Find  for . 

(b) Show that  is similar to .

(c) Find a basis  for  such that .

21. Show that “similar” is an equivalence relation on . (See Exercises 37-39, page 147 for
the definition of an equivalence relation).

22. Show that  in the proof of Theorem 5.27 is a basis for V. 

23. Let  be similar. Show that there exists a linear operator  and bases
 and  for  such that  and .

24. (A generalization of Theorem 5.26) Let  be a linear map from the finite dimen-
sional vector space V to the finite dimensional vector space W. Let  and  be bases for V,
and let  and  be bases for W. Prove that: .

13. (Calculus Dependent)    ,  given by , 

, and .

V P3= T: V V T p x   p x =

 1 x x2 x3   =  1 x 2x2 3x3 =

T: 2 2 T a b  2a b– =  2

T  P 1– T P=  1 0  0 1  = P 1 0
1 1

=

T: 3 3  3

T  P 1– T P=  1 0 0   1 1 0   1 1 1    = P
1– 0 2–

0 1 1
1 0 1

=

T: P2 P2  P2

T  P 1– T P=  1 x 1+ x2 x+  = P
1 1 0
0 1 1
0 0 1

=

2 0
2– 1–

2 0
1 1–

2 1
2– 1–

2 0
1 1–

In

T: 2 2 T a b  a b+ b =

T   1 2  2 1  =

20 8
38– 17–

T 

 2 T 
20 8
38– 17–

=

Mn n

 v1 v2  vn   =

A B Mn n T: n n

  n A T = B T =

T: V W
 

  T  IW  T  IV =
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Exercises 25-29. Referring to Exercise 24, show directly that 
holds for the given linear transformation , the bases  and  for V, and the bases 
and  for W.

30. Let  be linear. Let  be bases for the n-dimensional space V, and let  be
bases for the m-dimensional space W. Prove that there exists an invertible matrix

 and an invertible matrix  such that .
Suggestion: Consider Exercise 24.

31. Let  and  be linear maps. Let  be bases for V,  be bases for W, 
and  be bases for Z. Show that .   

32. Let  be a linear operator, and let  and  be a bases for V. If 
, then .

33. If A and B are similar matrices, then  and  are also similar.

34. If A and B are similar invertible matrices, then  and  are also similar.

35. If A and B are similar matrices, then at least one of them must be invertible.
36. If A and B are similar matrices, then so are their transpose. (See Exercise 19, page 161.)
37. If A and B are similar matrices, and if A is symmetric, then so is B. (See Exercises 20, page 161.)
38. If A and B are similar matrices, and if A is idempotent, then so is B. (See Exercises 22, page 162.)

39. If A and B are similar matrices, then . (See Exercises 24, page 162.)

25. , , , 
, , and 

26. , , ,  
, , and .

27. , , ,  

, , and .

28. , , , 

,  ,   and  
.

29. , , , 

,  and .

PROVE OR GIVE A COUNTEREXAMPLE

T  IW  T  IV =
T: V W   



V 2 W 3= = T a b  b– a a b+  =  1 0  0 1  =
 1 2  0 1  =  1 1 0   2– 0 1   1 1 1    =
 1 1 1   0 0 1   1 1 0    =

V 3 W 2= = T a b c   a b c–+ =  1 1 0   2– 0 1   1 1 1    =
 1 1 1   0 0 1   1 1 0    =  1 0  0 1  =  1 2  0 1  =

V 3 W P2= = T a b c   bx2 cx a–+=  1 1 0   2– 0 1   1 1 1    =

 1 1 1   0 0 1   1 1 0    =  2 1 x 2 x2–+ =  1 x x2  =

V P2 W 3= = T ax2 bx c+ +  a b 0 c– + =  1 x x2  =

 2 1 x 2 x2–+ =  2 1 x 2 x2–+ =  1 0 1   0 0 1   1 1 0    =
 1 1 0   2– 0 1   1 1 1    =

V P2= W P1= T ax2 bx c+ +  bx a c+ +=  x2 x x 1+  =

 2 1 x 2 x2–+ =  x x 1– =  x 2x 1+ =

T: V W    

Q Mm m P Mn n T  Q T P=

T: V W L: W Z    
  LT  IZ  L  T  IV =

T: V V  v1 v2  vn   = 

T  2 T =  2v1 2v2  2vn   =

A2 B2

A 1– B 1–

Trace A  Trace B =
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CHAPTER SUMMARY

MULTIPLYING MATRICES You can perform the product  of two
matrices, if the number of columns of A equals the number of
rows of B, and you get of the product matrix C by running

across the  row of A and down the  column of B:    

Properties Assuming that the matrix dimensions are such that the given
operations are defined, we have:

(i)

(ii)

(iii)

(iv)

A connection between matrix
multiplication and linear
transformations.

For  and any positive integer z, the map
 given by  is linear.

                               In particular:

For  the map  given by
 is linear, where X is a vertical n-tuple and 

is a vertical m-tuple.

NULL SPACE OF A MATRIX,
AND NULLITY

For , the null space of A is the subspace of  con-
sisting of the solutions of the homogeneous linear system of
equations . It is denoted by . 

INVERTIBLE MATRIX A square matrix A is said to be invertible if there exists a
matrix B (necessarily of the same dimension as A), such that:

The matrix B is then said to be the inverse of A, and we write
. If no such B exists, then A is said to be non-invert-

ible, or singular.

Need only “work” on one
side

Let A be a square matrix. If B is a square matrix such that
either  or , then A is invertible and

.

Uniqueness An invertible matrix has a unique inverse.

Cm n Am r Br n=

cij

ith jth

cij ai1b1j ai2b2j ai3b3j
 airbrj+ + + +=

A B C+  AB AC+=

A B+ C AC BC+=

A BC  AB C=

r AB  rA B A rB = =

A Mm n

TA:Mn z Mm z TA X  AX=

A Mm n TA: n m

TA X  AX= TA X 

A Mm n Rn

AX 0= null A 

AB BA I= =

B A 1–=

AB I= BA I=
A 1– B=
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 Properties  If A is invertible and , then  is also invertible, and:

ELEMENTARY MATRIX A matrix that is obtained by performing an elementary row
operation of an identity matrix

Invertibility Every elementary matrix is invertible.

Inverses by means of
multiplication

The matrix obtained by performing an elementary row opera-
tion on a matrix  equals that matrix obtained by
multiplying A on the left by the elementary matrix obtained by
performing the same elementary row operation on the identity
matrix .

Inverses by row-reduction If a sequence of elementary row operations reduces the invert-
ible matrix A to I, then applying the same sequence of elemen-
tary row operations on I will yield .

      EQUIVALENCES OF
INVERTIBILITY

Let . The following are equivalent:

(i) A is invertible.

(ii)  has a unique solution for every .

(iii)  has only the trivial solution.

(iv) .

(v) A is a product of elementary matrices.

COORDINATE
VECTOR

MATRIX
REPRESENTATION OF

A LINEAR MAP

Let  be linear,   be a basis for V, and
and   a basis for  W. 

The matrix representation of T with respect to  and  is that

matrix  whose  column is 

A 1–  1– A=

r 0 rA

rA  1– 1
r
---A 1–=

A1A2
An  1– An

1– An 1–
1– A1

1–=

A Mm n

Im

A 1–

A Mn n

AX B= B Mn 1

AX 0=

rref A  I=

v 

c1

cn

= 

where v c1v1 c2v2  cnvn+ + +=

and
 v1 v2  vn    is a basis for V=

T: V W  v1 v2  vn   =
 w1 w2  wm   =

 

T  Mm n ith T vi  
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The matrix representa-
tion of a linear map T
describes the “action”
of T.

Let  be linear. If  is a basis for V, and
 is a basis for W, then:

The matrix of a com-
position function is the
product of matrices of
those functions.

Let  and  be linear maps, and let  and  be
bases for the finite dimensional spaces V, W, and Z, respectively.
Then:

Relating coordinate
vectors with respect to
different bases.

Let  and  be bases for V. Then:

The matrix of the
inverse of a transforma-
tion is the inverse of the
matrix of that transfor-
mation.

Let  be an invertible transformation and let   and  be
bases for V and W, respectively. Then:

Relating matrix repre-
sentations of a linear
operator with respect
to different bases.

Let  be a linear operator, and let  and  be two bases for
V. Then:

     SIMILAR
MATRICES

The matrices  are similar if there exists an invertible

matrix  such that .

Similar matrices repre-
sent linear maps with
respect to different
basis.

Let  be a basis for V, and let T be a linear opera-
tor on V. If A is similar to , then there exists a basis  for V,
such that .

T: V W  v1 v2  vn   =
 w1 w2  wm   =

T v   T  v =

T: V W L: W Z   

LT  L  T =

 

v  I  v =

T: V W  

T 1–  T 1–=

T: V V  

T  IV  T  I =

A B Mn n

P Mn n B P 1– AP=

 v1 v2  vn   =
T  

A T =
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 6

CHAPTER 6 
DETERMINANTS AND EIGENVECTORS

As you know, a linear operator  has a matrix representation
, which depends on the chosen basis  for V. A main goal of this

chapter is to determine if there exists a basis  for which  turns
out to be a diagonal matrix. Determinants, as you will see, play an
essential role in that endeavor.

Using mathematical inductgion, we define a function that assigns to
each square matrix a (real) number:   

IN WORDS: Multiply each entry  in the first row of A by the
determinant of the (smaller) matrix obtained by discarding the
first row and the  column of A, and then sum those n products
with alternating signs (starting with a + sign). L

SOLUTION: 

§1. DETERMINANTS

T: V V
T  

 T 

n n

jthcolumn

1
strow

out

out

a
resulting in a
square matrix 
of dimension

n 1–

DEFINITION 6.1
DETERMINANT

For a  matrix:

For , with , let  denote the
 matrix obtained by deleting

the first row and  column of the matrix A
(see margin). Then:

 

EXAMPLE 6.1
Evaluate: 

2 2

det a b
c d

ad bc–=

A Mn n n 2 A1j
n 1–  n 1– 

jth

det A  1– 1 j+

j 1=

n

 a1j det A1j =

a1j

jth

det
2 9 3–
3 2– 4
5 7 6–

det
2 9 3–
3 2– 4
5 7 6–

2det 2– 4
7 6–

9det 3 4
5 6–

– 3det 3 2–
5 7

–=

2 2–  6–  4 7 –  9 3 6–  4 5 – – 3 3 7 5 2– – – 217= =

2 9 3–
3 2– 4
5 7 6–

2 9 3–
3 2– 4
5 7 6–

2 9 3–
3 2– 4
5 7 6–
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Definition 6.1 defines the determinant of a matrix by an expansion
process involving the first row of the given matrix. The next theorem,
known as the Laplace Expansion Theorem, enables one to expand along
any row or column of the matrix. A proof of this important result is
offered at the end of the section.

        

 

SOLUTION:

GRAPHING CALCULATOR GLIMPSE 6.1

Note that the sign of the
 has an alternat-

ing checkerboard pattern
1– i j+

+       +       +      +

+       +      +       +

+      +        +      +

+      +        +      +

_       _       _       _

_       _       _       _

_       _       _       _

_       _       _       _

_       _       _       _

_       _       _       _

_       _       _       _

_       _       _       _

+       +       +      +

+      +        +      +

+      +        +      +

+      +        +      +

THEOREM 6.1

EXPANDING ALONG 
THE  ROW

EXPANDING ALONG 
THE  COLUMN

For given ,  will denote the
 submatrix of A obtained

by deleting the  row and  column of A.
We then have:

and:

Note:  is called the minor of , and
 is called the  cofactor of A

EXAMPLE 6.2 Evaluate:

by expanding about its second row.

ith

jth

A Mn n Aij
n 1–  n 1– 

ith jth

det A  1– i j+

j 1=

n

 aij det Aij =

det A  1– i j+

i 1=

n

 aij det Aij =

det Aij  aij

Cij 1– i j+ aij det Aij = i j th

det
2 9 3–
3 2– 4
5 7 6–

det
2 9 3–
3 2– 4
5 7 6–

3– det 9 3–
7 6–

2– det 2 3–
5 6–

4det– 2 9
5 7

=

3 9 6–  7 3– – – 2 2 6–  5 3– – – 4 2 7 5 9 – – 217= =

2 9 3–
3 2– 4
5 7 6–

2 9 3–
3 2– 4
5 7 6–

2 9 3–
3 2– 4
5 7 6–

+      +

+      +
+
_

_      _
_

sam
e as in Exam

ple 6.1
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While it was not so bad to calculate the  determinant of Example
6.1, the task gets increasingly more tedious as the dimension of the
matrix increases. If we were only interested in calculating determinants
of matrices with numerical entries, then we could avoid the whole mess
entirely and simply use a calculator. But this will not always be the case. 

In any event, one can easily calculate the determinant of any upper
triangular matrix (see margin): 

PROOF: By induction on the dimension, n, of . 

I. Claim holds for : .

II. Assume claim holds for .

III. We establish validity at :
 Let . Since all entries in the first

column below its first entry  is zero, expanding about the
first column of A we have  (where 
is the k by k upper triangular matrix obtained by removing the
first row and first column from the matrix A. As such, by II:

. Consequently:

 

 

Answer: See page B-23.

CHECK YOUR UNDERSTANDING 6.1

Evaluate  expanding along:

        (a) The third row.                         (b) The second column.

det
2 9 3–
3 2– 4
5 7 6–

An upper triangular matrix
is a square matrix with zero
entries below its main diag-
onal. For example:

A lower triangular matrix is
a square matrix with zero
entries above its main diago-
nal. For example:

2 5 0 1 2–
0 1 7 2– 0
0 0 0 3 4
0 0 0 9 1
0 0 0 0 5

2 0 0 0
5 1 0 0
2– 3 4 0

4 0 2 5

THEOREM 6.2 The determinant of an upper diagonal matrix
equals the product of the entries along its diagonal.

COROLLARY For any n: .

3 3

Mn n

n 2= det a b
0 d

ad b 0– ad= =

n k=

n k 1+=
A aij  M k 1+  k 1+ =

a11

det A  a11det A11 = A11

det A11  a22a33a k 1+  k 1+ =

det A  a11det A11  a11a22a33a k 1+  k 1+ = =

det In  1=

Answer: See page B-23.

CHECK YOUR UNDERSTANDING 6.2

Prove that the determinant of a lower diagonal matrix equals the prod-
uct of the entries along its diagonal.
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Since it is easy to find the determinant of an upper triangular matrix,
ad since any square matrix can be transformed into an upper triangular
matrix by means of elementary row operations, it would be nice to have
relations between the determinant of a matrix and that obtained by per-
forming an elementary row operations on that matrix. Niceness is at
hand: 

PROOF: (a) By induction on the dimension of the matrix A. For : 

Assume the claim holds for matrices of dimension  (the induc-
tion hypothesis).
Let  be a matrix of dimension , and let 
denote the matrix obtained by interchanging rows p and q of A. Let i be
the index of a row other than p and q. Expanding about row i we have:

Since rows p and q were switched to go from A to B, row i of B still
equals that of A, and therefore: . Since  is the matrix 
with two of its rows interchanged, and since those matrices are of
dimension k, we have:  (the induction hypothesis). 
Consequently: 

ROW OPERATIONS AND DETERMINANTS

THEOREM 6.3 (a) If two rows of  are inter-
changed, then the determinant of the
resulting matrix is .

(b) If one row of A is multiplied by a con-
stant c, then the determinant of the result-
ing matrix is .

(c) If a multiple of one row of A is added to
another row of A, then the determinant of
the resulting matrix is .

A Mn n

det A –

c det A  

det A 

n 2=

det a b
c d

ad bc    and   det c d
a b

– cb da–= =

negative of each other

k 2

A aij = k 1+ B bij =

det A  1– i j+ aij

j 1=

k 1+

= det Aij      and  det B 1– i j+ bij

j 1=

k 1+

= det Bij 

bij aij= Bij Aij

detBij detAij–=

det B  1– i j+ bij

j 1=

k 1+

= det Bij  1– i j+ aij det Aij – 

j 1=

k 1+

=

1– i j+ aij

j 1=

k 1+

 det Aij – det A –= =
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(b) Let B denote the matrix obtained by multiplying row i of matrix A
by c. Expanding both matrices about the  row, we have:

Since , and since  (margin), we have:

(c) Let B be the matrix obtained by multiplying row r of A by c and
adding it to row i. If  , then the result follows from (b). Assume

. Expanding B about its  row, we have:

 

Matrix A and B differ only
in the  row, and that row
has been removed from
both A and B to arrive at
the matrices  and .

ith

Aij Bij

ith

det A  1– i j+ aij

j 1=

n

= det Aij   and  det B  1– i j+ bij

j 1=

n

= det Bij 

bij caij= Bij Aij=

det B  1– i j+ bij

j 1=

n

= det Bij  1– i j+ caij 

j 1=

n

 det Aij =

c 1– i j+ aij

j 1=

n

 det Aij  c det A  = =pull out that common factor, c:

i r=
i r ith

det B  1– i j+ aij carj+ 

j 1=

n

= det Aij 

1– i j+ aij

j 1=

n

 det Aij  c 1– i j+ arj

j 1=

n

 det Aij +=

det A  c 1– i j+ arj
j 1=

n

 det Aij + det A  c 0+ det A = = =

1– i j+ arj

j 1=

n

 det Aij  is the determinant of a matrix with
  two equal rows: the  ith and rth  row

The result now follows from CYU 6.3 below

Answer: See page B-23.

CHECK YOUR UNDERSTANDING 6.3

Show that if two rows of a matrix A are identical, then .det A  0=
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The following example illustrates how Theorem 6.3 can effectively
be used to calculate determinants.

SOLUTION: 

        

To establish any of the following three elementary matrix results, you
need but substitute the identity matrix  for A in Theorem 6.3:   

EXAMPLE 6.3

Evaluate:    det
1 2 6 8
1 0 0 2
2 1 3 5
1– 1 1 1

Answer: See page B-23.

CHECK YOUR UNDERSTANDING 6.4

Evaluate:

 

det

1 2 6 8
1 0 0 2
2 1 3 5
1– 1 1 1

det–

1 0 0 2
1 2 6 8
2 1 3 5
1– 1 1 1

det–

1 0 0  2
0 2 6  6
0 1 3  1
0 1 1  3

= =

2– det

1 0 0  2
0 1 3  3
0 1 3  1
0 1 1  3

2– det

1 0 0  2
0 1 3  3
0 0 0  2–
0 0 2–  0

2det

1 0 0  2
0 1 3  3
0 0 2–  0
0 0 0 2–

8= = = =

Theorem 6.3(a) Theorem 6.3(c)
(applied three times)

Theorem 6.3(b) 

Theorem 6.3(c)
(applied two times) Theorem 6.3(a)

 
Theorem 6.2

det

2 1 0 1
0 1 2  2
1 0 1  4
4 1 1  3

Note that

The restriction  is
imposed in (b) since we
are concerned with ele-
mentary row operations
(see page 3).

det In 1=

c 0

THEOREM 6.4 (a) If  is obtained by interchang-
ing two rows of , then .

(b) If  is obtained by multiplying
a row of  by , then .

(c) If  is obtained by adding a
multiple of one row of  to another row,
then .

In

E Mn n
In det E  1–=

E Mn n
In c 0 det E  c=

E Mn n
In

det E  1=
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Soon, we will be in a position to show that the determinant of a prod-
uct of any two  matrices is equal to the product of their determi-
nants. For now:

PROOF: Let  be an elementary matrix obtained by inter-
changing two rows of . By Theorem 5.13, page 169:

(*) EB is the matrix obtained by interchanging the same
two rows in the matrix B. 

Consequently:

As for the rest of the proof:

We now come to one of the most important results of this section:

PROOF: Let  be a sequence of elementary matrices

such that  (Theorem 5.13, page 169). Appeal-
ing to CYU 6.5(b), we have:

By Theorem 6.4, . Consequently:

THEOREM 6.5 For any  and any  elementary
matrix E:

n n

B Mn n n n

det EB  det E det B =

E Mn n
In

det EB  det B – det E det B = =
(*) and Theorem 6.4(a) det E  1   [Theorem 6.4(a)]–=

Answer: See page B-24.

CHECK YOUR UNDERSTANDING 6.5

(a) Establish Theorem 6.5, for the elementary matrix :
(i) Obtained by multiplying a row of  by .
(ii) Obtained by adding a multiple of one row of  to another row

of .

(b) Let  and  be elementary matri-
ces. Use the Principle of Mathematical Induction to show that:

 

E Mn n
In c 0

In
In

B Mn n E1 E2  Es Mn n  

det Es
E2E1B  det Es

E2E1 det B =

det Es det E2 det E1 det B =

You can add this result to
the list of equivalences for
invertibility appearing in
Theorem 5.17, page 172:
      (vi)  det A  0

THEOREM 6.6 A matrix  is invertible if and only
if .

A Mn n
det A  0

E1 E2  Es  

Es
E2E1A rref A =

det Es det E2 det E1 det A  det rref A  =

If , then:            

If , then its last
row consists entirely of
zeros, and

rref A I=
det rref A   1 0=
rref A  I

det rref A   0=

det Es det E2 det E1  0

det rref A   0  if and only if  det A  0

if and only if  rref A  I=

if and only if A is invertibleTheorem 5.17(iv), page 172:

margin:



212     Chapter 6    Determinants and Eigenvectors                                                       

We are now in a position to establish another powerful result,
attributed to Cauchy:

PROOF: 
Case 1: A is invertible. By Theorem 5.17, page 172, A can be
expressed as a product of elementary matrices:

Then:

Case 2: A is not invertible. AB is not invertible; for: 

It follows, from Theorem 6.6, that both  and  are
zero, and we again have equality: 

 

We use induction on n to show that the determinant of  can
be evaluated by expanding about any row of A:

The claim is easily seen to hold when :

Assume that the claim holds for  (the induction hypothesis).
Let . We show that for any :

Austin Cauchy, a prolific
French mathematician
(1789-1857). THEOREM 6.7 For :A B Mn n

det AB  det A det B =

A EsE2E1=

det AB  det EsE2E1B =

det EsE2E1 det B  det A det B = =CYU 6.5(b):

AB invertible C AB C I=
A BC  I A invertible -- a contradiction.=

Answer: See page B-24.

CHECK YOUR UNDERSTANDING 6.6
Prove that if A is invertible, then:

 

det AB  det A 

det AB  0 0 det B   det A det B = = =

det A 1–  1
det A 
----------------=

For the brave at heart:

The column-expansion part
of the theorem is relegated
to the exercises.

PROOF OF THE LAPLACE EXPANSION THEOREM 

A Mn n

n 2=

det
a11 a12

a21 a22

a11a22 a12a21– a21– a12 a11a22+= =

n k=

This will show that the
expansion about any row
equals that of expanding
about the first row.

A M k 1+  k 1+  1 t k 1+

1– 1 j+ a1jdet A1j 

j 1=

k 1+

 1– t s+ atsdet Ats 

s 1=

k 1+

=} }

(*) (**)
expanding about first row                        expanding about row t
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Working with (*), we employ the induction hypothesis and evaluate
the determinant of each  matrix  along its  row, which is
row t of A (see Figure 6.1). In so doing, we need to keep in mind that
just as each  has a row and a column removed from A (  row
and  column), so then will each submatrix in the expansion of

 have two rows and two columns of A removed.

Figure 6.1
 Let  denote the submatrix of A with rows 1 and t, and columns

j and s of A removed. Using the induction hypothesis we can obtain the
determinant of  by expanding about its  row (which is the 
row of A), breaking that sum into two pieces the “before-j” piece, and
the “after-j” piece we have:

k k A1j t 1–

A1j 1st

jth

det Aij 

a11 a12  a1 j 1–  a1j a1 j 1+   a1n

a21 a22  a2 j 1–  a2j a2 j 1+   a2n

as1 as2  as j 1–  asj as j 1+   asn

an1 an2  an j 1–  anj an j 1+   ann

     

    

row
 num

bers for A

1
2

t

n

{ }1

t 1–

n 1–

row
 num

bers for A
ij

}
1    2                       j                         nj 1– j 1+

column numbers for A

}1      2           j 1– j              n 1–

column numbers for Aij

A1t js

A1j t 1– tth

det A1j  1–  t 1–  s+  ats det A1t js 

s 1=

j 1–

= 1–  t 1–  s 1– +  ats det A1t js 

s j 1+=

k 1+

+

1– 1 j+ a1jdet A1j 

j 1=

k 1+



1– 1 j+  a1j

j 1=

k 1+

 1–  t 1–  s+  ats det A1t js 

s 1=

j 1–

 1–  t 1–  s 1– +  ats det A1t js 

s j 1+=

k 1+

+

 
 
 
 
 

=

1–  j t s+ +

s j
 a1jatsdet A1t js = 1–  j t s 1–+ +

s j
 a1jatsdet A1t js +

1 J+ t 1–  s++

(A)

Bringing us to:

1 j t 1–  s 1– + + +
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Turning to (**), we again appeal to the induction hypothesis, and
expand about the first row to calculate each :

To complete the proof, we observe that the left summation in (A) is
equal to the right summation in (B), and that the right summation in (A)
equals the left in (B):

det Ats 

1– t s+ atsdet Ats 

s 1=

k 1+



1– t s+  ats

s 1=

k 1+

 1– 1 j+  a1j det A1t js 

j 1=

s 1–

 1– 1 j 1– +  a1j det A1t js 

j s 1+=

k 1+

+

 
 
 
 
 

=

1– t s j 1+ + +  ats a1jdet A1t js 
j s
 1– t s j+ +  ats a1jdet A1t js 

j s
+= (B)

1–  j t s+ +

s j
 a1jatsdet A1t js  1– t s j+ +  ats a1jdet A1t js 

j s
=

1–  j t s 1–+ +

s j
 a1jatsdet A1t js  1– t s j 1+ + +  ats a1jdet A1t js 

j s
=

note that 1–  j t s 1–+ + 1–  t s j 1+ + +=
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Exercises 1-8. Compute the determinant of the given matrix. 

Exercises 9-14. Given that , find:

Exercises 15-18. Find all values of k for which the given matrix is invertible.

Exercises 19-22. Verify:

23. While one can certainly find matrices  such that , prove that one can
not find matrices  such that .

EXERCISES

1. 2. 3. 4.

5. 6. 7. 8.

9. 10. 11.

12. 13. 14.

15. 16. 17. 18.

19. 20.

21. 22.

2 1 0
1– 2 1

1 0 1

1 5 3
1– 0 1

4 2 9

2 2 4
5 7 11
3 6 9

1 2 4
9– 1 9

4 6 1

2 1 0 1
1– 2 1 2

1 0 1 0
0 2 0 2

0 3 0 1
1– 2 4 2

4 0 4 0
1 2 3 5

1 3 0 4
1– 2 4 6

0 0 4 2
1 0 3 5

6 3 3 9
3 3– 3 6
3 0 3 12
9 0 3 6

det
a b   c
d e f
g h i

9=

det
g h   i
a b   c
d e f

det
a   b   c

2d    2e    2f
3g–   3h–   3i–

det
a 2d+   b 2e+   c 2f+

d e f
g h i

det
a b   c
d e f
g h i

det
a b   c
g h i
d e f

2

det
a d g–+   b e h–+   c f i–+

d e f
g h i

k   1
k   k

k 1– 0
0 k  1–
2 4 1

k k2 0
0 k  k2

k2 k 0

k 0 0  1
0 k 1  0
1 0 k  0
0 1 1   k

det
x 1– 0
0 x 1–
c b a

ax2 bx c+ += det
1 1 1
a b c

a2 b2 c2
a b–  b c–  c a– =

det
1 1 1
a b c

a3 b3 c3
a b–  b c–  c a–  a b c+ + = det

1 a+ 1 1
1 1 b+ 1
1 1 1 c+

abc bc ac bc+ + +=

A B Mn n AB BA
A B Mn n det AB  det BA 



216     Chapter 6    Determinants and Eigenvectors                                                                          

24. Show that the matrix  is invertible if and only if the numbers a, b, and c, are all distinct.

25. Prove that if a matrix A contains a row (or column) consisting entirely of zeros, then
.

26. If  is a diagonal matrix and if  is the column matrix whose
 entry is 1 and all other entries are 0, then .

27. Let . Prove that , where  denotes the transpose of A (see
Exercise 19, page 161).

28. Prove that if  is skew-symmetric, then  (see Exercise 21,
page 162). What conclusion can you draw from this result?

29. For , let B be obtained from A by interchanging pairs of rows of A m times.
Express  as a function of m and .

30. Let A be similar to B (see Definition 5.11, page 195). Prove that:
      (a)             (b)  for every .
      Suggestion: Consider Theorem 5.1, page 153.

31. Show that  is an equation of the line passing through the points  

and  in .

32. Show that  is an equation of the plane passing through the points

,  , and  in .

33. Show that the area of the triangle with vertices at , , and  is given by

, where the sign ( ) is chosen to yield a positive number. 

34. (Cramer’s Rule) If  is a system of n equations in n unknowns, with A invertible, then
the system has a unique solution  [Theorem 5.17(ii), page 172]. Cramer’s rule
asserts that:

where  is the matrix obtained by replacing the  column of A with B.
Use Cramer’s rule to solve the system of:
          (a) Example 1.3, page 9.                            (b) CYU 1.3, page 10. 

1 1 1
a b c
a2 b2 c2

det A  0=

D dij  Mn n= Xi Mn 1

ith DXi diiXi=

A Mn n det A  det AT = AT

A Mn n det A  1– ndet A =

A Mn n
det B  det A 

det A  det B = det A cI–  det B cI– = c 

det
x   y 1

x1   y1 1

x2   y2 1
0= x1 y1 

x2 y2  2

det

x   y  z 1
x1   y1  z1 1

x2   y2  z2 1

x3   y3  z3 1

0=

x1 y1 z1   x2 y2 z2   x3 y3 z3   3

x1 y1  x2 y2  x3 y3 

1
2
---det

x1   y1   1

x2   y2   1

x3   y3   1

 

AX B=
x1 x2  xn   

x1
det A1 
det A 
------------------= x2

det A2 
det A 
------------------  xn

det An 
det A 
------------------= =

Ai ith
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35. Prove the “column-expansion-part” of Theorem 6.3 (Laplace Expansion Theorem).       

Exercises 36-39. Use the Principle of Mathematical Induction to show that:

36.  For any m and , .

37.  For any  and : .

38.  Prove that for  and any positive integer m:  .

39.  If  is of the form , where I is the  identity matrix, 0 is

the  zero matrix, and X and Y are  and  matrices,
respectively, then: .

40. If  is of the form , where X and Z are square matrices and

0 is a zero matrix, then: . 

41. For , if , then .

42. For , if , then A is the zero matrix.

43. For , if , then both A and B are invertible and .

44. For any , .

45. For any , .

46. If  is nilpotent, then  (see Exercise 23, page 162).

47. If  and , and if , then:  

.

PROVE OR GIVE A COUNTEREXAMPLE

Ai Mn n det A1 A2
Am  det A1 det A2 det Am =

A Mn n c R det cA  cndet A =

A Mn n det Am  det A  m=

A Mn n A =
cI

0

X

Y
r r

n r–  r r n r–  n r–  n r– 
det A  crdet Y =

A Mn n A =
X

0

Y

Z
det A  det X det Z =

A Mn n detA 1= A I=

A Mn n det A  0=

A B Mn n det AB  1= A B 1–=

A B Mn n det A B+  det A  det B +=

A Mn n det A–  det A –=

A Mn n det A  0=

A M4 4 X Y Z W M2 2   A
     

=
X     Y

Z     W
det A  det X det W  det Y det Z –=
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 6

,

 We begin by defining eigenvalues and eigenvectors for matrices:

SOLUTION: Since ,  is an eigenvec-

tor of A corresponding to the eigenvalue 4. By the same token,
 is an eigenvector corresponding to the eigenvalue :

Since the set of eigenvectors corresponding to an eigenvalue  of a
matrix  does not contain the zero vector, it cannot be a sub-

space of . If you throw in the zero vector, however, you do end up
with a subspace:

Bringing us to:

The German word eigen
translates to: characteristic. 
At one time, eigenvalues
were called latent values,
and it is for this reason that

 (lamba), the Greek letter
for “l” is used.

We remind you that we use
 to denote , and

that  is the vector
 in “column form.” 



n Mn 1

v n
v n

§2. EIGENSPACES

DEFINITION 6.2
EIGENVALUES AND 
 EIGENVECTORS 

 (FOR MATRICES) 

An eigenvalue of a matrix  is a
scalar  (which may be zero) for which
there exists a nonzero vector  such
that:

Any such vector X is said to be an eigenvec-
tor corresponding to the eigenvalue .

EXAMPLE 6.4 Show that  and  are eigenvectors of

the matrix .

A Mn n
 

X n

A X  X=



2 1  1– 3 

A 3 2
3 2–

=

3 2
3 2–

2
1

8
4

4 2
1

= = 2 1 

1 3–  3–

3 2
3 2–

1–
3

3
9–

3– 1–
3

= =

Recall that null(A) denotes
the solution set of the
homogeneous system of
equations .AX 0=

DEFINITION 6.3 The eigenspace associated with an eigen-
value    of a matrix , denoted by

, is given by:


A Mn n

n

X AX X=  X AX X– 0=  X AX InX– 0= = =

A In– X 0=  null A In– = =

eigenvectors, along with the zero vector

a subspace of n (Theorem 5.4, page 159)

n-by-n identity matrix

 A Mn n

E  
E   null A In– =
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SOLUTION: 

From  we see that 

with basis . 

At this point, there is a gap in our eigenvector development; namely:

The answer hinges on the following objects: 

We are now in the position to state the main theorem of this section:

PROOF: To say that  is an eigenvalue of A is to say that there exists
a nonzero vector  such that:

 is the solu-

tion set of the homoge-
neous system:

null 1– 2
3 6– 

 
 

x– 2y+ 0=
3x 6y– 0= 




EXAMPLE 6.5 Find a basis for the eigenspace  of the

matrix  of Example 6.4. 

E 4 

A 3 2
3 2–

=

E 4  null 3 2
3 2–

4 1 0
0 1

–
 
 
 

null 1– 2
3 6– 

 
 

= =

1– 2
3 6–

          1 2–
0 0

rref E 4  2r r  r R =

2 1  

Answer: See page B-24.

CHECK YOUR UNDERSTANDING 6.7

Find a basis for the eigenspace  of the matrix  of
Example 6.4.

CHARACTERISTIC POLYNOMIALS 

How does one go about finding the eigenvalues of a matrix?

DEFINITION 6.4
CHARACTERISTIC

 POLYNOMIAL 
  (FOR MATRICES)

For , the n-degree polynomial
 is said to be the characteristic

polynomial of A, and  is
said to be the characteristic equation of A. 

THEOREM 6.8 The eigenvalues of  are the solutions
of the characteristic equation .

E 3–  A 3 2
3 2–

=

A Mn n

det A In– 

det A In–  0=

A Mn n
det A In–  0=



X n
AX X=

AX X– 0=
AX In X– 0=

A In– X 0=
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But, to say that  has a nontrivial solution is to say
that  (Theorem 6.6, page 212, and Theorem
5.19(iii), page 172).

SOLUTION: The eigenvalues are the solutions of the equation:

Expanding about the third row, we have: 

We now determine the eigenspaces for the two eigenvalues, 0 and 2.
Finding :

Setting the free variable z equal to r, we have:

 

with basis: .

EXAMPLE 6.6 Find the eigenvalues and corresponding eigens-
paces of the matrix:

A In– X 0=
det A In–  0=

A
1  0  1
2  2  1
1  0  1

=

det A I3–  det
1 –  0  1

2  2 –  1
1  0  1 –

0= =

A better choice is to expand
about the second column. If
you do, pay particular atten-
tion to the checkerboard
sign pattern of page 206. 2 – – 1 –  1 –  2 – + 0=

2 –  1– 1 – 2+  0=
2 –  1– 1 2– 2+ +  0=

2 –  –  2 –  0=
 2 – 2– 0=

1 det 0 1
2 – 1

0 det 1 – 1
2 1

1 – det 1 – 0
2 2 –

+– 0=

 0  2= =

E 0 

E 0  null
1  0  1
2  2  1
1  0  1

0
1  0 0
0  1 0
0  0 1

–

 
 
 
 
 

null
1  0  1
2  2  1
1  0  1 

 
 
 
 

= =

1  0  1
2  2  1
1  0  1

            
1  0  1

0  1  1
2
---–

0  0  0

x     y   z               x     y     z

rref

E 0  r– r
2
--- r  

  r 
 
 
 

2r r 2r –  r R = =

2 1 2 –  
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Finding :  

Setting the free variable y equal to r, we have: 

with basis .

 SOLUTION: To find the eigenvalues of A we need to solve the charac-
teristic equation:

In this endeavor, we first use Theorem 6.3, page 208, to express
 as the determinant of a matrix in upper triangular form,

and then take advantage of Theorem 6.2, page 207, to finish the job:

EXAMPLE 6.7 Find the eigenvalues and corresponding eigen-
spaces of the matrix:

E 2 

E 2  null
1  0  1
2  2  1
1  0  1

2
1  0 0
0  1 0
0  0 1

–

 
 
 
 
 

null
1–  0  1

2  0  1
1  0  1– 

 
 
 
 

= =

1–  0  1
2  0  1
1  0  1–

             
1 0 0
0 0 1
0 0 0

x     y     z                  x  y  z

rref

E 2  0 r 0   r  =

0 1 0   

A

0 2 2– 0
1 1 0 1–
1– 1 2– 1
1– 1 2– 1

=

A TI-92 teaser:

det A I4–  det

– 2 2– 0
1 1 – 0 1–
1– 1 2– – 1
1– 1 2– 1 –

0= =

det A I4– 
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Setting  to 0, we see that there are
three distinct eigenvalues: , and . As for their
corresponding eigenspaces:

Setting the free variables z and w equal to r and s respectively, we
find that . By letting

, and then  we arrive at the basis
. 

det

– 2 2– 0
1 1 – 0 1–
1– 1 2– – 1
1– 1 2– 1 –

det

1 1 – 0 1–
– 2 2– 0
1– 1 2– – 1
1– 1 2– 1 –

– det–

1 1     – 0 1–
0    2  2–+ 2–  –
0 2     –   2– –   0
0 2    – 2–  –

= =

det

1 1     – 0 1–
0 2    – 2–  –
0 2     –   2– –   0
0    2  2–+ 2–  –

det

1 1     – 0 1–
0 2    – 2–  –
0 0          –   
0    2  2–+ 2–  –

det

1 1 – 0 1–
0 2 – 2– –
0 0 – 

0 0 2 2

= = =

det

1 1 – 0 1–
0 2 – 2– –
0 0 – 

0 0 0 2 2+

1  2 –  –  2 2+  2  2–   2+ = = =

switch the first two rows R1 R2+ R2 ; R1 R3+ R3 ; R1 R4+ R4 

switch rows 2 and 4 (introduces another minus sign)

1R2– R3+ R3 1– – R2 R4+ R4

2R3 R4+ R4

Theorem 6.2, page 207

det A I4–  2  2–   2+ =
 0=  2=  2–=

E 0  null

0 2 2– 0
1 1 0 1–
1– 1 2– 1
1– 1 2– 1

0

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

–

 
 
 
 
 
 

null

0 2 2– 0
1 1 0 1–
1– 1 2– 1
1– 1 2– 1 

 
 
 
 
 

= =

0 2 2– 0
1 1 0 1–
1– 1 2– 1
1– 1 2– 1

            

1 0 1 1–
0 1 1– 0
0 0 0 0
0 0 0 0

rref

x    y     z  w                  x    y    z    w

E 0  r– s+ r r s    r s  =
r 1 s 0= = r 0 s 1= =

1 1 1 0  –  1 0 0 1    
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Setting the free variable y equal to r, we have
 with basis .

Setting the free variable w equal to r, we find that
 with basis .

E 2  null

0 2 2– 0
1 1 0 1–
1– 1 2– 1
1– 1 2– 1

2

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

–

 
 
 
 
 
 

null

2– 2 2– 0
1 1– 0 1–
1– 1 4– 1
1– 1 2– 1– 

 
 
 
 
 

= =

2– 2 2– 0
1 1– 0 1–
1– 1 4– 1
1– 1 2– 1–

            

1 1– 0 0
0 0 1 0
0 0 0 1
0 0 0 0

rref

x   y      z   w                   x     y    z     w

E 2  r r 0 0    r R = 1 1 0 0    

E 2–  null

0 2 2– 0
1 1 0 1–
1– 1 2– 1
1– 1 2– 1

2

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

+

 
 
 
 
 
 

null

2 2 2– 0
1 3 0 1–
1– 1 0 1
1– 1 2– 3 

 
 
 
 
 

= =

2 2 2– 0
1 3 0 1–
1– 1 0 1
1– 1 2– 3

            

1 0 0 1–
0 1 0 0
0 0 1 1–
0 0 0 0

rref

x    y      z    w                    x     y     z      w

Answer: See page B-24.

CHECK YOUR UNDERSTANDING 6.8
Find the eigenvalues and corresponding eigenspaces of the matrix:

E 2–  r 0 r r    r  = 1 0 1 1    

A
16 3 2

4– 3 8–
2– 6– 11

=
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Shifting our attention from matrices to linear operators we have:

SOLUTION: 
(a) 

     and .

We see that  is an eigenvector corresponding to the eigenvalue 4,
and that  is an eigenvector corresponding to the eigenvalue .

Since the set of eigenvectors corresponding to an eigenvalue  of a
linear operator  does not contain the zero vector, it cannot be
a subspace of V. As it was with matrices, however, if you throw in the
zero vector, then you do end up with a subspace, for:

Bringing us to:

 TURNING TO LINEAR OPERATORS

Compare with Definition 6.3,
page 218.

DEFINITION 6.5
EIGENVALUES AND 
 EIGENVECTORS 

 (FOR LINEAR OPERATORS)

Let  be a linear operator. An eigen-
value of T is a scalar  (which may be
zero) for which there exists a nonzero vector

 such that:

Any such v is then said to be an eigenvector
corresponding to the eigenvalue .

T: V V
 

v V
T v  v=



Note that the linear map T
stretches the eigenvector

 by its eigenvalue 4,
and  by :

2 1 

1– 3  3–

1 3– 

3 1 3– –

2 1 

4 2 1 

“stretched”  by a

factor of -3

“stretched” by

a factor of 4

EXAMPLE 6.8 Show that  and  are eigenvectors of
the linear operator  given by:

2 1  1– 3 
T: 2 2

T a b  3a 2b+ 3a 2b– =

T 2 1  6 2 6 2–+  8 4  4 2 1 = = =

T 1 3–  3– 6 3– 6–+  3 9–  3 1 3– –= = =

2 1 
1 3–  3–


T: V V

v T v  v=  v T v  v– 0= =

v T IV– v 0=  Ker T IV– = =

eigenvectors, along with the zero vector

a subspace of V (Theorem 4.8, page 126)

Compare with Definition 6.4,
page 219.

Compare with Example 6.5.

DEFINITION 6.6 The eigenspace associated with an eigen-
value    of a linear operator ,
denoted by , is given by:

EXAMPLE 6.9 Find a basis for the eigenspace  of the lin-
ear operator: 

of Example 6.8. 

 T: V V
E  

E   Ker T IV– =

E 4 

T a b  3a 2b+ 3a 2b– =
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SOLUTION: The kernel of the linear operator: 

is, by definition, the set: 

Equating coefficients, we have:

Setting the free variable b equal to r, we have 
with basis 

How does one go about finding the eigenvalues of a linear operator?
Like this:

PROOF: We show that v is an eigenvector for the linear operator T
corresponding to the eigenvalue , if and only if  is an eigenvec-
tor for the matrix  corresponding to the eigenvalue :

The above theorem leads us to the following definition: 

T 4I
2–  a b  T a b  4 a b – 3a 2b 4a 3a 2b– 4b––+ = =

a– 2b+ 3a 6b– =

a b  a– 2b+ 3a 6b–  0 0 = 

a– 2b+ 0=
3a 6b– 0= 




                1– 2
3 6–

            1 2–
0 0

        

a    b                 a   b
rref

E 4  2r r  r  =
2 1  

Answer: See page B-25.

CHECK YOUR UNDERSTANDING 6.9
Find a basis for the eigenspace  of the linear operator

 of Example 6.8.

THEOREM 6.9 The eigenvalues of a linear operator 
on a vector space of dimension n are the eigen-
values of the matrix , where 
is any basis for V.

E 3– 
T a b  3a 2b+ 3a 2b– =

T: V V

T  Mn n 

Note that 

(Why?)
v  0 v 0= =

 v 
T  

T v  v=
T v   v =

T  v   v =Theorem 5.22, page 180: 

with v 0 

with v  0 

Theorem 5.28, page 193,
and Exercise 30(b), page
216, tell us that 

for any bases  and 

det T  In– 

det T  In– =

 

DEFINITION 6.7
CHARACTERISTIC

 POLYNOMIAL
(FOR LINEAR OPERATORS)

Let  be a linear operator on a vector
space V of dimension n. The characteristic
polynomial of T is the n-degree polynomial

 where  is any basis for V,
and  is said to be the
characteristic equation of T. 

T: V V

det T  In–  

det T  In–  0=
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Embedding the above terminology in the statement of Theorem 6.9,
we come to:

PROOF: With respect to the basis  in , we have: 

Theorem 6.10 tells us that the eigenvalues are the solutions of the
equation:

We now determine the eigenspaces associated with the two eigenval-
ues,  and . 

Finding : 

Equating coefficients brings us to the following homogeneous system
of equations:

Compare with Theorem 6.8
THEOREM 6.10 Let V be a vector space of dimension n. The

eigenvalues of the linear operator 
are the solutions of the characteristic equation

, where  is any basis
for V.

EXAMPLE 6.10 Find the eigenvalues and corresponding eigen-
spaces of the linear operator 
given by:

T: V V

det T  In–  0= 

T: P2 P2

T ax2 bx c+ + 
a c+ x2 2a 2b c+ + x a c+ + +=

 x2 x 1  = P2

T 
1  0 1
2  2 1
1  0 1

=
T x2  1x2 2x 1+ +=
T x  0x2 2x 0+ +=
T 1  x2 x 1+ +=

det T  I3–  det
1 –  0  1

2  2 –  1
1  0  1 –

 2 – 2– 0= = =
see Example 6.6

 0=  2=
E 0 

E 0  ker T 0IP2
– = ker T  ax2 bx c+ + T ax2 bx c+ +  0= = =

  

a c+ x2 2a 2b c+ + x a c+ + + 0x2 0x 0+ +=

a c+ 0=
2a 2b c+ + 0=

a c+ 0= 



 1 0 1

2 2 1
1 0 1



a  b  c
1  0  1

0  1  1
2
---–

0  0  0

a  b  c

rref
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As shown in Example 6.6,  is the solution set of
the above system of equations. Thus:

 with basis 

Finding :

Equating coefficients:

As shown in Example 6.6,  is the solution set of the
above system of equations. Thus:

 with basis 

2r r 2r –  r  

E 0  2rx2– rx 2r r + + = 2x2– x 2+ + 

E 2 
E 2  ker T 2IP2

– = ax2 bx c+ + T 2IP2
–  ax2 bx c+ +  0= =

  

a c+ x2 2a 2b c+ + x a c+  2 ax2 bx c+ + –+ + 0=
a– c+ x2 2a c+ x a c– + + 0x2 0x 0+ += =

a– c+ 0=
2a c+ 0=

a c– 0= 



 1–  0  1

2  0  1
1  0  1–



a  b  c
1 0 0
0 0 1
0 0 0

rref

a   b   c

0 r 0   r  

E 2  rx r  = x 

Answer: See page B-25.

CHECK YOUR UNDERSTANDING 6.10

Find the eigenspaces of the linear operator of Example 6.10 using
 instead of . x2 x 1+ + x 1 1+ =  x2 x 1  =
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Exercises 1-14. Determine the eigenvalues and corresponding eigenspaces of the given matrix.

A factorization for the characteristic polynomial in the next six
exercises can be obtained with the help of the following result:

EXERCISES

1. 2. 3.
4.

5.
6. 7. 8.

A zero of a polynomial  is a 
number which when substituted for 

the variable x yields zero. For 
example,  is a zero of the poly-
nomial , since 

. One can show that:  c 
is a zero of a polynomial if and only 
if  is a factor of the polyno-

mial.
The adjacent example illustrates 

how the above result can be used to 
factor certain polynomials.

Since  is a zero ,  
 must be a factor, and we 
have:

9. 10. 11.

12. 13. 14.

1 1
6 2

1 4
2 1–

7 1–
6 2

2 3 4
2 3 0
0 0 5

3 2 1–
2 6 2–
1– 2– 3

1 1 1 1
1 1 1 1
1 1 1 1
1 1 1 1

1 0 0 0
0 2 0 0
3 1 1– 0
2– 0 0 2

2 1 0 0 0
0 1– 0 0 0
0 0 4 0 1
0 0 5 3 0
0 0 0 0 8

p x 

1–
p x  x3 3x– 2–=

p 1–  0=

x c– 

1– p x  x3 7x– 6–=
x 1– – x 1+=

x2 x– 6–

x3 7x– 6– x 1+  x2 x– 6– =
x 1+  x 2+  x 3– =

So:

x3 x2+
x2– 7x– 6–
x2– x–

6x– 6–
6x– 6–

x 1+ x3 7x– 6–

A
2 0  1
0 3  4
0 0  1

= A
4 0 1
2 3 2
1– 0 2

= A
1 2 2–
2– 5 2–
6– 6 3–

=

A
3 2 2–
3– 1– 3

1 2 0
= A

1– 1 1 0
0 0 0 1–
0 1 0 0
0 1 1 1–

= A

4 2 2– 2
1 3 1 1–
0 0 2 0
1 1 3– 5

=
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Exercises 15-31. Determine the eigenvalues and corresponding eigenspaces of the given linear
operator. 

32. (Calculus Dependent) Let V be the vector space of differentiable functions, and let
 be the derivative operator. Show that  is an eigenvector for D.

33. Prove that a square matrix A is invertible if and only if 0 is not an eigenvalue of A.

34. Let A be an invertible matrix with eigenvalue  and corresponding eigenvector v. Prove

that  is an eigenvalue of  with corresponding eigenvector v.

35. Let  and  be distinct eigenvalues of . Prove that 

15.  given by .

16.  where  and .

17.  given by .

18.  given by .

19.  given by .

20. , where .

21. , where .

22. , where .  

23. , where   and .  

24.  given by  .  

25.  given by  .  

26. , if , , and .

27. , if  .

28.  given by  .  

29. , where , , , and 

.

30. , where I is the identity map: .  

31. , where Z is the zero map: .  

T:   T x  5x–=

T: 2 2 T 1 0  2 0 = T 0 1  1 1 =

T: 2 2 T a b  8a 6b 12a 19b–– =

T: 3 3 T a b c   0 a c 3b c–+ =

T: 3 3 T a b c   a 9b– 9c a 5b– 3c 2a 6b– 4c+++ =

T: 4 4 T a b c d    a d b c   =

T: 4 4 T a b c d    2a a b 3a 2c d a b– c 2d–+–+– =

T: P1 P1 T ax b+  a b+ x b–=

T: P1 P1 T 1  x= T x  1=

T: P2 P2 P ax2 bx c+ +  bx– 2c–=

T: P2 P2 P ax2 bx c+ +  cx2– bx a–+=

T: P2 P2 T x2  3x2 2x– 4+= T x  7x 8–= T 1  1=

T: P3 P3 T ax3 bx2 cx d+ + +  a d+ x3 2a– c– d+ x2 2c 2d– x b– d+ + +=

T: M2 2 M2 2 T a b
c d 

 
  c– 0

a d–
=

T: M2 2 M2 2 T 1 0
0 1

0 0
1 1–

= T 0 1
0 0

9– 2–
0 0

= T 0 0
1 0

0 0
2– 1

=

T 0 0
0 1

0 0
7– 2

=

I: V V I v  v=

Z: V V Z v  0=

D: V V v e2x=

 0
1

--- A 1–

1 2 A Mn n E 1  E 2  0 =
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36. (a) Show that similar matrices have equal characteristic polynomials (see Definition 5.11,
page 195).
(b) Let  be a linear operator on a finite dimensional space V. Show that if  and 
are bases for V then:  and  have equal characteristic polynomials.

37.Let , with P invertible. Prove that if  is an eigenvector of A, then  is an
eigenvector of . 

38. Let . Prove that a, and c are eigenvalues of A.

39. For , find necessary and sufficient conditions for A to have:

    (a) Two eigenvectors.         (b) One eigenvector.         (c) No eigenvector.

40. Let . Prove that , and  are eigenvalues of A.

41. (a) Let  be a linear operator with eigenvalue . Prove that:

     (b) Let   with eigenvalue . Prove that:

42. For , show that   .

43. Prove that 0 is an eigenvalue for a linear operator  if and only if .

44. Show that if v is an eigenvector for the linear operator  . then so is  for any
. 

45. Let  be an isomorphism. Show that v is an eigenvector in V if and only if  is
an eigenvector in W.

46. Let v be an eigenvector for the linear operators  and . Show that v is also
an eigenvector for the linear operator . Find a relation between the eigenvalues
corresponding to v for T, L, and .

47. Show that if  and  are distinct eigenvalues of a linear operator , then
.

48. Let  and  be eigenvectors corresponding to distinct eigenvalues  and  of a linear
operator . Show that  is a linearly independent set.

T: V V  
T  T 

A P Mn n v P 1– v
P 1– AP

A a b
0 c

=

A a b
c d

=

A
a11 a12 a13

0 a22 a23
0 0 a33

= a11 a22 a33

T: V V 

E   v v is an eigenvector of T  0 =

A Mn n 

E   v v is an eigenvector of A  0 =

A Mn n null A I–  ker TA I– =

T: V V ker T  0 

T: V V rv
r 0

T: V W T v 

T: V V L: V V
LT: V V

LT

1 2 T: V V
E 1  E 2  0 =

v1 v2 1 2
T: V V v1 v2 
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49. Let  be a linear operator on a vector space V of dimension n, and let 
be an isomorphisms. Prove that  is an eigenvalue of T if and only if  is an eigenvalue of
the matrix , where S is the standard basis of , and that

.

50. Let  be an isomorphism. Show that if v is an eigenvector of the linear operator
, then  is an eigenvector of the linear operator .

51. Let  be a basis for a space V of dimension n, and  a linear operator. Prove that if
 is an eigenvector of T with eigenvalue , then  is an eigenvector of

 with eigenvalue .

52. Show that if  is an eigenvalue of  then  is also an eigenvalue of . (See
Exercise 19, page 162) 

53. Show that if  is nilpotent, then 0 is the only eigenvalue of A. (See Exercise 23,
page 163.)

54. Show that the characteristic polynomial of  can be expressed in the form
, where Trace(A) denotes the trace of A (see Exercise 24, page

163).

55. Let . Prove that the characteristic polynomial of A is of the form
, and that . (This is the Cayley-Hamilton

Theorem for square matrices of dimension 2.)

56. (PMI) Let . Use the Principle of Mathematical Induction to show that the coeffi-
cient of the leading term of the characteristic polynomial of A is .

57. (PMI) Let . Show that the constant term of the characteristic polynomial of A is
.

58. (PMI) Let  be the distinct eigenvalues of A for . Prove that

 are the distinct eigenvalues of .

59. (PMI) Let A be a square matrix with eigenvalue  and corresponding eigenvector v. Show
that for any positive integer n,  is an eigenvalue of  with corresponding eigenvalue v.

60. (PMI) Let A be a square matrix with eigenvalue  and corresponding eigenvector v. Show
that for any integer n,  is an eigenvalue of  with corresponding eigenvalue v.

T: V V L: V n 
 

A LTL 1– S= n

E   L 1– v  v null A I–  =

T: V W
L: V V T v  TLT 1– : W W

 L: V V
v V  v 
T L : R

n Rn 

 A Mn n  AT

A Mn n

A M2 2

2 Trace A – det A +

A M2 2

p   2 b det A + += A2 bA det A I+ + 0=

A Mn n
1

A Mn n
detA

1 2  k   A Mm m

1
n 2

n  k
n   An


n An


n An
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61. (PMI) Let  be an eigenvalue for a linear operator . Use the Principle of Mathe-
matical Induction to show that  is an eigenvalue for , where  is defined
inductively as follows: , and .

62. If  is an eigenvalue for  then it is also an eigenvalue for , where
.

63. If  is an eigenvalue for the two operators   and  , then it is also an
eigenvalue for the operator , where .

64. For , if  and  are eigenvalues of A and B, respectively, then   is
an eigenvalue of . 

65. For , if  and  are eigenvalues for A and B, respectively, then  is an
eigenvalue for AB. 

66. If  is an eigenvalue of the linear operator , then  is an eigenvalue of
.

67. If  and  are eigenvalues for the linear operators   and , respectively,
then  is an eigenvalue for .

68. If  and  are eigenvalues for the linear operators   and , respectively,
then  is an eigenvalue for .

69. If v is an eigenvector for   and , then v is also an eigenvector for
.

70. If  is a linear operator with eigenvector v, then  is also an eigenvector  of T
for every . 

71. For ,  if and only if  is the only eigenvalue of .

72. Let T be a linear operator on a vector space V of dimension n. Let  be an eigenvalue for T
and let  be a basis for . Then, for any ,  is an eigenvalue for

, and  is a basis for .

PROVE OR GIVE A COUNTEREXAMPLE

 T: V V
n T n: V V Tn

T1 T= T k 1+ TTk=

 T: V V kT : V V
kT v kT v =

 T: V V L: V V
T L+ : V V T L+  v  T v  L v +=

A B M2 2 A B A B+
TA B+

A B M2 2 A B AB

 T: V V 2

TT : V V

T L T: V V L: V V

AB TL : V V

T L T: V V L: V V

A B+ T L+ : V V

T: V V L: V V
T L+ : V V

T: V V v rv+
r 

A M2 2 A2 0= 0 TA


v1 v2  vm    E   r   r+

T rIn+ v1 v2  vm    E  r+ 
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 6

We begin with:

There is an intimate connection between diagonalizable matrices and
eigenvectors. Focusing first on linear operators, we have:

PROOF: Assume that T is diagonalizable. Let 
be such that  is a diagonal matrix:  with 
for . Since the  column of  consists of the coefficients of
the vector  with respect to the basis , we have:   

From the above we see that  is an eigenvector for T corresponding
to the eigenvalue .

Conversely, let  be a basis for V consisting of
eigenvectors, and let  be the eigenvalues corresponding
to . From: 

we have (see Definition 5.10, page 179):

 

§3. DIAGONALIZATION   

a11 0  0

0 a22  0

0 0  ann

  

DEFINITION 6.8
DIAGONAL MATRIX

DIAGONALIZABLE
OPERATOR

A square matrix  for which

 if  is said to be a diagonal
matrix (see margin). 

A linear operator  on a finite
dimensional vector space V is said to be
diagonalizable if there exists a basis  for
which  is a diagonal matrix.

THEOREM 6.11 Let  be a linear operator   on a finite
dimensional vector space. Then:
T is diagonalizable if and only if there exists a
basis for V consisting of eigenvectors of T. 

A aij n n=

aij 0= i j

T: V V


T 

T: V V

 v1 v2  vn   =
T  T  aij = aij 0=

i j ith T 
T vi  

T vi  0v1  0vi 1– aiivi 0vi 1+  0vn+ + + + + + aiivi= =
vi

aii

The ‘s can be zero and
need not be distinct (sev-
eral of the eigenvectors
in  may share a com-
mon eigenvalue).

i



 v1 v2  vn   =
1 2  n  

v1 v2  vn  

T vi  ivi 0v1 0v2
 ivi  0vn+ + + + += =

T 

1 0   0
0 2   0
    
0 0   n 1– 0
0 0   n

=
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In our quest for bases consisting of eigenvectors, we note that: 

PROOF: By induction on m: 
If , then  consists of a single nonzero vector and is there-
fore linearly independent (Exercise 33, page 92).
Assume the assertion holds for  (the induction hypothesis).
Let  be a set of eigenvector corresponding to distinct
eigenvalues . We are to show that 
is a linearly independent set. With this in mind, we consider the linear
combination:

Applying T to both sides, we have:

Multiply both sides of (*) by :

Subtract (***) from (**):

By the induction hypothesis, the k eigenvectors  corre-
sponding to the distinct eigenvalues  are linearly inde-
pendent. Consequently:

Answer: See page B-25.

CHECK YOUR UNDERSTANDING 6.11

Let  be the linear map given by: 

Show that  is a basis for  con-
sisting of eigenvectors of T. Determine  and show that its diag-
onal elements are eigenvalues of T.

THEOREM 6.12 If  are distinct eigenvalues of a
linear operator , and if  is any
eigenvector corresponding to , for

, then  is a linearly
independent set.

T: 3 3
T a b c   3a b– c 2a 2c 2a b– c––– =

 1 2 0   1 2 2   2 1 1    = 3

T 

1 2  m  

T: V V vi

i

1 i m  v1 v2  vm   

m 1= v1 

m k=
v1 v2  vk 1+   

1 2  k 1+   v1 v2  vk 1+   

a1v1 a2v2  akvk a+ k 1+ vk 1++ + + 0= (*)

Since  is an eigenvector

corresponding to : 

vi
i

T vi  ivi=

T a1v1 a2v2  akvk a+ k 1+ vk 1++ + +  T 0 =

a1T v1  a2T v2   akT vk  a+ k 1+ T vk 1+ + + + 0=

a11v1 a22v2  akkvk a+ k 1+ k 1+ vk 1++ + + 0= (**)

k 1+

a1k 1+ v1 a2k 1+ v2  akk 1+ vk a+ k 1+ k 1+ vk 1++ + + 0= (***)

a1 1 k 1+– v1 a2 2 k 1+– v2  ak k k 1+– vk+ + + 0=

v1 v2  vk  
1 2  k  

a1 1 k 1+–  a2 2 k 1+–   ak k k 1+–  0= = = =
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Since the eigenvalues  are distinct, none of the above
 is equal to 0. Hence:

Returning to (*), we then have:

Being an eigenvector, , and therefore  (Theorem
2.8, page 54).

We have just observed that if you take eigenvectors corresponding to
different eigenvalues you will end up with a linearly independent set of
vectors. More can be said:

PROOF: Consider the vector equation: 

(we will show that every coefficient must be zero)

For , let . Assume, without loss of
generality, that  for  and that the rest are zero vectors.

As for any of the zero vectors, , its
coefficients must be zero, as  is given to be a
linearly independent set. 
As for the nonzero vectors, we begin by rewriting (*) in the form:

Since the nonzero vectors  are eigenvectors associated
with distinct eigenvalues , they are linearly independent
(Theorem 6.12). It follows, from (**), that each  must be 0: 

Using, again, the fact that each  is a linearly
independent set, we conclude that each scalar  must be zero

THEOREM 6.13 Let  be distinct eigenvalues of a
linear operator , and let

 be any linearly inde-
pendent subset of . Then: 

is a linearly independent set.

1 2  k 1+  
i k 1+– 

a1 a2  ak 0= = = =

ak 1+ vk 1+ 0=

vk 1+ 0 ak 1+ 0=

1 2  m  
T: V V

Si vi1 vi2  viri
   =

E i 
S S1 S2  Sm  =

each coefficient is 0

linear combination = 0

a11v11
 a1r1

v1r1
+ +   am1vm1

 amrm
vmrm

+ + + + 0= (*)

The r1 vectors in S1 The rm vectors in Sm

1 i m  vi ai1vi1  airi
viri

+ +=
vi 0 1 i t 

vi ai1vi1  airi
viri

+ + 0= =
vi1 vi2  viri
   

v1 v2
 vt+ + + 0= (**)

v1 v1  vt   

1 2  t  

vi
vi ai1ui1  airi

uiri
+ + 0= =

Answer: See page B-26.

CHECK YOUR UNDERSTANDING 6.12

Let  be a linear operator on a space of dimension n. Prove
that if T has n distinct eigenvalues, then T is diagonalizable.

Si ui1 ui1  uiri
   =

aij

T: V V
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To say that  is diagonalizable is to say that V contains a
basis consisting of eigenvectors of T (Theorem 6.11). Let’s modify this
characterization to accommodate matrices:

Here is a link between diagonalizable matrices and diagonalizable
linear operators: 

PROOF: The linear map  is diagonalizable 
if and only if:

there exists a basis  of , and scalars
, such that 

if and only if:
  (Definition of )

if and only if 
A is diagonalizable (Definition 6.9).

Definition 6.9 is okay, but how do we go from a diagonalizable
matrix to a specific diagonal matrix? Like this::

PROOF: Let  denote the standard basis for

 (see page 94). Employing Theorem 5.26 (page 193), and The-
orem 5.23 (page 184) to the linear map  given by

, we have:

RETURNING TO MATRICES 

DEFINITION 6.9
DIAGONALIZABLE

MATRIX

A matrix  is diagonalizable if

there exists a basis for  consisting of
eigenvectors of A.

THEOREM 6.14  is diagonalizable if and only if the

linear map  given by
 is diagonalizable. 

(X is a vertical n-tuple: a column matrix.)

T: V V

A Mn n

n

A Mn n

TA: n n
TAX AX=

TA: n n

X1 X2  Xn    n

1 2  n   TA Xi  iXi=

AXi iXi= TA

This theorem asserts that
any diagonalizable matrix
is similar to a diagonal
matrix. The converse also
holds (Exercise 37). And
so we have:

 is diagonal-
izable if and only if it is
similar to a diagonal
matrix.

A Mn n

THEOREM 6.15 Let  be diagonalizable. Let

 be any basis for 
consisting of eigenvectors of A, with associated
eigenvalues . If  is the

matrix whose  column is , then:

 where  is the diag-
onal matrix, with diagonal entry .

A Mn n

 X1 X2  Xn   = n

1 2  n   P Mn n

ith Xi

D P 1– AP= D dij =
dii i=

Sn e1 e2  en   =

n

TA: n n
TA X  AX=
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(*)

where  (see margin). Since , the  col-
umn of P is simply the vector  (recall that  is the standard
basis). Now:

The  column of  is: 

Hence: .

Since  is a basis of eigenvectors:

It follows that  is the diagonal matrix 
with .

Putting all of this together we have (see *):

SOLUTION: In Example 6.7, page 221, we found that 0, 2, and  are

the eigenvalues of A. We also observed that 

is a basis for ,  is a basis for , and that

 is basis for . It is easy to see that the four eigen-

vectors  are lin-

early independent, and therefore constitute a basis for . Taking P to
be the matrix with columns the above four eigenvectors:

we have:

(See page 193)

n n

n n

 

Sn Sn

TA

TA

I I

EXAMPLE 6.11 Show that the matrix:

is diagonalizable, and find a matrix P such
that  is a diagonal matrix.

TA  P 1– TA SnSn
P=

 

P I Sn
= I Xi  Xi= ith

Xi Sn

ith TA SnSn

TA ei  Sn
Aei Sn

the ith column of A= =

TA SnSn
A=



TA Xi  iXi 0X1 0X2  iXi  0Xn+ + + + += =

TA  D dij =
dii i=

D P 1– AP, or: A PDP 1–= =

A

0 2 2– 0
1 1 0 1–
1– 1 2– 1
1– 1 2– 1

=

P 1– AP

2–

1– 1 1 0    1 0 0 1    

E 0  1 1 0 0     E 2 

1 0 1 1     E 2– 

1– 0 1 0    1 1 0 1    1 1 0 0    1 0 1 1      

4

P

1– 1 1 1
1 0 1 0
1 0 0 1
0 1 0 1

=
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The next result plays an important role in many eigenvector applica-
tions:

PROOF: (By induction on n) For  we have: 

Assume that  (the induction hypothesis). Then:

An eigenvalue  of a matrix  (or of a linear operator T on
a vector space of dimension n) has algebraic multiplicity k if

 is a factor of A’s (or T ’s) characteristic polynomial, and
 is not. We also define the geometric multiplicity of  to

be the dimension of  (the eigenspace corresponding to ).

Answer: See page B-26.

Q

Q 1– AQ
CHECK YOUR UNDERSTANDING 6.13

Determine if the given matrix is diagonalizable. If it is, use Theorem
6.15 to find a matrix P such that  is a diagonal matrix.

          (a)                         (b) 

THEOREM 6.16 If  is diagonalizable with
, then . 

P 1–

0 2 2– 0
1 1 0 1–
1– 1 2– 1
1– 1 2– 1

P

0 0 0 0
0 0 0 0
0 0 2 0
0 0 0 2–

=

P 1– AP

A
1– 0 1
1– 3 0
4– 13 1–

= A
3 2 1–
2 6 2–
1– 2– 3

=

A Mm m
A PDP 1–= An PDnP 1–=

n 1=

P 1– AP D1= A PDP 1–=

Answer: See page B-27.

CHECK YOUR UNDERSTANDING 6.14

Calculate  for the diagonalizable matrix A of Example 6.11.

ALGEBRAIC AND GEOMETRIC MULTIPLICITY OF EIGENVALUES 

Ak PDkP 1–=

Ak 1+ AAk A PDkP 1–  PDP 1–  PDkP 1– = = =

P DDk P 1– PDk 1+ P 1–= =induction hypothesis

P 1– AP D= A PDP 1–=

A10

0 A Mn n

 0 – k

 0 – k 1+ 0
E 0  0
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SOLUTION: In Example 6.6, page 220, we showed that  is
the characteristic polynomial of A. It follows that the eigenvalue 0
has algebraic multiplicity 1, and that the eigenvalue 2 has algebraic
multiplicity 2. Since both of the eigenspaces  and  were
seen to have dimension 1, the geometric multiplicity of both eigen-
values is 1.
The above example illustrates the fact that the geometric multiplicity

of an eigenvalue can be less than its algebraic multiplicity; it cannot go
the other way around:

                                   

PROOF: (By contradiction) Assume that  and let

 be a basis for . Expand  to

a basis  for . Since, for
:

 
the matrix  is of the following form:

In the proof of Theorem 6.15 we observed that  (where
 is the standard basis in ). It follows, from Exercise 36(a), page

EXAMPLE 6.12 Find the algebraic and geometric multiplicity
of the eigenvalues of the matrix: 

THEOREM 6.17 If  is an eigenvalue of  with
algebraic multiplicity  and geometrical
multiplicity , then .

A
1  0  1
2  2  1
1  0  1

=

 2 – 2–

E 0  E 2 

0 A Mn n
ma

mg mg ma

Recall that  is
the linear operator given
by:

Recall that the  column
of  consists of the
coefficients of the vector

 with respect to the
basis .

TA: Rn Rn

TA v  Av=

ith

TA 

TA vi 

 v1 v2  vn   =

ma mg

v1 v2  vmg
    E 0   v1 v2  vmg

   

 v1 v2  vmg
vmg 1+  vn      = n

1 i mg 

TA vi  A vi  0vi= =
0v1  0vi 1– 0vi 0vi 1+  0vn+ + + + + +=

TA 

 0 0  0

0  0  0

0 0   0










mg

0    0    0
0   0  0

0   0  0

mg

X

Y

TA  =

n n

  

  

TA SnSn
A=

Sn n
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230, that the characteristic polynomial of A equals that of ,
namely, :

This leads to a contradiction, for the factor  cannot appear
with exponent greater than  in the characteristic polynomial of A
(remember that  is the algebraic multiplicity of  ).

In certain cases, the algebraic and geometric multiplicities of a linear
operator can be used to determine if the operator is diagonalizable:

PROOF: Assume that T is diagonalizable. By Theorem 6.11, there
exists a basis  for V consisting of eigenvectors of
T. Let  be the set of T’s (several of the ’s may cor-
respond to the same eigenvalue). If necessary, reorder  so that

, where  consists of the eigenvectors in 
corresponding to .
Since the vectors in  are linearly independent, and since their com-
bined sum equals the dimension of V, it follows, from Theorem 6.13,
that the number of vectors in  must equal , the geo-
metric dimension of . Hence: .
We are given that the characteristic polynomial of T can be factored
into a product of linear factors:  

TA 
det TA  I– 

det crdet Y =
cI

0

X

Y

THEOREM 6.18 Assume that the characteristic polynomial of
a linear operator  (or of a matrix),
can be factored into a product of linear fac-
tors (with real coefficients). Then T is diago-
nalizable if and only if the algebraic
multiplicity of each eigenvalue of T is equal
to its geometric multiplicity.

 0 – 0  0

0  0 –  0

0 0   0 –










mg

0        0          0
0      0  0

0    0  0

mg

n n

X

Y

det 0 – mgdet Y =

  

  

Exercise 40, page 217
(see margin)

0 – 
ma

ma 0

T: V V

 v1 v2  vn   =
1 2  k    vi


 S1 S2  Sk  = Sj 

 j
Sj

Sj gj dimE  j =
j n g1 g2

 gk+ + +=

det T  I–   1– a1  2– a2  k– ak= (*)
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 It follows that:

Consequently: 

             Or:  
Knowing that   (Theorem 6.17), we conclude that  for
each .

Conversely, assume that the multiplicity of each eigenvalue ,
, is equal to its degree: . Let  be a

basis for . By Theorem 6.13, the set , which
contains  vectors, is linearly independent. It is in
fact a basis, since it contains n vectors (Theorem 3.11, page 99):

Possessing a basis of eigenvectors, T is diagonalizable (Theorem
6.11).

SOLUTION: For S the standard basis of , we have:

The above matrix was encountered in Example 6.7, page 221, where
we found its characteristic polynomial to be . We
also showed that:

The eigenspace corresponding to the eigenvalue 0, of multiplicity
2, has dimension 2 (with basis ).
The eigenspace corresponding to the eigenvalue 2, of multiplicity
1, has dimension 1 (with basis .)

EXAMPLE 6.13 Appeal to the previous theorem to show that
the linear operator  given by:

is diagonalizable. Find a basis  for which  is a diag-
onal matrix.

n g1 g2
 gk+ + + a1 a2

 ak+ + + n= =

              Theorem 6.17 degree of the characteristic polynomial (*)

a1 a2
 ak+ + + g1 g2

 gk+ + +=
a1 g1–  a2 g2–   ak gk– + + + 0=
ai gi ai gi=

1 i k 

 j
1 j k  aj dim E j   gj= = Sj

E j  S1 S2  Sk  
g1 g2

 gk+ + +

g1 g2
 gk+ + + a1 a2

 ak+ + + n= =
degree of the characteristic polynomial

T: 4 4
T a b c d   

2b 2c a b d–+– a– b 2c– d+ + a– b 2c– d+ +  =

 T 

4

T SS

0 2 2– 0
1 1 0 1–
1– 1 2– 1
1– 1 2– 1

=

T 1 0 0 0    0 1 1 1––  =

2  2–   2+ 

1 1 1 0  –  1 0 0 1    

1 1 0 0    
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The eigenspace corresponding to the eigenvalue , of multiplicity
1, has dimension 1 (with basis ).

Since the algebraic multiplicity of each eigenvalue equals its geometric
multiplicity, the linear operator is diagonalizable. Moreover, since 

is a basis for V of eigenvectors, we know that  will be a diagonal
matrix with diagonal entries equal to the eigenvalues corresponding to
the eigenvalues of ; namely:

2–
1 0 1 1    

 1 1 1 0  –  1 0 0 1    1 1 0 0    1 0 1 1      =
T 



T 

0 0 0 0
0 0 0 0
0 0 2 0
0 0 0 2–

=

Answer: See page B-27.

CHECK YOUR UNDERSTANDING 6.15

Verify that the algebraic multiplicity of each eigenvalue of the diago-
nalizable matrix of CYU 6.13(b) equals that of its geometric multi-
plicity.
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Exercises 1-19. Determine if the given linear operator  is diagonalizable. If it is, find a
basis  for V such that  is a diagonal matrix.

(Note: To factor the characteristic polynomial of the given operator, you may need
to use the division process discussed above Exercise 9 on page 228.) 

EXERCISES

1.  given by .

2.  given by .

3.  given by .

4.  where  and .

5.  where  and .

6.  given by .

7.  given by .

8.  where , , and 
.

9.  where , , and 
.

10.  given by .

11.  given by .

12.  given by .

13.  where , , 
, and .

14.  where , , 
, and .

15.  given by .

16.  given by  .

17.  given by  .

18.  where ,  and . 

19.  given by .

T: V V
 T 

T: 2 2 T a b  2a 3b =

T: 2 2 T a b  7a b– 6a 2b+ =

T: 2 2 T a b  2a a– 3b+ =

T: 2 2 T 1 0  4 1– = T 0 1  1 2 =

T: 2 2 T 1 1  1 2 = T 0 1  2 0 =

T: 3 3 T a b c   a 2c 2b 3c+– =

T: 3 3 T a b c   13a 4b 8b 2c 5c–– =

T: 3 3 T 1 0 0   0 1 1–– = T 0 1 0   1 4 5  =
T 0 0 1   1 1 2–– =

T: 3 3 T 1 1 1   1 0 1  = T 0 1 1   1 1 0  =
T 0 0 2   1 1 0  =

T: 3 3 T a b c   2a 4b 4c–+ 3b– 5c 6b– 8c++ =

T: 4 4 T a b c d    b a d c   =

T: 4 4 T a b c d    a 0 a 2c 2b–+ – =

T: 4 4 T 1 0 0 0    1 0 0 0   = T 0 1 0 0    3 2– 0 0  =
T 0 0 1 0    2 1 4 0 – = T 0 0 0 1    6 0 5 3–   =

T: 4 4 T 1 1 0 0    1 0 0 1   = T 0 0 1 1    0 0 1 0   =
T 1 0 0 1    0 1 1 1   = T 0 0 0 1    1 1 1 1   =

T: 5 5 T a b c d e     2a a b 4c 5d 3d c 8e++– =

T: P2 P2 T p x   p x 1+ =

T: P2 P2 T ax2 bx c+ +  3a 2b– c+ x2 2b c– x b+ +=

T: P2 P2 T x2  x2= T x  2x 1+= T 1  x2 1–=

T: M2 2 M2 2 T a b
c d 

 
  a b–

3c 0
=
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Exercises 20-34. Determine if the given matrix A is diagonalizable. If it is, find a matrix P such
that  is a diagonal matrix.    

35. Let  be such that . Show that:
(a) If  is an eigenvalue of A, then  or .
(b) A is diagonalizable. 

36. Let  be diagonalizable. Prove that the rank of A is equal to the number of nonzero
eigenvalues of A.

37. Prove that if  is similar to a diagonal matrix, then A is diagonalizable.

38. Let . Prove that A and its transpose  have the same eigenvalues, and that they
occur with equal algebraic multiplicity (see Exercise 19, page 161).

39. Let . Prove that if  is an eigenvalue of A with geometric multiplicity d, then  is
an eigenvalue of its transpose  with geometric multiplicity d (see Exercise 19, page 161).

40. Let  be an isomorphism on a finite dimensional vector space. Prove that:
(a) The linear operator  and  have equal characteristic polyno-

mials.
(b) The eigenspace corresponding to an eigenvalue  of  is isomorphic to the

eigenspace corresponding to that eigenvalue of T. 
(c) T is diagonalizable if and only if  is diagonalizable.

20. 21. 22.

23. 24. 25.

26. 27. 28.

29. 30. 31.

32. 33. 34.

P 1– AP

A 1 1
1 1

= A 1 6–
1– 2

= A 2 4–
3 3–

=

A
1 3 5
0 2– 6
0 0 4

= A
5 0 0
1– 5 0

2 3 2
= A

2  3 4
2  3 0
0  0 5

=

A
2 0 3
1– 0 3

1 0 2
= A

0 0 0
1 2 3
1– 2 3–

= A
1 2 1–
2 4 2–
1– 2– 1

=

A

1 2 3 4
0 2 1– 3
0 0 5 1
0 0 0 1

= A

5 0 0 0
2 2 0 0
1– 9 1 0

3 3 5 7

= A

0 2 2– 0
1 1 0 1–
1– 1 2– 1
1– 1 2– 1

=

A

2 5 3 6–
2– 4 0 2
4– 10– 6– 12

1 7 3 5–

= A

3 1 2 2– 4
0 1 4 4 2
0 0 2 1 1
0 0 0 3 0
0 0 0 0 3

= A

2 1 0 0 0
0 1– 0 0 0
0 0 4 0 1
0 0 5 3 0
0 0 0 0 8

=

A Mn n A2 I=
  1=  0=

A Mn n

A Mn n

A Mn n AT

A Mn n  

AT

L: V W

T: V V LTL 1– : W W

 LTL 1–

LTL 1–
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41. Let  be a linear operator on a space of dimension n. If  are distinct
eigenvalues of T, and if there exists a basis  for V such that  is a diagonal matrix, then

.

42. Let  be the distinct eigenvalues of a linear operator  on a vector
space V of dimension n. The operator T is diagonalizable if and only if .

43. If  are both diagonalizable, then so is .

44. If  are such that  is diagonalizable, then both A and B are diagonalizable.

PROVE OR GIVE A COUNTEREXAMPLE

T: V V 1 2  m  
 T 

m n=

1 2  k   T: V V
k n=

A B Mn n AB

A B Mn n AB
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 6

Applications of eigenvectors surface in numerous fields. In this sec-
tion we focus on recurrence relations, and on differential equations. 

 The Fibonacci sequence is that sequence whose first two terms are 1,
and with each term after the second being obtained by summing its
two immediate predecessors:

What is the  Fibonacci number? Given enough time, we could
keep generating the numbers of the sequence, eventually arriving at its

 element. There is a better way:
Letting  denote the  Fibonacci number we have ,

and, for :

We observe that  is the top entry of the matrix product:

Letting  and  we can express (*) in the form:

In particular

Note that the  Fibonacci number  in (*) is the top entry in the

matrix , which is simply the sum of the

entries in the first row of  (see margin). But this is of little benefit

unless we can readily find the powers of the matrix . We can:

§4. APPLICATIONS   

FIBONACCI NUMBERS AND 
SYSTEMS OF DIFFERENTIAL EQUATIONS

Leonardo Fibonacci (Ital-
ian; circa 1170 - 1250), is
considered by many to be
the best mathematician of
the Middle Ages. The
sequence bearing his name
evolved from the follow-
ing question he posed and
resolve in 1220:       
Assume that pairs of rab-
bits do no produce off-
spring during their first 
month of life, but will 
produce a new pair of 
offspring each month 
thereafter. Assuming that 
no rabbit dies, how many 
pairs of rabbits will there 
be after k months?           

1 1 2 3 5 8 13 21 34 55          

1 1+

1 2+

8 13+

34 55+

100th

100th

sk kth s1 s2 1= =
k 3

sk sk 1– sk 2–+=
sk

1 1
1 0

sk 1–

sk 2–

sk 1– sk 2–+
sk 1–

sk

sk 1–

= = (*)

F 1 1
1 0

= Sk
sk

sk 1–

=

Sk FSk 1–=

S3 FS2 F 1
1

  S4 FS3 F F 1
1

 F 2 1
1

     Sk  F k 2– 1
1

= = = = = =

a b
c d

1
1

a b+
c d+

=

kth sk

Sk
sk

sk 1–

F k 2– 1
1

= =

Fk 2–

F 1 1
1 0

=
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    Since the characteristic polynomial of F is  (margin), the

matrix F has eigenvalues  and . Let’s find
eigenvectors associated with those eigenvectors:

 
Setting the free variable b to 1 we find that . It follows that

 is an eigenvector associated with the eigenvalue .

In the same manner one can show that  is an eigenvector

associated with the eigenvalue  — a fact that is verified in the margin.
 Theorem 6.15, page 236, tell us that:

Leading us to:

Applying Theorem 6.16, page 238, we have:

det 1 1
1 0

 1 0
0 1

–
 
 
 

0=

det 1 – 1
1 –

0=

2 – 1– 0=

 1 1 4+
2

-------------------------=

2 – 1–

1
1 5–

2
-----------------= 2

1 5+
2

-----------------=

1 1
1 0

a
b

1 5+
2

---------------- 
  a

b
= a b+

a


1 5+
2

----------------a

1 5+
2

----------------b

=

1 5–
2

----------------a b+ 0=

a 1 5+
2

----------------– b 0=










1 5–
2

---------------- 1

1 1 5+
2

----------------–

        1 1 5+
2

----------------–

0 0

a 1 5+
2

----------------b=

homogeneous system of equations

rref

a             b a       b

solution

1 1
1 0

1 5–
2

----------------

1

1 5–
2

---------------- 1+

1 5–
2

----------------

=

3 5–
2

----------------

1 5–
2

----------------

=

1 5–
2

----------------
1 5–

2
----------------

1

=

a 1 5+
2

----------------=

a
b

1 5+
2

----------------

1

= 1

1 5–
2

----------------

1
2

D
1 5+

2
----------------  1 5–

2
----------------

1 1

1–
1 1
1 0

1 5+
2

----------------  1 5–
2

----------------

1 1

1 5+
2

---------------- 0

0 1 5–
2

----------------

= =

P 1– FP

 a diagonal matrix

F PDP 1–
1 5+

2
----------------  1 5–

2
----------------

1 1

1 5+
2

---------------- 0

0 1 5–
2

----------------

1 5+
2

----------------  1 5–
2

----------------

1 1

1–

= =

Fk PDkP 1– 1 5+
2

---------------- 1 5–
2

----------------

1 1

1 5+
2

---------------- 
  k

0

0 1 5–
2

---------------- 
  k

1 5+
2

---------------- 1 5–
2

----------------

1 1

1–

= =
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You are invited to show that the first row of the above matrix product
can be expressed in the following form:

 Recalling that the  Fibonacci number is the sum of the entries in
the first row of , we have:

Looking at the above “ -expression” from a strictly algebraic point
of view, one would not expect to find that each  is an integer. Being a
Fibonacci number, that must be the case. In particular, the  Fibo-
nacci number is: 

 

1 5+
2

---------------- 
 

k 1– 1 5+
2

---------------- 
 

k 2–
–

1 5+
2

---------------- 
 

k 2– 1 5+
2

---------------- 
  1–=

1 5+
2

---------------- 
 

k 2– 1 5+
2

---------------- 
 

2
=

1 5+
2

---------------- 
 

k 2–
=

Fk 1
5

-------
1 5+

2
---------------- 
 

k 1+ 1 5–
2

---------------- 
 

k 1+
–     1 5+

2
---------------- 
 

k 1 5–
2

---------------- 
 

k
–

=

**********************         ******************

kth

Fk 2–

sk
1
5

------- 1 5+
2

---------------- 
 

k 1– 1 5–
2

---------------- 
 

k 1–
– 1 5+

2
---------------- 
 

k 2– 1 5–
2

---------------- 
 

k 2–
–+=

1
5

------- 1 5+
2

---------------- 
 

k 1– 1 5–
2

---------------- 
 

k 2–
– 1 5–

2
---------------- 
 

k 1– 1 5–
2

---------------- 
 

k 1–
––

 
 
 

=

1
5

------- 1 5+
2

---------------- 
 

k 1 5–
2

---------------- 
 

k
–= (see margin)

Using the TI-92:

The number  has an interesting history dating back to the

time of Pythagoras (c. 500 B.C.). It is called the golden ratio (  is  the
first letter in the Greek spelling of Phydias, a sculptor who used the
golden ratio in his work).
Basically, and for whatever aesthetic rea-
son, it is generally maintained that the most
“visually appealing” partition of a line seg-
ment into two pieces is that for which the
ratio of the length of the longer piece L to
the length of the sorter piece l equals the
ratio of the entire line segment to that of
the longer piece, leading us to:

5
sk

100th

s100
1
5

------- 1 5+
2

---------------- 
 

100 1 5–
2

---------------- 
 

100
– 354,224,848,179,261,915,075= =

 1 5+
2

----------------=



L
l
--- L l+

L
-----------=

L2 lL– l2– 0=

L l l 5+
2

----------------- L
l
--- 1 5+

2
----------------= =

L l

L

l
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The formula  for the  element of the Fibonacci
sequence describes each element of the sequence in terms of previous
elements. It is an example of a recurrence relation. You are invited to
consider addition recurrence relations in the exercises, and in the fol-
lowing Check Your Understanding box.

We begin by extending the concept of a matrix to allow for function
entries; as with:

The arithmetic of such matrices mimics that of numerical matrices.
For example:

and:

We also define the derivative of a function-matrix to be that matrix
obtained by differentiating each of its entry. For example:

In the exercises, you are invited to show that the following familiar
derivative properties:

extend to matrices:

 RECURSIVE RELATION

Answer: See page B-27.

CHECK YOUR UNDERSTANDING 6.16

Find a formula for the  term of the sequence , if
, , and  for .

SYSTEMS OF DIFFERENTIAL EQUATIONS 
(CALCULUS DEPENDENT)

sk sk 1– sk 2–+= kth

kth s1 s2 s3   

s1 2= s2 3= sk sk 1– 2sk 2–+= k 3

A x  3x e2x

4 xsin
   and   B x  0 xln

x 5– 2x
= =

3x e2x

4 xsin
0 xln

x 5– 2x
+ 3x e2x xln+

x 1– xsin 2x+
=

3x e2x

4 xsin
0 xln

x 5– 2x
e2x x 5–  3x xln 2xe2x+

x x 5– sin 4 x 2x xsin+ln
=

If A x  3x e2x

4 xsin
 then  A x = 3x  e2x 

4  xsin 

x 2e2x

0 xcos
= =

f x  g x +  f  x  g x +=
f x g x   f x g x  g x f  x +=

cf x   cf  x =
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Differential equations of the form:

play an important role in the development of this subsection. As you may
recall:

PROOF:

At this point, we know that every function of the form  is a
solution of the differential equation . Moreover, if 
is any solution of , then the derivative of the function

 is zero:

It follows that  for some constant c, or that
.

 We now turn our attention to systems of linear differential equation of
the form:

where the coefficients  are real numbers. As it is with systems of lin-
ear equations, the above system can be expressed in the form:

were  and .

THEOREM 6.19 Let the entries of the matrices  and 
be differentiable function, and let C be a
matrix with scalar entries (real numbers).
Then:

(assuming, of course, that the matrix dimen-
sions are such that the operations are defined)

THEOREM 6.20 The solution set of , conists of
all functions of the form  for
any constants c and d.

A x  B x 

A x  B x +  A  x  B x +=
A x B x   A x B x  B x A  x +=
CA x   CA  x =

(i)
(ii)
(iii)

f  x  af x      or  y ay= =

f  x  af x =
f x  ceax d+=

f  x  ceax d+  a ceax  af x = = =

If the derivative of a func-
tion is zero, then the func-
tion must be constant.

f x 
g x 
---------- 
   g x f  x  f x g  x –

g x  
2

----------------------------------=

y ceax=
f  x  af x = f x 

f  x  af x =

g x  f x 
eax
---------=

g x  eaxf  x  f x aeax–
e2ax

--------------------------------------------- f  x  af x – eax

e2ax
------------------------------------------ 0

eax
------- 0= = = =

since f  x  af x =

g x  f x 
eax
--------- c= =

f x  ceax=

f1 x  a11f1 x  a12 f2 x   a1n fn x + + +=

f2 x  a21f1 x  a22f2 x   a2n fn x + + +=

fn x  an1f1 x  an2f2 x   ann fn x + + += 









aij

F x  AF x =
F x  fi x   Mn 1= A aij  Mn n=



                                                                                       6.4  Applications     251

In the event that A is a diagonal matrix, the system  is
easily solved:

PROOF: Simply apply Theorem 6.20 to each of the n differential
equations: .

We now consider systems of differential equations of the form:

where A is a diagonalizable matrix. In accordance with Theorem 6.15,
page 236, we know that for any chosen basis  of
eigenvectors of A: 

where the  column of  is the eigenvector
 with eigenvalue , and  is the diago-

nal matrix with . Substituting in (*), we have:

Letting , brings us to:

Applying Theorem 6.21, we have:

At this point we have:

 
Appealing to Theorem 5.3, page 154, we conclude that:

 

f1 x  1f1 x =

f2 x  2f2 x =

fn x  nfn x = 







THEOREM 6.21

If  then:  

where .

F x  AF x =

f1 x 

f2 x 

fn x 

1 0  0

0 2  0

0  0 n

f1 x 

f2 x 

fn x 

=    

f1 x 

f2 x 

fn x 

c1e1x

c2e2x

cnenx

=

c1 c2 cn  

fi x  ifi x =

F x  AF x = (*)

 v1 v2  vn   =

A PDP 1–=
ith P Mn n

vi a1i a2i  ani    i D dij =
dii i=

F x  PDP 1– F x =
P 1– F x  DP 1– F x =

P 1– F x   DP 1– F x =Theorem 6.19(iii):

Multiply both sides by  P 1– :

G x  P 1– F x =
G x  DG x =

G x 

c1e1x

c2e2x

cnenx

P 1– F x 

c1e1x

c2e2x

cnenx

F x  P

c1e1x

c2e2x

cnenx

= = =

F x 

a11 a12  a1n

a21 a22  a2n

   
an1 an2 ann

c1e1x

c2e2x

cnenx

=

v1  v2         vn

    F x  c1e1xv1 c2e2xv2
 cnenxvn+ + +=
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Summarizing, we have: 

SOLUTION: Our first order of business is to find (if possible) a basis

 of  consisting of eigenvectors of . 

From:  

we see that the matrix  is diagonalizable, with eigenvalues

 and 3. Here are their corresponding eigenspaces:

Setting the free variable b equal to r, we have: 

And:

Bringing us to:

THEOREM 6.22 Let  be diagonalizable, and let
 be a basis for  consisting

entirely of eigenvectors of A with corre-
sponding eigenvalues . Then, the general
solution of:  

is of the form: 

for .

A Mn n
v1 v2  vn    n

i

F x  AF x =

c1e1xv1 c2e2xv2
 cnenxvn+ + +

c1 c2 cn  

In alternate notation form:  
f1 x  3 f1 x – f2 x +=

f2 x  6 f1 x  2f2 x += 



EXAMPLE 6.14 Find the general solution for:
y1 3y1 y2+–=

y2 6y1 2y2+= 



v1 v2  2 A 3– 1
6 2

=

det 3– – 1
6 2 –

3– –  2 –  6–=

2  12–+  4+   3– = =

A 3– 1
6 2

=

4–

E 4–  null 3– 1
6 2

4– 0
0 4–

–
 
 
 

null 1 1
6 6 

 
 

= =

1 1
6 6

            1 1
0 0

x  y                x  y
rrefhomogeneous

system of equations:

E 4–  r r–  r R =

E 3  null 3– 1
6 2

3 0
0 3

–
 
 
 

null 6– 1
6 1– 

 
 

= =

6– 1
6 1–

            1 1
6
---–

0 0

a   b                a  b

rref

E 3  r 6r  r R =
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Choosing the eigenvector  for the eigenvalue  and
the eigenvector  for the eigenvalue 3, we obtain a basis of

 consisting of eigenvectors for A. Applying Theorem 6.22, we
conclude that the general solution of the given system of differential
equations is give by:

Which is to say: 

Let’s check our result in the given system : 

Let us return momentarily to the system of equations of Example 6.14:

To arrive a particular or specific solution for the system, we need some
additional information. Suppose, for example, that we are given the ini-

tial condition . Substituting in (*), we then

have:

Any other two eigenvec-
tors corresponding to the
two eigenvalues will do
just as well.

v1 1– 1 = 4–
v2 1 6 =

2

y1

y2

c1e 4x– 1–
1

c2e3x 1
6

+
c1– e 4x– c2e3x+

c1e 4x– 6c2e3x+
= =

y1 c1– e 4x– c2e3x   and   y2+ c1e 4x– 6c2e3x+= =

y1 3y1 y2+–=

y2 6y1 2y2+= 



y1 c1– e 4x– c2e3x+  4c1e 4x– 3c2e3x+= =

and:
3y1– y2+ 3 c1– e 4x– c2e3x+ – c1e 4x– 6c2e3x+ + 4c1e 4x– 3c2e3x+= =

Similarly:  y2 c1e 4x– 6c2e3x+  4– c1e 4x– 18c2e3x+= =

6 c1– e 4x– c2e3x+  2 c1e 4x– 6c2e3x+ + 6y1 2y2+= =

Answer: See page B-28.

CHECK YOUR UNDERSTANDING 6.17
Find the general solution for:

Suggestion: Consider Example 6.11, page 237.

y1 2y2 2y3–=

y2 y1 y2 y4–+=

y3 y1– y2 2y3– y4+ +=

y4 y1– y2 2y3– y4+ += 







y1 3y1 y2+–=

y2 6y1 2y2+= 

 y1 c1– e 4x– c2e3x+=

y2 c1e 4x– 6c2e3x+=
with general solution: (*)

Y 0 
y1 0 

y2 0 
2–

3
= =
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SOLUTION: To find the general solution of the system:

we first find the eigenvalues of the above  matrix:

Answer: See page B-28.

CHECK YOUR UNDERSTANDING 6.18
Find the specific solution of the system in CYU 6.17, if 

EXAMPLE 6.15 In the forest of Illtrode lived a small peaceful
community of 50 elves, when they were sud-
denly invaded by 25 trolls. The wizard Callan-
dale quickly determined that:

 

where  and  represents the troll and
elves populations t years after the troll inva-
sion. Analyze the nature of the two popula-
tions as time progresses.

2– c1e 4 0–– c2e3 0+=

3 c1e 4 0– 6c2e3 0+=




 2– c1 c2+–=

3 c1 6c2+= 

 c1

15
7
------=

c2
1
7
---=

 

y1
1
7
---e 4x–– 15

7
------e3x+=

y2
1
7
---e 4x– 90

7
------e3x+=

Solution:

y1 0  0= y2 0  1= y3 0  2  and   y4 0 =  3=

d
dt
-----T t  1

2
---T t  1

9
---E t –=

d
dt
-----E t  T t  1

2
---E t +–=

T t  E t 

T  t 
E t 

1
2
--- 1

9
---–

1– 1
2
---

T t 
E t 

=

2 2

det
1
2
--- – 1

9
---–

1–   1
2
--- –

1
2
--- – 2 1

9
---– 0 1

2
--- – 1

3
---

 5
6
---=

 1
6
---=

== =

E 5
6
--- null

1
2
--- 1

9
---–

1– 1
2
---

5
6
---   0

0   5
6
---

–

 
 
 
 
 

null
1
3
---– 1

9
---–

1– 1
3
---– 

 
 
 
 

= =

x     y              x    y
homogeneous
system of equations:

1
3
---–   1

9
---–

1–   1
3
---–

1   1
3
---

0   0

rref

Then:
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Setting the free variable y to 3, we obtain the eigenvector  for
the eigenvalue . In a similar fashion, you can show that  is an

eigenvector for . This leads us to the general solution:

Turning to the initial conditions, we have: 

Leading us to the specific solution:

A consideration of the graphs of the two functions reveals that while
the troll population will continue to flourish in the region, the poor
elves vanish around two-and-a-half years following the invasion:

1– 3 
5
6
--- 1 3 

1
6
---

T t 
E t 

c1e
5
6
---t 1–

3
c2e

1
6
---t 1

3
+

c1– e
5
6
---t c2e

1
6
---t+

3c1e
5
6
---t 3c2e

1
6
---t+

= =

T 0 
E 0 

25
50

25 c1– c2+=

50 3c1 3c2+= 



c1  25
6
------–  and  c2

125
6

---------= = =

T t  25
6
------e

5
6
---t 125

6
---------e

1
6
---t+=

E t  25
2
------– e

5
6
---t 125

2
---------e

1
6
---t+=

Answer: See page B-29.

CHECK YOUR UNDERSTANDING 6.19

Turtles and frogs are competing for food in a pond, which currently
contains 120 turtles and 200 frogs. Assume that the turtles’ growth
rate and the frogs’ growth rate are given by  

respectively; where  and  denote the projected turtle and
frog population t years from now. Find, to one decimal place, the
number of years it will take for the turtle population to equal that of
the frog population.

elves

trolls

T  t  5T t 
2

------------- F t 
4

----------  and  F  t – 5F t 
2

------------- T t –= =

T t  F t 
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Exercises 1-8. Find a formula for the  term of the sequence , if:

9. (PMI) Let  denote the  Fibonacci number. Prove that , for 
.

Suggestion: Use the Principle of Mathematical Induction to show that for  and

, .

10. Let  and  be the first two elements of a sequence and let  be a recur-
rence relation which defines the remaining elements of the sequence. Prove that if the quadratic 
equation  has two distinct solutions,  and , then  for 
some .

Suggestion: Replace the matrix   in the development of the Fibonacci sequence with

the matrix .

EXERCISES

1.  , , and  for .

2.  , , and  for .

3.  , , and  for .

4.  , , and  for .

5.  , , and  for .

6.  , , and  for  and .

7.  , , , and  for .

Hint: Note that .

8.  , , , and  for .

kth s1 s2 s3   

s1 2= s2 2= sk sk 1– sk 2–+= k 3

s1 a= s2 a= sk sk 1– sk 2–+= k 3

s1 1= s2 2= sk sk 1– sk 2–+= k 3

s1 1= s2 6= sk 6sk 1– 9sk 2––= k 3

s1 1= s2 4= sk 3sk 1– 2sk 2––= k 3

s1 1= s2 2= sk ask 1– bsk 2––= k 3 a2 4b 0–

s1 1= s2 2= s3 3= sk 2sk 1– sk 2– 2sk 3––+= k 4

S4

2 1 2–
1 0 0
0 1 0

3
2
1

=

s1 1= s2 2= s3 3= sk 2– sk 1– sk 2– 2sk 3–+ += k 4

sk kth sksk 2– sk 1– 2– 1– k 1+=
k 3

A 1 1
1 0

=

k 3 Ak sk sk 1–

sk 1– sk 2–

=

s0 s1 sk ask 1– bsk 2–+=

2 a– b– 0= 1 2 sk c11
n c22

n+=
c1 c2 

1 1
1 0

a b
1 0
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11. Let the entries of the matrices  and  be differentiable function, and let C be a
matrix with scalar entries (real numbers). Given that the dimensions of the matrices are such
that the operations can be performed, prove that:

(i)
(ii)
(iii)

Exercises 12-17. Find the general solution of the given system of differential equations, then
check your answer by substitution. 

Exercises 18-21. Solve the given initial-value problem.

12. 13.

14.
15.

16. 17.

18.

19.

20.

21.

A x  B x 

A x  B x +  A  x  B x +=
A x B x   A x B x  B x A  x +=
CA x   CA  x =

f1  x  2f1 x =

f2 x  3f1 x  f2 x –= 

 y1 y1 y2–=

y2 2y1 4y2+= 



y1 3y1 2y2+=

y2 6y1 y2–= 

 f  x  f x  2g x  h x –+=

g x  2f x  4g x  2h x –+=
h x  f– x  2g x  h x +–= 






x 4x 3y 3z+ +=
y x– 3y 8z+ +=
z 6x– 8y 6z+ += 




 x

y
z

1– 2 6
1– 3 5

0 2 5

x
y
z

=

y1

y2
3 1–
6 2–

y1

y2

y1 0 
y2 0 

 1
1–

= =

f1 x 
f2 x 

2 1–
1– 2

f1 x 
f2 x 

f1 0 
f2 0 

 2
0

= =

x
y
z

0 2– 1
0 0 3
1 0 0

x
y
z

x 0 
y 0 
z 0 


1
0
2

= =

f  x 
g x 
h x 

1– 2 6
1– 3 5

0 2 5

f x 
g y 
h z 

f 0 
g 0 
h 0 


1
1–

0
= =
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22. Given enough space and nourishment, the rate of growth of plants A and B are given by
 and , respectively, where t denotes the number of months

after planting. One year, 50 of A and 30 of B were planted, and in such a fashion that the
rates of growth of each of the two plants were compromised by the presence of the other; in
accordance with:  and . Analyze the nature of
the two plant populations as time progresses. 

23. Assume that initially, tank A contains 20 gallons of a liq-
uid solution that is 10% alcohol, and that tank B contains
30 gallons of a solution that is 20% alcohol. At time

, the mixture in A is pumped to B at a rate of 1 gal-
lons/minute, while that of B is pumped to A at a rate of
1.5 gallons/minute. Find the percentage of alcohol con-
centration in each tank t minutes later. 

A t  3
2
---A t = B t  3

2
---B t =

A t  3
2
---A t = B t – B t  3

2
---B t  1

4
---A t = =

A B

t 0=
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 6

Certain systems can occupy a number of distinct states. The transmis-
sion in a car, for example, may be in the neutral state, or reverse (state),
or first gear (state), etc. When chance plays a role in determining the
current state of a system, then the system is said to be a stochastic pro-
cess, and if the probabilities of moving from one state to another
remain constant, then the stochastic process is said to be a Markov
process, or Markov chain. 

Here is an example of a two-state Markov process:
State Y: Person x was involved in an automobile accident within

the previous 12 month period.
State N: Person x was not involved in an automobile accident

within the previous 12 month period.
Let’s move things along a bit by citing the following study:

The above information is reflected in Figure 6.2(a) (called a transi-
tion diagram), wherein each arrow is annotated with the probability of
taking that path. The same information is also conveyed in the transi-
tion matrix, , of Figure 6.2(b), where  represents the

probability of moving from the  state to the  state in the next
move. The 0.19 in the upper right-hand corner of the matrix, for exam-
ple, gives the probability of moving from state N to state Y in the next
move, while the entry 0.81 is the probability of remaining in state N.

Figure 6.2
Assume that, initially, 25% of the population was involved in an auto-

mobile accident within the previous 12 month period (and 75% was
not). This given condition brings us to the so called initial state matrix

of the system: .

§5. MARKOV CHAINS

Stochos: Greek for “guess.”
Stochastices: Greek for “one
who predicts the future.”
Andrei Markov: Russian
Mathematician (1856-1922).

Transition matrices are also
called probability matrices.

Since the entries in the transi-
tion matrix are probabilities,
they must lie between 0 and
1 (inclusive). Moreover, since
the entries down either col-
umn account for all possible
outcomes (staying in Y, or
leaving Y, for example), their
sum must equal 1. In particu-
lar, since there is a 0.23 prob-
ability that a person in state Y
returns to state Y, there has to
be a 0.77 probability that the
person will leave that state
and, consequently, move to
state N.

Probability of x being involved
 in an accident within the next
12 month period ={.23   if  x is in Y

.19  if  x is in N
}

A aij = tij

jth ith

Y N
.23 .81.77

.19

(a)                                                  (b)
Transition Diagram                        Transition Matrix

.23     .19

.77     .81

Y

N

Y       N next state

current state

A :

S0
.25
.75

=
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Utilizing matrix multiplication we can arrive at the next state, :

The above tells us that there is a 0.20 probability that a person will be
involved in an accident in the first 12 month period. 

To get to the next state matrix, we replace  with  in (*):

The above tells us that there is a 0.198 probability that a person will be
involved in an accident in the next (second) 12 month period.

Similarly:

Working backwards, we find that we can also arrive at  by multi-

plying the initial state matrix  by :

Generalizing, we have:

THEOREM 6.23 If T is the transition matrix of a Markov pro-
cess with initial-state matrix , then the

 state matrix in the chain is given by:

S1

.23 .19

.77 .81
.25
.75

(.23)(.25) + (.19)(.75)
  (.77)(.25) + (.81)(.75)

.20

.80
= =

S0 S1T
Y
N

(*)

S0 S1

.23 .19

.77 .81
.20
.80

(.23)(.20) + (.19)(.80)
  (.77)(.20) + (.81)(.80)

.198

.802
= =

S1 S2T

Y
N

.23 .19

.77 .81
.198
.802

.19792

.80208
=

S2 S3T
Y
N

S3

S0 T 3

S3 TS2 T T S1  T 2S1 T 2 TS0  T 3S0= = = = =

S0

nth

   Sn T nS0=

Answer: 757, 686, and 636
of the current freshmen will
live in the dorm in their soph-
omore, junior, and senior
year, respectively.

CHECK YOUR UNDERSTANDING 6.20
Of the 1560 freshmen at Bright University, 858 live in the dorms.
There is a 0.8 probability that a freshman, sophomore, or junior cur-
rently living in the dorms will do so in the following year, and a 0.1
probability that a currently commuting student will live on campus
next year. Assuming (big assumption) that all 1560 freshmen will
graduate, determine (to the nearest integer) the number of the current
freshman that will be living in the dorms in their sophomore, junior,
and senior years.
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Let us formally define the concept of a transition matrix:

Consider the three-state Markov process with transition matrix:

Assume that at the start of the process we are in state II:

                                               

Observe that:   

And that:        

 In general:

POWERS OF THE TRANSITION MATRIX

DEFINITION 6.10
TRANSITION MATRIX

A transition matrix  is a
matrix that satisfies the following two
properties:

(1) T contains no negative entry.
(2) The sum of the entries in

each column of T equals 1.

THEOREM 6.24 Let T denote the transition matrix of a Mar-
kov chain. If the process starts in state j,
then the element in the  row of the  col-
umn of  represents the probability of end-
ing up at state i after m steps.

EXAMPLE 6.16 Analyze the nature of the second column of
, , and  for the transition matrix:

 

Given that the system is initially in state II. 

T Mn n

T:      
.3 .1 .6
.2 .1 .4
.5 .8  0

I  II  III
I
II
III

S0

0
1
0

=
I
II
III

S1 TS0

.3 .1 .6

.2 .1 .4

.5 .8  0

0
1
0

.1

.1

.8
= = =

I
II
III

I  II III

same

S2 T 2S0

.3 .1 .6

.2 .1 .4

.5 .8  0

2
0
1
0

.41 .52 .22

.28 .35 .16

.31 .13 .62

0
1
0

.52

.35

.13
= = = =

I
II
III

same

ith jth

T m

T 2 T 4 T 8

T
.2   .6   .4
.3   .1   .3
.5   .3   .3

=

I   II   III
I
II
III
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SOLUTION: 

The second column of  tells us that if you start in state II, then
there is a 0.30, 0.28, and 0.42 probability that you will end up at
states I, II, and III, respectively, after two steps.

The second column of  tells us that if you start in state II, then
there is a 0.3696, 0.2512, and 0.3792 probability that you will end up
at states A, B, and C, respectively, after four steps.

Whoa! The three columns of  are identical (to four decimal
places). Moreover, if you take higher powers if T, you will find that
you will again end up at the above  matrix. This suggests that
eventually there is, to four decimal places, a 0.375, 0.250, and 0.375
probability, respectively, that you will end up at states I, II, and III,
independently of whether you start at state I, or II, or III! 
Indeed, no matter what initial state you start with, say the state

, it looks like you will still end up at the same situation:

It appears that for this Markov chain, there is a probability of 0.375
that you will eventually end up in state A, a probability of 0.250 that
you will end up in state B, and a probability of 0.375 that you will end
up in state C, independently of the initial state of the process! Even
more can be said; but first, a definition:    

DEFINITION 6.11  is a fixed state for a transition
matrix  if .

EXAMPLE 6.17
Show that the transition matrix 

of Example 6.16 has a fixed state. 

T 2
.2   .6   .4
.3   .1   .3
.5   .3   .3

.2   .6   .4

.3   .1   .3

.5   .3   .3

.42 .30 .38

.24 .28 .24

.34 .42 .38
= =

I
II
III

T 2

T 4 T 2 T 2
.42   .30   .38
.24   .28   .24
.34   .42   .38

.42   .30   .38

.24   .28   .24

.34   .42   .38

.3776 .3696 .3760

.2496 .2512 .2496

.3728 .3792 .3744
= = =

I
II
III

P 4

T 8 T 4 T 4
.3776 .3696 .3760
.2496 .2512 .2496
.3728 .3792 .3744

.3776 .3696 .3760

.2496 .2512 .2496

.3728 .3792 .3744

.3750 .3750 .3750

.2500 .2500 .2500

.3750 .3750 .3750
= = =

T 8

T 8

S0

.2

.5

.3
=

T 8
.2
.5
.3

.3750 .3750 .3750

.2500 .2500 .2500

.3750 .3750 .3750

.2

.5

.3

.3750 .3750 .3750

.2500 .2500 .2500

.3750 .3750 .3750
= =

A
B
C

SF n

T Mn n T SF SF=

T
.2   .6   .4
.3   .1   .3
.5   .3   .3

=
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SOLUTION: We are to show that there exists a state  such

that : 

Equating entries brings us to a system of three equations in three
unknowns:

It can be shown, however, that for any transition matrix T, the system

of equations stemming from  will always have more than

one solution (Exercise 22). By adding the equation 
(the sum of the entries in any state matrix of the system must equal 1)
to the system, we do end up with a unique solution:

We see that the matrix T has a unique fixed state; namely:

, which, to four decimal places, coincides with

the columns of the matrix  in Example 6.14 (margin).
  The above rather surprising result, as you will soon see in Theorem

6.26, actually holds for the following important class of Markov
chains: 

SF
x
y
z

=

T SF SF=

.2   .6   .4

.3   .1   .3

.5   .3   .3

x
y
z

x
y
z

=
.2x .6y .4z+ +
.3x .1y .3z+ +
.5x .3y .3z+ +


x
y
z

=

.2x + .6y + .4z = x

.3x + .1y + .3z = y

.5x + .3y + .3z = z 



 .8x– .6y .4z+ + 0=

.3x .9y– .3z+ 0=

.5x .3y .7z–+ 0= 







 x

T
x
y
z

x
y
z

=

x y z+ + 1=

.8x– .6y .4z+ + 0=
.3x .9y– .3z+ 0=
.5x .3y .7z–+ 0=

x y z+ + 1= 





 .8– .6 .4 0

.3 .9– .3 0

.5 .3 .7– 0
1 1 1 1

      
1 0 0 3 8
0 1 0 1 4
0 0 1 3 8
0 0 0 0

 rref

T 8
.3750 .3750 .3750
.2500 .2500 .2500
.3750 .3750 .3750

= SF

3 8
1 4
3 8

.3750

.2500

.3750
= =

T 8

For example:

is regular, since:

 

T
0 .3 .2
.8 .4 .5
.2 .3 .3

=

T 2
.28 .18 .21
.42 .55 .51
.30 .27 .28

=

DEFINITION 6.12
REGULAR MARKOV 

CHAIN

A Markov chain with transition matrix T is
said to be regular if  consists solely of
positive entries for some integer k. The
transition matrix of a regular Markov chain
is said to be a regular transition matrix.

Note that it is possible to eventually go from any state to any
other state in a regular Markov chain (see Theorem 6.24).

T k
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The following results will be called upon within the proof of Theo-
rem 6.25 below:

 

PROOF: Let  be the n-tuple with every entry equal to 1. Being
a transition matrix, the columns of  sum to 1. Hence:

Taking the transpose of , we have  (A-1), and
this tells us that  is an eigenvector of  corresponding to the
eigenvalue . Applying A-2 we conclude that  is also an
eigenvalue of T. 

In other words,  is that 
matrix obtained by inter-

changing the rows and col-
umns of A. For example:

AT

If A 1 0 3
2 4 5

AT
1 2
0 4
3 5

==

DEFINITION 6.13
    TRANSPOSE

The transpose of a matrix
 is the matrix

, where .

A-1: If  and , then .
[Exercise 19(f), page 161.]

A-2: If  is an eigenvalue of  then  is also an
eigenvalue of . (Exercise 52, page 231.)

THEOREM 6.25  is an eigenvalue of every transitional
matrix .

A aij  Mm n=

AT aij  Mn m= aij aji=

A Mm n B Mn r AB T BTAT=

 A Mn n 

AT

 1=
T Mn n

w n
T tij =

wT 1 1 1  

t11 t12  t1n

t21 t22  t2n

tn1 tn2  tnn

1 1 1   w= = =   

t11 t21  tn1+ + + 1=

Note that  is an eigen-
vector of the transpose of
T, and not necessarily of T.

In a sense, independently of
its initial state:

The fixed state of a reg-
ular transition matrix is
also the final state of the
matrix

wT

THEOREM 6.26
FUNDAMENTAL THEOREM 

OF REGULAR MARKOV 
CHAINS

Every regular transition matrix  has

a unique fixed state vector , and:  

(each column of the matrix  approaches
 as s increases).

wT w= T TwT wT=
wT T T

 1=  1=

T Mn n

SF

r1
r2

rn

=

Ts
s 

lim

r1 r1  r1
r2 r2  r2

rn rn  rn

=

Ts

SF
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PROOF: Assume that  consists of positive entries. (You are

invited, in Exercise 27, to establish the result under the assumption that 
consists solely of positive entries for some integer .)

Consider the matrix , which must also consist of positive

entries. Let  and  denote the largest and
smallest entry in the  row of . We will show that

. This will tell us that all entries in the  row

of  are equal, which is the same as saying that the columns of

 are all equal.

From  we have:

 

We have shown that for every entry  in the  row of :

 
In particular, for the largest entry in that row we have:

A similar argument (Exercise 26) can be used to show that for the
smallest entry  in the    row of  we have:

Consequently:

That “(s)” in  is not
an exponent; it is there to
indicate that we are con-
sidering the matrix  

Mi
s 

Ts

T tij =

T k

k 1

Ts cij
s  =

Mi
s  cijM

s = mi
s  cijm

s =
ith Ts

Mi
s  mi

s – 
s 
lim 0= ith

Ts
s 
lim

Ts
s 
lim

Ts 1+ cij
s 1+   TsT cij

s   tij = = =

cij
s 1+  ci

s t
j

 1=

n

 cijm

s tjmj ci
s t
j

 jm

n

+= =

mi
s tjmj ci

s t
j

 jm

n

+=

mi
s tjmj Mi

s  t
j

 jm

n

+

mi
s tjmj Mi

s  1 tjmj– +=             

The entries in the  jth column of  the
transition matrix T sum to 1:

cij
s 1+  ith T s 1+

cij
s 1+  mi

s tjmj Mi
s  1 tjmj– +

Mi
s 1+  mi

s tjmj Mi
s  1 tjmj– +

mi
s 1+  ith T s 1+

mi
s 1+  Mi

s tjMj mi
s  1 tjMj– +

Mi
s 1+  mi

s 1+ –

mi
s tjmj Mi

s  1 tjmj–  Mi
s tjMj mi

s  1 tjMj– + –+

Mi
s  mi

s –  1 tjmj tjMj–– =
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Let t be the smallest entry in T. Since T consists of positive entries,
and since the entries in every column of T sums to 1, we have

, and, in particular that . Hence:

Leading us to:

Since ,  as , and this tells us
that the elements in the  row of the matrix  must get arbitrarily
close to each other as s tends to infinity. In turn, the columns of 

must all tend to a common vector . We complete the proof by

showing that  is the unique fixed state of T: 

Employing Theorem 6.25, we start with an eigenvector  of T,

of eigenvalue 1. Since ,  for all k. Hence:

From Theorem 5.4, page 156: 

0 t 1
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=
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=
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Since :

Since  (it is an eigenvector), , and dividing both

sides of (**) by c brings us to:

We then have:

The above argument also establishes the uniqueness of the fixed state
vector, for if X is to be a (fixed) state vector, then c must equal one. 

SOLUTION:                                   

EXAMPLE 6.18 An automobile insurance company classifies
its customers as Preferred, Satisfactory, or
Risk. Each year, 10% of those in the Preferred
category are downgraded to Satisfactory,
while 12% of those in the Satisfactory cate-
gory move to Preferred. Twenty percent of
Satisfactory drop to Risk, while 15% of Risk
goes to Satisfactory. No customer is moved
more than one slot in either direction in a sin-
gle year. Find the fixed state of the system. 

T X  X=

X

x1

x2

xn

xi
i 1=

n


 
 
 
 

r1
r2

rn

= = (**)

X 0 c xi

i 1=

n

= 0

SF
1
c
---

x1

x2

xn

r1
r2

rn

= =

T

r1
r2

rn

T 1
c
---

x1

x2

xn 
 
 
 
 
 
 

1
c
---T

x1

x2

xn

1
c
---

x1

x2

xn

r1
r2

rn

= = = =

Pr S

R

.1
.9

.12

.2

.15

.68

.85

   
 T

.9 .12 0

.1 .68 .15
0 .2 .85

=

Pr    S    R
Pr

S
R
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The easiest way to go, is to take a “large” power of the transition
matrix, and let any of its rows represent an approximation for the fixed
state matrix of the regular Markov process:

We conclude that roughly 34% of the company’s clients will (eventu-
ally) fall in its Preferred category; 28% in its Satisfactory category;
and 38% in its Risk category. But that is but an approximation, for:

You can, however, find the exact steady state by the method of Exam-
ple 6.17:

We found  to be the (exact) steady state of the given Mar-

kov chain; telling us that the longer the process, the closer it will be
that  of the customers, for example, will be in the preferred cate-
gory. 

How large is large enough? If
the rows look different, then
take a higher power.

This establishes the fact that we are 
 in a regular Markov situation (how)?

.9 .12 0

.1 .68 .15
0 .2 .85

.34

.28

.38

.3396

.2814

.3790
=

.9 .12 0

.1 .68 .15
0 .2 .85

x
y
z

x
y
z

.9x .12y 0z+ + x=
.1x .68y .15z+ + y=

0x .2y .85z+ + z= 





=

.1– x .12y 0z+ + 0=
.1x .32– .15z+ 0=

0x .2y .15–+ 0=
x y z+ + 1= 








          

1 0 0 18
53
------

0 1 0 15
53
------

0 0 1 20
53
------

0 0 0 0

rref

see solution of Example 6.15.

18
53
------ 15

53
------ 20

53
------  

 

18
53
------%
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Answer: Approximately 41%,
26%, 33% of the population,
will vote democratic, republi-
can, green, respectively.

CHECK YOUR UNDERSTANDING 6.21
The transition matrix T below represents the probabilities that an
individual that voted the Democratic, Republican, or Green party
ticket in the last election will vote D, R, or G in the next election.

Determine the eventual percentage of the population in each of
the three category. 

.73   .32   .09

.21   .61   .04

.06   .07   .87

D    R     G

T:
D

R
G
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Exercises 1-6.  Indicate whether or not the given matrix represents a transition matrix for a Mar-
kov Process. If not, state why not. If so, indicate whether or not the given transition matrix is reg-
ular. 

 Exercises 7-8. Determine the transition matrix associated with the given transition diagram.

Exercises 9-11. Determine a transition diagram associated with the given transition matrix.

12. Determine the probability of ending up at states A and B after two steps of the Markov chain
associated with the transition matrix in Exercise 9, given that you are initially in state:

(a) A     (b) B

13. Determine the probability of ending up at states A, B and C after two steps of the Markov
chain associated with the transition matrix in Exercise 10, given that you are initially in state:

(a) A        (b) B      (c) C

14. Determine the probability of ending up at states A, B, C and D after two steps of the Markov
chain associated with the transition matrix in Exercise 11, given that you are initially in state:

(a) A        (b) B      (c) C      (d) D

EXERCISES

1. 2. 3.

4. 5. 6.

7. 8.

9.
10. 11.

.2     .1
.8      .9

0 1
1 0

0     .1
1      .9–

.2     .4     .1

.7      0     .3

.1     .6     .6

1     .4     .1
0      0     .3
0     .6     .6

0     .3     .4
.5      .3     .6
.5     .1       0

.4 .6

.9
.1

A               B

.3

.5
.1.2 A B

C

.5
.7

.4

.3

.3     .4
.7      .6

 A     B
A
B

1  0 1
0 0 0
0 1 0

A    B    C
A
B
C

0     1     .2     .6
.5    0     .5    .4
  0    0      0     0
.5     0     .3    0

A    B      C     D
A
B
C
D
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Exercises 15-20. (a) Proceed as in Example 6.15 to find the stationary state matrix of the given
regular transition matrix. 
                             (b) Use Theorem 6.26 and a graphing utility to check your answer in (a).

21. Show that the matrix  is not a regular matrix, by:

(a) Demonstrating that for each k,  will contain a row that does not consist solely of posi-
tive entries.

(b) Showing that A does not have a fixed state vector.

22. Show that for any transition matrix T, the system of equations stemming from  has

infinitely many solutions. 
Suggestion: Use the fact that the sum of the elements in each column of T sum to 1.

23. Let  be a regular transition matrix. Prove that  is a factor of the character-
istic polynomial of T.

24. Show that if the entries in each column of  sum to k, then k is an eigenvalue of A.

25. Referring to the proof of Theorem 6.26, show that: 

26. Establish Theorem 6.26 for an arbitrary transitional matrix T.
Suggestion: Let r be such that  consists of positive entries, and consider the matrix

.

27. Prove that if  is any eigenvalue of a regular transition matrix, then .

28. Show that if  is an eigenvalue of a regular transition matrix, then .

29. (Rapid Transit) A study has shown that in a certain city, if a daily (including Saturday and
Sunday) commuter uses rapid transit on a given day, then he will do so again on his next com-
mute with probability 0.85, and that a commuter who does not use rapid transit will do so
with probability 0.3. Assume that on Monday 57% of the commuters use rapid transit. Deter-
mine, to two decimal places, the probability that a commuter will use rapid transit on:

(a) Tuesday                             (b) Wednesday                         (c) Sunday

15. 16. 17.

18. 19. 20.

.7     .2
.3      .8

.1     .6
.9      .4

.5     .3
.5      .7

.8     .5     0
.2      .1     .6
.0     .4     .4

.5     .3     0
.1      .7    .6
.4      0     .4

.6     .2     .1
.3     .5      .5
.1     .3     .4

A
0 0 1
1 0 0
0 1 0

=

Ak

T
x
y
z

x
y
z

=

T Mn n x 1– 

A Mn n

mi
k 1+  Mi

k bjMj mi
k  1 bjMj– +

A T r=
TA

  1

  1–
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30. (Dental Plans) A company offers its employees 3 different dental plans: A, B, and C. Last
year, 550 employees were in plan A, 340 in plan B, and 260 were in plan C. This year, there
are 500 employees in plan A, 360 in plan B, and 290 in plan C. Assuming that the number of
employees in the company remains at 1150, and that the current trend continues, determine
the number of employees in each of the three plans:

(a)  A year from now.          (b) Two years from now.                 
(c) In 4 years (Suggestion: use the square of the 2-year matrix).
(d) In 8 years (Suggestion: use the square of the 4-year matrix).
(e) In 12 years (Suggestion: use the product of 4-year and the 8-year matrix).

31. (Campus Life) The following transition matrix gives the probabilities that a student living in
the Dorms, at Home, or Off-campus (but not at home), will be living in the Dorms, at Home,
or Off-campus (but not at home) next year (assume that all freshmen will graduate from the
college in four years).

Currently, 55%, 24%, and 21% of the freshman class are living in the Dorms, at Home, and
Off-campus (but not at home), respectively. Determine (to two decimal places) the probability
that a current freshman will, three years from now, be living in the: 
         (a) Dorms                        (b) Home                         (c) Off-campus.

32. (Higher Learning) The transition matrix below represents the probabilities that a female
child will receive a Doctorate, a Masters, or a Bachelors (terminal degree), or No degree;
given that her mother received a D, M, B (terminal degree), or No degree.

Given the initial state matrix  (in column form), determine the
probability that:
(a) A granddaughter will receive a Bachelors degree.
(b) A great granddaughter will earn a Doctorate.
(c) A fifth generation daughter will receive no degree.

.62   .23   .25

.11   .64   .09

.27   .13    .66  

D
H
O

D    H     O

.31     .24     .11     .06

.25     .26     .09     .05

.37     .42     .52     .49

.07     .08     .28     .40

D
M
B
N

D     M     B       N

daughter

mother

S0 .05   .09     .39    .47 =
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33. (HMO Plans) A company offers its employees 5 different HMO health plans: A, B, C, D,
and E. An employee can switch plans in January of each year, resulting in the following tran-
sition matrix:

Given the initial state matrix  (in column form), deter-
mine, to three decimal places, the probability that:
(a) An employee will chose plan B in the next enrollment period.
(b) An employee will chose plan B two enrollment periods from now.
(c) An employee will chose plan B three enrollment periods from now.
(d) Determine to 5 decimal places, the fixed state of the system.

(e) Repeat (a) through (d) with initial state matrix 

34. (Mouse in Maze) On Monday, a mouse is placed in a maze consisting of paths A and B. At
the end of path A is a cheese treat, and at the end of path B there is bread. Experience has
shown that if the mouse takes path A, then there is a 0.9 probability that it will take path A
again, on the following day. If it takes path B, then there is a 0.6 probability that it will take
that path again, the next day. The mouse takes path B on Monday. Determine the probability
that the mouse will take path A on:

(a) Tuesday                                (b) Wednesday                     (c) Sunday 
(d) Answer parts (a), (b), and (c), under the assumption that the mouse takes path A on

Monday.
(e) Show that the transition matrix is regular, and then proceed as in Example 6.14 to

determine the exact stationary state of that matrix.
(f) Indicate the long-term state of the system (the probability that the mouse will take path

A and the probability that the mouse will take path B, at the  step of the process, for
n “large”).

35. (Cities, Suburbs, and Country) Within the period of a year, 2% of a population currently
residing in cities will move to the suburbs, while 2% of them will move to the country. 4% of
those living in the suburbs will move to the cities, while 3% of them will move to the country.
One percent of the country folks will move to the cities, while 2% of them will go to the sub-
urbs. Currently, 65% of the population are in cities, and 20% are in the suburbs. Determine, to
two decimal places, the percentage of city dwellers: 

(a) Next year.                  (b) Two years from now.                  (c) Four years from now.

 .54    .13    .08   .10    .06
.11 .61 .17 .12  .18
.17 .10 .56 .17  .15
.06 .05 .08 .49  .10
.12 .11 .11 .12  .51

A   B    C     D    E

next year

A
B
C
D
E

this year

S0 .11     .20     .31    .14    .24 =

S0 .24     .31     .0    .26    .19 =

nth
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(d) Answer parts (a), (b), and (c), under the assumption that 50% of the population are in
cities, and 35% are in the suburbs.

(e) Determine to 5 decimal places, the fixed state of the system.
36. (Crop Rotation) A farmer rotates a field between crops of beans, potatoes and carrots. If she

grows beans this year, then next year she will grow potatoes or carrots, each with 0.5 proba-
bility. If she grows carrots, then she will grow beans with probability 0.2, potatoes with prob-
ability 0.5 (and carrots with probability 0.3). If she grows potatoes, then she will grow beans
with probability 0.5, and potatoes with probability 0.25. If she grows beans this year, what is
the probability that she will grow beans again:

(a) Next year?                      (b) Two years from now?               (c) Three years from now? 
(d) Answer parts (a), (b), and (c) under the assumption that she grows potatoes this year. 
(e) Determine to 5 decimal places, the fixed state of the system.

37. (Wolf Pack) A wolf pack hunts on one of four regions: A, B, C, and D: 

If the pack hunts in any given region one day, then it is as likely to hunt there again the next
day as it is for it to hunt in either of its neighboring regions. On Monday, it hunted in region A. 

(a) Determine, to two decimal places, the probability that the pack will hunt in Region B on
Tuesday.

(b) Determine, to two decimal places, the probability that the pack will hunt in Region B on
Sunday.

(c) Determine the fixed state of the system.

A

B

C

D
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CHAPTER SUMMARY

     DETERMINANTS The determinant of an  matrix A, denoted det (A), is defined
inductively as follows:

For a  matrix , .

For a   matrix A, with , let  denote the 

matrix obtained by deleting the  row and  column of the matrix A;
Then: 

Laplace’s  Theorem For  and any :

Determinants of diago-
nal and upper triangu-

lar matrices

The determinant of a diagonal matrix or of an upper triangular matrix
is the product of the entries in its diagonal.

Determinants and
row operations

(a) If two rows of  are interchanged, then the determinant
of the resulting matrix is .

(b) If one row of A is multiplied by a constant c, then the determi-
nant of the resulting matrix is .

(c) If a multiple of one row of A is added to another row of A, then
the determinant of the resulting matrix is 

Invertibility A matrix  is invertible if and only if .

Product Theorem For :

n n

1 1 A a11 = det A  a11=

n n n 1 Aij n 1–  n 1– 

ith jth

det A  1– 1 j+

j 1=

n

 a1j det A1j =

+       +       +      +

+       +      +       +

+      +        +      +

+      +        +      +

_       _       _       _

_       _       _       _

_       _       _       _

_       _       _       _

_       _       _       _

_       _       _       _

_       _       _       _

_       _       _       _

+       +       +      +

+      +        +      +

+      +        +      +

+      +        +      +

A Mn n 1 i n 

det A  1– i j+

j 1=

n

 aij det Aij   and  det A 1– i j+

i 1=

n

 aij det Aij ==

Expanding along the ith row Expanding along the jth row

A Mn n

det A –

c det A  

det A 

A Mn n det A  0

A B Mn n

det AB  det A det B =
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EIGENVALUE AND
EIGENVECTOR

An eigenvalue of a linear operator  is a scalar  for
which there exists a nonzero vector   such that:

Any such v is then said to be an eigenvector corresponding to the
eigenvalue .

An eigenvalue of a matrix  is a scalar  for which
there exists a nonzero vector   such that:

Any such X is then said to be an eigenvector corresponding to the
eigenvalue .

EIGENSPACE The eigenspace of an eigenvalue   of a matrix  is
denoted by  and is given by:

The eigenspace of an eigenvalue   of a linear operator  is
denoted by  and is given by:

CHARACTERISTIC
POLYNOMIAL AND
CHARACTERISTIC

EQUATION

For , the n-degree polynomial  is said to be the
characteristic polynomial of A, and   is said to be
the characteristic equation of A.

For  a linear operator on a vector space V of dimension n,
the n-degree polynomial , where  is a basis for V, is
said to be the characteristic polynomial of T, and

 is said to be the characteristic equation of T.

Finding Eigenvalues The eigenvalues of   are the  solutions of the characteristic
equation .

The eigenvalues of a linear operator  on a vector space of
dimension n are the eigenvalues of the matrix , where

 is any basis for V.

DIAGONAL MATRIX A diagonal matrix is a square matrix  with  for
.

T: V V  R
v V

T v  v=



A Mn n  R
X Rn

A X  X=



 A Mn n

E  

E   null A I– =

 T: V V
E  

E   ker T I– =

A Mn n det A I– 

det A I–  0=

T: V V
det T  I–  

det T  I–  0=

A Mn n

det A I–  0=

T: V V
T  Mn n



A aij = aij 0=
i j
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DIAGONALIZABLE
MATRICES AND

LINEAR OPERATORS

A matrix  is diagonalizable if A is similar to a diagonal
matrix.
A linear operator  on a finite dimensional vector space V is
said to be diagonalizable if there exists a basis  for which  is a
diagonal matrix.

Diagonalization
Theorem

Let  be a linear operator   on a  finite dimensional vector
space. The following are equivalent:

(i) T is diagonalizable.

(ii)  is a diagonalizable matrix, for any basis  of V.
(iii)There exists a basis for V consisting of eigenvectors of T. 

Eigenvectors corre-
sponding to different
eigenvalues are lin-
early independent.

If  are distinct eigenvalues of a linear operator
, and if  is an eigenvector corresponding to , for

, then  is a linearly independent set.

The union of linearly
independent subsets of
different eigenspaces is
again a linearly inde-
pendent set.

Let  be distinct eigenvalues of a linear operator
, and let  be a linearly independent

subset of . Then: 

is a linearly independent set.

ALGEBRAIC AND
GEOMETRIC

MULTIPLICITY OF
EIGENVALUES

An eigenvalue  of a matrix  (or of a linear operator T on
a vector space of dimension n) has algebraic multiplicity k if

 is a factor of A’s (or T ’s) characteristic polynomial, and

 is not. We also define the geometric multiplicity of  
to be the dimension of  (the eigenspace corresponding to )

The geometric multi-
plicity cannot exceed
the algebraic multi-
plicity.

If  is an eigenvalue of  with algebraic multiplicity 
and geometrical multiplicity , then .

Another Diagonaliza-
tion Theorem.

Assume that the characteristic polynomial of a linear operator
 (or of a matrix), can be factored into a product of linear

factors. Then T is diagonalizable if and only if the algebraic multiplic-
ity of each eigenvalue of T is equal to its geometric multiplicity.

A Mn n

T: V V
 T 

T: V V

T  

1 2  m  

T: V V vi i

1 i m  v1 v2  vm   

1 2  m  

T: V V Si vi1 vi1  viri
   =

E i 

S S1 S2  Sm  =

0 A Mn n

 0– k

 0– k 1+ 0

E 0  0

0 A Mn n ma

mg mg ma

T: V V
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Diagonalizing a Matrix Let  be diagonalizable. Let the columns of  be

any basis for  consisting of eigenvectors of A. Then 
is a diagonal matrix. Moreover, the diagonal entry  is the

eigenvalue  corresponding to the  column of P.

Power Theorem for
diagonalizable matri-
ces

Let  be diagonalizable with . Then for any n:

 .

FIBONACCI 
SEQUENCE

The Fibonacci sequence is that sequence whose first two terms are 1,
and with each term after the second being obtained by summing its
two immediate predecessors.

The  Fibonacci number is given by .

SYSTEMS OF DIFFER-
ENTIAL EQUATIONS

The solution set of , consists of those functions of the
form  for some constant c.

Let  be diagonalizable, and let  be a basis
for  consisting entirely of eigenvectors of A with corresponding
eigenvalues . Then, the general solution of: 

is of the form: 

for .

MARKOV CHAINS

TRANSITION MATRIX

FIXED STATE

FUNDAMENTAL THEO-
REM OF REGULAR 
MARKOV CHAINS

Markov chain: When the probabilities of moving from one state of a
system to another remain constant.

A transition matrix  is a matrix that satisfies the follow-
ing two properties:

(1) T contains no negative entry.
(2) The sum of the entries in each column of T equals 1.

 is a fixed state for a transition matrix  if
.

If T is the transition matrix of a Markov process with initial-state
matrix , then the  state matrix in the chain is given by:

Every regular transition matrix  has a unique fixed state vec-
tor and each column of the matrix  approaches  as s increases.

A Mn n P Mn n

Rn D P 1– AP=
dii D

i ith

A Mm m P 1– AP D=

An PDnP 1–=

kth 1
5

------- 1 5+
2

---------------- 
 

k 1 5–
2

---------------- 
 

k
–

f  x  af x =
f x  ceax=

A Mn n v1 v2  vn   
n

i
F x  AF x =

c1e1xv1 c2e2xv2
 cnenxvn+ + +

c1 c2 cn  

T Mn n

SF n T Mn n
T SF SF=

S0 nth

   Sn T nS0=

T Mn n
Ts SF
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 7

CHAPTER 7 
INNER PRODUCT SPACES

Basically, an inner product space is a vector space augmented with an
additional structure, one that will enable us to generalize the familiar
concepts of distance and angles in the plane to general vector spaces. 

We begin by introducing a function which assigns a real number to
each pair of vectors in :

 For example: 

The following four properties will lead us to the definition of an inner
product space in the next section, much in the same way that the eight
properties of Theorem 2.1, page 36, lead us to the definition of an
abstract vector pace on page 40.

PROOF: We establish (iii) and invite you to verify the remaining three
properties in the exercises:

§1. DOT PRODUCT

DEFINITION 7.1
DOT PRODUCT

The dot product of 
and , denoted by   ,
is the real number:

THEOREM 7.1

positive-definite property:

     commutative property:

    homogeneous property:

       distributive property:

Let , and . Then:

(i) , and  only if 

(ii)

(iii)

(iv)

n

u u1 u2  un   =
v v1 v2  vn   = u v

u v u1v1 u2v2  unvn+ + +=

2 4 3– 1    5 0 7 1–    2 5 4 0 3–  7 1 1– +++ 12–= =

u v w n  r 

v v 0 v v 0= v 0=

u v v u=

ru v r u v  u rv= =

u v+  w u w v w+=

ru v r u1 u2  un    v1 v2  vn   =

ru1 ru2  run    v1 v2  vn   =

ru1 v1 ru2 v2  run vn+ + +=

r u1v1  r u2v2   r unvn + + +=

r u1v1 u2v2  unvn+ + + =

r u v =

scalar multiplication:

definition 7.1:

associative property:

distributive property:

definition 7.1:
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For ,  represents the
length (magnitude) of v [Figure 7.1(a)], and the same can be said about

 for  [Figure 7.1(b)]. 

Figure 7.1

In general, for :

Moreover:

In particular, for  and  in : 

    

Answer: See page B-30.

CHECK YOUR UNDERSTANDING 7.1

Let , and . Prove that:

DEFINITION 7.2
NORM IN 

The norm of a vector ,
denoted by , is given by:

 is defined to be the length of v.

 is defined to be the distance between .

u v n r 
ru v u rv=

n
v v1 v2  vn   =

v

v v v=

v v1 v2  2= v v v v1
2 v2

2+= =

v v v1 v2 v3   3=

v v1
2 v2

2+=

v v1 v2 =

v2

v1

(a)                                                           (b) 
                                                         

v v1 v2 v3  =

v3

v2

v v1
2 v2

2 v3
2+ +=

v1

v n

v

u v– u v n

u u1 u2 = v v1 v2 = 2

v v1 v2 =

u u1 u2 =

                                                           

v2 u2–
v1 u1–

u v– u1 v1– 2 u2 v2– 2+=
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Applying the law of cosines [Figure 7.2(a)] to the vectors 
in Figure 7.2(b), we see that:

Figure 7.2
From CYU 7.2, we also have:   

Thus:

Leading us to:

Answer: See page B-30.

CHECK YOUR UNDERSTANDING 7.2

Prove that for  and :
(a) 
(b) 

                [Reminiscent of: ]

ANGLE BETWEEN VECTORS

u v n c 
cv c v=
u v– 2 u 2 2u v v 2+–=

a b– 2 a2 2ab– b2+=

u v 2

u v– 2 u 2 v 2 2 u v cos–+=

u

v

u v–



a

b

c

c2 a2 b2 2ab cos–+=
Law of Cosines u v– 2 u 2 v 2 2 u v cos–+=

(a)                                                           (b)

u v– 2 u 2 2u v v 2+–=

For any ,

 is defined to be
that angle 
whose cosine is x.

1 x 1 –

cos 1– x
0   

u 2 v 2 2 u v cos–+ u 2 2u v v 2+–=
2 u v cos– 2u v–=

cos u v
u v

---------------=

 cos 1– u v
u v

--------------- 
 =see margin:

In Exercise 44 you are
asked to verify that 

Assuring us that: 

 exists.

u v
u v

--------------- 1

cos 1– u v
u v

--------------- 
 

DEFINITION 7.3
ANGLE BETWEEN 

VECTORS 

The angle  between two nonzero vectors
 is given by:


u v n

 cos 1– u v
u v

--------------- 
 =
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SOLUTION: 

Bringing us to: 

It is often useful to decompose a vector  into a sum of two vec-
tors: one parallel to a given nonzero vector u, and the other perpendicular
to u. The parallel-vector must be of the form  for some scalar c (see
Figure 7.3).

EXAMPLE 7.1 Determine the angle between the vectors
 and .u 1 2 0 2–   = v 1– 3 1 2   =

cos 1– 5
55

---------- 
  83

CHECK YOUR UNDERSTANDING 7.3

Determine the angle between the vectors  and
.

 cos 1– u v
u v

--------------- 
  cos 1– 1 2 0 2–    1– 3 1 2   

1 4 4+ + 1 9 1 4+ + +
-------------------------------------------------------------- 
 = =

cos 1– 1
3 15
------------- 
  85=

u 1 2 0  =
v 1– 3 1  =

We remind you that, for any
,  is that angle

 such that . 

So, if , 

then , or:

.

1 x 1 – cos 1– x

0    cos x=

cos 1– u v
u v

--------------- 
  90=

u v
u v

--------------- 0= u v 0=

ORTHOGONAL VECTORS IN 

The angle  between the vectors 
depicted in the adjacent figure has a measure of

 ( ), and we say that those vectors are
perpendicular or orthogonal. Appealing to Defini-
tion 7.3 we see that:  

Rn

 u v 2

90 
2
--- radians

cos 1– u v
u v

--------------- 
  90   or   u v 0==

(see margin)

u

v

 90=

Answer: See page B-31.

DEFINITION 7.4
ORTHOGONAL VECTORS 

Two vectors u and v in  are orthogonal
if .

 Note: The zero vector in  is orthogonal to every vector in .

CHECK YOUR UNDERSTANDING 7.4

Let  . Show that the set  of vectors perpendicular to v:   

is a subspace of .

n

u v 0=

n n

v n v

v u n u v 0= =
n

v n

cu
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Figure 7.3
The vector cu in Figure 7.3 is said to be the orthogonal projection of

v onto u and is denoted by . To determine the value of c, we note
that for  to be orthogonal to u, we must have:

Summarizing, we have:

SOLUTION: For  and  we have:

and    

ORTHOGONAL
PROJECTION

u

v

v cu–

v cu–

cu projuv=

projuv
v cu–

Theorem 7.1(iv):

Theorem 7.1(iii):

v cu–  u 0=
v u cu  u– 0=
v u c u u – 0=

c v u
u u
----------- v u

u 2
----------= =

projuv u v
u u
----------- 
 u=

v projuv–

v v projuv–  projuv+=

u

THEOREM 7.2
VECTOR 

DECOMPOSITION

Let  and let u be any nonzero vector in .
Then:  

where:

and 

The vector  is said to be the vector component
of v along u, and the vector  is said to be
the vector component of v orthogonal to u.

EXAMPLE 7.2 Express the vector  as a sum of a
vector parallel to  and a vector orthog-
onal to .

v n n

v v projuv–  projuv+=

projuv u v
u u
----------- 
 u= v projuv–  projuv 0=

projuv
v projuv–

2 1 3–  
1 4 0  

1 4 0  

v 2 1 3–  = u 1 4 0  =

projuv u v
u u
----------- 
 u 1 4 0   2 1 3–  

1 4 0   1 4 0  
----------------------------------------------- 1 4 0   6

17
------ 1 4 0  = = =

v projuv– 2 1 3–   6
17
------ 24

17
------ 0  

 – 28
17
------ 7

17
------– 3–  

 = =

28
17
------ 7

17
------– 3–  

  6
17
------ 24

17
------ 0  

 + 2 1 3–   v= =

and  28
17
------ 7

17
------– 3–  

  6
17
------ 24

17
------ 0  

  28
17
------ 
  6

17
------ 
  7

17
------– 

  24
17
------ 
 + 0= =

Check:
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SOLUTION: We first find a direction vector for the given line (see
Theorem 2.17, page 70):

. 
Choosing the point  on L 
we determine the vector v from A to P:

Applying Theorem 7.2, we have:

Thus:

Answer: See page B-31.

CHECK YOUR UNDERSTANDING 7.5
Express the vector  as the sum of a vector parallel to

 and a vector orthogonal to .

EXAMPLE 7.3 Find the distance from the point 
to the line L in  which passes through the
points  and .

3 0 1 1–   
0 2 4 1    0 2 4 1   

P 3 1 3  =
3

1 0 2   3 1 6  

u

v

.P
L

.
A

want this distance

projuv

v projuv–

u 3 1 6   1 0 2  – 2 1 4  = =
A 1 0 2  =

v 3 1 3   1 0 2  – 2 1 1  = =

projuv u v
u u
----------- 
 u=

2 1 4   2 1 1  
2 1 4   2 1 4  

-------------------------------------------- 
  2 1 4  =

9
21
------ 2 1 4   6

7
--- 3

7
--- 12

7
------  

 = =

(a)                (b) 41
37

----------

CHECK YOUR UNDERSTANDING 7.6

(a) Find the distance from the point  to the line L in 
passing through the points  and . 
(b) Find the distance from the point  to the line L in

 passing through the points  and . 

v projuv– 2 1 1   6
7
--- 3

7
--- 12

7
------  

 –=

8
7
--- 4

7
--- 5

7
---–  

  1
7
--- 8 4 5–   1

7
--- 64 16 25+ + 105

7
-------------= = = =

CYU 7.2(a)

P 2 5 = 2

1 2–  2 4 
P 1 0 1 3   =

4 1 2 0 1    1 2 2 1   
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We now offer an alternative representation for a plane in  than that
given in Theorem 2.19, page 71. 

Just as a line in  is determined by a point on the line and its slope,
so then is a plane in  determined by a point on the plane and a nonzero
vector orthogonal to the plane (a normal vector to the plane). To be
more specific, suppose we want the equation of the plane with normal
vector  that contains the point . For any
point  on the plane we have:

 

SOLUTION:

PLANES REVISITED

3

.
.

A0

P n

Note that a normal to the plane can easily be spotted from
any of the above forms. For example,  is a
normal to the plane:

EXAMPLE 7.4 Find a normal, scalar, and general form equa-
tion of the plane passing through the point

 with normal vector .

2

3

n a b c  = A0 x0 y0 z0  =
P x y z  =

n A0P 0=

a b c   x x0 y y0–– z z0–  0=

a x x0–  b y y0–  c z z0– + + 0=

or:

or:

ax by cz+ + d=  where d ax0 by0 cz0+ +=or:

normal form

scalar form

general form

n 2 5 4–  =

2 5 4–   x 1 y 3–– z 2+  0=
2 x 1–  5 y 3–  4 z 2+ –+ 0=

2x 5y 4z–+ 25=

1 3 2–   n 4 1– 5  =

Answer: See page B-31.

CHECK YOUR UNDERSTANDING 7.7

Find an equation of the plane passing through the point 
with normal parallel to the line passing through the points

.

EXAMPLE 7.5 Express the plane  in the vec-
tor form of Theorem 2.19, page 71.

4 1– 5   x 1– y 3– z 2+   0=
4 x 1–  1 y 3– – 5 z 2+ + 0=

4x y– 5z+ 9–=
 

normal:
 scalar:

general:

1 3 2–  

1 1 0   0 2 1  

3x y 2z–+ 6=
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SOLUTION: In order to write the plane in vector form we need two
direction vectors and a translation vector. We chose  as our
translation vector (corresponding to the vector  in
Figure 2.9, page 71).
Any two linearly independent vectors orthogonal to 
can serve as direction vectors, say  and  [corre-
sponding to  and  in Figure 2.9]. This leads us to
the following vector form equation of the plane:

SOLUTION: We begin by choosing
the point  on the plane
(note that ). We
position the normal vector

 so that its initial
point is at A, and then determine the
vector v from A to P:

Applying Theorem 7.2, we have:

Hence: 

 

2 0 0  
w x0 y0 z0  =

Answer: See page B-31.

3 1 2–   0 2 1   0=
and  3 1 2–   2 0 3   0=

CHECK YOUR UNDERSTANDING 7.8
With reference to Example 7.5, show, directly that:

EXAMPLE 7.6 Find the distance from the point 
to the plane .

n 3 1 2–  =
0 2 1   2 0 3  

u AB= v AC=

2 0 0   r 0 2 1   s 2 0 3  + + r s R 

x y z   3x y 2z–+ 6=  2 0 0   r 0 2 1   s 2 0 3  + + r s R =

P 4 3 2  =
2x 3y– z+ 5=

Any point  satis-
fying the equation

 would
do just as well.

x y z  

2x 3y– z+ 5=
A

n

Bwe want this distance .
.vprojnv P

A 0 0 5  =
2 0 3 0– 5+ 5=

n 2 3 1– =

v 4 3 2   0 0 5  – 4 3 3–  = =

projnv v n
n n
----------- 
 n=

4 3 3–   2 3 1– 
2 3 1–  2 3 1– 

-------------------------------------------------- 
  2 3 1– =

4–
14
------ 2 3 1–  4

7
---– 6

7
--- 2

7
---–  

 = =

projnv 1
7
--- 4– 6 2–   1

7
--- 16 36 4+ + 56

7
---------- 2 14

7
-------------= = = =

CYU 7.2(a)

Answer: See page B-32.

CHECK YOUR UNDERSTANDING 7.9
Prove that the distance D from a point  to the plane

 is given by the formula:
x0 y0 z0  

ax by cz+ + d=

D
ax0 by0 cz0 d–+ +

a2 b2 c2+ +
-------------------------------------------------=
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Here is a handy result:    

PROOF: Rolling up our sleeves, we simply show that , and
leave it for you to verify that  is also zero:

Handy or not, how is one to remember that complicated three-tuple
 of Theorem 7.3? By

formally evaluating the following determinant about its first row: 

and then replacing  with the standard basis vectors
, respectively, to arrive at the three-

tuple of Theorem 7.3:

The above vector is called the cross product of  and
, and is denote by: . Moreover, to conform with

standard notation, we shall replace the standard basis vectors
 with the symbols i, j, and k, respectively; bringing us to:

CROSS PRODUCT

THEOREM 7.3 If  are lin-
early independent vectors in , then:

is perpendicular to both  and 

DEFINITION 7.5
CROSS PRODUCT

The cross product of 
and  is denoted by

, and is expressed in the form:

 

v1 a1 a2 a3   v2 b1 b2 b3  ==
3

v a2b3 a3b2– a1b3– a3b1+ a1b2 a2b1–  =
v1 v2

v v1 0=
v v2

v v1 a2b3 a3b2– a1b3– a3b1+ a1b2 a2b1–   a1 a2 a3  =

a2b3 a3b2– a1 a1b3– a3b1+ a2 a1b2 a2b1– a3+ +=

a1a2b3 a1a3b2– a1a2b3 a2a3b1 a1a3b2 a2a3b1–+ +– 0= =

v a2b3 a3b2– a1b3– a3b1+ a1b2 a2b1–  =

det
e1 e2 e3

a1 a2 a3

b1 b2 b3

det
a2 a3

b2 b3

e1 det
a1 a3

b1 b3

e2 det
a1 a2

b1 b2

e3+–=

a2b3 a3b2– e1 a1b3 a3b1– e2– a1b2 a2b1– e3+=

e1 e2 and e3 
1 0 0   0 1 0   and 0 0 1   

v a2b3 a3b2– a1b3– a3b1+ a1b2 a2b1–  =

v1 a1 a2 a3  =
v2 b1 b2 b3  = v1 v2

e1 e2 and e3 

v1 a1 a2 a3  =
v2 b1 b2 b3  =

v1 v2

v1 v2 det
i j k

a1 a2 a3

b1 b2 b3

=
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For example:

 

SOLUTION: Noting that the vectors

      

and  
are parallel to the plane, we employ Theorem 7.3 to find a normal to the 
plane:

Choosing the point  on the plane, we proceed as in 
Example 7.4 to arrive at the general form equation of the plane: 

EXAMPLE 7.7 Find the general form equation of the plane
that contains the points ,

, .

2 3 4   3 1 2–   det
i j k
2 3 4
3 1 2–

=

det 3 4
1 2–

i det 2 4
3 2–

j det 2 3
3 1

k+–=

6– 4– i 4– 12– j– 2 9– k+ 10 16 7– – = =

A 1 2 1–  =
B 2 3 1  = C 3 1 2– =

AB 2 3 1   1 2 1–  – 1 1 2  = =

AC 3 1 2–  1 2 1–  – 2 3– 3  = =

n det
i j k
1 1 2
2 3– 3

9i j 5k–+ 9 1 5–  = = =

Answer: See page B-32.

CHECK YOUR UNDERSTANDING 7.10

(a) Find the general form equation of the plane that contains the
points , , .

(b) Verify that your answer in (a) coincides with that of Example
2.15, page 72.

A 1 2 1–  =

9 1 5–   x 1– y 2– z 1+   0=
9 x 1–  y 2–  5 z 1+ –+ 0=

9x y 5z– 16–+ 0=

A 3 2– 2  = B 2 5 3–  = C 4 1 2 3– =
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Exercises 1-2. Evaluate  for the given n-tuples. 

Exercises 3-5. Determine the norm  for the given vector.

6. Find all values of c such that .

7. Find all values of a such that the vector  is orthogonal to the vector .

8. Find all values of a such that the vector  is orthogonal to the vector .

9. Find all values of a and b such that the vector  is orthogonal to the vector . 

Exercises 10-11. Determine the angle between the vectors u and v. 

Exercises 12-13. Express the given vector v as a sum of a vector parallel to the given vector u and
a vector orthogonal to u. 

Exercises 14-15. Find a normal form, the general form, and a vector form representation (Theo-
rem 2.20, page 72) of the plane passing through the point  with given normal vector n. 

Exercises 16-18. Find both a normal form equation and a vector form representation (Theorem
2.20, page 72) for the given plane. 

19. Find the distance from the point  and the line L in  passing through the points
 and .

20. Find the distance from the point  and the line L in  passing through the
points  and .

21. Find the distance from the point  and the line L in  passing through the
points  and .

22. Find the distance from the point  to the plane .

23. Find the distance from the point  to the plane .

24. Determine the angle of intersection of the planes  and .
Suggestions: Consider the normals to those planes.

EXERCISES

1. 2.

3. 4. 5.

10. 11.

12. 13.

14. 15.

16. 17. 18.

u v

u 5 3  v 6 1 = = u 0 3 5 7    v 2 1 0 4   = =

v

v 3 2 = v 1 0 5–  = v 3 1– 2 1–   =

c 2 3 1   9=

a 3  2a 5– 

3 a 2a   a 2 a  

a 3 b   b 3 a  

u 5 3  v 6 1 = = u 0 3 5 7    v 2 1 0 4   = =

v 1 5  u 3 2 = = v 2 3 1–   u 2– 0 4  = =

A0

A0 2 1 3   n 1 2 1–  = = A0 1 2 1–   n 2 1 3  = =

2x 3y– z+ 2= 4x z+ 1= x 3y– 2z– 2–=

P 1 4 = 2

1 2  2 1 

P 1 4 1–  = 3

1 2 1   2 1 0  

P 1 4 1 1–  = 4

1 2 1 2–    2 1 0 2   

P 2 1 2–  = x 4y– 2z+ 3=

P 1 4 2–  = 3x y 4z+ + 2=

x 3y– 2z+ 1= 2x y z–+ 2=
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25. Find the set of vectors in  orthogonal to:    
(a) the vector .                                 (b) the vectors  and .      

(c) the vectors , , and .

Exercises 26-27. Find the general form equation of the plane that contains the given points.

28. Find the angle between a main diagonal and an adjacent edge of a cube of volume .

29. Prove Theorem 7.1(i).
30. Prove Theorem 7.1(ii).
31. Prove Theorem 7.1(iv).

32. Establish the following properties for  and :

(a)     (b) 

(c)      (d) 

(e)  (f) 

33. Show that two nonzero vectors  and  are normal to a given plane if and only if each is a
scalar multiple of the other.

34. (Normal form equation of a line in ) Express the line  in the form
, where , p is a point on the line, and  is a normal to the line

35. Let , and let . Show that . (See Exercise 19, page 161).

36. . Show that the function  given by  is linear. What is the
kernel of ?

37. Let . Show that if  for every  , then .

38. (Pythagorean Theorem in ) Let . Show that  if and
only if .

39. (Parallelogram Law in ) Let . Show that:

40. Let . Prove that  if and only if  and  are orthogonal.

41. Prove that if   is such that  if , then

 is a basis for .

42. Let . Prove that if u is orthogonal to each , , then u is
orthogonal to every . 

26. 27. 

3

1 3 2   1 3 2   2 2 1–  

1 3 2   2 0 1–   2 5 3–  

2 1 2–   1 0 1–   1– 3 0    0 0 1   2 0 0   0 3 0   

8 in.3

u v w n  r 

0 v v 0 0= = u v w u v u w+=

u rv ru v= u v– w u w v w–=

u v w–  u v u w–= v–  w v w–  v w –= =

v u

R2 ax by+ c=
n v n p= v x y = n 0

A Mn n u v n Au v u ATv=

u n pu: n  pu v  u v=
pu

u n u v 0= v n u 0=

n u v n u v+ 2 u 2 v 2+=
u v 0=

n u v n
u v+ 2 u v– 2+ 2 u 2 2 v 2+=

u v Rn u v= u v+ u v–

v1 v2  vn    n vi vj 0= 1 i j n

v1 v2  vn    n

u v1 v2  vm    n vi 1 i m 

v v1 v2  vm   
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43. (Cauchy-Schwarz Inequality in ) Show that if , then .
Suggestion: (If , then equality holds). For ,   use the fact that

 to conclude that the discriminant of
the quadratic polynomial  cannot be positive.

44. Use the above Cauchy-Schwuarz Inequality to show that for any nonzero vectors :

 . 

45. Establish the following properties for  and :

(a)     (b) 

(c) (d) 

46. (Metric Space Structure of ) Define the distance between two vectors  to be
. Prove that for all :

(a) .

(b)  if and only if .

(c)

(d)  Suggestion: Use the Cauchy-Schwuarz Inequality of
Exercise 41.

47. (PMI) Use the principle of mathematical induction to show that for any
 and any : .

48. Let . If  and if , then .

49. Let . If  for every , then .

50. Let . If  and  with  and  multiples of v, and if  and
 are orthogonal to u, then  and  .

51. Let , with . If u is orthogonal to both v and z, then  for some
.

52. The function  given by  is linear.

53.  for all .

PROVE OR GIVE A COUNTEREXAMPLE

n u v n u v u v
u 0= u 0

0 ru v+  ru v+  u u x2 2u v x v v + +=
u u x2 2u v x v v + +

u v n
u v
u v

--------------- 1

u v w 3  r s 

ru  sv  rs  u v = u–  v u v–  u v –= =

u v w+  u v  u w += u v w  u v  w=

n u v n
d u v  u v–= u v w n 

d u v  0

d u v  0= u v=

d u v  d v u =

d u w  d u v  d v w +

u v1 v2  vm    n a1 a2  am   

u a1v1 a2v2  amvm+ + +  a1u v1 a2u v2  amu vm+ + +=

u v w  n u 0 u v u w= v w=

u v n v w u w= w n u v=

u v n v w1 w2+= v z1= z2+ w1 z1 w2

z2 w1 z1= w2 z2=

u v z  n u 0 v cz=
c 

N: n  N v  v=

u v v u= u v 3
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 7

As you know, a vector space V comes equipped with but two opera-
tions: addition, and scalar multiplication. We now enrich that algebraic
structure by adding another binary function on V — one inspired by the
dot-product properties of Theorem 7.1, page 279:

 

The Euclidean vector space  with dot product  is
called the Euclidean inner product space of dimension n. There are
other inner products that can be imposed on , among them:

SOLUTION: We show that the distributive axiom (iv) holds and invite
you to establish the remaining axioms in the exercises:

§2. INNER PRODUCT 

While the scalar product
 assigns a vector to a

scalar r and a vector v,
the inner product 
assigns a real number to
a pair of vectors.

rv

u v 

DEFINITION 7.6
  INNER PRODUCT

positive-definite axiom:

commutative axiom:

homogeneous axiom:

distributive axiom:

INNER PRODUCT SPACE

An inner product on a vector space V is a
function which assigns a real number 
to any two vectors , such that:

(i) , and  only if 

(ii)

(iii)

(iv)

A vector space together with an inner product
is said to be an inner product space.

u v 
u v V

v v  0 v v  0= v 0=

u v  v u =

ru v  r u v =

u v+ w  u w  v w +=

Why are we requiring
the c’s to be positive?

EXAMPLE 7.8
WEIGHTED

EUCLIDEAN INNER 
PRODUCT SPACE

For any positive real numbers : 

is an inner product on .

n u v  u v=

n

c1 c2  cn  

u1 u2  un    v1 v2  vn    

c1u1v1 c2u2v2  cnunvn+ + +=

n

For :u u1 u2  un    v v1 v2  vn    w w1 w2  wn   = = =

u v+ w  u1 v1+ u1 v1+  u1 v1+    w1 w2 wn   =

c1 u1 v1+ w1 c1 u1 v1+ w1  c1 u1 v1+ w1+ + +=

c1u1w1 c2u2w2  cnunwn+ + +  c1v1w1 c2v2w2  cnvnwn+ + + +=

u w  v w +=
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The following theorem extends the Euclidean dot-product results of
Exercise 32, page 290 to general inner product spaces: 

PROOF: We verify (d), and leave it for you to establish the rest. 

In the previous section we defined the norm (or magnitude) of a vec-
tor v in  in terms of the dot product: . The dot product
was also used to describe the distance between two vectors u and v in

: . Replacing “dot-product” with
“inner product” enables us to extend the notion of magnitude and dis-
tance to any inner product space: 

Answer: See page B-33.

CHECK YOUR UNDERSTANDING 7.11

Verify that 

is an inner product on .
a2x2 a1x a0+ + b2x2 b1x b0+ +  a2b2 a1b1 a0b0+ +=

P2

In the exercises you are
asked to establish the fol-
lowing generalization and
combination  of (b) and (c). 

For u v1 v2 vn V 

and  c1 c2 cn :

u civi

i 1=

n

  ci u vi 

i 1=

n

=

THEOREM 7.4 For every u, v, and w in an inner product space V:

(a)

(b)

(c)

(d)

(e)

(f)

0 v  v 0  0= =

u v w+  u v  u w +=

u rv  r u v =

u v– w  u w  v w –=

u v w–  u v  u w –=

v– w  v w–  v w –= =

Answer: See page B-33.

CHECK YOUR UNDERSTANDING 7.12

Prove:                        

DISTANCE IN AN INNER PRODUCT SPACE

u v– w  u v–  w+ =
u w  v w– +=
u w  1v w– +=
u v  u w –=

Definition 2.7, page 55:

Axiom (iv):

Theorem 2.11 (x), page 56:

Axiom (iii):

ru rv  r2 u v =

n v v v=

n u v– u v–  u v– =



294     Chapter 7    Inner Product Spaces                                                                

SOLUTION: Utilizing the inner product: 

we have:

Answer: See page B-33.

DEFINITION 7.7
NORM AND
DISTANCE

The norm (or magnitude) of a vector v in an
inner product space V, denoted by , is
given by:

The distance between two vectors u and v in
V is given by .

CHECK YOUR UNDERSTANDING 7.13

Show that for any vectors u and v in an inner product space V and
any :
      (a)               (b) 

EXAMPLE 7.9 Find the distance between the two vectors
 and  in

the inner product space  of CYU 7.11

v

v v v =

u v–

r 
rv r v= u v+ 2 u 2 2 u v  v 2+ +=

p1 x  2x2 x– 1+= p2 x  3x 4+=
P2

(a)                (b) 7 1 645

CHECK YOUR UNDERSTANDING 7.14

With reference to the weighted inner product space: 

 on  (see Example 7.8), determine:
(a) The magnitude of the vector . 
(b) The distance between the vector  and the vector

.

a2x2 a1x a0+ + b2x2 b1x b0+ +  a2b2 a1b1 a0b0+ +=

p1 p2– p1 p2– p1 p2–  2x2 4x– 3– 2x2 4x– 3– = =

p1 x  p2 x – 2x2 x– 1+  3x 4+ – 2x2 4x– 3–= =

22 4– 2 3– 2+ + 29= =

u1 u2 u3   v1 v2 v3    5u1v1 2u2v2 4u3v3+ +=

3

3 5 8–  
3 5 8–  

1 0 2  
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The following theorem will enable us to extend the concept of an
angle between two vectors in  to vectors in an inner product space:

PROOF: If either  or , then  and we are done. 
For   and , we first show that : 

In the following Check Your Understanding box you are asked to
show that . Putting the two inequalities together, we
come up with , which is to say:

THE CAUCHY-SCHWARZ INEQUALITY

THEOREM 7.5
CAUCHY-
SCHWARZ

For any two vectors u and v in an inner product
space: 

n

u v  u v

u 0= v 0= u v  0=

The proof sketched out in
Exercise 43, page 275, can
also be used to establish
this result.

u 0 v 0 u v  u v–
1
u

--------u 1
v

-------v 1
u

--------u 1
v

-------v++  0

1
u

--------u 1
v

-------v+ 1
u

--------u  1
u

--------u 1
v

-------v+ 1
v

-------v + 0

1
u

--------u 1
u

--------u  1
v

-------v 1
u

--------u  1
u

--------u 1
v

-------v  1
v

-------v 1
v

-------v + + + 0

1
u 2

---------- u u  2
u v

--------------- u v  1
v 2

--------- v v + + 0

1 2
u v

--------------- u v  1+ + 0

2
u v

--------------- u v  2–

u v  u v–

Definition 7.5(i):

7.5(iv):

7.5(iv):

CYU 7.10:

Answer: See page B-34.

CHECK YOUR UNDERSTANDING 7.15

Verify:                 

Suggestion: Begin with .

u v  u v
u v– u v  u v 

u v  u v

u v  u v
1
u

--------u 1
v

-------– v 1
u

--------u 1
v

-------– v  0



296     Chapter 7    Inner Product Spaces                                                                

Here are norm properties that are reminiscent of absolute value prop-
erties in : 

PROOF: (a) A consequence of Definition 7.5(i) and . 

(b) 

(c)

Taking the square root of both sides of 
yields the desired result. 

We now extend the angle concept of Definition 7.3, page 281, to
inner product spaces:

SOLUTION: 
While it is admirable that we were able to extend the geometrical

notion of the angle between vectors in the plane to vectors in an arbi-
trary inner product space, the real benefit of that generalization surfaces
in the next section, where the concept of orthogonality takes center
stage.

THEOREM 7.6

TRIANGLE INEQUALITY

Let V be an inner product space. For all
 and :

(a) , and  if and only if 

(b)

(c)



u v V r 

v 0 v 0= v 0=

rv r v=

u v+ u v+

v v v =

rv rv rv  r2 v v  r2 v v  r v= = = =

CYU 7.11

u v+ 2 u 2 2 u v  v 2+ +=
u 2 2 u v v 2+ +

u v+ 2=

CYU 7.12(b)

Cauchy-Schwarz inequality:

u v+ 2 u v+ 2

The Cauchy-Schwarz
inequality plays a hidden
role in this definition.
(Where?)

DEFINITION 7.8
ANGLE BETWEEN 

VECTORS 

The angle  between two nonzero vectors   u
and v in an inner product space is given by:

EXAMPLE 7.10 Find the angle between the two vectors
 and  in

the inner product space of CYU 7.10



 cos 1– u v 
u v

--------------- 
 =

p1 x  2x2 x– 1+= p2 x  3x 4+=
P2
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 cos 1– 2x2 x– 1+ 3x 4+ 
2x2 x– 1+ 3x 4+

--------------------------------------------------- 
 =

cos 1– 2 0 1–  3 1 4++
2x2 x– 1+ 2x2 x– 1+  3x 4+ 3x 4+ 

-------------------------------------------------------------------------------------------------------------- 
 =

cos 1– 1
2 2 1–  1–  1 1+ + 3 3 4 4+

----------------------------------------------------------------------------------------------- 
 =

cos 1– 1
6 15

--------------------- 
  84=

cos 1– 49–
351 29

--------------------------- 
  119.1

CHECK YOUR UNDERSTANDING 7.16

With reference to the weighted inner product space: 

 on  (see Example 7.7), determine the angle between  the vectors
 and  . 

u1 u2 u3   v1 v2 v3    5u1v1 2u2v2 4u3v3+ +=

3

3 5 8–   1 0 2  
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Exercises 1-8. With reference to the weighted inner product space: 

of Example 7.7, determine:
1. The magnitude of the vector . 

2. The magnitude of the vector .

3. The distance between the vectors  and .

4. The distance between the vectors  and .

5. The angle between the vectors  and .

6. The angle between the vectors  and .

7. Verify that the Cauchy-Schwarz inequality holds for the vectors  and .

8. Verify that the Cauchy-Schwarz inequality holds for the vectors  and .

Exercises 9-16. Referring to  the inner product space:

on  of CYU 7.11, determine:

9. The magnitude of the vector . 

10. The magnitude of the vector .

11. The distance between the vectors  and .

12. The distance between the vectors  and .

13. The angle between the vectors  and .

14. The angle between the vectors  and .

15. Verify that the Cauchy-Schwarz inequality holds for the vectors  and 
.

16. Verify that the Cauchy-Schwarz inequality holds for the vectors  and .

17. For  in the vector space , define:

Show that the above operator is an inner product on .

EXERCISES

u1 u2 u3   v1 v2 v3    5u1v1 2u2v2 4u3v3+ +=

1 2 3–  

3 2 0  

1 2 3–   1 0 2  

3 2 0   1 2 3–  

1 2 3–   1 0 2  

3 2 0   1 2 3–  

1 2 3–   1 0 2  

3 2 0   1 2 3–  

a2x2 a1x a0+ + b2x2 b1x b0+ +  a2b2 a1b1 a0b0+ +=

P2

2x2 x– 3+

x2– x 5–+

2x2 x– 3+ x2– x 5–+

3x2 1+ 2x 5–

2x2 x– 3+ x2– x 5–+

3x2 1+ 2x 5–

2x2 x– 3+
x2– x 5–+

3x2 1+ 2x 5–

A
a11 a12

a21 a22

B
b11 b12

b21 b22

== M2 2

A B  a11b11 a12b12 a21b21 a22b22+ + +=

M2 2
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Exercises 18-22. Referring to  the inner product space on  Exercise 17, determine:

18. The magnitude of the vector . 

19. The magnitude of the vector .

20. The distance between the vectors  and .

21. The angle between the vectors  and .

22. Verify that the Cauchy-Schwarz inequality holds for the vectors  and .

23. Verify that  is an inner product on the polynomial space .

24. (Calculus Dependent) (a) Show that   is a sub-
set of the function vector space  of Theorem 2.4, page 44. 

(b) Show that  is an inner product on  (called the standard

inner product on ).

Exercises 24-35. Calculus Dependent) Referring to the inner product space on Exercise 24,
determine:

25. The magnitude of the vector  in the inner product space .

26. The distance between the vectors  and  in the inner product space 
.

27. The angle between the vectors  and  in the inner product space 
.

28. The magnitude of the vector  in the inner product space .

29. The distance between the vectors  and  in the inner product space .

30. The angle between the vectors   and  in the inner product space .

31. The magnitude of the vector  in the inner product space .

32. The distance between the vectors   and   in the inner product space .

33. The angle between the vectors    and   in the inner product space .

1 3
0 2

2 1–
1 0

1 3
0 2

2 1–
1 0

1 3
0 2

2 1–
1 0

1 3
0 2

2 1–
1 0

aixi

i 0=

n

 bixi

i 0=

n

  aibi

i 0=

n

= Pn

C a b  f: a b  R f  is continuous =
F a b 

f g  f x g x  xd
a

b

= C a b 

C a b 

2x2 x– 3+ C 0 1 

2x2 x– 3+ x2– x 5–+
C 0 1 

2x2 x– 3+ x2– x 5–+
C 0 1 

ex C 0 1 

ex x C 0 1 

ex x C 0 1 

xsin C –  

xsin xcos C –  

xsin xcos C –  
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34. Verify that the Cauchy-Schwarz inequality holds for the vectors  and  in the inner 
product space .

35. Verify that the Cauchy-Schwarz inequality holds for the vectors   and   in the 
inner product space .

36. Prove that ordinary multiplication in the set of real numbers R is an inner product on the vec-
tor space .

37. Prove Theorem 7.3(a).
38. Prove Theorem 7.3(b).
39. Prove Theorem 7.3(c).
40. Prove Theorem 7.3(e).
41. Prove Theorem 7.3(f).

42. Let , V an inner product space. Show that 

43. Let , V an inner product space. Show that .

44. Let , V an inner product space. Show that  if  and only if
.

45. Let , V an inner product space. Show that  is a subspace of  V.
46. (PMI) Let V be an inner product space.Use the principle of mathematical induction to show

that for any  and any :

and: 

47. Let , V an inner product space. If  and if , then .

48. Let . If  for every , then .

49. There exists an inner product on  for which .

50. There exists an inner product on  for which .

51. There exists an inner product on  for which .

PROVE OR GIVE A COUNTEREXAMPLE

ex x
C 0 1 

xsin xcos
C –  



u v V u v+ 2 u v– 2– 4 u v =

u v V u v+ u v–  u 2 v 2–=

u v V u v+ 2 u 2 v 2+=
u v  0=

u V v V u v  0= 

u v1 v2  vn    V a1 a2  am   

u a1v1 a2v2  amvn+ + +  a1 u v1  a2 u v2   am u vn + + +=

a1v1 a2v2  amvn+ + + u  a1 u v1  a2 u v2   am u vn + + +=

u v w  V u 0 u v  u w = v w=

u v V v w  u w = w V u v=

3 1 1 1   1=

3 1 1 1   2 2 2  =

3 1 1 1   2 2 2  
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 7

Having extended the concept of angles between vectors in  to vec-
tors in inner product spaces, we can now extend the definition of
orthogonality to those spaces:

SOLUTION: All pairs of vectors from S are orthogonal: 

You can check directly that the set S in the above example is a lin-
early independent in . In general:

PROOF: Let: 

For each , , we have:

§3. ORTHOGONALITY

DEFINITION 7.9
ORTHOGONAL VECTORS

ORTHOGONAL SET

Two vectors u and v in an inner product
space V are orthogonal if .
A set S of vectors in an inner product space
V is an orthogonal set if  for
every , with .

EXAMPLE 7.11 Verify that: 

is an orthogonal set in the inner product space
 of CYU 7.11, page 293, wherein

THEOREM 7.7 If  is an orthogonal set of non-
zero vectors in an inner product space , then

 is a linearly independent set in V.

n

u v  0=

u v  0=
u v S u v

S 2x2 2x 1–+ x2– 2x 2 2x2 x– 2++ + =

P2

a2x2 a1x a0+ + b2x2 b1x b0+ + 

a2b2 a1b1 a0b0+ +=

2x2 2x 1–+ x2– 2x 2+ +  2 1–  2 2 1– 2++ 0 (check)= =
2x2 2x 1–+ 2x2 x– 2+  2 2 2 1–  1– 2+ + 0 (check)= =
x2– 2x 2+ + 2x2 x– 2+  1– 2 2 1–  2 2+ + 0 (check)= =

P2

v1 v2  vn   
V

v1 v2  vn   

c1v1 c2v2 cnvn+ + 0= c1v1 c2v2 cnvn+ + 0=
vi 1 i n 

vi c1v1
 civi

 cnvn+ + + +  vi 0  0= =

c1 vi v1   ci vi vi   cn vi vn + + + + 0=

ci vi vi  0=

ci 0=

 vi vj  0 if i j:=

Definition 7.5 (i), page 276:

Therem 7.4(a), page 277:

each ci 0=
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To normalize a nonzero vector v in an inner product space simply mul-
tiply it by : 

The standard basis  of page 94 can easily be
shown to be an orthonormal set in the Euclidean inner product space

. Moreover, for any :

since: 

This nicety extends to any orthonormal basis in any inner product
space:

PROOF: Let . We show  for :

Answer: See page B-34.

CHECK YOUR UNDERSTANDING 7.17

Let  be an orthogonal set of vectors in an inner prod-
uct space V, and let  be such that  for .
Prove that u is orthogonal to every vector in .

v1 v2  vm   
u V u vi  0= 1 i m 

Span v1 v2  vm   

NORMALIZATION

DEFINITION 7.10
UNIT VECTOR

A unit vector in an inner product space is
a vector v of magnitude 1.

DEFINITION 7.11
ORTHONORMAL SET

An orthonormal set of vectors in an inner
product space is a set of orthogonal unit
vectors.

THEOREM 7.8 If  is an orthonormal 
basis in an inner product space V, then, for any 

:
 

1
v

-------

1
v

-------v 1
v

------- v 1= =

CYU 7.13(a), page 294

S e1 e2  en   =

n v c1  ci  cn    =

v v e1 e1  v ei ei  v en en+ + + +=

v ei c1  ci  cn     0  1  0     ci= =

ith entry

 v1 v2  vn   =

v V
v v v1 v1 v v2 v2  v vn vn+ + +=

v cjvj

j 1=

n

= ci v vi = 1 i n 

v vi  cjvj

j 1=

n

 vi  cj vj vi 

j 1=

n

 ci vi vi  ci vi
2 ci= = = = =

 Exercise 46, page 300. vj vi 
1 if j i=
0 if j i



= vi vi  1=
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The following theorem spells out a procedure that can be used to con-
struct an orthogonal basis in any given finite dimensional inner product
space. Basically, the construction process is such that each newly added
vector in an evolving basis is orthogonal to all of its predecessors.

PROOF: By Induction on the dimension of V:
Since  and since  is an orthogonal set, the claim is seen
to hold for  .
Assume that   is an orthogonal basis for , for .
We show that  is an orthogonal basis for ,
where: 

We are assuming that  is an orthogonal set. Conse-
quently, to establish orthogonality of , we need but
show that  for :

Answer: See page B-34.

CHECK YOUR UNDERSTANDING 7.18

Let  be an orthonormal basis for an inner prod-
uct space V. Show that for any  and

, .

 v1 v2 vn  =
a1v1 a2v2  anvn+ + +

w b1v1= b2v2  bnvn+ + + v w  aibi

i 1=

n

=

THEOREM 7.9
GRAHM-SCHMIDT 

PROCESS

Let    be a basis for an inner product space V,
and let  be the following subspaces of V:

   

Then,  is an orthogonal basis for . In particular,
 is an orthogonal basis for V.

 v1 v2  vn   =
Vi

u1 v1= V1 Span v1 =

u2 v2
u1 v 2 

u1 u1 
--------------------u1–= V2 Span v1 v2 =

u3 v3
u1 v3 
u1 u1 

--------------------u1–
u2 v3 
u2 u2 

--------------------u2–= V3 Span v1 v2 v3  =
 ... ...

un vn
u1 vn 
u1 u1 

--------------------u1–
u2 vn 
u2 u2 

--------------------u2– –
un 1– vn 

un 1– un 1– 
----------------------------------un 1––= Vn Span v1 v2  vn   =

u1  ui   Vi

u1 u2  un   

u1 v1= u1 
Vi

u1  uk   Vk k n
u1  uk 1+   Vk 1+

uk 1+ vk 1+
u1 vk 1+ 

u1 u1 
--------------------------u1– –

uk vk 1+ 
uk uk 

--------------------------uk–= (*)

u1  uk  
u1  uk 1+  

ui uk 1+  0= 1 i k 
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Being an orthogonal set,  is linearly independent. To
show that  we need
but show that 
(why?). Let’s do it:

SOLUTION: ONE APPROACH: Extend  to a basis for :

and then apply the Grand-Schmidt process to the above basis:

ui uk 1+  ui vk 1+
u1 vk 1+ 

u1 u1 
--------------------------u1– –

uk vk 1+ 
uk uk 

--------------------------uk– =

ui vk 1+ 
u1 vk 1+ 

u1 u1 
-------------------------- ui u1 – –

ui vk 1+ 
ui ui 

------------------------- ui ui – –
ui vk 1+ 

ui ui 
------------------------- ui uk –=

ui vk 1+ 
ui vk 1+ 

ui ui 
------------------------- ui ui –=

ui vk 1+ 
ui ui 
ui ui 

------------------ ui vk 1+ – ui vk 1+  1 ui vk 1+ – 0= = =

since ui uj  0 if i j=

aivi

i 1=

k 1+

 Span v1  vk 1+  

aivi

i 1=

k 1+

 Span u1  uk 1+  

Note: To obtain an orthonormal basis for an inner
product space, simply  normalize the orthogonal
basis generated by the Gram-Schmidt process.

EXAMPLE 7.12 Extend  to an orthogonal basis for
the Euclidean inner product space .

u1  uk 1+  
Span u1  uk 1+   Span v1 v2  vk 1+   =

Span v1 v2  vk 1+    Span u1  uk 1+  

aivi

i 1=

k 1+

 aivi

i 1=

k

 ak 1+ vk 1+ +=

biui

i 1=

k

 ak 1+ vk 1+ +=

biui

i 1=

k

 ak 1+ uk 1+
uk vk 1+ 

uk uk 
--------------------------uk

i 1=

k

+
 
 
 
 

+=

ciui

i 1=

k 1+

=

Induction Hypothesis:

from (*):

c1 b1 ak 1+
u1 v2 
u1 u1 

--------------------+= c2 b2 ak 1+
u2 v3 
u2 u2 

--------------------+=  ck 1+   ak 1+=where:

1 2 0   
3

1 2 0    3

1 2 0   1 0 0   0 0 1    :
v1 v2 v3  
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The above process led us to the following orthogonal basis:

ANOTHER APPROACH:
Since we are dealing with a vector space of dimension 3, we can sim-
ply roll up our sleeves and construct an orthogonal bases by “brute
force.” First, add a nonzero vector, ,  to  with:

This can be done in many ways. One way: ,
brings us to the orthogonal set . We still need
another nonzero vector  — one that is orthogonal to both

 and :

How about ? Sure. Leading us to the orthogonal
basis 

Multiplying any  in the
Gram-Schmidt process
by a nonzero constant
will not alter that vectors
“orthogonality-feature,”
but will simplify subse-
quent calculations.

ui

u1 1 2 0  =

u2 v2
u1 v2 
u1 u1 

--------------------u1– 1 0 0   1 2 0   1 0 0  
1 2 0   1 2 0  

---------------------------------------------- 1 2 0  –= =

1 0 0   1
5
--- 1 2 0  – 4

5
--- 2

5
---– 0  

  4 2– 0   2 1– 0   = =
see margin

u3 v3
u1 v3 
u1 u1 

--------------------u1–
u2 v3 
u2 u2 

--------------------u2–=

0 0 1   1 2 0   0 0 1  
1 2 0   1 2 0  

-------------------------------------------- 1 2 0  – 2 1– 0   0 0 1  
2 1– 0   2 1– 0  

-------------------------------------------------- 2 1– 0  –=

0 0 1   0
5
--- 1 2 0  – 0

5
--- 2 1– 10  – 0 0 1  = =

This brute force approach
is not always practical.
Software, such as   Maple
and MATLAB, include the
Gram-Schmidt process as
a built-in procedure. Yes,
the Gram-Schmidt process
works off of a basis for the
inner product space, but
that is not a problem: if
you randomly choose n
vectors in an n dimen-
sional space, even if

, there is little
chance that those vectors
end up being linearly
dependent! 

n 100=

u1 u2 u3   1 2 0   2 1– 0   0 0 1    =

a b c   1 2 0   

a b c   1 2 0   0=
a 2b 0 c+ + 0=

a b c   0 0 1  =
1 2 0   0 0 1   

a b c  
1 2 0   0 0 1  

a b c   1 2 0   0   and   a b c   0 0 1   0= =
a 2b 0 c+ + 0   and   0 a 0 b c+ + 0==

a 2b+ 0   and   c 0==

a b c   6 3 0  =
1 2 0   0 0 1   6 3 0    

Answer: See page B-35.

CHECK YOUR UNDERSTANDING 7.19
Apply the Gram-Schmidt Process to construct an orthonormal basis
for the subspace S of the Euclidean inner product space of 
spanned by the vectors , , ,

. 

4

2 1 1 0    1 0 1 0    3 1 2 0   
0 1 0 1   
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The set of vectors orthogonal to any subspace W of , denoted by
the symbol , is itself a subspace of . More specifically: 

In a more general setting, for W a subspace of an inner product space
V we define the orthogonal complement of W to be: 

We then have:  

PROOF: (i) For , , and  , we have:

The result now follows from Theorem 2.13, page 61.
(ii) Let . Being in both W and , . It fol-

lows, from Axiom (i) of Definition 7.5 (page 287) that .
(iii) Let  be an orthonormal basis for W. For ,

let: 

We show that the vector  is in  by showing that
, for  (see CYU 7.17):

ORTHOGONAL COMPLEMENT

3

W 3

W

Line W passing through the origin. Plane passing through the origin with normal W.
Plane W passing through the origin. Line passing through the origin orthogonal to W. 

W

0  3

3 0 

ORTHOGONAL 
COMPLEMENT

THEOREM 7.10 If W a subspace on an inner product space V,
then:

(i)  is a subspace of V.
(ii)
(iii) Every vector in V can be uniquely

expressed as a sum of a vector in W and
a vector in .

(iv) If  is a basis for W and  is a basis
for , then  is a basis for V.

W u V u w  0 for every  w W= =

W

W W 0 =

W

W 
W

W W 
W

u1 u2 W r  w W
ru1 u2+ w  r u1 w  u2 w + r 0 0+ 0= = =

In this part of the theo-
rem we assume that W is
finite dimensional (the
result does, however,
hold in general).

v W W W v v  0=
v 0=

w1 w2  wm    v V

vW v w1 w1 v w2 w2  v wm wm+ + += W

vW v vW–= W

vW wi  0= 1 i m 

vW wi  v vW– wi  v wi  vW wi –= =

v wi  v w1 w1 v w2 w2  v wm wm+ + + wi –=

v wi  v wi  wi wi – v wi  v wi – 0= = =
since wi wj  0 for i j= since wi wi  1=
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At this point, we have shown that v can be expressed as a sum of a
vector in W and a vector in : .
Uniqueness of the decomposition follows from part (ii) of this
theorem, and Exercise 43, page 67.

As for (iv):

Lets highlight an important observation lurking within the proof of
Theorem 7.10(iii):

SOLUTION: (a) Since  and  are linearly inde-
pendent, they constitute a basis for W. To say that  is
to say that:

 Choosing a and c to be our free variables, we have:

First setting  and , and then setting  and 
leads us to the basis:  for .

W v vW vW+=

Answer: See page B-35.

CHECK YOUR UNDERSTANDING 7.20

Establish Theorem 7.10(iv)

Compare with Theorem
7.2, page 283.

THEOREM 7.11 Let  be an orthonormal
basis for a subspace W of an inner product
space V. For any  there exist unique
vectors  and  such that

, where
 
and .

Note:  is said to be the orthogonal projection
of v onto W, and we write: .

EXAMPLE 7.13 Let , in the
Euclidean inner product space .
(a) Find a basis for . 

(b) Express  as the sum of a vector
in W and a vector in .

v

W

 

vW

vW

w1 w2  wm   

v V
vW W vW W

v vW vW+=
vW v w1 w1 v w2 w2  v wm wm+ + +=

vW v vW–=

vW

vW projW
v=

W Span  v1 v2  vn   = =
4

W

1 2 3 4   
W

We know that  will
turn out to be of dimen-
sion 2. How?

W

and

1 0 0 2    1 1 1 0   

a b c d    W

a b c d    1 0 0 2    0=
a 2d+ 0=

d a
2
---–=

a b c d    1 1 1 0    0=
a b c+ 0=+

b a– c–=

W a a– c– c a
2
---–   

  a c 
 
 
 

=

a 0= c 1= c 0= a 2=
0 1 1 0 –  2 2– 0 1–     W
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(b) One approach: Simply express   as a linear combination
of the basis :

Bringing us to:

Another Approach: First apply the Gram-Schmidt method on
  to obtain an orthonormal basis for W:

Orthonormal basis for W:

  

Applying Theorem 7.11 we know that

where:

and:

 

Note that both approaches lead to the same decomposition, as must 
be the case:

 

1 2 3 4   
1 0 0 2    1 1 1 0    0 1 1 0 –  2 2– 0 1–      

1 2 3 4    a 1 0 0 2    b 1 1 1 0    c 0 1 1 0 –  d 2 2– 0 1–   + + +=

a b 2d+ + 1=
b c– 2d– 2=

b c+ 3=
2a d– 4= 








a 3
2
--- b 3

2
--- c 3

2
--- d 1–= = = =

1 2 3 4    3
2
--- 1 0 0 2    3

2
--- 1 1 1 0   + 3

2
--- 0 1– 1 0    2 2– 0 1–   –+=

3 3
2
--- 3

2
--- 3   = 2– 1

2
--- 3

2
--- 1   +

                                           in W in W

Since  is orthogonal
to , so is 

u2
u1 5u2

1 0 0 2    1 1 1 0    
u1 1 0 0 2   =

u2 1 1 1 0    1 1 1 0    1 0 0 2   
1 0 0 2    1 0 0 2   

-------------------------------------------------------- 1 0 0 2   –=

1 1 1 0    1
5
--- 1 0 0 2   – 4

5
--- 1 1 2

5
---–     Or: 4 5 5 2–   = =

see margin

w1 w2  1
5

------- 1 0 0 2    1
70

---------- 4 5 5 2–   
 
 
 

=

1 2 3 4    1 2 3 4   W 1 2 3 4   W+=

1 2 3 4   W 1 2 3 4    w1 w1 1 2 3 4    w2 w2+=

1 2 3 4    1
5

------- 0 0 2
5

-------   
  1

5
------- 0 0 2

5
-------   

  1 2 3 4    4
70

----------
5

70
5
70

---------- 2–
70

----------   
  4

70
----------

5

70
5
70

---------- 2–
70

----------   
 +=

9
5

------- 1
5

------- 0 0 2
5

-------   
  21

70
---------- 4

70
----------

5

70
5
70

---------- 2–
70

----------   
 + 3 3

2
--- 3

2
--- 3   

 = =

1 2 3 4   W 1 2 3 4    1 2 3 4   W–  1 2 3 4    3 3
2
--- 3

2
--- 3   

 – 2– 1
2
--- 3

2
--- 1   

 = = =

1 2 3 4    3 3
2
--- 3

2
--- 3   

  2– 1
2
--- 3

2
--- 1   

 +=

in W in W
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The shortest distance between a vector v in an inner product space V and
any vector w in a subspace W of V turns out to be the distance between
v and :   

PROOF: Let . For any :

Since  and , the two middle terms in the above
expression are 0, bringing us to:
                      
To complete the proof we need but note that .

Answer: 7
4
--- 1 5

4
---  

 

CHECK YOUR UNDERSTANDING 7.21
Find the orthogonal projection of the vector  onto the
subspace   of the Euclidean inner
product space .

v 2 0 1  =
W Span 1 0 1   1 2 0   =
3

Consider Example 7.3,
page 284.

THEOREM 7.12 Let W be a subspace of the inner product
space V, and let . Then:

vW

v V
v proj

W
v– v w–  for every w W

vW

vW projW
v= w W

v w– 2 v w– v w– =

v vW–  vW w– + v vW–  vW w– + =
v vW– v vW–  v vW– vW w–  vW w– v vW–  vW w– vW w– + + +=Theore 7.4(b), page 293:

v vW– 2 v vW– vW w–  vW w– v vW–  vW w– 2+ + +=

vW w– W v vW– W

v w– 2 v vW– 2 vW w– 2+=

Answer: 3

CHECK YOUR UNDERSTANDING 7.22

Find the shortest distance between the vector  and the
subspace  in the inner product space 
of CYU 7.11, page 293:

 .

vW w– 0

v 3x2= 3x+
W Span x2 1+ x3 1+ = P3

a0 a1x a2x2 a3x3+ + + b0 b1x b2x2 b3x3+ + +  aibi

i 0=

3

=
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Exercises 1-7. Determine if the given set of vectors is an orthogonal set in the given inner product
space. If so, modify the set to arrive at an orthonormal set.

1.  in the Euclidean inner product space .

2.  in the weighted inner product space of Example 7.8,
page 292, with .

3.  in the weighted inner product space of Example 7.8,
page 292, with .

4.  in the polynomial inner product space of CYU
7.11, page 293.

5.  in the inner product space of Exercise 17, page 298.

6. (Calculus Dependent)  in the inner product space  of Exercise 24,

page 299.

7. (Calculus Dependent)  in the inner product space  of Exercise 24,

page 299.

8. Use Theorem 7.8 to express  in the Euclidean inner product space  as a linear

combination of the vectors in the orthonormal basis .

9. Use Theorem 7.8 to express  in the polynomial inner product space of CYU 7.11,
page 293, as a linear combination of the vectors in the orthonormal basis

.

10. Find all values of a for which  is an orthogonal set in the Euclidean
inner product space . 

11. Find all values of a and b for which  is an orthogonal set in the Euclid-
ean inner product space . 

12. Find all values of a and b for which  is an orthogonal set
in the weighted inner product space of Example 7.8, page 292, with

. 

EXERCISES

1 1 1   1 2 1– –  1 0 1 –    3

1 1 1   1 2 1– –  1 0 1 –   
u1 u2 u3   v1 v2 v3    5u1v1 2u2v2 4u3v3+ +=

1 1 1   1 2 1– –  1 0 5    
u1 u2 u3   v1 v2 v3    5u1v1 u2v2 u3v3+ +=

x2 2x 1 3x2 x 5 11x2 8x– 5+–++ + 

1 2
3 4

2 1–
0 0

0 0
1
3
--- 1

4
---–

 

 
 
 
 
 

x2 4
3
---x– 1+

 
 
 

C 0 1 

x2 4
3
---x– 1+

 
 
 

C 1 2 

3 5 2   3

1
5

------- 2 1 0   0 0 1   1
5

------- 1 2 0–  
 
 
 

2x2 3x 1–+

x2

3
------- x

3
------- 1

3
-------+ + x2

6
------- 2x

6
-------– 1

6
-------+ x2

2
------- 1

2
-------– 

 
 
 

1 3 2   1 a 1   
3

1 3 b   1 a 1   
3

1 1 a   1 2b 1– –  1 0 1 –   

u1 u2 u3   v1 v2 v3    2u1v1 u2v2 u3v3+ +=
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13. Find all values of a and b for which  is an orthogonal set
in the weighted inner product space of Example 7.8, page 292, with

. 

14. Find all values of a, b, and c for which  is a n orthogonal set
in the weighted inner product space of Example 7.8, page 292, with

. 
15. (Calculus Dependent) Find all values of a and b for which  is an orthog-

onal set in the inner product space  of Exercise 24, page 299. 

16. (Calculus Dependent) Find all values of a, and b for which  is an orthogonal
set in the inner product space  of Exercise 24, page 299. 

Exercises 17-26. Find an orthonormal basis for the given inner product space.
17.  in the Euclidean inner product space .

18.  in the Euclidean inner product space .

19.  in the Euclidean inner product space 

20.  in the Euclidean inner product space .

21.  in the weighted inner product space of Example 7.8, page
292, with .

22.  in the polynomial inner product space of CYU 7.11, page 293.

23. The solution set of  in the Euclidean inner product space .

24. The solution set of  in the Euclidean inner product space .

25. (Calculus Dependent)  in the inner product space  of Exercise
24, page 299.

26. (Calculus Dependent)  in the inner product space  of
Exercise 24, page 299.

27. Find an orthonormal basis for  in the Euclidean inner product space .

28. Find an orthonormal basis for  in the Euclidean inner product
space .

29. Find an orthonormal basis for  in the Euclidean inner product
space .

30. Find an orthonormal basis for  in the weighted inner product space
of Example 7.8, page 292, with .

31. Find an orthonormal basis for  in the polynomial
inner product space of CYU 7.11, page 293.

1 1 1   1 2 1– –  1 0 1 –   

u1 u2 u3   v1 v2 v3    au1v1 bu2v2 u3v3+ +=

1 1 1   1 2 1– –  1 0 5    

u1 u2 u3   v1 v2 v3    au1v1 bu2v2 cu3v3+ +=
ax2 1+ x– b+ 

C 0 1 

x2 x– 1+ 
C a b 

Span 2 0 1   1 2 0 –   3

Span 1 1 1   1 2 1– –   3

Span 1 1 1 1    1 2 1 2– –   4

Span 1 0 1 0    0 2 0 2   2 0 0 0      4

Span 2 0 1   1 2 0 –  
u1 u2 u3   v1 v2 v3    2u1v1 3u2v2 u3v3+ +=

x2 1 x 5–+ 

2x 3y z– w+ + 0=
4x 3y 2z– 2w–+ 0= 




4

x 3y 2z– w+ + 0=
4x 3y 2z–+ 0= 




4

Span x2 2x 1+  C 0 1 

Span x3 x 1+ x2 1–   C 1– 1 

a 2a 0  a R  3

a b a b– 2b    a b  
4

a 2a c a c–    a c  
4

a b c   a b c+ + 0= 
u1 u2 u3   v1 v2 v3    5– u1v1 2– u2v2 u3v3+=

ax3 a b+ x2 cx 2a+ + + a b c  R 
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Exercise 32-36. (a) Find a basis for the orthogonal complement of the given Euclidean inner
product subspace . 
                            (b) Express the given vector v as a sum of a vector in W and a vector in . 
                            (c) Determine the distance from v to W. 

32. , .

33. , .

34. , .

35. , .

36. , .

37. Find a basis for the orthogonal complement of the subspace 
in the weighted inner product space of Example 7.8, page 292, with

, and express the vector 

as a sum of a vector in W and a vector in . 

38. Find a basis for the orthogonal complement of the subspace  in
the polynomial inner product space of CYU 7.11, page 293, and express the vector

 as a sum of a vector in W and a vector in . 
39. Prove that the standard basis  of page 94 is an orthonormal basis in the

Euclidean inner product space .

40. Prove that  is an orthonormal basis in the polynomial inner product space
of CYU 7.11, page 277.

41. Let V be an inner product space. Prove that  and that .

42. Let  in an inner product space V. Prove that  if and only
if  for all , .

43. Let  be an orthogonal set in an inner product space V. Show
that if   and , then .

44. Let  be a subspace in an inner product space V. Prove that .

45. Let w be a vector in an inner product space V of dimension n. Prove that
 is a subspace of V of dimension .

46. Let S be a subset of an inner product space V. Prove that
 is a subspace of V.

47. Let S be a subspace of an inner product space V of dimension n. Prove that

48. Let  be an orthonormal basis in an inner product space V. Show that for
any  . (See Definition 5.9, page 178.)

W
W

W Span 1 0  1 1  = v 1 3 =

W Span 1 0 2   = v 1 3 2–  =

W Span 1 0 2   1 3 2–   = v 1 1 1  =

W Span 1 0 2 0    0 1 0 1    = v 4 1 3 3 – =

W Span 1 0 2 3    2 1 0 1    1 1 0 1     = v 1 3 2 2–  =

W Span 2 0 1   1 2 0 –  =

u1 u2 u3   v1 v2 v3    u1v1 2u2v2 u3v3+ += v 1 2 1–  =

W

W Span x2 1 x 5–+  =

v 2x2 x–= W

e1 e2  en   

n

xn xn 1–  x 1    

V 0 = 0  V=

W Span w1 w2  wm   = v W
v wi  0= wi 1 i m 

v1 v2  vk vk 1+  vm      
w Span v1 v2  vk    z vk 1+  vm   w z  0=

W W  W=

w v V v w  0= = n 1–

S v V v w  0 for all w S= =

dim S  dim S + n=

 v1 v2  vn   =
u v V u v  u  v =
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Exercises 51-59 (Orthogonal Matrices)  is an orthogonal matrix if the columns of A

is an orthonormal set in the Euclidean inner product space . (Orthogonal matrices would better
have been named “orthonormal matrices,” no?)

49. Sow that the following are equivalent:
(i)   is orthogonal. 

(ii)  . (See Exercise 19, page 162).
(iii)  for every 
(iv)  for every .

50. Prove that every orthogonal matrix is invertible, and that its inverse is also orthogonal.
51. Prove that a product of orthogonal matrices (or the same dimension) is again orthogonal.
52. Prove that if A is orthogonal, then .
53. Prove that if A is orthogonal then the rows of A also constitute an orthonormal set.
54. Prove that if A is orthogonal, and if B is equivalent to A, then B is also orthogonal.

55. Prove that every  orthogonal matrix is of the form  or  where

.

56. Show that every  orthogonal matrix is of the form  or .

57. Show that every  orthogonal matrix corresponds to either a rotation or a reflection
about a line through the origin in .

58. (a) Prove that the null space of  is the orthogonal complement of the row space of
A.

(b) Prove that the null space of  is the orthogonal complement of the column space
of A. (See Exercise 19, page 162.)

(c) Verify directly that the null space of  is the orthogonal complement of the

row space of A.

(d) Verify directly that the null space of  is the orthogonal complement of

the column space of A. (See Exercise 19, page 162.)

A Mn n

n

A Mn n

ATA I=
AX X= X n

AX AY X Y= X Y n

det A  1=

2 2 a b–
b a

a b
b a–

a2 b2+ 1=

2 2 cos sin–
sin cos

cos sin
sin cos–

2 2
2

A Mm n

AT Mm n

A 1 3 2 0
1– 0 1 2

=

AT 1 3 2 0
1– 0 1 2

=
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59. (Bessel’s Equality) Let  be an orthonormal basis for an inner product space

V. Prove that for any : .

60. If   is an orthogonal set in an inner product space V, then 
  is an orthogonal set for all scalars .

61. If   is an orthonormal set in an inner product space V, then 
 is an orthonormal set for all scalars .

62. Let W be a subspace of an inner product space V. If  with , then .

63. Let  be a basis for an inner product space V such that each  for
 is orthogonal to every  for . If , then

.

64. Let  be an orthogonal basis for an inner product space V. If

hen .

PROVE OR GIVE A COUNTEREXAMPLE

v1 v2  vn   

w V w vi 2

i 1=

n

 w 2=

v1 v2  vm   
a1v1 a2v2  amvm    a1 a2  am  

v1 v2  vm   
a1v1 a2v2  amvm    a1 a2  am  

w v  0= w W v W

v1 v2  vk  vn      vj

k j n vm 1 m k  W Span v1 v2  vk   =

W Span vk 1+  vn  =

v1 v2  vk  vn     

W Span v1 v2  vk   = W Span vk 1+  vn  =



                                                     7.4 The Spectral Theorem     315

 7

                                         We begin by recalling Definition 6.13 of page 264:

As it turns out:

An outline of a proof for the above theorem, which involves a bit of
complex number terminology, is relegated to the exercises.

We remind you that we are using  to denote . For 
we now define  to be the dot product of the corresponding vertical

n-tuples (see margin). It is easy to show that ,with  defined to
be , is an inner product space (see Definition 7.6, page 292). Note,
that the above dot product can also be effected by means of matrix mul-
tiplication:

 (see margin) 

PROOF: Let  be distinct eigenvalues of a symmetric matrix
, with corresponding eigenvectors , so that:

We show that :

 
Then:    

Since , ; which is to say:  and  are orthogonal.

§4. THE SPECTRAL THEOREM

In other words, the  row
of A is the  column of

. For example:

ith

ith

AT

If A 1 0 3
2 4 5

AT
1 2
0 4
3 5

==

The transpose of a matrix  is the
matrix , where 

DEFINITION 7.12
SYMMETRIC MATRIX

 is symmetric if .

THEOREM 7.13 If  is a (real) symmetric matrix,
then its eigenvalues are real numbers.

A aij  Mm n=
AT bij  Mn m= bij aji=

A Mn n AT A=

A Mn n

2
3
5

1
4
0

 2 3 5   1 4 0  =

2 1 3 4 5 0++=
14=

2
3
5

1
4
0


2 3 5 1

4
0

=

2 1 3 4 5 0++ =
14  14= =

THEOREM 7.14 Any two eigenvectors in the inner product
space  corresponding to distinct eigen-
values of a symmetric matrix  are
orthogonal.

n Mn 1 X Y n

X Y

n X Y 
X Y

X Y XTY=

n

A Mn n

1 2
A Mn n X Y

AX 1X  and  AY 2Y==
X Y 0=

1 X Y  1X  Y AX T Y= =

XTAT Y=
XTA Y XT AY = =

XT 2Y  2 XTY = =

2 X Y =

Exercise 19(f), page 162

Definition 7.12:

1 X Y  2 X Y = 1 2–  X Y  0=

1 2 X Y 0= X Y
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SOLUTION: To determine the eigenvalues of A, we turn to Theorem
6.8, page 219, and calculate the determinant of :

We see that A has three distinct eignevalues: ,  and
, with corresponding eigenspaces:

You can easily verify that for , every vector in  is
orthogonal to every vector . For example:

EXAMPLE 7.14 Verify the result of Theorem 7.14 for the sym-
metric matrix:

A
1 1– 0
1– 2 1–

0 1– 1
=

A I–

det A I–  det
1 – 1– 0

1– 2 – 1–
0 1– 1 –

  1–   3– –= =

details omitted

Note: 

rref
1 1– 0
1– 2 1–

0 1– 1

1 0 1–
0 1 1–
0 0 0

=

rref
0 1– 0
1– 1 1–

0 1– 0

1 0 1
0 1 0
0 0 0

=

rref
2– 1– 0
1– 1– 1–

0 1– 2–

1 0 1–
0 1 2
0 0 0

=

1 0= 2 1=
3 3=

E 0  null A 0I–  null
1 1– 0
1– 2 1–

0 1– 1
a a a   a R = = =

E 1  null A 1I–  null
0 1– 0
1– 1 1–

0 1– 0
b– 0 b   b R = = =

E 3  null A 3I–  null
2– 1– 0
1– 1– 1–

0 1– 2–
c 2c– c   c R = = =

margin

1 i j 3 E i 
E j 

a a a   c 2c– c   ac 2ac– ac+ 0= =

Answer: See page B-37.

CHECK YOUR UNDERSTANDING 7.23

Verify the result of Theorem 7.13 for the matrix . 

THEOREM 7.15  is symmetric if and only if 

for all vectors .

A
2 1 1
1 2 1
1 1 2

=

A Mn n

AX  Y X AY =

X Y Rn
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PROOF: If A is symmetric, then:

 
Conversely, assume that    is such that 

Turning to the n-tuple , with 1 as its  entry and 0 elsewhere, we
show that A is symmetric, by showing that : 

As you know, there is an intimate relation between matrices and lin-
ear maps; bringing us to: 

Here is the linear operator version of Theorem 7.14:

1 3 5
2 6 7
4 5 2

0
1
0 

 
 
 
  0

0
1


3
6
5

0
0
1

=

5=

e2 e3

a32

AX  Y AX TY XTAT Y XT ATY = = =

XT AY  X AY = =Exercise 19(f), page 161 symmetry:

A aij =
AX  Y X AY = (*)

ek kth

aij aji=

aij Aej  ei=

ej Aei =

Aei  ej aji= =

By (*):

Theorem 7.1(ii), page 279:

(see margin)

Answer: See page B-37.

CHECK YOUR UNDERSTANDING 7.24

(a) Let . Show directly that  for

every .
(b) Write down an arbitrary non-symmetric matrix  and

exhibit  for which .

SYMMETRIC OPERATORS

A
1 1 1
1 2 1
1 1 3

= AX  Y X AY =

X Y 3
A M3 3

X Y 3 AX  Y X AY 

Compare with Theorem 7.15.

DEFINITION 7.13
SYMMETRIC OPERATOR

Let V be an inner product space. A linear
operator  is symmetric if

 for all vectors .

THEOREM 7.16 Let  be a symmetric linear opera-
tor on an inner product space V. If  and 
are eigenvectors associated with distinct
eigenvalues  and , then  and  are
orthogonal.

T: V V
T v  w  v T w  =

v w V

T: V V
v1 v2

1 2 v1 v2
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PROOF: 

Since , .

The matrix representation  of a symmetric linear operator need
not be symmetric for every basis  (see Exercise 18). However:

PROOF: Employing Theorem 7.15, we show that for any two (column)

n-tuples ,    in 
:

Theorem 7.9, page 303, assures us that every finite dimensional inner
product space contains an orthonormal basis . It follows that every
symmetric linear operator  has a symmetric matrix represen-
tation . Indeed,  can be chosen so that  is a diagonal matrix:

THEOREM 7.17 If  is a symmetric linear operator
on an inner product space V, then  is a
symmetric matrix for any orthonormal basis

 of V.

T v1  v2  T v1  v2 – 0=

T v1  v2  v1 T v2  – 0=

1v1 v2  v1 2v2 – 0=

1 v1 v2  2 v1 v2 – 0=

1 2–  v1 v2  0=

Definition 7.13:

Definition 6.5, page 224:

Theorem 7.4, page 293:

1 2 v1 v2  0=

T 


T: V V
T 



v v1 v2  vn   = w w1 w2  wn   = n

T v  w v T w =

T v  w T  v   w =

T v   w =

T v  w =
v T w   v  T w   v T w = = =

Theorem 5.22, page 180:

CYU 7.18, page 303:

By symmetry:

Answer: See page B-38.

CHECK YOUR UNDERSTANDING 7.25

For  the Euclidean inner product space, let  be the
linear transformation given by:

 
(a) Show that T is symmetric.
(b) Verify that  is symmetric for the orthonormal basis

 of .

3 T: 3 3

T a b c   a b– a– 2b c–+ b– c+  =

T 
 0 1 0   0 0 1   1 0 0    = 3


T: V V

T   T 
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PROOF: Assume that  is an orthonormal basis of
eigenvectors of T with corresponding eigenvalues .
We show that T is symmetric:

Let , with  and . Then:

To establish the converse, we apply the Principle of Mathematical
Induction on the dimension n of V:

I. Let . For any ,  is an orthonormal

basis for V. Since , and since  is a basis for V,

 for some . 

II. Assume that the claim holds for .
III. We establish validity for :

Applying the Grahm-Schmidt process, we can obtain an ortho-
normal basis  for V. By Theorem 7.17,  is symmetric.
Let  be a (real) eigenvalue of  (Theorem 7.13). Let

 be an eigenvector associated with , and let  be such
that . Then:

Note that V contains an
orthonormal basis if and
only if it contains a nor-
mal basis.

THEOREM 7.18
THE SPECTRAL

 THEOREM

A linear operator  on an inner
product space V is symmetric if and only if
V contains an orthonormal basis of eigen-
vectors of T.

T: V V

 v1 v2 vn  =
1 2 n  

v w V v ai

i 1=

n

 vi= w bi

i 1=

n

 vi=

T v  w  ai

i 1=

n

 T vi  bi

i 1=

n

 vi =

ai

i 1=

n

 vi bi

i 1=

n

 vi =

aibi

i 1=

n

 ai

i 1=

n

 vi bi

i 1=

n

 vi  v T w  = = =

Since vi vj 
1 if  i j=
0 if i j




= [along with Theorem 7.4, page 293]

dim V  1= v 0 v
v
-----
 
 
 

T v
v
----- 
  V v

v
-----
 
 
 

T v
v
----- 
   v

v
-----= 

dim V  k=
dim V  k 1+=

 T 
 T 

v n  vn
vn  v=
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Let . Theorem 7.10, page 306 tells us that: 

is a subspace of V of dimension . 
Nothing that for any :

we conclude that  for every . 
Let  denote the restriction of T to . The lin-
earity of T assures us that  is linear. Moreover, since

 holds for every , it must cer-
tainly hold for every . Invoking the induction
hypothesis (II) to the symmetric linear operator

, we let  denote an orthonor-
mal basis of eigenvectors of . Since each vector in that
basis is orthogonal to the eigenvector , the set

 is seen to be an orthonormal basis for V

consisting of eigenvectors.
  

Here is the link between symmetric matrices and symmetric linear
operators: 

T v v= T  vn   vn =

T vn    vn =

T vn  vn=

Theorem 5.21, page 181:

W Span vn =

W v V v vn  0= =
k 1–

v W
T v  vk  v T vk   v vk   v vk  0= = = =

T v  W v W

TW:W W W

TW

T v  w  v T w  = v w V
v w W

TW:W W v1 v2 vk 1–  
TW

vk

v1 v2 vk 1–
vk
vk

---------  
 
 
 

Answer: See page B-38.

CHECK YOUR UNDERSTANDING 7.26
Find an orthonormal basis of eigenvectors for the symmetric linear
operator  of CYU 7.25.

MATRIX VERSION OF THE SPECTRAL THEOREM

THEOREM 7.19  is symmetric if and only if

 given by  is a
symmetric linear operator.

T a b c   a b– a– 2b c–+ b– c+  =

A Mn n

TA: n n TA X  AX=
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PROOF: Assume that  is symmetric. For any :

Conversely, if  is symmetric, then:

 

PROOF: If  is orthogonal, then the columns of A constitute
a linearly independent set of vectors in  (Theorem 7.7, page 301),
and are therefore a basis for  (Theorem 3.11, page 99). The result
now follows from Exercise 37, page 176.
Yes, every orthogonal matrix is invertible; but more can be said for

orthonormal matrices: 

PROOF: Let , , and . Then:

 
It follows that , if and only if , if and only if

if and only if the columns of A constitute an orthonormal set in .

Recall that for :

(see page 307)

X Y n

X Y  X Y=

DEFINITION 7.14
ORTHOGONAL AND 

ORTHONORMAL
MATRICES

 is an orthogonal matrix if the
columns of A constitute an orthogonal set in
the Euclidean inner product space . 
A is an orthonormal matrix if its columns
constitute an orthonormal set in .

THEOREM 7.20 Every orthogonal matrix is invertible. 

THEOREM 7.21  is orthonormal if and only if 

A Mn n X Y n

TA X  Y  TA X  Y AX Y= =

X AY X TA Y  X TA Y  = = =Theorem 7.15:

TA
AX Y TA X  Y TA X  Y = =

X TA Y   X TA Y  X AY= = =Definition 7.13:

A Mn n

n

n

A Mn n
n

n

A Mn n

A 1– AT=

A aij = AT aij = AAT cij =

cij aiaj

 1=

n

 aiaj

 1=

n

= =

the dot product of the ith column of A with the jth column of A

Answer: See page B-39.

CHECK YOUR UNDERSTANDING 7.27

Prove that the product of any two orthonormal matrices in  is
again orthonormal.

A 1– AT= AAT I=

aiaj

 1=

n


1  if i j=
0  if i j




=

n

Mn n
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As it turns out:

PROOF: If  is symmetric, then  given by
 is a symmetric operator (Theorem 7.19). Employing

Theorem 7.18, we chose an orthonormal basis 
of eigenvectors of  with corresponding eigenvalues .
For  the standard basis of  we have:

 (*)
We now show that:

(1)  is a diagonal matrix with the  along its diagonal.

(2) 

(3)The columns of  are the  — an orthonormal set.
(1):A consequence of Definition 5.10, page 180, and the fact that

.

(2):A consequence of Definition 5.10 and the fact that  is

the  column of A.
(3):A consequence of Definition 5.10 and the fact that

.

Conversely, assume that A is orthogonally diagonalizable. Let P be an
orthogonal matrix and D a diagonal matrix with: 

By Then:

Since , A is symmetric.

Note: In the literature the
term orthogonally diago-
nalizable is typically
used to refer to what we
are calling .

DEFINITION 7.15
ORTHONORMALLY
DIAGONALIZABLE

 is  if there exists an orthonor-
mal matrix P and a diagonal matrix D such
that: 

THEOREM 7.22
THE SPECTRAL 

THEOREM

 is orthonormally diagonalizable
if and only if it is symmetric.

A Mn n

P 1– AP D=

A Mn n

See Theorem 5.27, page 194)

A Mn n TA: n n
TA X  AX=

 X1 X2  Xn   =
TA 1 2  n  

S e1 e2  en   = n

TA  I S TA SS I S=

(1), (2), (3) and (*) tell us
that:

 is a diagonal matrix,
with  an orthonor-
mal matrix.
In particular:
A is !
Moreover:

with  the  column of P.

P 1– AP
P I S=

P 1– AP PTAP=

Xi ith

TA  is

TA SS A=

I S Xis

TA Xi  AXi iXi= =

TA ei  S
ith

I Xi  S Xi S Xi= =

P 1– AP D=
A PDP 1–=
A PDPT=Theorem 7.21:

AT PDPT T=
PT TDTPT=

PDTP 1– PDP 1– A= = =

Exercise 24(f), page 1643:

Exercise 24(a), page 164:

Since every diagonal matrix is symmetric

AT A=
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Answer: See page B-39.

CHECK YOUR UNDERSTANDING 7.28
Find an orthonormal diagonalization for the symmetric matrix: 

 
2 1 1
1 2 1
1 1 2
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Exercises 1-4. Verify that the given matrix is orthonormal. 

Exercises 5-8. Verify that the given matrix  is symmetric. Show directly that
 for every . 

Exercises 1-4. Find an orthonormal diagonalization for the symmetric matrix of: 

Exercises 9-12. Verify that the given linear operator  on the Euclidean (dot product)
inner product space  is symmetric. Determine  where  denotes the standard basis in

. 

17. Verify that  is a symmetric operator on the weighted inner product

space  with . Verify that  is an orthonor-

mal basis in this inner product space, and determine . 

18. (a) Verify that  is a symmetric oper-
ator on the standard inner product space : .
(b) Use the Grahm-Schmidt process of page 303 on the basis 

to arrive at the orthonormal basis . Verify that

 is not symmetric, and that  is symmetric.

EXERCISES

1. 2.
3.

4.

5. 6.
7. 8.

9. Exercise 5. 10. Exercise 6. 11. Exercise 67 12. Exercise 8.

13.  14.  

15.  

16.  

3
2

-------– 1
2
---

1
2
--- 3

2
-------

1
2

------- 1
2

-------

1
2

-------– 1
2

-------

0 0 1
1 0 0
0 1 0

3
7
--- 2

7
---– 6

7
---

2
7
---– 6

7
--- 3

7
---

6
7
--- 2

7
---– 3

7
---

A Mn n
Av  w v Aw = v w n

5 1
1 5

7 3–
3– 4

0 1 0
1 0 1
0 1 2

2 1– 0
1– 3 1

0 1 2

T: n n
Rn T Sn Sn Sn

n

T a b  2a b+ a 2b+ = T a b  a– 3b+ 3a 5b+ =

T a b c   a 2b 3c+ + 2a b 3a 2c++ =

T a b c   a 2b c+ + 2a 2b a 3c++ =

T a b  3a 2a b+ =

R2 a b  c d   4ac bd+=  1
2
--- 0 
  0 1 
 
 
 

=

T  

T ax2 bx c+ +  a 2b c+ + x2 2ab x 3a 2c+ + +=
P2 ax2 bx c+ +  ax2 bx c+ +  aa bb+ cc+= 

 x2 x 1+ + x 1 x2 1++ =

 1
3

-------x2 1
3

-------x 1
3

-------+ + x2– 1
x
--- 1

2
---+ + 1

4
---x– 1

4
---+ 

 
 
 

=

T  T 
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19. Let  denote the standard Euclidean dot product inner product space. Find a symmetric lin-

ear operator  and a basis  for which .

20. Let  denote the weighted inner product space  with . Find

a symmetric linear operator  and a basis  for which .

21. Let  denote the standard inner product space : .

Find a symmetric linear operator  and a basis  for which 

22. Show that for any  both  and  are symmetric.

23. Show that if  are orthonormally diagonalizable, then so is:

(a)  for every . (b)  (c) 

24. (PMI) Show that if  is orthonormally diagonalizable, then so is  for any posi-
tive integer n.

25. (PMI) Show that if  is orthonormally diagonalizable for , then so is

.

26. Show that if  is an invertible orthonormally diagonalizable matrix, then so is
.

27. Prove that if A is a real symmetric matrix, then the eigenvalues of A are real. 
Suggestion: For , show that , where here  denotes the (complex) conju-
gate or  and  is the n-tuple obtained by taking the conjugate of each entry in the n-tuple v.
Proceed to show that .

28. If  is a symmetric matrices, then so is .

29. If  is a symmetric matrices, then so is .

30. If  are symmetric matrices, then so is . 

31. If  are symmetric matrices, then so is . 

PROVE OR GIVE A COUNTEREXAMPLE

2

T: 2 2  T 
3 2
2 1

=

2 R2 a b  c d   3ac 2bd+=

T: 2 2  T 
3 2
2 1

=

P1 P1 ax b+  ax b+  aa bb+ cc+= 

T: P1 P1  T 
3 2
2 1

=

A Mn n A AT+ AAT

A B Mn n

cA c  A B+ A2

A Mm m An

Ai Mm m 1 i n 

A1 A2
 An+ + +

A Mm m
A 1–

Av v= Av v= 
 v

 vTv   vTv =

A Mn n AT

A Mn n A 1–

A B Mn n A B+

A B Mn n AB
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32.  If  are orthonormally diagonalizable, then so is .

33. If  is orthonormally diagonalizable, then so is .

34. If  is orthonormally diagonalizable, then so is .

35. Let V be an inner product space. If  is a symmetric operator, then so is  for every
.

36. Let V be an inner product space. If  and  are symmetric operators, then so
is .

37. Let V be an inner product space. If  and  are symmetric operators, then so
is .

A B Mn n AB

A Mn n AT

A Mn n A 1–

T: V V cT
c 

T: V V L: V V
T L+

T: V V L: V V
L T
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CHAPTER SUMMARY

DOT PRODUCT The dot product of   and ,
denoted by   , is the real number:

PROPERTIES

positive-definite property:

commutative property:

homogeneous property:

distributive property:

Let , and . Then:

(i) , and  only if 

(ii)

(iii)

(iv)

NORM IN The norm of a vector , denoted by , is given
by:

Denotes length of vector.

ANGLE BETWEEN
VECTORS

The angle  between two nonzero vectors  is given by:

ORTHOGONAL VECTORS Two vectors u and v in  are orthogonal if .

VECTOR 
DECOMPOSITION

Let  and let u be any nonzero vector in . Then:  

where:

 and 

INNER PRODUCT SPACE

positive-definite axiom:

commutative axiom:

homogeneous axiom:

distributive axiom:

An inner product on a vector space V  is an operator which assigns
to any two vectors, u and v in V,  a real number , satisfying the
following four axioms:

(i) , and  only if 

(ii)

(iii)

(iv)

u u1 u2  un   = v v1 v2  vn   =
u v

u v u1v1 u2v2  unvn+ + +=

u v w n  r 

v v 0 v v 0= v 0=

u v v u=

ru v r u v =

u v+  w u w v w+=

n v v1 v2  vn   = v

v v v=

 u v n

 cos 1– u v
u v

--------------- 
 =

n u v 0=

v n n

v v projuv–  projuv+=

projuv v u
u u
----------- 
 u= v projuv–  projuv 0=

u v 

v v  0 v v  0= v 0=

u v  v u =

ru v  r u v =

u v+ w  u w  v w +=
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PROPERTIES For every u, v, and w in an inner product space V:

(a)

(b)

(c)

(d)

(e)

(f)

NORM AND
DISTANCE

The norm (or magnitude) of a vector v in an inner product space V,
denoted by , is given by:

The distance between two vectors u and v in V is given by .

CAUCHY-SCHWARZ
INEQUALITY

For any two vectors  u and v in an inner product space: 

PROPERTIES Let V be an inner product space. For all  and :

(a) , and  if and only if 

(b)

(c)

ANGLE BETWEEN
VECTORS 

The angle  between two nonzero vectors   u and v in an inner prod-
uct space is given by:

ORTHOGONAL VECTORS

ORTHOGONAL SET

Two vectors u and v in an inner product space V are orthogonal if
.

A set S of vectors in an inner product space V is an orthogonal set if
 for every , with .

THEOREM If  is an orthogonal set of non-zero vectors in an inner
product space , then  is a linearly independent set in
V.

UNIT VECTOR A unit vector in an inner product space is a  vector v of magnitude 1.

ORTHONORMAL SET An orthonormal set of vectors in an inner product space is an orthog-
onal set of unit vectors.

0 v  v 0  0= =

u v w+  u v  u w +=

u rv  r u v =

u v– w  u w  v w –=

u v w–  u v  u w –=

v– w  v w–  v w –= =

v
v v v =

u v–

u v  u v

u v V r 

v 0 v 0= v 0=

rv r v=

u v+ u v+



 cos 1– u v 
u v

--------------- 
 =

u v  0=

u v  0= u v S u v

v1 v2  vn   

V v1 v2  vn   
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THEOREM If  is an orthonormal basis in an inner product
space V, then, for any : 

GRAHM-SCHMIDT
PROCESS

An algorithm (page 303) for generating an orthogonal base in any finite
dimensional inner product space.

ORTHOGONAL
COMPLEMENT

The orthogonal complement of a subspace W of an inner product
space: 

PROPERTIES If W a subspace on an inner product space V, then:

(i)  is a subspace of V.
(ii)
(iii) Every vector in V can be uniquely expressed as a sum of a vec-

tor in W and a vector in .
(iv) If  is a basis for W and  is a basis for , then 

is a basis for V.

VECTOR 
DECOMPOSITION

Let  be an orthonormal basis for a subspace W of an
inner product space V, and let . Then, there exists a unique vec-
tor  and  such that:

where: 

and: .

SYMMETRIC MATRIX  is symmetric if .

THEOREMS If  is a (real) symmetric matrix, then its eigenvalues are real.

Any two eigenvectors in the inner product space  corresponding to
distinct eigenvalues of a symmetric matrix  are orthogo-
nal.

 is symmetric if and only if 

for all vectors  (in column form).

 v1 v2  vn   =
v V

v v v1 v1 v v2 v2  v vn vn+ + +=

W u V u w  0 for every  w W= =

W

W W 0 =

W

W 
W W W 

W

v

W w

 u

w1 w2  wm   
v V

w W u W
v w u+=

w v w1 w1 v w2 w2  v wm wm+ + +=

u v w–=

A Mn n AT A=

A Mn n

n

A Mn n

A Mn n

Av  w v Aw =

v w Rn
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SYMMETRIC
 OPERATOR

Let V be an inner product space. A linear operator  is sym-
metric if

 for all vectors .

THEOREMS Let  be a symmetric linear operator on an inner product
space V. If  and  are eigenvectors associated with distinct eigen-
values  and , then  and  are orthogonal.

If  is a symmetric linear operator on an inner product space
V, then  is a symmetric matrix for any orthonormal basis

 of V.

SPECTRAL THEOREM (Linear Operator) A linear operator  on an inner product
space V is symmetric if and only if V contains an orthonormal basis of
eigenvectors of T.

(Matrix)  is symmetric if and only if there exists a diago-

nal matrix D and a matrix P with columns an orthonormal set in 
such that .

T: V V

T v  w  v T w  =
v w V

T: V V
v1 v2

1 2 v1 v2

T: V V
T 

 o1 o2 on  =

T: V V

A Mn n

n

P 1– AP D=
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 APPENDIX A
PRINCIPLE OF MATHEMATICAL INDUCTION

We introduce a most powerful mathematical tool, the Principle of
Mathematical Induction (PMI). Here is how it works:

Step II of the induction procedure may strike you as being a bit
strange. After all, if one can assume that the proposition is valid at

, why not just assume that it is valid at  and be done
with it? Well, you can assume whatever you want in Step II, but if the
proposition is not valid for all n you simply are not going to be able to
demonstrate, in Step III, that the proposition holds at the next value of
n.  Its sort of like the domino theory. Just imagine that the propositions

 are lined up, as if they were
an infinite set of dominoes:

If you knock over the first domino (Step I), and if when a domino falls
(Step II) it knocks down the next one (Step III), then all of the domi-
noes will surely fall. But if the falling  domino fails to knock over
the next one, then all the dominoes will not fall.

 To illustrate how the process works, we ask you to consider the sum
of the first n odd integers, for  through :

Figure 1.1

(PMI)
Let  denote a proposition that is either true or false, depend-
ing on the value of the integer n. 

If: I.  is True.

And if, from the assumption that: II.   is True

one can show that: III.  is also True.

then the proposition  is valid for all integers 

P n 

P 1 

P k 

P k 1+ 

P n  n 1

n k= n k 1+=

P 1  P 2  P 3   P k  P k 1+   

P(1) P(2) P(3) P(4) P(5) P(6)    P(7)    P(8)   P(9)   P(10) .......

The Principle of Mathemati-
cal Induction might have been
better labeled a Principle of
Mathematical Deduction; for:
Inductive reasoning is a pro-
cess used to formulate a
hypotheses or conjecture,
while deductive reasoning is
a process  used to rigorously
establish whether or not the
conjecture is valid. 

kth

n 1= n 5=

n   Sum of the first n odd integers  Sum
1
2
3
4
5

1 1
1 + 3 4

9
16
25

1 + 3 + 5
1 + 3 + 5 + 7

1 + 3 + 5 + 7 + 9

n
      

Sum
1        1
2        4
3        9
4      16
5      25
6      ?
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Looking at the pattern of the table on the right in Figure 1.1, you can
probably anticipate that the sum of the first 6 odd integers will turn out
to be , which is indeed the case. In general, the pattern cer-
tainly suggests that the sum of the first n odd integers is ; a fact that
we now establish using the Principle of Mathematical Induction. 

 Let  be the proposition that the sum of the first n odd integers
equals .

I. Since the sum of the first 1 odd integers is ,  is true.

II. Assume  is true; that is: 

III. We show that  is true, thereby completing the proof:  

SOLUTION: Let  be the proposition:

I.  is true: 

II. Assume  is true: 

III. We are to show that  is true; which is to say, that (*)
holds when :

Let’s do it:  

62 36=
n2

The sum of the first 3 odd
integers is:

The sum of the first 4 odd
integers is:

Suggesting that the sum of
the first k odd integers is:   

     (see Exercise 1).

1 3 5+ + 2 3 1–

1 3 5 7+ + + 2 4 1–

1 3  2k 1– + + +

EXAMPLE 1.1 Use the Principle of Mathematical Induction to
establish the following formula for the sum of
the first n integers:

P n 
n2

12 P 1 

P k  1 3 5  2k 1– + + + + k2=
see margin

P k 1+ 

1 3 5  2k 1– + + + +  2k 1+ + k2 2k 1+ + k 1+ 2= =
  

the sum of the first k 1 odd integers+

induction hypothesis: Step II

1 2 3  n+ + + + n n 1+ 
2

--------------------= (*)

P n 

1 2 3  n+ + + + n n 1+ 
2

--------------------=

P 1  1 1 1 1+ 
2

--------------------= Check!

P k  1 2 3  k+ + + + k k 1+ 
2

--------------------=

P k 1+ 
n k 1+=

1 2 3  k k 1+ + + + + + k 1+  k 1+  1+ 
2

------------------------------------------------ k 1+  k 2+ 
2

----------------------------------= =

1 2 3  k k 1+ + + + + + 1 2 3  k+ + + +  k 1+ +=
k k 1+ 

2
-------------------- k 1+ +=

k k 1+  2 k 1+ +
2

----------------------------------------------- k 1+  k 2+ 
2

----------------------------------= =

induction hypothesis:
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The “domino effect” of the Principle of Mathematical Induction need
not start by knocking down the first domino . Consider the fol-
lowing example where domino  is the first to fall.

SOLUTION: Let  be the proposition .
I.  is true:  , since .
II. Assume  is true: 
III. We show  is true:

SOLUTION: Let  be the proposition :

I.  is true:  .
II. Assume  is true:  (for )
III. We show   is true; namely, that :

Now what? Well, if we can show that , then we
will be done. Let’s do it:

Since  (all we need here is that ): 

Multiplying both sides by the positive number :
.

EXAMPLE 1.2 Use the Principle of Mathematical Induction to
establish the inequality  for all .

P 1 
P 0 

n 2n n 0

III: We need to show that
 holds for

; which is to
say, that: :

n 2n
n k 1+=

k 1 2k 1++

P n  n 2n

P 0  0 20 20 1=
P k  k 2k
P k 1+ 

k 1 2k 1 2k 2k+++ 2 2k  2k 1+= =
    II 1 2k

Recall that:.

n! 1 2  n  =

EXAMPLE 1.3 Use the Principle of Mathematical Induction to
show that  for all integers .n! n2 n 4

P n  n! n2

P 4  4! 1 2 3 4   24 42= =
P k  k! k2 k 4

P k 1+  k 1+ ! k 1+ 2

k 1+ ! k! k 1+  k2 k 1+ =
II

k2 k 1+  k 1+ 2

k 4 k 2
k2 k 1+

k 1+ 
k2 k 1+  k 1+ 2
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Our next application of the Principle of Mathematical Induction
involves the following Tower of Hanoi puzzle:

Start with a number of washers of differing sizes on spindle A,
as is depicted below: 

The objective of the game is to transfer the arrangement cur-
rently on spindle A to one of the other two spindles. The rules
are that you may only move one washer at a time, without ever
placing a larger disk on top of a smaller one.

SOLUTION: If spindle A contains one washer, then simply move that
washer to spindle B to win the game (Step I).
Assume that the game can be won if spindle A contains k washers
(Step II —the induction hypothesis).
We now show that the game can be won if spindle A contains 
washers (Step III):

Just imagine that the largest bottom washer is part of
the base of spindle A. With this sleight of hand, we are
looking at a situation consisting of k washers on a
modified spindle A (see margin). By the induction
hypothesis, we can move those k washers onto spindle
B. We now take the only washer remaining on spindle
A (the largest of the original  washers), and
move it to spindle C, and then think of it as being part
of the base of that spindle. Applying the induction
hypotheses one more time, we move the k washers
from spindle B onto the modified spindle C, thereby
winning the game.

EXAMPLE 1.4 Show that the tower of Hanoi game is winna-
ble for any number n of washers.

A                           B                                 C

...
 new 
base

}k washers{
k 1 wahsers+

k 1+

k 1+
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APPENDIX B
CHECK YOUR UNDERSTANDING SOLUTIONS

CHAPTER 1
MATRICES AND SYSTEMS OF LINEAR EQUATIONS

CYU 1.1  

CYU 1.2  (a) Yes    (b) No [fails (ii)]    (c) Yes     (d) Yes

CYU 1.3  

CYU 1.4 (a) Inconsistent: The last row  corresponds to the equation

 which clearly has no solution.

         (b) 

        (c) 

1 0 7 13
0 1 3– 4–
0 0 15 24

               

1 0 7 13
0 1 3– 4–

0 0 1 8
5
---

                     

1 0 7 13

0 1 0 4
5
---

0 0 1 8
5
---

                   

1 0 0 9
5
---

0 1 0 4
5
---

0 0 1 8
5
---

1
15
------R1 R3 3R3 R2+ R2 7– R3 R1+ R1

x y z+ + 6=
3x 2y z–+ 4=

3x y 2z+ + 11= 



 1 1 1 6

3 2 1– 4
3 1 2 11

          
1 0 0 1
0 1 0 2
0 0 1 3


x 1=
y 2=
z 3=

rref

x   y  z x  y  z

0 0 0 2
0x 0y 0z+ + 2=

1 0 2–
0 1 5
0 0 0

1
4
0


x 0y 2z–+ 1=
0x y 5z+ + 4= 


 x 1 2z+=

y 4 5z–= 



free variable
x  y  z

: 1 2r 4 5r r–+  r  

1 2 0 1
0 0 1 4
0 0 0 0

1
2–

0


x 2y 0z w+ + + 1=
0x 0y z 4w+ + + 2–= 


 x 1 2y– w–=

z 2– 4w–= 



:

1 2r– s– r 2– 4s s r s R–  

free variables
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CYU 1.5   

(a) 

(b) 

CYU 1.6   (a) 

(b) 

4x 2y– z+ a=
2x– 4y 2z+ + b=

5x y– 4z+ c= 



 4 2– 1 a

2– 4 2 b
5 1– 4 c



1 0 0 a 7
18
------b 4

9
---c–+

0 1 0 a 11
18
------ 5

9c
------–+

0 0 1 a– 1
3
---b– 2

3
---c+

: 

x a 7
18
------b 4

9
---c–+=

y a 11
18
------ 5

9c
------–+=

z a– 1
3
---b– 2

3
---c+=

rref

Solution for all a, b, and c

x 4y– 4z– a=
2x 8y 12z–+ b=
x– 12y 2z+ + c= 




 1 4– 4– a

2 8 12– b
1– 12 2 c



1 0 5– a b 2a–
4

---------------+

0 1 1
4
---– b 2a–

16
---------------

0 0 0 c 3a b+ +

after two cycles

The system is consistent if
and only if c 3a b+ + 0=

S:  
3x 7y z–+ a=

13x 4y– 2z+ b=
2x 4y– 2z+ c= 






              
3 7 1–
13 4– 2
2 4– 2

                   
1 0 0
0 1 0
0 0 1

rref coef S  

system has a solution for all values of a, b, and c
does not contain a row of zeros:

coef(S)

rref coef S  

system does not have a solution for all values of a, b, c, and d
 contain a row of zeros:

S:  

x 3y– w+ a=
3x y– 2z 3w–+ b=

x z 5w–+ c=
2x y– 3z 2w–+ d= 








          

1 3– 0 1
3 1– 2 3–
1 0 1 5–
2 1– 1 2

                 

1 0 0 10
0 1 0 3
0 0 1 15–
0 0 0 0

coef(S)
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CYU 1.7   

CHAPTER 2
VECTOR SPACES

CYU 2.1

CYU 2.2 (iv):  (in ): 

 If  , then: 

(in ): If , then:

 

CYU 2.3  For  and :

 

CYU 2.4   

CYU 2.5  

2x 3y 4z 5w+ + + 0=
3x y 4z w+ + + 0=

x 7y 4z 11w+ + + 0= 





              
2 3 4 5
3 1 4 1
1 7 4 11

1  0 0   2–
0  1 0   1

0  0  1  3
2
---

x  y     z   w
x    y    z       w

coef S 
S :

rref

Setting the free varialble w to r we arrive at the system:
x 2r– 0=
y r+ 0=

z 3
2
---r+ 0= 






 Solution set:  2r r– 3
2
---r– r  

  r R
 
 
 

4r 2r– 3r– 2r   r R =

rv sw+ 2 3 2 2–   3–  3 1 0 – + 6 4 4–   9 3– 0  + 15 1 4–  = = =

v v– + 0= 2

v v1 v2 = v v– + v1 v2  v1– v2– + v1 v1– v2 v2–   0 0  0=
Definition 2.5 Definition 2.3              Definition 2.4

PofR

n v v1 v2  vn   =

v v– + v1 v2  vn    v– 1 v2–  v– n   + v1 v1– v2 v2–  vn vn–     0 0 0   0=

A aij = Mm n r s 

r sA  r s aij   r saij  r saij     rs aij  rs  aij  rs A =

aix
i

i 0=

n

 bix
i

i 0=

n

+ ai bi+ xi

i 0=

n

 bi ai+ xi

i 0=

n

 bix
i

i 0=

n

 aix
i

i 0=

n

+=

r s+ f  x  r s+  f x   r f x   s f x  +=  rf  x  sf  x +
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CYU 2.6 The Zero Axiom: We need to find  such that for any :

 
Let’s verify directly that  does indeed equal  for every

: .

The Inverse Axiom: For given  we are to find  such that

, which is to say:

It is easy to verify, directly that: .

CYU 2.7  Since  must be closed under addition and scalar multiplication we have no choice
but to define:  and  for every . It is easy to see that all eight axioms of Defi-
nition 2.6 hold. We establish (v): If , then they must both be . Consequently:

. Hence: .

As for (iii) and (iv), simply note that 0 is certainly the zero vector in V and that it is also its own inverse. 

CYU 2.8       CYU 2.9  

CYU 2.10 (a)                 (b) 

0 a b c  = x y z   V

x a 1 y b 2 z c 3–++ +–+  x y z  
x a 1–+ x=
y b 2+ + y=
z c 3–+ z=

=
a 1=
b 2–=
c 3=



x y z   a b c  + x y z  , which is to say:=

1 2– 3   x y z  + x y z  

x y z   V 1 2– 3   x y z  + 1 x 1–+ 2– y 2+ + 3 z 3–+   x y z  = =

x y z   V a b c  

x y z   a b c  + 0=

x a 1 y b 2 z c 3–++ +–+  1 2– 3  
x a 1–+ 1=

y b 2+ + 2–=
z c 3–+ 3=

=
a x– 2+=
b y– 4+=
c z– 6+=



x y z+ +  x– 2+ y– 4+ z– 6+  + 1 2– 3  =

V 0 =
0 0+ 0= r0 0= r 

u v V 0
r u v+  r 0 0+  r0 0  and  ru rv r0 r0++ 0 0 0+   r u v+  ru  rv +=

v z+ w z+=
v z+  z– + w z+  z– +=

v z z– + + w z z– + =
v 0+ w 0+=

v w=

r0 r 0 0+ =
r0 r0 r0+=

r0 r0– + r0 r0+  r0– +=
0 r0 r0 r0– + +=
0 r0 0+=
0 r0=

Start with:

Conclusion:

rv rw=
1
r
--- rv  1

r
--- rw =

1
r
---r 
  v 1

r
---r 
 w=

1v 1w=
v w=Axiom (viii):

rv sv=
rv sv – + sv sv – +=
rv s v – + 0=

r s– v 0=
r s– 0=

r s=
Theorem 2.8:
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CYU 2.11  (a) 

    (b) 

    (c) 

CYU 2.12 (a) 

(b) I.  Claim holds for   [by part (a)].

    II. Assume . (The induction hypothesis)

   III. We show that :

CYU 2.13 Since , . S is closed under addition:

S is closed under scalar multiplication:

CYU 2.14 Since , . For any  and :
 is back in S, since: 

               

CYU 2.15 Since the zero of that vector space is the zero function  which maps every 
number to zero, and since , S does not contain the zero vec-
tor and is therefor not a subspace of .

CYU 2.16 Since , . For any
                  :

                    

v– – 1–  1– v  1–  1–  v 1v v= = = =

r– v 1– r v 1–  rv  rv–= = =

r v–  r 1– v  r 1–  v 1–  rv  rv –= = = =

v w+ – 1–  v w+  1– v 1– w+ v– w– + v– w–= = = =

n 2= v1 v2+ – v1– v2–=

v1 v2
 vk+ + + – v1– v2– – vk–=

v1 v2
 vk vk 1++ + + + – v1– v2– – vk– vk 1+–=

v1 v2
 vk vk 1++ + + + – v1 v2

 vk+ + +  vk 1++ –=

v1 v2
 vk+ + + – vk 1+–=

v1– v2– – vn–  vk 1+– v1– v2– – vk– vk 1+–= =

By I:

By II:

0 0
0 0

S S 

For any a 2a
a– 0

b 2b
b– 0

S:  a 2a
a– 0

b 2b
b– 0

+ a b+  2 a b+ 
a b+ – 0

S=

For any a 2a
a– 0

S  and r :  r a 2a
a– 0

 ra  2 ra 
ra – 0

S=

0 0 0    S S  x y z   a b c   S r 
r x y z   a b c  + rx a+ ry b rz c++ =

rx a+  ry b+  rz c+ + + r x y z+ +  a b c  + r0 0+ 0= = =

Z:  
S f F   f 9  0= =

F  

0 0 0   S S 
16a 2b 4a 17b 11a 11b ––  16x 2y 4x 17y 11x 11y ––  S   and r  

r 16a 2b 4a 17b 11a 11b ––  16x 2y 4x 17y 11x 11y –– +
16 ra x+  2 rb y+ – 4 ra x+  17 rb y+  11 ra x+  11 ra x+ – =
16A 2B 4A 17B 11A–– 11B , where A ra x  and  B+ ra x+= = =



B-6    CYU SOLUTIONS

CYU 2.17 False. The subsets  and  are not subspaces of  since neither 

is close under addition (nor under scalar multiplication), yet  is a subspace of .

CYU 2.18  (a) For  and :

                              

(b) Since :

                                

CYU 2.19 Choosing  and  in  we obtain the 
two points ,  on L. Preceding 
as in Example 2.14 we arrive at a direction vector . Select-
ing  as our translation vector, we have: 

, which we now show 
to be equal to the set : 

                         

CYU 2.20 Choosing  to play the role of w, instead of  we obtain:

which we show to be equal to the set :

Equating the first two components of  and P we obtain: .

Multiplying equation (1) by  and adding it to equation (2) we find that . Substituting in (1) 
we then find that ; bringing us to:

  

S 0 1 = T 0 2 = 

S T 0 = 

v 2 1 3 5––  1 2– = = u 2 3 =

u rv r +  2 3  r 1 2– +  2 r+ 3 2r–  = =

1 r+ 5 2r–  2 r 1– + 3 2 r 1– – =

1 r+ 5 2r–  r   2 r+ 3 2r–  r  =

r 1–= r 1= L 1 3 5   r 2 1 1–   r + =
1 3 5   2 1 1–  – 1– 2 6  = 1 3 5   2 1 1–  + 3 4 4  =

v 3 4 4   1– 2 6  – 4 2 2–  = =
u 3 4 4  =

L 3 4 4   r 4 2 2–   r +  3 4r+ 4 2r+ 4 2r–   r  = =
L 1 3 5   r 2 1 1–  + r   1 2r+ 3 r+ 5 r–   r  = =

3 4r+ 4 2r+ 4 2r–   1 2r+ 3 r+ 5 r–  ,  were  r r 1–
2

-----------= =

4 1 3–   3 2– 2  

P w ru sv r s + + =

4 1 5–   r 1– 7 5–   s 1 3 5–   r s + + =

4 r– s 1 7r 3s+ ++ 5– 5r– 5s–  r s  =

P w ru sv r s + + =
3 2– 2   r 1– 7 5–   s 1 3 5–   r s + + =
3 r– s 2– 7r 3s 2 5r– 5s–+ ++  r s  =

P
1 : 4 r– s+ 3 r– s+=

2 : 1 7r 3s+ + 2– 7r 3s+ +=

3– r r=
s s 1–=

4 r– s 1 7r 3s+ ++ 5– 5r– 5s–  3 r– s 2– 7r 3s 2 5r– 5s–+ ++ =
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CHAPTER 3
BASES AND DIMENSIONS

CYU 3.1 (a) No:  

(b) Yes: 

CYU 3.2 (a) We are to show that for any given matrix  there exist scalars  for which

Since  does not contain a row consisting entirely of zeros, the system S 
[which stems from (*)] has a solution for any given .

(b) 

a 2b+ 2–=
3a 5b+ 3–=
8a 4b+ 8= 






1 2  2–
3 5 3–
8 4 8

1 0  0
0 1 0
0 0 1

        

a   b a   b

rrefS:
aug S 

No solution!

a 2b+ 2–=
3a 5b+ 4–=
8a 4b+ 8= 






1 2  2–
3 5 4–
8 4 8

1 0  2
0 1 2–
0 0 0

        

a   b a   b

rrefS:
aug S 

2– 4– 8–  2 1 3 8   2 2 5 4  –=

a b
c d

x y z w  

x 1 2
3 4

y 1 0
1 0

z 0 1
0 1

w 0 4
2 0

+ + + a b
c d

:=

x y+ 2x z 4w+ +
3x y 2w+ + 4x z+

a b
c d

=

x y 0z 0w+ + + a=
2x 0y z 4w+ + + b=
3x y 0z 2w+ + + c=
4x 0y z 0w+ + + d= 








           

1 1 0 0
2 0 1 4
3 1 0 2
4 0 1 0

           

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

S: coef(S) [rref(coef(S)]

(*)

rref coef S  
a b c d  

x y 0z 0w+ + + 1–=
2x 0y z 4w+ + + 5=
3x y 0z 2w+ + + 1=
4x 0y z 0w+ + + 13= 








              

1 1 0 0 1–
2 0 1 4 5
3 1 0 2 1
4 0 1 0 13

              

1 0 0 0 2
0 1 0 0 3–
0 0 1 0 5
0 0 0 1 1–

aug(S) rrefS:

from the above we see that: 2 1 2
3 4

3– 1 0
1 0

5 0 1
0 1

1– 0 4
2 0

+ 1– 5
1 13

=
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CYU 3.3 We are to find the set of vectors  for which there exist scalars x, y, z, such that:
:

Note that in the above we didn’t bother to reduce the coefficient matrix to its row-reduced-echelon
forms with 0’s above and below leading ones. Rather, we obtained its row-echelon form with 0’s
only below the leading ones [see Exercises18-22, page 12]. This still enables us to determine

, for it consists of all vectors  for which
, which is equivalent to:  or .

Conclusion: .
Any vector  for which , say (1,2,3), will not be in the spanning set.

CYU 3.4 For given  we are to find scalars A,B,C such that
. Since  span V, there exist scalars a,b,c such

that . Equating these two expressions for v we have:

 

Bringing us to:  with solution: 

CYU 3.5

CYU 3.6  

a b c  
a b c   x 2 1 5   y 1 2– 2   z 0 5 1  + +=

2x y 0z+ + a=
x 2y– 5z+ b=
5x 2y z+ + c= 




 2 1 0 a

1 2– 5 b
5 2 1 c

1 2– 5 b
2 1 0 a
5 2 1 c

1 2– 5 b
0 5 10– a 2b–
0 12 24– c 5b–

1 2– 5 b

0 1 2– a 2b–
5

---------------

0 0 0 c 5b– 12 a 2b– 
5

--------------------------–

  

Span 2 1 5   1 2– 2   0 5 1     a b c  

c 5b– 12 a 2b– 
5

--------------------------– 0= 12a b 5c–+ 0= b 5c 12a–=

Span 2 1 5   1 2– 2   0 5 1     a b c   b 5c 12a–= =
a b c   b 5c 12a–

v V
v Av1= B v1 v2+  C v1 v2 v3+ + + + v1 v2 v3  

v av1= bv2 cv3+ +
Av1 B v1 v2+  C v1 v2 v3+ + + + av1 bv2 cv3+ +=

A B C+ + v1 B C+ v3 Cv3+ + av1 bv2 cv3+ +=

A B C+ + a=
B C+ b=

C c= 



 C c=

B b C– b c–= =
A a B– C– a b c– – c– a b–= = =

ax2 b 2x2 x+  c x 3– + + 0=
a 2b+ x2 b c+ x 3c–+ 0=

a 2b 0c+ + 0=
0a b c+ + 0=

0a 0b 3c–+ 0= 



 1 2 0

0 1 1
0 0 3–

           
1 0 0
0 1 0
0 0 1


rref

No free variable 
Linearly independent

av1 b v1 v2+  c v1 v2 v3+ +  d v1 v2 v3 v4+ + + + + + 0=

a b c d+ + + v1 b c d+ + v2 c d+ v3 dv4+ + + 0=

(we are to show
a b c d 0 = = = =

a b c d+ + + 0=
b c d+ + 0=

c d+ 0=
d 0= 








a b c d 0= = = =

Since                             is
linearly independent:

v1 v2 v3 v4   
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CYU 3.7

 

CYU 3.8 Linear dependent since: . 

 since: .

From the above rref-matrix we see that  for any

a,b, and c for which . Letting  we get  and , giving us the linear

combination . Letting  we get  and
, giving us another linear combination .

CYU 3.9   and  are clearly linearly independent. Since  cannot be “built” from those
vectors,  is linearly independent. Can  be “built” by those three vectors? No; so

 is linearly independent. Just to make sure: 

(Incidentally, if you throw in any two randomly chosen vectors from  into  chances
are really good that you will end up with a linearly independent set. Try it.)

A a1 a2 a3 a4    B b1 b2 b3 b4    C c1 c2 c3 c4    D d1 d2 d3 d4    E e1 e2 e3 e4   + + + + 0=

a1 b1 c1 d1 e1

a2 b2 c2 d2 e2

a3 b3 c3 d3 e3

a4 b4 c4 d4 e4

rref must have a free variable
(5 variables and 4 equations )

2 5 11
1 0 3
3 2 11

         
1 0 3
0 1 1
0 0 0

rref

8 4 12   Span 2 1 3   5 0 2   11 3 11    
2 5 11 8
1 0 3 4
3 2 11 12

         
1 0 3 4
0 1 1 0
0 0 0 0

rref

a 2 1 3   b 5 0 2   c 11 3 11  + + 8 4 12  =
a 3c+ 4=

b c+ 0=
c 0= a 4= b 0=

8 4 12   4 2 1 3   0 5 0 2   0 11 3 11  + += c 1= a 1=
b 1–= 8 4 12   2 1 3   5 02 – 11 3 11  +=

x3 x+ 7– x2

x3 x+ 7 x2–  x3

x3 x+ 7 x2– x3  

a x3 x+  b 7–  cx2 dx3+ + + 0=
a d+ x3 cx2 ax b 7– + + + 0=

1 0 0 1
0 0 1 0
1 0 0 0
0 7– 0 0

            

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

a  b  c  d

rref

P3 x3 x+ 7– 
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CYU 3.10

CYU 3.11 If  is a basis, then it spans V insuring us that every vector in V can
be expressed as a linear combination of the vectors in S. Being a basis, S is also linearly independent,
and Theorem 3.6, page 89 insures us that the representation is unique.
Conversely, if every vector in V can uniquely be expressed as a linear combination of the vectors
in S then S certainly spans V. To show that it is also linearly independent consider

. Since , and since we have unique repre-
sentation:  for .

CYU 3.12 We show that  is a basis for the space V of Example 2.5.
S spans V: For  can we find  such that ? Yes:

Check: 

S is linearly independent: Recalling that  is the zero vector in S we start with the equation
 and go on to show that :

x 2 1
3 0

y 1 1
2 2

z 3– 0
5– 5–

w 0 4
1 5

+ + + a b
c d

=

x 2 1
3 0

y 1 1
2 2

z 3– 0
5– 5–

w 0 4
1 5

+ + + 0 0
0 0

=

           

2 1 3– 0
1 1 0 4
3 2 5– 1
0 2 5– 5

       

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

For spanning:

For linear independence:

coefficient matrix rref
Spans: Does not contain a row
consisting entirely of zeros.

Linearly Independent: each row
ha s leading one.

S v1 v2 vn  =

c1v1 c2v2  cnvn+ + + 0= 0v1 0v2  0vn+ + + 0=
ci 0= 1 i n 

S 1 0  0 1  =
a b  V r s  a b  r 1 0  s 0 1 +=

a b  r 1 0  s 0 1 +=
r r– 1+ r 1–  s– 1 s s 1–++ +=
1 r 1–  s– 1+ 2s 1– +=

s– 1+ r 1– 2s 1– 1+ + =
s– 1+ 2s r 1–+ =

Since r x y  rx r– 1– ry r 1–+ :=

Since x y  x y + x x 1–+ y y 1+ + :=

a s– 1+=
b 2s r 1–+= 




s a– 1  and  r+ b 2a 1–+= =

equating coefficients

r 1 0  s 0 1 + b 2a 1–+  1 0  a– 1+  0 1 +=
b 2a– 1–  b 2a 1–+ – 1+ b 2a 1–+  1–  a– 1+ – 1+ a– 1+  1– +=

1 b 2a 2–+  a 2a– 1+ + 1 a 1–+ b 2a 2–+  a 2a– 1+  1–+  a b = = =

1 1– 
a 1 0  b 0 1 + 1 1– = a b 0= =

a 1 0  b 0 1 + 1 1– =
1 a 1–  b– 1+ b b 1–+ + 1 1– =

1 a 1–  b– 1+ 2b 1– + 1 1– =
1 b– 1 1–+ a 1– 2b 1– 1+ +  1 1– =

1 b– a 1– 2b+  1 1– =

1 b– 1=
a 1– 2b+ 1–= 




  solution: a b 0= =
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CYU 3.13 (a) Knowing that  has dimension 4, we simply have to add two vectors to

 without rupturing linear independence. By now, you may be convinced that

if you add any two randomly chosen vectors, say  and , chances are good that you

will end up with a set of four independent vectors, and therefore a basis for . Let’s make sure
that we do:

(b) Here is a brute force approach to obtain a basis for Span(S). We start with the first vector in
: . Since the second

vector is easily seen to be a multiple of the first, we discard it and turn our attention to the third
vector . Since that vector is not a multiple of , we throw it into that set to
obtain the two independent vectors . Can the vector  be built
from those two independent vectors? Yes:

 

Since we are looking for a maximal independent set, we discard  and turn our attention
to the last remaining vector . Is it independent of the vectors ?
Clearly not, since . 
Conclusion:  is a basis for Span(S). Since  is of dimension 3, S does

not span .

CYU 3.14: 

M2 2

L 2 1
1 2

2 2
1 1


 
 
 

=

1 5
1– 1

0 1
2– 6

M2 2

a 2 1
1 2

b 2 2
1 1

c 1 5
1– 1

d 0 1
2– 6

+ + + 0 0
0 0

=
2 2 1 0
1 2 5 1
1 1 1– 2–
2 1 1 6

         

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

a  b  c   d

rref

S 3 1 2–  9 3 6– –  1 2 2–   5 4 6– –  6 2 4–     = 3 1– 2   

1 2 2–   3 1– 2   
3 1– 2   1 2 2–    5 4 6– – 

3 1 5–
1– 2 4

2 2– 6–
         

1 0 2–
0 1 1
0 0 0

2 3 1 2– – 1 1 2 2–  + 5 4 6– – =rref

5 4 6– – 
6 2 4–  3 1– 2   1 2 2–   

6 2 4–  2 3 1 2– =
3 1– 2   1 2 2–    3

3

3 9– 1 5– 6
1– 3 2 4 2–

2 6– 2– 6– 4
          

1 3– 0 2– 2
0 0 1 1 0
0 0 0 0 0

   Basis for Span S  3 1– 2   1 2 2–   =rref

first vector

third vector



B-12    CYU SOLUTIONS

CHAPTER 4
LINEARITY

CYU 4.1 The function  given by  is linear.
f preserves sums:

 

f preserves scalar products: 

CYU 4.2 Since , f is not linear.

CYU 4.3

CUU 4.4 A counterexample: The trivial function  given by  for every 
is linear. The set  is not a subspace of  , but  is a subspace of .

CUU 4.5 True: The proof of Theorem 4.5 makes no mention of linear independence.

CUU 4.6 (a) We first express  as a linear combination of the basis
:

Then:  

(b) Expressing  as a linear combination of the given basis we have:

f: 2 3 f a b  a b 2b a b–+ =

f a b  a b +  f a a b b+ + =
a a+  b b+ + 2 b b+  a a+  b b+ –  =

a b+ 2b a b–  a b+ 2b a b– + f a b  f a b += =

f r a b   f ra rb  ra rb 2rb ra rb–+ = =
r a b+ 2b a b–  rf a b = =

f 0 0  0x2 0x 1+ + 1 0= =

f r a b  a b +  f ra a rb b+ + =
ra a+  rb b+ + 2 rb b+  ra a+  rb b+ –  =
ra rb+  a b+ + 2rb 2b ra rb–  a b– ++ =

ra rb+ 2rb ra rb–   a b+ 2b a b–  +=
r a b+ 2b a b–  a b+ 2b a b–  + rf a b  f a b += =

T:   T x  0= x 

S +=  f S  0 = 

3 4 2  
1 0 0   0 2 0   1 1 1    

3 4 2   a 1 0 0   b 0 2 0   c 1 1 1  + +=
a c+ 2b c+ c  =

a c+ 3=
2b c+ 4=

c 2= 





c 2 b 1 a 1= = =

T 3 4 2   T 1 0 0   0 2 0   2 1 1 1  + + =
T 1 0 0   T 0 2 0   2T 1 1 1  + +=
2x2 x+  2x2 x+  2 x 5– + + 4x2 4x 10–+= =

By linearity:

a b c  

a b c   A 1 0 0   B 0 2 0   C 1 1 1  + +=
A C+ 2B C+ C  =

A C+ a=
2B C+ b=

C c= 





C c B b c–
2

----------- A a c–= = =
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Then: 

CYU 4.7 (a)  is easily seen to be linearly independent, and therefore a basis of .
 is easily seen to be linearly independent and therefore a basis of .

(b) From the given information, we have:

To determine , we need to express  as a linear
combination of the basis . Let’s do it:

Then: 

To determine  , we first express  as a linear combination of :
; so:

 
Putting this together we find that: 

CYU 4.8  (a):

T a b c   T a c–  1 0 0   b c–
2

----------- 0 2 0   c 1 1 1  + +=

a c– T 1 0 0   b c–
2

-----------T 0 2 0   cT 1 1 1  + +=

a c–  2x2 x+  b c–
2

----------- 2x2 x+  c x 5– + +=

2a b 3c–+ x2 a b
2
--- c

2
---–+ 

  x 5c–+=

1 0  1 1   2

0 1 0   1 1 0   0 1 1     3

LT  1 0  L T 1 0  =
L 0 2 0   L 2 0 1 0    2L 0 1 0   2 0 1  0 2 = = = = =

LT  1 1  L T 1 1   L 1 0 1  = = 1 0 1  
0 1 0   1 1 0   0 1 1    

1 0 1   a 0 1 0   b 1 1 0   c 0 1 1  + +=
b a b c+ + c  =

b 1=
a b c+ + 0=

c 1= 





c 1 b 1 a 2–= = =

LT  1 1  L T 1 1   L 1 0 1  = =
L 2 0 1 0  – 1 1 0   0 1 1  + + =

2L 0 1 0  – L 1 1 0   L 0 1 1  + +=
2 0 1 –= 1 0  1 0 + + 2 2– =

LT  a b  a b  1 0  1 1  
a b  A 1 0  B 1 1 + A B B+  B b and A a b–= = = =

a b  a b–  1 0  b 1 1 +=

LT  a b  LT  a b–  1 0  b 1 1 + =
a b–  LT  1 0   b LT  1 0  +=
a b–  0 2  b 2 2– + 2b 2a 4b– = =

T r ax2 bx c+ +  a'x2 b'x c'+ + +  T ra a'+ x2 rb b'+ x rc c'+ + + =

ra a'+ rb b'+
rc c'+ ra a'+

r a b
c a

a' b'
c' a'

+= =

rT ax2 bx c+ +  T a'x2 b'x c'+ + +=
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(b) The vectors , ,  span  (Theorem 4.9), and

they are easily seen to be linearly independent. Consequently: .

By definition,  

Consequently,  and therefore 

CYU 4.9 We first show that :

 
At this point we know that  and that the kernel has no basis. Since

, Im(T) has dimension 3. It is easy to see that the three vectors
 in the image of T

are linearly independent. It follows that  is a basis for
Im(T).

CYU 4.10 Let  be such that . We establish that T is one -to-one
by showing that  [see Theorem 4.11(a)]:

Assume that  (we want to show that ). Consider the vector . 
By linearity we have: .
From (*) and the fact that  we have: 

CYU 4.11  is one-to-one: 

 is onto: For any , .

CYU 4.12 T is one-to-one: 

T x2  1 0
0 1

= T x  0 1
0 0

= T 1  0 0
1 0

= Im T 

rank T  3=

Ker T  ax2 bx c+ + T ax2 bx c+ +  0= =

ax2 bx c+ + a b
c a

0 0
0 0

=
 
 
 

a b c 0= = = =

Ker T  0 = nullity T  0=

Ker T  0 =

T a b c   0 2a b c c b +  0 0 0 0    = =

2a 0=
b c+ 0=

c 0=
b 0= 








a b c 0= = =

nullity T  0=
rank T  0+ 3=
T 1 0 0   2 0 0 0    T 0 1 0   0 1 0 1    T 0 0 1   0 1 1 0   = = =

2 0 0 0    0 1 0 1    0 1 1 0     

v V T v  T v  v v= = (*)
Ker T  0=
T v  0= v 0= v v+

T v v+  T v  T v + 0 T v + T v = = =
T v v+  T v = v v+ v=

v 0=

f 1– : Y X

f 1– a  f 1– b  f f 1– a   f f 1– b    ff
1–  a  ff

1– b a b= = = =

f 1– : Y X x X f 1– f x   f 1–
f x x= =

T a b  T a' b'  a b+ x a– a' b'+ x a'–= =

a a'=
a b+  a' b'+= 




a a' and b= b'=Equating coefficients:
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T is onto: For given , we need to find  such that:

Check: .

Determining : Let . Then:

From the above: . Let’s show that the function  given by
 is linear:

 

CYU 4.13 We show that  given by  is an isomorphism:

T is one-to-one: 

T is onto: For given , .

T is linear: .

CYU 4.14 Let . By Theorem 4.15,  and . By Theorem
4.14, . 

Conversely, suppose that . Let  be an isomorphism, and let 
be a basis for V. We show  is a basis for W, thereby establishing that
V and W are of the same dimension, n.

ax b P1+ A B  2

T A B  A B+ x A– ax b+= =
A– b=

A B+ a= 



A b  and  B– a A– a b+= = =Equating coefficients:

T b– a b+  b– a b+ + x b– – ax b+= =

T 1– T 1– ax b+  A B =

ax b+ T A B  ax b+ A B+ x A–= =

A– b=
A B+ a= 




A b  and  B– a A– a b+= = =Equating coefficients:

Applying T to both sides:

T 1– ax b+  b– a b+ = L: P1 2
L ax b+  b– a b+ =

L r ax b+  a'x b'+ +  L ra a'+ x rb b'+ + =
rb b'+ – ra a'+  rb b'+ + =

r b a b+–  b' a' b'+– + rL ax b+  L a'x b'+ += =

T: 4 M2 2 T a b c d    a b
c d

=

T a b c d    T a' b' c' d '    a b
c d

 a' b'
c' d '

= = a a' b b' c c' d d '= = = =

a b
c d

M2 2 T a b c d    a b
c d

=

T r a b
c d

a b
c d

+
 
 
 

T ra a+   rb b+
rc c+   rd d+

 rT a b
c d

T a b
c d

+= =

dim V  dim W  n= = V n W n
V W

V W T: V W V v1 v2  vn   =
S T v1  T v2   T vn    =
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S is linearly independent:  

S spans W: Let . Since T is onto, there exist  such that . Then: 

CYU 4.15 By CYU 4.15, we know that the dimension of W equals that of V. We can therefore
verify that  is a basis for W by showing that the n vectors

 span W (see Theorem 3.11, page 99):

 Let . Since L is onto, there exist  such that . Since L is

linear: .

CYU 4.16  Lets move the elements of: 

 over to  via the isomorphism  to arrive at the 4-tuples:

  
Applying Theorem 3.13, page 103, we conclude that the first
two vectors of , , consti-
tute a basis for . It follows that

 is a basis for Span(S).   

CYU 4.17 (a)  is one-to-one:

aiT vi 

i 1=

n

 0= T aivi

i 1=

n


 
 
 
 

 0= aivi

i 1=

n

 0 ai 0 for 1 i n = =

since T is linear Theorem 4.11(a), page 129

since V is  a linearly independent set

w W v aivi

i 1=

n

= T v  w=

w T v  T aivi

i 1=

n


 
 
 
 

aiT vi 

i 1=

n

= = =

since T is linear

L v1  L v2   L vn    
L v1  L v2   L vn    

w W v aivi

i 1=

n

= L v  w=

w L v  ai L vi 
i 1=

n

= =

S 2x3 3x2– 5x 1–+ x3 x2– 8x 3–+ x2 11x 5–+ x3– 2x2 3x 2–+ +   =

4 T ax3 bx2 cx d+ + +  a b c d   =

T S  2 3– 5 1–    1 1 8 3– –  0 1 11 5–    1– 2 3 2–      =

2 1 0 1–
3– 1– 1 2

5 8 11 3
1– 3– 5– 2–

            

1 0 1– 1–
0 1 2 1
0 0 0 0
0 0 0 0

rref
T S  2 3– 5 1–    and 1 1 8 3– – 

Span T S 

2x3 3x2– 5x 1–+  and x3 x2– 8x 3–+

f x y z   2x 1+ x y z–+ =

f x1 y1 z1   f x2 y2 z2  =

2x1 1+ x1 y1 z1–+  2x2 1+ x2 y2 z2–+ 

2x1 1+ 2x2 1+=

x1 y1+ x2 y2+=

z1– z2–=

x1 x2=

y1 y2=

z1 z2=













=
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f is onto: For given  we need to find  such that:

From the above formula: , we conclude that:

 

(b) From Theorem 4.16 and the above formula  we have:

and: 

(c) The zero in the space X: . 

     The inverse of  in X: 

x y z   X a b c   3

f a b c   x y z  =

2a 1+ a b+ c–   x y z  
2a 1+ x=
a b+ y=

c– z=



 a x 1–

2
-----------=

b y a– y x 1–
2

-----------–= =

c z–=







 =

f x 1–
2

----------- y x 1–
2

-----------– z–  
  x y z  =

f 1– x y z   x 1–
2

----------- y x 1–
2

-----------– z–  
 =

f 1– x y z   x 1–
2

----------- y x 1–
2

-----------– z–  
 =

x1 y1 z1   x2 y2 z2   f
x1 1–

2
-------------- y1

x1 1–
2

--------------– z1–  
  x2 1–

2
-------------- y2

x2 1–
2

--------------– z2–  
 +=

f
x1
2
-----

x2
2
----- 1–+ y1 y2

x1
2
-----–

x2
2
----- 1+–+ z1– z2–  

 =

2
x1
2
-----

x2
2
----- 1–+ 

  x1
2
-----

x2
2
----- 1– y1 y2

x1
2
-----–

x2
2
-----– 1+ + + + z1– z2– – =

x1 x2 2–+ y1 y2+ z1 z2+  =

Since f x y z   2x x y z–+ :=

r x y z   f r x 1–
2

----------- y x 1–
2

-----------– z–  
  f rx r–

2
------------- ry rx r–

2
-------------– rz–  

 = =

2 rx r–
2

------------- rx r–
2

------------- ry rx r–
2

-------------–+ rz– –  
 =

rx r– ry rz  =
Since f x y z   2x x y z–+ :=

f 0 0 0   1 0 0  =

x y z  

f f 1– x y z  –  f x 1–
2

----------- y x 1–
2

-----------– z–  
 – f x– 1+

2
---------------- y– x 1–

2
-----------+ z  

  x– 2+ y z– = = =

f 1– x y z   x 1–
2

----------- y x 1–
2

-----------– z–  
 = f x y z   2x 1+ x y z–+ =
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CHAPTER 5
MATRICES AND LINEAR MAPS

CYU 5.1 (a)   

(b) Number of columns in A does not equal the number of rows in B.

CYU 5.2 False: 

CYU 5.3  

Since A and rref (A) share a row space,  constitutes a basis for the

row space of A. Note that the first two rows of A are not linearly independent. We are assured,
however, that two of A’s rows will constitute a basis for its row space (either rows 1 and 3, or
rows 2 and 3, will do the trick).

CYU 5.4 If  and  are solutions of the homogeneous system of m equations in n unknowns
of equations, , and if , then:

 
     It follows, from Theorem2.13, page 61, that the solutions set of  is a subspace of .

CYU 5.5 From , we see that: 

CYU 5.6 Let . By definition:

Since  equals the number of free variables in  and since  equals the
number of leading ones in : . By Theorem 4.10, page 126:

. Since : .

3 5
4 2
9 0

6 4
3 5

3 6 5 3    + 3 4 5 5+
4 6 2 3    + 4 4 2 5+
9 6 0 3    + 9 4 0 3+

33 37
30 26
54 36

= =

1 1
1 1

1 2
0 0

+
 
 
  2

1 1
1 1

1 2
0 0

+
 
 
  1 1

1 1
1 2
0 0

+
 
 
  2 3

1 1
2 3
1 1

7 7
3 4

= = =

1 1
1 1

1 1
1 1

2 1 1
1 1

1 2
0 0

1 2
0 0

1 2
0 0

+ + 2 2
2 2

2 4
2 4

+= 1 2
0 0

+ 5 8
4 6

=While:

The columns associated with the leading 
ones in rref(A); namely: 

2 4 0–  and 5 10– 1  
constitute a basis for the column space 
of A.

2 5 3– 4
4– 10– 6 8–

0 1 2 4–
          

1 0 13
2
------– 12

0 1 2 4–
0 0 0 0

rref

1 0 13
2
------– 12   

   and 0 1 2 4–   

X1 X2
AX 0= r 

A rX1 X2+  rAX1 AX2+ r0 0+ 0= = =
AX 0= n

2 1 3 0
1 4 2– 7–
3 0 1 2–

        
1 0 0 1–
0 1 0 1–
0 0 1 1

rref null
2 1 3 0
1 4 2– 7–
3 0 1 2– 

 
 
 
 

c c c c–   c   =

A basis: 1 1 1 1–   

A Mm n

nullity A  dim X AX 0=  dim X TAX 0=  nullity TA = = =

nullity A  rref A  rank A 
rref A  rank A  n nullity A –=

rank TA  n nullity TA –= nullity A  nullity TA = rank A  rank TA =
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CYU 5.7

 

From the above, we see that the matrix  is invertible, with inverse .

CYU 5.8 I. Theorem 5.8 tells us that the claim is valid for : .

II. Assume validity at : 
III. We establish validity at : 

CYU 5.9 

CYU 5.10 (a) 

          (b) 

CYU 5.11 

CYU 5.12 Assume . Multiplying both sides of the equation  by A we have:

Then: .

3 2–
4 1–

a b
c d

1 0
0 1

3a 2c– 1=
4a c– 0= 




  and  
3b 2d– 0=
4b d– 1= 




a 1
5
--- b– 2

5
--- c 4

5
--- d– 3

5
---= = = = =

3 2–
4 1–

1 5 – 2 5
4 5– 3 5

n 2= A1A2  1– A2
1– A1

1–=

n k= A1A2
Ak  1– Ak

1– Ak 1–
1– A1

1–=
n k= 1+

A1A2
AkAk 1+  1– A1A2Ak Ak 1+  1–=

Ak 1+
1– A1A2Ak  1–=

Ak 1+ Ak
1– Ak 1–

1– A1
1–  Ak 1+ Ak

1– Ak 1–
1– A1

1–= =

By I:

By II:

0 1  0
1 0  0
0 0  1

1– 0 1  0
1 0  0
0 0  1

       

1 0 0  0
0 5 0  0
0 0 1  0
0 0 0  1

1– 1 0 0  0

0 1
5
--- 0  0

0 0 1  0
0 0 0  1

       1 6
0 1

1– 1 6–
0 1

= = =

2 1 0 3
1 3 2 6
3 3 4 1

           
3 3 4 1
1 3 2 6
2 1 0 3

1 0 0
0 1 0
0 0 1

           
0 0 1
0 1 0
1 0 0

and 
0 0 1
0 1 0
1 0 0

2 1 0 3
1 3 2 6
3 3 4 1


3 3 4 1
1 3 2 6
2 1 0 3

=R1 R3 R1 R3

E

2 1 0 3
1 3 2 6
3 3 4 1

           
3 3 4 1
2 6 4 12
2 1 0 3

1 0 0
0 1 0
0 0 1

            
0 0 1
0 2 0
1 0 0

and 
0 0 1
0 2 0
1 0 0

2 1 0 3
1 3 2 6
3 3 4 1


3 3 4 1
2 6 4 12
2 1 0 3

=

E

2R2 R2 2R2 R2

A I 

1 0 1  2 1 0 0 0
0 2 1  4 0 1 0 0
1 1 1  0 0 0 1 0
0 3 1  1 0 0 0 1

           

1 0 0 0 7– 5 8 6–
0 1 0 0 3– 2 3 2–
0 0 1 0 10 7– 10– 8
0 0 0 1 1– 1 1 1–

=

A A 1–

AB I= BX 0=

AB X A0= IX 0 X 0 B is invertible (Theorem 5.17) = =

AB I AB B 1– B 1– A BB 1–  B 1– A B 1– A 1– B= = = = =
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CYU 5.13 

CYU 5.14

 

CYU 5.15    

CYU 5.16     

1 2 0 1–
3 0 1 1
0 4 2 2

         
1 0 0 1 4–
0 1 0 3 8–
0 0 1 7 4

1–
1
2 


1 4–
3 8–

7 4
=rref

T 3 3
2 2 

 
 

3 3 4   T 7 2
1 1 

 
 

 2 7 2   T 1 1–
5 1 

 
 

 1 1 6 –  T 2 6
5 9 

 
 

 6 2 14  = = = =

1 2 0 3 2 1– 6
3 0 1 3 7 1 2
0 4 2 4 2 6 14

          
1 0 0 1 2 3 4 – 1 4
0 1 0 1 0 1 8– 23 8
0 0 1 0 1 13 4 5 4

T 
1 2 3 4 – 1 4
1 0 1 8– 23 8
0 1 13 4 5 4

=
rref

 T  

T 1 3
2 0 

 
 

3 1 2   and  
1 2 0 3
3 0 1 1
0 4 2 2

       
1 0 0 3 4
0 1 0 9 8
0 0 1 5– 4

T 1 3
2 0 

 
 




3 4
9 8
5– 4

= =

3 7 1 2 1
3 2 1– 6 3
2 1 5 5 2
2 1 1 9 0

           

1 0 0 0 69 28
0 1 0 0 11 14–
0 0 1 0 1 28
0 0 0 1 13 28–

1 3
2 0 



69 28
11 14–
1 28
13 28–

=

T 
1 3
2 0 

1 2 3 4 – 1 4
1 0 1 8– 23 8
0 1 13 4 5 4

69 28
11 14–
1 28
13 28–

3 4
9 8
5– 4

T 1 3
2 0 

 
 



= = =

From CYU 5.15

rref

rref

T :   T 1 1 1   1x2 1x 1+ +=

T 1 1 0   1x2 1x 0+ +=
T 1 0 0   0x2 1x 0+ += 




 1 0 0 1 1 0

0 1 0 1 1 1
0 0 2 1 0 0

         
1 0 0 1 1 0
0 1 0 1 1 1
0 0 1 1 2 0 0

T 
1 1 0
1 1 1

1 2 0 0
=

 T  

L :   L x2  1 1 =

L x  0 1 =
L 2  0 2 = 






0 1 1 0 0
1 1 1 1 2

         1 0 0 1 2
0 1 1 0 0

L  0 1 2
1 0 0

=

 L  

LT :   LT  1 1 1   L T 1 1 1    L x2 x 1+ +  1 3 = = =

LT  1 1 0   L T 1 1 0    L x2 x 0+ +  1 2 = = =
LT  1 0 0   L T 1 0 0    L 0x2 x 0+ +  0 1 = = = 






0 1 1 1 0
1 1 3 2 1

       1 0 2 1 1
0 1 1 1 0

LT  2 1 1
1 1 0

=

 LT   
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CYU 5.17 Since  is invertible, it must be a square matrix of dimension n. It follows that V
and W are both of dimension n. Let , , and

. Consider the linear transformation  which maps  to the vector

. From its very definition, we see that  (note,
for example that  is the first column of ). Applying Theorem 5.22, we see that:

. It follows that  is the identity map, and
that therefore T is invertible with inverse L.

CYU 5.18  and : 

: . .

CYU 5.19 Rotating the standard basis  clockwise by  leads us to the basis

. Finding  and :

    

Check: 

CYU 5.20 For  and . Noting that , and

; and that ; leads us to:

Noting that  leads us to:

T 
 v1 v2  vn   =  w1 w2  wn   =

T 1– aij = L: W V wi

a1iv1 a2iv2  anivn+ + + L  aij  T 1–= =
L w1   aij 

LT  L  T  T 1– T  I= = = LT: V V

IV  2 3  
0 2 1 2 2
3 1– 2 1 3

        1 0 5 6 2 3 4 3
0 1 1 2 1 1

IV 

2
3








rref

2 3  
1 2 2
2 1 3

       1 0 4 3
0 1 1 3

rref IV  2 3  
5 6 2 3
1 2 1

4 3
1 3

4 3
1

2 3  = = =

 1 0  0 1  = 60

 1
2
--- 3

2
-------– 

  1
2
--- 3

2
------- 

 
 
 
 

= I  1 3  

1
2
--- 1

2
--- 1 0 1

3 2– 3 2 0 1 3

          1 0 1 3 2– 1 3–
0 1 1 3 2 3 1+

I  1 3  

rref

1 3–  1
2
--- 3

2
-------– 

  3 1+  1
2
--- 3

2
------- 

 + 1 3 =

T  I  T x2 1+  x– 2 T x2 x– + x2– x–= =

T 1  2=  x2 x2 x+ x2 x 1+ +  =  x2 1+ x2 x– 1  =

1 1 0 0 1– 0 1 1 1
0 1– 0 1– 1– 0 0 1 1
1 0 1 2 0 2 0 0 1

         
1 0 0 1– 2– 0 1 2 2
0 1 0 1 1 0 0 1– 1–
0 0 1 3 2 2 1– 2– 1–

 T   I   T  I 

rref

T x2  x T x2 x+ – x2 x and T x2 x 1+ + – x2 x– 2+= = =
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Then: 

CYU 5.21 (One possible solution). Choosing to let  in system (*) at the bottom of
page 197 we obtain the solution . At this point, we know that:

. Preceding as in part (c) of Example 5.13, we arrive

at the basis , with:
  and . 

Let’s verify that  for :

1 1 1 0 1 1 1 1 0
0 1 1 1– 1– 1– 0 1– 0
0 0 1 0 0 2 1 0 1

           
1 0 0 1 2 2 1 2 0
0 1 0 1– 1– 3– 1– 1– 1–
0 0 1 0 0 2 1 0 1

 T   I   T  I 

rref

I  T  I 
1 2 2
0 1– 1–
1– 2– 1–

1 2 2
1– 1– 3–

0 0 2

1 2 0
1– 1– 1–

1 0 1

1– 2– 0
1– 1– 1–

1 0 1
T = = =

c 0 d 8= =
a 18– b 11 c 0 d 8= = = =

12– 8
18– 15

18– 11
0 8

1–
1–  4

8  4
18– 11
0 8

=

 v1 v2 =
v1 18– 1 2  0 2 1 += 18– 36– = v2 11 1 2  8 2 1 + 27 30 = =

T 
12– 8
18– 15

=  18– 36–  27 30  =

18– 27 270– 261
36– 30 108– 162

        1 0 12– 8
0 1 18– 15

T 18 36––  270– 108– =

T 27 30  261 162 =

T 



rref
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CHAPTER 6
DETERMINANTS AND EIGENVECTORS

CYU 6.1 (a-i) 

               (a-ii) 

CYU 6.2 By induction on the dimension, n, of .

I. Claim holds for : .

II.Assume claim holds for .
III.We establish validity at : Let . Since all entries in the

first row after its first entry  is zero, expanding about the first row of A we have
, where B is the k by k lower triangular matrix obtained by removing the

first row and first column from the matrix A. As such, by II: .

Consequently: 

CYU 6.3 Let the  and  row of A be identical, with . Multiplying row i by  and adding
it to row j we obtain a matrix B whose  row consists entirely of zeros. As such 
(just expand about the  row of B). Applying Theorem 6.3(c), we conclude that .

CYU 6.4 

det
2 9 3–
3 2– 4
5 7 6–

5det 9 3–
2– 4

= 7– det 2 3–
3 4

6– det 2 9
3 2–

5 36 6–  7 8 9+ – 6 4– 27– – 217= =

det
2 9 3–
3 2– 4
5 7 6–

9– det 3 4
5 6–

= 2det– 2 3–
5 6–

7det 2 3–
5 6–

– 9– 18– 20–  2 12– 15+ – 7 8 9+ – 217= =

Mn n

n 2= det a 0
c d

ad 0 c– ad= =

n k=
n k 1+= A aij  M k 1+  k 1+ =

a11

det A  a11det B =

det B  a22a33a k 1+  k 1+ =

det A  a11det B  a11a22a33a k 1+  k 1+ = =

ith jth i j 1–
jth det B  0=

jth det A  0=

det

2 1 0 1

0 1 2  2
1 0 1  4
4 1 1  3

det

1 0 1 4
0 1 2  2
2 1 0  1
4 1 1  3

– det

1 0 1 4

0 1 2  2
0 1 2–  7–

0 1 3–  13–

–= =

det

1 0 1 4

0 1 2  2
0 0 4–  9–

0 0 5–  15–

– det

1 0 1 4

0 1 2  2
0 0 4–  9–

0 0 0  15
4
------–

– 4–  15
4
------– 

  15= = = =

Theorem 6.4(a) Theorem 6.4(c) (two times)

 

CYU 6.2(b)
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CYU 6.5 (a-i) Let , and let E be the elementary matrix obtained by multiplying row i of
 by . By Theorem 5.12, EB is the matrix obtained by multiplying row i of B by c. Conse-

quently: 

(a-ii) Let , and let E be the elementary matrix obtained by adding a multiple of the 

row of  to its  row. By Theorem 5.12, EB is the matrix obtained by adding a multiple of row

i of B to its  row. Consequently: 

(b) We use the Principle of Mathematical Induction to show that for any  and elementary
matrices :

I. Validity for  follows from Theorem 6.5.

II. Assume 

III. 

CYU 6.6 

CYU 6.7 . From  we see

that  with basis .

CYU 6.8 The eigenvalues are the solutions of the equation:

Which reduces to . It follows that 0 and 15 are the eigenvalues of A.

Then: . From 

we see that  with basis . 

B Mn n

In c 0
det EB  cdet B  det E det B = =

det E  c [Theorem 6.4(b)]=Theorem 6.4(b)

B Mn n ith

In jth

jth det EB  det B  det E det B = =
det E  1=Theorem 6.4(b)

B Mn n

E1 E2  Es Mn n  

det Es
E2E1B  det Es

E2E1 det B  det Es det E2 det E1 det B = =
s 1=

det Ek
E2E1B  det Ex

E2E1 det B  det Ek det E2 det E1 det B = =

det Ek 1+ Ek E2E1B  det Ek 1+  Ek
E2E1B  =

det Ek 1+ det Ek
E2E1B =

det Ek 1+  det Ek det E2 det E1 det B  =

By I:

By II:

I AA 1–= det I  det AA 1– = 1 det A det A 1–  det A 1–  1
det A 
----------------==

E 3–  null 3 2
3 2–

3–  1 0
0 1

–
 
 
 

null 6 2
3 1 

 
 

 = = 6 2
3 1

       1 1 3
0 0

rref

E 3–  r
3
---– r 

  r R
 
 
 

= 1 3–  

det A I3–  det
16 – 3  2

4–  3 –  8–
2–  6– 11 –

0= =

 x 15– 2– 0=

E 0  null
16 3 2

4– 3 8–
2– 6– 11

0
1 0 0
0 1 0
0 0 1

–

 
 
 
 
 

null
16 3 2

4– 3 8–
2– 6– 11 

 
 
 
 

= =
16 3 2

4– 3 8–
2– 6– 11

        
1 0 1 2
0 1 2–
0 0 0

rref

E 0  r
2
---– 2r r 

  r 
 
 
 

= 1– 4 2   
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. From  we

see that  with basis .

CYU 6.9 The kernel of the linear operator:

 

is, by definition, the set: . Equating coefficients, we have:

. It follows that  with basis

.

CYU 6.10 With respect to the basis :

                                             

From  we see that the eigenval-

ues are 0 and 2: same as those found in the solution of Example 6.10. Since the determination of
the corresponding eigenspaces only depends on T and the eigenvalues, the spaces  and 
are identical to those determined in the solution of Example 6.10.

CYU 6.11 The three vectors  are easily seen to constitute a basis  for
. Since , , and ,

 consists of eigenvector with corresponding eigenvalues
, respectively.

E 15  null
16 3 2

4– 3 8–
2– 6– 11

15
1 0 0
0 1 0
0 0 1

–

 
 
 
 
 

null
1 3 2
4– 12– 8–
2– 6– 4– 

 
 
 
 

= =
1 3 2
4– 12– 8–
2– 6– 4–

            
1 3 2
0 0 0
0 0 0

rref

E 15  3r– 2s– r s   r s  = 3 1 0 –  2 0 1 –  

T 3– I


2– a b  T a b  3 a b + 3a 2b 3a 3a 2b– 3b++ +  6a 2b+ 3a b+ = = =

a b  6a 2b+ 3a b+  0 0 = 

6a 2b+ 0=
3a b+ 0= 


 6 2

5 6–
       1 1 3

0 0
        

              
rref E 3–  r– 3r  r  =

1– 3  

 x2 x 1+ + x 1 1+ =

1 0 0 2 1 1
1 1 0 5 3 1
1 1 1 2 1 1

          
1 0 0 2 1 1
0 1 0 3 2 0
0 0 1 3– 2– 0

T x2 x 1+ +  2x2 5x 2+ +=
T x 1+  x2 3x 1+ +=

T 1  x2 x 1+ +=

T  

T 

rref

det T  I3–  det
2 –  1  1

3  2 –  0
3–  2–   –

 2 – 2– 0= = =

E 0  E 2 

1 2 0   1 2 2   2 1 1    
3 T 1 2 0   1 2 0  = T 1 2 2   1 2 2  –= T 2 1 1   2 2 1 1  =

 1 2 0   1 2 2   2 1 1    =
1 1 and 2–

T 1 2 0   1 1 2 0   0 1 2 2   0 2 1 1  + +=
T 1 2 2   0 1 2 0   1–  1 2 2   0 2 1 1  + +=
T 2 1 1   0 1 2 0   0 1 2 2   2 2 1 1  + += 




From:  we have: T 
1 0 0
0 1– 0
0 0 2

=
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CYU 6.12 By Theorem 6.12, the n eigenvalues of T are linearly independent. Since V is of dimen-
sion n, those n eigenvectors constitute a basis for V. It follows, from Theorem 6.11, that T is diag-
onalizable.

CYU 6.13 (a) Characteristic polynomial: 

 

From the above, we see that  is the only (real) eigenvalue of A (note that the discriminant
of  is negative). Determining the dimension of 

Turning to the homogeneous system of equations:  we conclude

that  with basis . It follows that there does not exist a basis

for  consisting of eigenvectors of A, and that therefore A is not diagonalizable.

(b) .

 and . From 

and , we see that  and

, with bases  and , respectively.

It follows that  is a basis for  consisting of eigenvectors of
A, and that therefore A is diagonalizable. Theorem 6.15 tells us that the matrix  will turn

out to be a diagonal matrix with eigenvalues along its diagonal, where . 

det A I–  det
1– – 0 1

1– 3 – 0
4– 13 1– – 

 
 
 
 

3– 2  2+ + +  2–  2  1+ + –= = =

 2=
2  1+ + E 2 

E 2  null A 2I–  null
1– 2– 0 1

1– 3 2– 0
4– 13 1– 2– 

 
 
 
 

= =

3– 0 1
1– 1 0
4– 13 3–

         
1 0 1 3–
0 1 1 3–
0 0 0

rref

E 2  r r 3r   r  = 1 1 3   

3

det
3 – 2 1–

2 6 – 2–
1– 2– 3 – 

 
 
 
 

3– 2  2+ + +  2– 2  8– –= =

E 2  null
1 2 1–
2 4 2–
1– 2– 1 

 
 
 
 

= E 8  null
5– 2 1–

2 2– 2–
1– 2– 5– 

 
 
 
 

=
1 2 1–
2 4 2–
1– 2– 1

        
1 2 1–
0 0 0
0 0 0

rref

5– 2 1–
2 2– 2–
1– 2– 5–

          
1 0 1
0 1 2
0 0 0

rref E 2  2r– s+ r s   r s  =

E 8  r– 2r– r   r  = 2– 1 0   1 0 1    1– 2 1– 

2– 1 0   1 0 1   1– 2 1–    3

P 1– AP

P
2– 1 1–

1 0 2–
0 1 1

=
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We leave it for you to verify that: .

CYU 6.14 From Theorem 6.19 and Example 6.11 we have:

  

CYU 6.15 In the solution of CYU 6.13(b), we found the characteristic polynomial of 

to be  with  and  of dimensions 2 and 1, respectively. 

CYU 6.16 Let  denote the  element of the sequence (for ), , and

. From: , we see

that  is the sum of the entries in the first row of . We now set our sights on finding the

matrix , and begin by finding a diagonalization for F:

It follows that  is a basis of eigenvectors for F. Employing Theorem 6.18 we have:

From Theorem 6.19:

 

2– 1 1–
1 0 2–
0 1 1

1–
3 2 1–
2 6 2–
1– 2– 3

2– 1 1–
1 0 2–
0 1 1

2 0 0
0 2 0
0 0 8

=

0 2 2– 0
1 1 0 1–
1– 1 2– 1
1– 1 2– 1

10 0 0 0 0
0 0 0 0
0 0 2 0
0 0 0 2–

10 0  0 0 0
0  0 0 0

0  0   210 0

0  0 0 2– 10

0  0 0 0
0  0 0 0
0  0 1024 0
0  0 0 1024

= = =

3 2 1–
2 6 2–
1– 2– 3

 2– 2  8– – E 2  E 8 

sk kth k 3 F 1 2
1 0

=

Sk
sk

sk 1–

= S3 FS2 F 3
2

  S4 FS3 F F 3
2

 F 2 3
2

     Sk  F k 2– 3
2

= = = = = =

sk F k 2– 3
2

Fk

det 1 – 2
1 –

 2–   1+ ; E 2  2r r  r  ; E 1–  r– r  r  = = =

2 1  1 1–  

F PDP 1– 2 1–
1 1

2 0
0 1–

2 1–
1 1

1–
1 2
1 0

= = =

steps omitted

Fk PDkP 1– 2 1–
1 1

2k 0
0 1– k

2 1–
1 1

1– 1
3
--- 2k 1+ 1

3
--- 1– 

k 1+
–     13

--- 2k 1+ 2
3
--- 1– 

k 1+
+

************** ***************
= = =

steps omitted
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Thus: 

Conclusion: .

CYU 6.17  is a basis of eigenvalues for

, with 0 the eigenvalue associated with  and , 2 the eigenvalue

associated with , and  the eigenvalue associated with  (Example 6.11, page
237). Applying Theorem6.25 we conclude that:

is the general solution of the given system of equations. 

CYU 6.18 From CYU 6.16:    Since :

Solution: .

F k 2– 3
2

1
3
--- 2k 1– 1

3
--- 1– 

k 1–
–     13

--- 2k 1– 2
3
--- 1– 

k 1–
+

************** ***************

3
2

=

2k 1– 1– k 1–– 2
3
--- 2

k 1– 4
3
--- 1– k 1–+ +

******************************

5
3
--- 2k 1– 1

3
--- 1– k 1–+

***************
= =

sk
5
3
--- 2k 1– 1

3
--- 1– k 1–+=

1– 1 1 0    1 0 0 1    1 1 0 0    1 0 1 1      

0 2 2– 0
1 1 0 1–
1– 1 2– 1
1– 1 2– 1

1– 1 1 0    1 0 0 1   

1 1 0 0    2– 1 0 1 1   

c1e0x

1–
1
1
0

c2e0x

1
0
0
1

c3e2x

1
1
0
0

c4e 2– x

1
0
1
1

+ + +

c1– c2 c3e2x c4e 2– x+ + +

c1 c3e2x+

c1 c4e 2– x+

c2 c4e 2– x+

=

y1 c1– c2 c3e2x c4e 2– x+ + +=

y2 c1 c3e2x+=

y3 c1 c4e 2– x+=

y4 c2 c4e 2– x+=

y1 0  0=

y2 0  1=

y3 0  2=

y4 0  3=

c1– c2 c3 c4+ + + 0=

c1 c3+ 1=

c1 c4+ 2=

c2 c4+ 3= 







              

1– 1 1 1 0
1 0 1 0 1
1 0 0 1 2
0 1 0 1 3

              

1 0 0 0 2
0 1 0 0 3
0 0 1 0 1–
0 0 0 1 0

S: aug(S) rref

y1 1 e2x–= y2 2 e2x–= y3 2 y4 3== 
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CYU 6.19 . 

 and 

Choosing  and  as eigenvectors for the eigenvalues 3 and 2, respectively, we have:

. Turning to the initial conditions :

Bringing us to: . Setting  we have:

CYU 6.20 Let D denote the state that a student is living in the dorm, and C denote the state that

the student is a commuter. Then:  with . Then:

Conclusion: 757, 686, and 636 of the current freshmen will live in the dorm in their sophomore,
junior, and senior year, respectively.

T  t 
F t 

5
2
--- 1

4
---–

1– 5
2
---

T t 
F t 

= det 

5
2
--- – 1

4
---–

1– 5
2
--- –

0 5
2
--- – 
  2 1

4
---– 0 5

2
--- – 1

2
---= = = 

3
2



=

E 3  null  

5
2
--- 3– 1

4
---–

1– 5
2
--- 3–

r– 2r  r  = = E 2  null  

5
2
--- 2– 1

4
---–

1– 5
2
--- 2–

r 2r  r  = =

1 2–  1 2 

T t 
F t 

c1e3t 1–
2

c2e2t 1
2

+
c1e3t c2e2t+–

2c1e3t 2c2e2t+
= = T t 

F t 
120
200

=

c1e3 0 c2e2 0+–

2c1e3 0 2c2e2 0+

120
200

c1 c2+– 120=

2c1 2c2+ 200=



c1  10 and c2– 110= = =

T t 
F t 

10e3t 110e2t+

20– e3t 2202e2t+
= T t  F t =

10e3t 110e2t+ 20– e3t 2202e2t+=

30e3t 110e2t=
30e3t ln 110e2t ln=

30 e3tln+ln 110  e2tln+ln=

30 3t+ln 110 2t+ln= t 110ln 30ln–= 1.3years

T .8  .1
.2 .9

=

D   C
current state

D

C

next state

S0
858
702

=

S1
.8  .1
.2 .9

858
702

3783
5

------------

4017
5

------------
= = 757

803


S2
.8  .1
.2 .9

757
803

= 686
874

      and  S2
.8  .1
.2 .9

686
874

= 636
924



D
C

D
C

D
C
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CYU 6.21 

Conclusion: Eventually , or approximately 41%, 26%, 33% of the population,

will vote democratic, republican, green, respectively.

CHAPTER 7
INNER PRODUCT SPACES

CYU 7.1

CYU 7.2 

(a)  

(b) 

CYU 7.3

.73   .32   .09

.21   .61   .04

.06   .07   .87

x
y
z

x
y
z

.73x .32y .09z+ + x=

.21x .61y .04z+ + y=

.06x .07y .87z+ + z= 





=

.27– x .32y .09z+ + 0=
.21x .39– .04z+ 0=
.06x .07y .13–+ 0=

x y z+ + 1= 







          

1 0 0 479
1157
------------

0 1 0 297
1157
------------

0 0 1 381
1157
------------

0 0 0 0

rref

see solution of Example 6.15.

479
1157
------------ 297

1157
------------ 381

1157
------------ 

ru v r u1 u2  un    v1 v2  vn    rui vi

i 1=

n

 ui rvi 

i 1=

n

 u rv= = = =

cv c v1 v2  vn    c v1 v2  vn    cv1 cv2  cvn    cv1 cv2  cvn   = =

c2vi
2

i 1=

n

 c2 vi
2

i 1=

n

 c v= = =

u v– 2 u v–  u v–  u u v–  v u v– –= =

u u u v– v u– v v+ u 2 2u v v 2+–= =

 cos 1– u v
u v

--------------- 
  cos 1– 1 2 0   1– 3 1  

1 4+ 1 9 1+ +
----------------------------------------------- 
  cos 1– 5

55
---------- 
  83= = =
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CYU 7.4 For   and : . We see
that . It follows, from Theorem 2.13 (page 61), that  is a subspace of .

CYU 7.5  

and: .

 

CYU 7.6 (a) A direction vector for the line L passing through  and :
. The vector from the point  on L to :
. Applying Theorem 7.2, we have:

 

Hence: .

(b) . .

Hence:  .

CYU 7.7 A normal to the desired plane will have the same direction is that of the line passing
through the two given points; namely: . Normal form for
the plane: .

CYU 7.8 Let , and

.

: .

:  If  is such that , can we find  such that ,
, and ? Yes: 

u u v r  ru u+  v r u v = u v+ r 0  0+ 0= =
ru u+ v v n

projuv u v
u u
----------- 
 u 0 2 4 1    3 0 1 1–   

0 2 4 1    0 2 4 1   
----------------------------------------------------------- 0 2 4 1    3

21
------ 0 2 4 1    0 6

21
------ 12

21
------ 3

21
------   

 = = = =

v projuv– 3 0 1 1–    0 6
21
------ 12

21
------ 3

21
------   

 – 3 6
21
------– 9

21
------ 24

21
------–  

 = =

3 0 1 1–    3 6
21
------– 9

21
------ 24

21
------–  

  0 6
21
------ 12

21
------ 3

21
------   

 +=

1 2–  2 4 
u 2 4  1 2– – 1 6 = = 1 2–  P 2 5 =
v 2 5  1 2– – 1 7 = =

projuv u v
u u
----------- 
 u 1 6  1 7 

1 6  1 6 
-------------------------------- 
  1 6  43

37
------ 1 6 = = =

v projuv– 1 7  43
37
------ 258

37
--------- 

 – 6
37
------– 1

37
------ 

  62 12+
37

--------------------- 1
37

----------= = = =

u 1 2 2 1    1 2 0 1   – 0 0 2 0   = = v 1 0 1 3    1 2 0 1   – 0 2– 1 2   = =

projuv u v
u u
----------- 
 u 0 0 2 0    0 2– 1 2   

0 0 2 0    0 0 2 0   
----------------------------------------------------------- 
  0 0 2 0    1

2
--- 0 0 2 0    0 0 1 0   = = = =

v projuv– 0 2– 1 2    0 0 1 0   – 0 2– 0 2    16 4= = = =

n 0 2 1   1 1 0  – 1– 1 1  = =
1– 1 1   x 1– y 3– z 2+   0=

A x y z   3x y 2z–+ 6= =

B 2 0 0   r 0 2 1   s 2 0 3  + + r s R  2 2s+ 2r r 3s+  r s R = =

B A x y z   2 2s+ 2r r 3s+ =

3x y 2z–+ 3 2 2s+  2r 2 r 3s+ –+ 6 6s 2r 2r– 6s–+ + 6= = =

A B x y z   3x y 2z–+ 6= (*) r s R x 2 2s+=
y 2r= z r 3s+=
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In order for , . In order for , . We show that for

those particular values of r and s, :

CYU 7.9 Let  be on the plane  with normal .
Determine the vector v from A to : .
Applying Theorem 7.2, we have:

CYU 7.10

(a)  and .

Here is a normal to the plane: .

Here is a “nicer” normal: .

Choosing the point  on the plane, we arrive at the general form equation of the 
plane: .

(b) In Example 2.15, page 72, we found the vector form representation for the above plane:
 . 

We are to show that:
.

If , then: 

 Thus: .

If  is such that  can we find real numbers  such that: 

Turning to the system of equation:

x 2 2s+= s x 2–
2

-----------= y 2r= r y
2
---=

z r 3s+=

z 3x y 6–+
2

------------------------ 3 2 2s+  2r 6–+
2

-------------------------------------------- 6 6s 2r 6–+ +
2

------------------------------------ 2s 2+= = = =
(*)

A x y z  = ax by cz+ + d= n a b c  =
x0 y0 z0   v x y z   x0 y0 z0  – x x0– y y0– z z0–  = =

projnv v n
n n
----------- 
 n

ax ax0– by by0– cz cz0–++
a2 b2 c2+ +

------------------------------------------------------------------------- 
  a b c  = =

ax ax0– by by0– cz cz0–++
a2 b2 c2+ +

------------------------------------------------------------------------- a b c  =

ax0 by0 cz0 d–+ +
a2 b2 c2+ +

------------------------------------------------- a2 b2 c2+ +
ax0 by0 cz0 d–+ +

a2 b2 c2+ +
-------------------------------------------------= =Since ax by cz+ + d:=

AB 2 5 3–   3 2– 2  – 1– 7 5–  = = AC 4 1 3–  3 2– 2  – 1 3 5–  = =

n det
i j k
1– 7 5–

1 3 5–
20i– 10j– 10k– 20 10–– 10– = = =

n 1
10
------ 20 10–– 10– – 2 1 1  = =

A 3 2– 2  =
2 1 1   x 3– y 2+ z 2–   0  or: 2x y z 6–+ + 0= =

P 3 r– s 2– 7r 3s 2 5r– 5s–+ ++  r s  =

P 3 r– s 2– 7r 3s 2 5r– 5s–+ ++  r s   x y z   2x y z+ + 6=  Q= = =

x y z   3 r– s 2– 7r 3s 2 5r– 5s–+ ++  P=
2z y z+ + 2 3 r– s+  2– 7r 3s+ +  2 5r– 5s– + +=

6 2r– 2s 2– 7r 3s 2 5r– 5s–+ + + + 6= =
P Q

x y z   2x y z+ + 6= r and s
3 r– s+ x 2– 7r 3s+ + y  and 2 5r– 5s– z 6 2x– y–= = = =

which is to say: r– s+ x 3– 7r 3s+ y 2+  and 5r– 5s– 2x– y– 4+= = =
since 2x y z+ + 6=
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We see that  and  does the trick. Thus: .

CYU 7.11 (i) For , 
and  only if .

(ii) For :

 
(iii) For , and :

           

(iv) For  and :

            

CYU 7.12  

CYU 7.13 (a)

r– s+ x 3–=
7r 3s+ y 2+=
5– r 5s– 2x– y– 4+= 






                  
1– 1 x 3–

7 3 y 2+
5– 5– 2x– y– 4+

           
1 0 3x– y 19+ +

10
-------------------------------

0 1 7x y 19–+
10

---------------------------

0 0 0

augmented
matrix rref

r     s

steps ommited

r x– 3+= s 7x y 19–+
10

---------------------------= Q P

v ax2 bx c+ += v v  ax2 bx c+ + ax2 bx c+ +  a2 b2 c2 0+ += =
v v  0= a b c 0= = =

u a2x2 a1x a0+ + v b2x2 b1x b0+ += =

u v  a2x2 a1x a0+ + b2x2 b1x b0+ +  a2b2 a1b1 a0b0+ += =

ba2 b1a1 b0a0+ +=

b2x2 b1x b0+ + a2x2 a1x a0+ +  v u = =

u a2x2 a1x a0+ + v b2x2 b1x b0+ += = r 

ru v  r a2x2 a1x a0+ +  b2x2 b1x b0+ + =

ra2x2 ra1x ra0+ + b2x2 b1x b0+ + =

ra2b2 ra1b1 ra0b0+ + r a2b2 a1b1 a0b0+ +  r u v = = =

u a2x2 a1x a0+ + v b2x2 b1x b0+ += = z c2x2 c1x c0+ +=

u v+ z  a2x2 a1x a0+ +  b2x2 b1x b0+ + + c2x2 c1x c0+ + =

a2 b2+ x2 a1 b1+ x a0 b0+ + + c2x2 c1x c0+ + =

a2 b2+ c2 a1 b1+ c1 a0 b0+ c0++=

a2c2 a1c1 a0c0+ +  b2c2 b1c1 b0c0+ + + u z  v z += =

ru rv  r u rv  r r u v   r2 u v = = =

Definition 7.5(iii) Theorem 7.4 (c)

rv rv rv  r2 v v  r2 v v  r v v = = = =
CYU 7.12
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(b) 

CYU 7.14 (a) .

(b) 

CYU 7.15

CYU 7.16

CYU 7.17  For any :

                    , since  for .

u v+ 2 u v+ u v+  u u v+  v u v+ + u u  u v  v u  v v + + += = =

u 2 u v  u v  v 2+ + +=
u 2 2 u v  v 2+ +=

Definition 7.5(iv)

Definition 7.6 and 7.5(i):

3 5 8–   3 5 8–   3 5 8–   5 32  5 52  5 8– 2 + + 7 10= = =

3 5 8–   1 0 2  – 2 5 10–   2 5 10–  =

2 5 10–   2 5 10–   5 22  5 52  5 10– 2 + + 645= = =

1
u

--------u 1
v

-------– v 1
u

--------u 1
v

-------– v  0 1
u

--------u 1
v

-------v– 1
u

--------u  1
u

--------u 1
v

-------v– 1
v

-------v – 0

1
u

--------u 1
u

--------u  1
v

-------v 1
u

--------u – 1
u

--------u 1
v

-------v – 1
v

-------v 1
v

-------v + 0

1
u 2

----------- u u  2
u v

--------------- u v – 1
v 2

---------- v v + 0

1 2
u v

--------------- u v – 1+ 0 2 2
u v

--------------- u v  u v  u v 

 cos 1– 3 5 8–   1 0 2   
3 5 8–   1 0 2  

---------------------------------------------------- 
 =

cos 1– 5 3  1  2 5  0  4 8–  2 + +
5 3  3  2 5  5  4 8–  8– + + 5 1  1  2 0  0  4 2  3 + +

------------------------------------------------------------------------------------------------------------------------------------------------------------- 
 =

cos 1– 49–
351 29

--------------------------- 
  119.1=

v civi

i 1=

m

= Span v1 v2  vm   

u v  u civi

i 1=

m

  ci u vi 

i 1=

m

 0= = = u vi  0= 1 i m 
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CYU 7.18

 CYU 7.19 The first order of business is to determine a basis for the space S spanned by the vec-
tors , , , . Applying Theorem 3.13, page 103 we see
that first, second, and fourth of the above four vectors constitute a basis: ,

,  of S: . We now apply the Grahm-

Schmidt Process to that basis  to generate an orthonormal basis  for S:

 

Conclusion:  is an orthonormal basis for

 .

CYU 7.20 A consequence of Theorem 7.10(iii) and CYU 3.11, page 98.

CYU 7.21 We first use the Grahm-Schmidt Process to determine the orthonormal basis
 of W stemming from the given basis :

v w  a1v1  anvn+ + b1v1  bnvn+ + =

a1v1  anvn+ + b1v1   a1v1 a2v2  anvn+ + + bnvn + +=

aivi b1v1 

i 1=

n

  aivi bnvn 

i 1=

n

+ + aib1 vi v1 

i 1=

n

  aibn vi vn 

i 1=

n

+ += =

a1b1  anbn+ + aibi

i 1=

n

= =

Exercise 46, page 300

since vi vj  1 if i j=
0 if i j

:




=

2 1 1 0    1 0 1 0    3 1 2 0    0 1 0 1   
v1 2 1 1 0   =

v2 1 0 1 0   = v3 0 1 0 1   =
2 1 3 0
1 0 1 1
1 1 2 0
0 0 0 1

           

1 0 1 0
0 1 1 0
0 0 0 1
0 0 0 0

v1 v2 v3   u1 u2 u3  

u1 v1 2 1 1 0   = =

u2 v2
u1 v 2 

u1 u1 
--------------------u1– 1 0 1 0    2 1 1 0    1 0 1 0   

2 1 1 0    2 1 1 0   
-------------------------------------------------------- 2 1 1 0   –= =

1 0 1   3
6
--- 2 1 1 0   – 0 1

2
---– 1

2
--- 0   

 = =

u3 v3
u1 v3 
u1 u1 

--------------------u1–
u2 v3 
u2 u2 

--------------------u2– 0 1 0 1    2 1 1 0    0 1 0 1   
2 1 1 0    2 1 1 0   

-------------------------------------------------------- 2 1 1 0   –
0 1

2
---– 1

2
--- 0   

  0 1 0 1   

0 1
2
---– 1

2
--- 0   

  0 1
2
---– 1

2
--- 0   

 
---------------------------------------------------------------- 0 1

2
---– 1

2
--- 0   

 –= =

0 1 0 1    1
6
--- 2 1 1 0   – 1 2–

1 2
------------- 0 1

2
---– 1

2
--- 0   

 – 1
3
---– 1

3
--- 1

3
--- 1   

 = =

1
6
--- 2 1 1 0    1

2
--- 0 1

2
---– 1

2
--- 0   

  3
4
--- 1

3
---– 1

3
--- 1

3
--- 1   

  
 
 
 

Span 2 1 1 0    1 0 1 0    3 1 2 0    0 1 0 1      

w1 w2  v1 v2  1 0 1   1 2 0   =
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 : 

: 

Turning to Theorem 7.11, we determine the orthogonal projection, , of the vector
 onto W:

 

CYU 7.22 NOTE: It is easy to see that the function
 

from the standard (dot-product) inner product space  of Theorem 7.1 (page 279) to the polyno-
mial inner product space  of Exercise 23 (page 299) is an isomorphism which ALSO preserves
the inner product structure of the two spaces:

 

As such, we could translate the given -problem:
Find the shortest distance between the vector  and the
subspace  in the inner product space 

into the following -form:
Find the shortest distance between the vector  and the sub-
space  in the inner product space .

You are invited to take the above -approach. For our part, we will deal directly within the
inner product space :

Employing the Grahm-Schmidt Process we go from the basis , with  and
, to an orthonormal bases  for :

:   .

: 

u1 v1 1 0 1  = = w1
1
2

------- 1 0 1  =

u2 v2
u1 v 2 

u1 u1 
--------------------u1– 1 2 0   1 0 1   1 2 0  

1 0 1   1 0 1  
-------------------------------------------- 1 0 1  – 1

2
--- 2 1

2
---–  

 = = = w2
2

3
------- 1

2
--- 2 1

2
---–  

 =

vW
v 2 0 1  =

vW v w1 w1 v w2 w2+=

2 0 1   1
2

------- 1 0 1   1
2

------- 1 0 1   2 0 1   2
3

------- 1
2
--- 2 1

2
---–  

  2
3

------- 1
2
--- 2 1

2
---–  

 +=

3
2
--- 1 0 1   1

2
--- 1

2
--- 2 1

2
---–  

 + 7
4
--- 1 5

4
---  

 = =

f a0 a1  an     a0 a1x a2x2  anxn+ + + +=

n

Pn

a0 a1  an    b0 b1  bn    f a0 a1  an    f b0 b1  bn     aibi

i 0=

n

= =

P3
v 3x2= 3x+

W Span x2 1+ x3 1+ = P3
4

v 0 3 3 0   =
W Span 0 1 0 1    1 0 0 1    = 4

4

P3
v1 v2  v1 x2 1+=

v2 x3 1+= w1 w2  W Span x2 1+ x3 1+ =

u1 v1 x2 1+= = w1
u1
u1

---------- 1
2

------- x2 1+ = =

u2 v2
u1 v2 

u1 u1 
---------------------u1– x3 1+  x2 1+ x3 1+ 

x2 1+ x2 1+ 
------------------------------------- x2 1+ –= =

x3 1+  1
2
--- x2 1+ – x3 1

2
---x2– 1

2
---+= = w2

u2
u2

---------- 2
3
--- x3 1

2
---x2– 1

2
---+ 

 = =
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Turning to Theorems 7.11 we determine the projection  of  onto W:

Appealing to Theorem 7.12 we calculate the shortest distance between the vector
 and the subspace :

CYU 7.23 Determining the eigenvalues of A:

Determining the corresponding eigenspaces:

As is indicated in Theorem 7.14: 

CYU 7.24 (a)

vW v 3x2= 3x+
vW v w1 w1 v w2 w2+=

3x2 3x+ 1
2

------- x2 1+   1
2

------- x2 1+  
  3x2 3x+ 2

3
--- x3 1

2
---x2– 1

2
---+ 

   2
3
--- x3 1

2
---x2– 1

2
---+ 

 
 
 +=

3
2

------- 1
2

------- x2 1+  
  3

2
--- 2

3
--- x3 1

2
---x2– 1

2
---+ 

 
 
 – x3 x2 1+ + = =

v 3x2= 3x+ W Span x2 1+ x3 1+ =

v vW– 3x2 3x+  x3 x2 1+ + –=

x3– 2x2– 3 1+ + x3– 2x2– 3 1+ + x3– 2x2– 3 1+ + = =

1– 2 2– 2 3 2 1 2+ + + 9 3= = =

det A I–  det
2 – 1 1

1 2 – 1
1 1 2 –

 4–   1– 2   Eignevalues: – 4  1= = = =

details omitted

E 4  null A 4I–  null
2– 1 1

1 2– 1
1 1 2–

a a a   a    since  rref
2– 1 1

1 2– 1
1 1 2–

1 0 1–
0 1 1–
0 0 0

= = = =

E 1  null A I–  null
1 1 1
1 1 1
1 1 1

c– d– c d   c d    since  rref
1 1 1
1 1 1
1 1 1

1 1 1
0 0 0
0 0 0

= = = =

a a a   c– d– c d   a c– d–  ac ad+ + 0= =
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(b) One possible answer: 

CYU 7.25 (a) 

(b) For  and : 

 

CYU 7.26 Consider the symmetric matrix  of CYU 7.25(b).

Employing Theorem 6.10 of page 226, we find a basis of eigenvectors for the linear operator

1 1 1
1 2 1
1 1 3

v1

v2

v3 
 
 
 
  w1

w2

w3

 v1 v2 v3+ + v1 2v2 v3+ + v1 v2 3v3+ +   w1 w2 w3  =

w1 v1 v2 v3+ +  w2 v1 2v2 v3+ +  w3 v1 v2 3v3+ + + +=

v1

v2

v3

1 1 1
1 2 1
1 1 3

w1

w2

w3 
 
 
 
 

 v1 v2 v3   w1 w2 w3+ + w1 2w2 w3+ + w1 w2 3w3+ +  =

v1 w1 w2 w3+ +  v2 w1 2w2 w3+ +  v3 w1 w2 3w3+ + + +=

w1 v1 v2 v3+ +  w2 v1 2v2 v3+ +  w3 v1 v2 3v3+ + + +=

1 1 1
0 0 0
0 0 0

0
1
0 

 
 
 
  1

0
0

 1 0 0   1 0 0   1= =

0
1
0

1 1 1
0 0 0
0 0 0

1
0
0 

 
 
 
 

 0 1 0   1 0 0   0= =while:

T a b c   A B C    a b– a– 2b c–+ b– c+   A B C  =
A a b–  B a– 2b c–+  C b– c+ + +=

a b c   T A B C    a b c   A B– A– 2B C–+ B– C+  =
a A B–  b A– 2B C–+  c B– C+ + +=
A a b–  B a– 2b c–+  C b– c+ + +=

T a b c   a b– a– 2b c–+ b– c+  =  0 1 0   0 0 1   1 0 0    =

T 
1 1– 0
1– 2 1–

0 1– 1
=

A T 
1 1– 0
1– 2 1–

0 1– 1
= =



CYU SOLUTIONS     B-39

:

Here are the associated eigenspaces:

Letting  in each of the above eigenspaces we arrive at a normal basis for  consisting
of eigenvectors of T:   (Theorem 6.15); which is easily turned

into an orthonormal basis: .

CYU 7.27 If  and , then:
 

CYU 7.28 In CYU 7.23 we showed that the matrix  has eigenvalues 

with , with  a basis
for , and  a basis for  (set  and , and then set

 and ). Applying the Grahm-Schmidt process (Theorem 7.9, page 303) to

, we arrive at the orthogonal basis  of , and

to the orthonormal basis of eigenvectors .

T a b c   a b– a– 2b c–+ b– c+  =

det A I–  det
1 – 1– 0

1– 2 – 1–
0 1– 1 –

  1–   3–    Eignevalues: – 0  1  3= = = = =

E 0  null A  null
1 1– 0
1– 2 1–

0 1– 1
a a a   a 3   since  rref

1 1– 0
1– 2 1–

0 1– 1

1 0 1–
0 1 1–
0 0 0

= = = =

E 1  null A I–  null
0 1– 0
1– 1 1–

0 1– 0
a– 0 a   a 3   since  rref

0 1– 0
1– 1 1–

0 1– 0

1 0 1
0 1 0
0 0 0

= = = =

E 3  null A 3I–  null
2– 1– 0
1– 1– 1–

0 1– 2–
a 2a– a   a 3   since  rref

2– 1– 0
1– 1– 1–

0 1– 2–

1 0 1–
0 1 2
0 0 0

= = = =

a 1= 3

1 1 1   1– 0 1   1 2– 1    

1
3

------- 1
3

------- 1
3

-------  
  1–

2
------- 0 1

2
-------  

  1
6

------- 2–
6

------- 1
6

-------  
  

 
 
 

A 1– A T= B 1– B T=
AB  1– B 1– A 1– BTAT AB T= = =

Theorem 5.12(iii), page 167 Exercise 19(f), page 162

2 1 1
1 2 1
1 1 2

 4  1= =

E 4  a a a   a    E 1  a– b– a b   a b  = = 1 1 1   
E 4  1 0 1 –  1– 1 0    E 1  a 0= b 1=

b 0= a 1=

1 0 1 –  1– 1 0    1 0 1 –  1
2
---– 1 1

2
---–  

 
 
 
 

E 1 

1
3

------- 1
3

------- 1
3

-------  
  1

2
-------– 0 1

2
-------–  

  1
6

-------– 1
6

------- 1
6

-------–  
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Turning to the marginal comment on page 314 we conclude that:

 , where PT
2 1 1
1 2 1
1 1 2

P
4 0 0
0 1 0
0 0 1

= P
1 3   1 2–   1 6–
1 3 0 1 6

1 3 1 2 1 6–

=
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Appendix C
Answers to Selected Exercises

1.1 Systems of Linear Equations, page 11.
1.          3.          5.        7. 

9.          11.   

13.       15.      

19. No: first non-zero entry in last row is not 1.       23. 

25. 

1.2 Consistent and Inconsistent Systems of Equations, page 23.
1.      3.        5.  

7.        9.       11.  

13. Yes.     15.   No. Solutions if and only if a, b, c, satisfy the equation .

17. No.         19. Yes.          23.       25. 

27. No.      29. No.       31.          33. None.     35.        37.          

2.1  Vectors in the Plane and Beyond, page 38.
1. 3. 5. 

3 3– 1 2
5 5 9– 1–
3– 4– 1 0

5x y 4z+ + 6=
2x– 3y– z+ 4=

1
2
---x y– 0= 




 1 0 0

0 1 0
0 0 1

1 0 0
0 1 0
0 0 1
0 0 0

x 1= y 0 z 2= = x1 1= x2 2 x3 2 x4 2 x5 1–====

x 0 y 4 z– 2= = = x 1
2
---= y 1

4
---= z 1

2
---–= w 3

4
---=

x 5 y 2 z– 2= = =

x 12= y 5–= z 1= w 0=

r 2  r    2– 2– 2–    s 3t– r 1 2t 1 2s s t –––  r s t   

11 5r– 6– 3r+ r   r   7 9 6–    2 r 1 2r+
5

---------------– 3 6r+
5

--------------- r r  
 
 
 

4a b– 2c+ 0=

3
2
---r– r 0  

  r R
 
 
 

r– 11s– r 6s r s +  r s R 

a 1 ab 1 ad bc 0–

.

 1     2    3

2

3

       .
.B 0 1 =

2 3 

2–

_

_

_

_
1–

2–
A 2– 1 =

 1        2       

1

2

3

.
.

1–2–

_

_

_

3–

A 1 1 =

B 2– 3 =

3 2– 
.

 1     2    3

1

2

3

-3     -2     -1 -1

-2

. .A B
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7.           9.           11.         15.          17. 

19. (a)    (b)     (c)   

21.      23. 

2.2  Abstract Vectors Spaces. page 49.
Follow instructions.

2.3  Properties of Vectors Spaces, page 57.  
Follow instructions       

2.4  Subspaces, page 65.
1. Yes.             3. Yes.          5. No.          7. Yes.            9. No.             11. No.             13. Yes.   

15. Yes.            17. No.               19. No.            21. Yes.       23. Yes.         25. Yes.        27. Yes.    

29. No.      31. Yes.         33. No.         35. Yes.       37. Yes.

2.5  Lines and Planes, page 73. 
1.        3.          5. 

7.       13.      15.   

17.       19.      21. 

23.        25.        27. 

29.            31.          33. 

35.            41.  

43.          45. 

47.          49.

51.         53. 

55.        

2 0 2–   9 1 11––  13 13–  6– 6  2 5– 

r 14–= s 10= r 7
5
---–= s 1

10
------= r 5

7
---= s 1

14
------=

r 19
6
------ s– 17

6
------= = t 11

6
------= 5

2
------- 5

2
-------– 

 

r 1 5  r   r 5 1–  r   1 3  r 1 7– + r  

3 5  r 0 2 + r   3 7  r 1 5 + r   3 7  r 5 1– + r  

3 7  r 1 7– + r   3 7  r 0 2 + r   3 7  r 5 1– + r  

3 7  r 1 5 + r   3 7  r 7 1 + r   3 7  r 0 1 + r  

r 2 4 5   r   r 2– 4 0   r   2 4 5   r 1 3 4–– + 

2 1 0   r 1 3 1– +  1 2 1–   r 2 4 5  + r  

1 2 1–   r 2– 4 0  + r   1 2 1–   r 1 3– 4–  + r  

1 2 1–   r 1 3 1–  + r   r 1 3 2   s 2 1 1   r s + 

r 2 0 0   s 0 2 0   r s +  3 4 1   r 1 3 4–   s 2 3 2   r s + + 

2 4 3–   r 3 3– 8   s 2 3– 2   r s + + 
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3.1  Spanning Sets, page 84.
1. No.     3. Yes.       5. N0       7. No.          9. No.       11.  No.      13.     

15.      17.  Span.

19. Do not span. Just about any randomly chosen four-tuple will not be a linear combination of the
given vectors (check it out).

21. Do not span. Just about any randomly chosen four-tuple will not be a linear combination of the
given vectors (check it out).

23. Do not span. Just about any randomly chosen four-tuple will not be a linear combination of the
given vectors (check it out).                          

25. Span.                 27.  All .

3.2  Linear Independence, page 91.
1. Yes.        3. No.          5. No.        7. Yes.          9.   No.           11.  No.           13. Yes.          15. Yes.  

17. Yes.            19. Yes.        21. No.         23. No.         25. Yes.          27. No.         29.       

3.3  Bases, page 104.

1. (a)     (b)  

3. (a)  

5. No.         7. Yes.         9. Yes.         11. Yes.         13. Yes.         15. No.         17. No.         19. Yes.

29.          31. Do not span.

33. A basis for : . A basis for : .

35. A basis for : 

37. A basis for : 

39. A basisfor : . A basis for : 

41.                         43.  

45.          47.          49.  

2xcos cos2x sin2x–=


7
--- x– 
 sin 

7
---sin 

  xcos 
7
---cos 

  xsin–=

c 0

a 3=

3– 5
2
--- 

  3e1– 5
2
---e2+= 3 2 0   3e1 2e2 0e3+ +=

x2 3x 1–+ 19
13
------ 2x2 3+  25

13
------ x2 x– – 14

13
------ x 5– +=

1 3
1– 2

2 0
1 1–

0 1
1 2

2 1
0 1

  
 
 
 

Span S  2 1 4   1 3 2 –   3 2 1 4   1 3 2 –  1 1 1    

Span S  3= S 1 1 3   1 3 2 –  3 2 1–    =

Span S  5=
S 1 3 1 3 2     2 4 1 4 2     1 1 2 0 2     2 2 1 1 1     1 2 3 4 5        =

Span S  5 x3– x x4 x3 x2 x 1 2x4 2x2–+ + + +–  3

5 x3– x x4 x3 x2 x 1 2x4 2x2 1 x+–+ + + +– 

x x sincossin 2x cos2x 2xsin  1– 1 0 0    1 0 1 0    1 0 0 1  –   

x3 x2 2x+ + x 1+  c 0 a 0 b 0 and a b
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4.1  Linear Transformations, page 120.
1. Yes             3. No            5. No           7. No           9. Yes         11. No         13. Yes           15. No         

17. No         19. (a)   (b) 

21. (a)   (b)       27.     39. 

41.          43. 

4.2  Kernel and Image, page 131.
1. Linear. Nullity: 0, Rank: 1.             

3. Linear. Nullity: 0, Rank: 1.  A basis for the image space:                

5. Not linear.              7.  Linear. Nullity: 0, Rank: 2.         

9. Linear. Nullity: 2, Rank: 2. A basis for the kernel:  . 

     A basis for the image space: .                                      11. Not linear.   

13. Linear. Nullity: 1, Rank: 2. A basis for the kernel:  . 

     A basis for the image space: .                         15. Linear. Nullity: 0, Rank: 4.

17. Linear. Nullity: 0, Rank: 3.  A basis for the image space: .         

19. Nullity: 1, Rank: 3.   A basis for the kernel: . A basis for the image space: .

21. Nullity: 0, Rank: 4. A basis for the image space: 

23. Nullity: 0, Rank: 3. A basis for the image space: .

25. Nullity: 2, Rank: 1. A basis for the kernel: . A basis for the image space: .

27. Nullity: 0, Rank: 3. A basis for the image space: .         29.  (a)    

(b)  and 5.        31. Nullity: 0, Rank: 3. A basis for the image space: .

33. (a)    (b)    (c) None exists.

4 10 2–   a b+
2

------------ 2a a– b+ 
 

8 3
13 8

a b+ b
2a b+ a b+

b 0= LT  a b  2a 2b+ a– b– =

LT  a b  3a b+ x 6a 2b+ += KLT  a  2a– 0 2a  =

1 1–  

0 0
0 1

1 1
1 0


 
 
 

x 1– x2– 1+ 

x2 x– 

0 1  1 1  

1 0
1 0

1– 1
1 1

0 1–
0 1

 
 
 
 

1  x2 x 1  

x3 x 2 x 1  

x2 x 1  

x2

3
----- 1

3
---– x

2
--- 1

2
---–

 
 
 

1 

x3 x2 x   0 3 3– 

x3 x+ 2 1
0 1

2 2
1 3

0 1
1 0

 
 
 
 

T a b  9a a 3a  = T a b  9a b 0  =
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35.  , ; , .

37.  , ; , ;  

       , .                                    39. , 

4.3  Isomorphisms, page 145.

1.          3.        5. 

7. Isomorphism.         9. Not an isomorphism.        11. Isomorphism.         13. Not an isomorphism.
15. Isomorphism.        17. Isomorphism.       19. Isomorphism.        21. Not an isomorphism.

23. . Zero:  and . 

5.1  Matrix Multiplications, page 161.

1.            3.          5. 

7.      25. 

27.          29. 

5.2  Invertible Matrices, page 175.

1.          3.          5.          7. Singular.         9. Singular.         11. 

13. Singular.                    15.                 17.  ,  

19.              21.               23. 

nullity T  n= rank T  0= nullity T  0= rank T  n=

nullity T  1= rank T  2= nullity T  2= rank T  1=

nullity T  3= rank T  0= nullity T  1= rank T  4=

f 1– x  1
5
---x–= f 1– a b  b 1

2
---a– 

 = f 1– ax2 bx c+ +  c a b – =

f 1– x y  y 4+ x y– 7– = 3 4–  x y – x– 6+ y– 8– =

0 11
1 4–
1– 15

0 0 2
2 0 0
0 9 0

  and  
0 1 0
0 0 6
6 0 0

Column: 3 10 4   2 6 2   
Row: 3 2 1 5    10 6 1 10    

Column: 1 1– 5 5    1– 0 3 2    0 1– 2– 1–     
Row: 1 1 0 1    1– 0 1 4–   5 3 2 7–    

1 1
0 1

n
1 n
0 1

=

1 0
0 2

n
1 0
0 2n

= 1 0
0 2

n
1 0
0 2n

=

1
2
---  0

0 1
5
---

3
4
---  1

2
---–

1
4
---– 1

2
---

4– 1 2
2 0 1–
1– 0 1

1– 8
5
---– 2

5
---

1
2
--- 2

5
--- 1

10
------–

1 5
3
--- 1

3
---–

1
12
------ 0 1

3
---– 1

3
---

0 2 1– 0
0 1– 1 0
1
12
------ 1

2
--- 1

3
---– 1

6
---–

E1

5 0 0
0 1 0
0 0 1

= E2

0 0 1
0 1 0
1 0 0

=

X 1
2
---ABA 1–= X A 1– BAB= X AB2A=
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5.3  Matrix Representation of Linear Maps, page 186.

1. ,                                 3. ,      

5. ,                        7. ,       

9. ,          

11. ,         13. , 

15. ,

17. , 

19. , 

21. ,            23. (a)    (b) 

(c)     (d)     (e)     (f) 

25. ,          27. 

29. T is the identity map.         31. 

2 3  
2
3

= T 2 3  
5
6

= 2 3  

8
5
---

1
5
---–

= T 2 3  

17
5
------

4
5
---–

=

2 3 1   
4
6
3–

= T 2 3 1   
7
7
6–

= 1 2  
0
1

= T 1 2  
2

1 2
3–

=

x2 x 1+ + 

0
1
0
1

= T x2 x 1+ +  

0
2–

2
0

=

T 
1 1 2–
1
2
--- 1

2
--- 1

= T 1 2 1    T  1 2 1   
1–

3
2
---

= =
3– 3–

2 1
1– 1

T 1 2   T  1 2  
3–

2
1–

= =

T 
0 1
0 1–
1 3

= T 2x 1+   T  2x 1+ 
1–

1
1

= =

I 
0 1 0
0 0 1
1 0 0

= I 1 2 1    I  1 2 1   
1–

2
0

= =

T 

2 0 3 2
1 0 1 1
5 1 6 4
2– 1 3– 2–

= T 1 2
2 1– 

 
 



T 
1 2
2 1– 

5
2
8
8–

= =

T 
2 0
1 1

= T 1 3   T  1 3  
6
4

= = T 

0 0 0
1 0 0
0 1 0
0 0 1

= D 
0 1 0 0
0 0 2 0
0 0 0 3

=

D T 
1 0 0
0 2 0
0 0 3

= T D 

0 0 0 0
0 1 0 0
0 0 2 0
0 0 0 3

= TDT 

0 0 0
1 0 0
0 2 0
0 0 3

= DTD 
0 1 0 0
0 0 4 0
0 0 0 9

=

D 

0 0 0 0
0 1 3 0
0 0 0 4
0 0 0 0

= D 5x3 3x2+   D  5x3 3x2+ 

0
3
5
0

= = T a b  3a– 4b 2a+ =

LT  L  T 

0 0
3– 1–

2
3
--- 1

3
---

= =
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35. , , 

37. , , 

39. 

5.4  Change of Basis and Similar Matrices, page 199.

1.              3. 

5.            7. 

9.          11. 

13.          15.        19. 

25.          27. 

29.        

T 1– ax b+  a b
2
--- 

 = T 
2– 2–

4 2
= T 1– 

1
2
--- 1

2
---

1– 1
2
---–

=

T 1– a b
c d 

 
  a b a d c c+– = T 

1 0 0 1
1 1 0 0
2– 1– 1 1–

0 1 1– 0

= T 1– 

1– 0 1– 1–
1 1 1 1
1 1 1 0
2 0 1 1

=

L 

0 0 0 0 1 1
0 0 1 1 0 0
0 0 1– 1– 1– 0
0 0 0 1 1 0
0 1 1 0 0 0
1 0 0 0 0 0

=

2 5   I  2 5  

12
5
------

1
5
---

= = 2 3 1–    I  2 3 1–   
2
3
1–

= =

2x2 x 1+ +  I  2x2 x 1+ + 
1–

1
1

= = 2 0
1 1 

I 
2 0
1 1 

0
1
2–

2

= =

T  I  T  I 
0 1–
1 0

= = T  IV  T  IV 

1– 1
2
--- 1

2
---–

0 0 0
2 0 1

= =

T  IV  T  IV 

0 1 0 0
0 0 4 0

0 0 0 9
2
---

0 0 0 0

= = 0 1 1   1 1 0   0 2 1     In

T  IW  T  IV 

0 1
3
---–

0 1
3
---

1 1
3
---

= = T  IW  T  IV 

1– 0 1–
1 1 0
1 0 1

= =

T  IW  T  IV 
4– 1– 2–

2 1 1
= =
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6.1 Determinants, page 215.
1. 6                  3. 6                     5. 0                 7. 86                9. 9                 11. 9              13. 81
15. ,                 17. 

6.2 Eigenspaces, page 228.
1. ; , 

3. ; ,  

5. ; , 

7.  ; , 

            

9. ; ,  , 

         

11. ; , 

13. ; , 

15. ,                     

17. ; ,          

19. ; , 

21. ; , 

, 

23. ; , 

25. , , 

27. , , ,

            

29. ;           31. ;         

39. (a)    (b)    (c)    

k 0 k 1 k 0 1

 1 4–= E 1–  r 2r–  r  = E 4  r 3r  r  =

 4 5= E 4  r 3r  r  = E 5  r 2r  r  =

 2 8= E 2  2r– s r s +  r s  = E 8  r 2– r r  r  =

 2 1= E 2  0 3r r 0   r  = E 1  2r 0 3r 4r   r  =

E 1–  0 0 r 0    r  =

 1 2 3 = E 1  3 2r r–  r  = E 2  r 0 0   r  =

E 3  0 r 0   r  =

 3= E 3  r s r s –  r s  = E 3–  r r 3r   r  =

 0 1–= E 0  r 0 r r    r  = E 1–  r 0 0 s    r s  =

 0= E 0  =

 5 16–= E 5  2r r  r  = E 16–  r 4r  r  =

 4 2–= E 4  3r r 2r   r  = E 2–  3r 3s– r s   r s  =

 2 1 3–= E 2  3r r 34r 9r   r  = E 1–  0 r r 3r –  r  =

E 3  0 0 2 3+  r r    r  = E 3  0 0 2 3–  r r    r  =

 1= E 1  rx r+ r  = E 1–  r– x r+ r  =

 1= E 1  r– x2 sx r+ + r s  = E 1–  rx2 r+ r  =

 0 1 2 = E 0  rx2 r  = E 1  rx3– 2rx2+ r  =

E 2  rx2– 2rx+ r  =

 4= E 4  57r 38r
84r 72r–

r 
 
 
 

=  0= E 0  V=

a2 d2 2ad– 4bc 0+ + a2 d2 2ad– 4bc+ + 0= a2 d2 2ad– 4bc 0+ +
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6.3  Diagonalization, page 243.
1. Not diagonalizable.         3. Diagonalizable.         5. Diagonalizable.         7. Diagonalizable.

9. Not diagonalizable.         11. Diagonalizable.         13. Diagonalizable.         15. Diagonalizable.

17. Not diagonalizable.         19. Diagonalizable.         21. Diagonalizable.          23. Diagonalizable. 

25. Not diagonalizable.      27. Diagonalizable.        29. Not diagonalizable.       31. Diagonalizable. 

33. Not diagonalizable.

6.4  Applications, page 256.

1. 

3. 

5.          7.          13. 

15.          17.          19. 

21.          23.  

6.5  Markov Chains, page 270. 

1. Regular         3. No          5. Regular         7.          9. 

sk
2
5

------- 1 5+
2

---------------- 
 

k 1 5+
2

---------------- 
 

k
–=

sk
1
5

------- 1 5+
2

---------------- 
 

k 1– 1 5–
2

---------------- 
 

k 1–
– 2 1 5+

2
---------------- 
 

k 2–
2 1 5–

2
---------------- 
 

k 2–
–+=

sk 3 2k 1– 2–= sk
2k 1+

3
------------ 1

2
--- 1

6
--- 1– k+ += y1

y2

c1– e 2x– c2– e 3x–

c1e 2x– 2c2+ e 3x–
=

f x 
g x 
h x 

2c1– c2 c3e6x–+

c1 2c3e6x–

c2 c3e6x+

=
x
y
z

c1e 7– x c2ex 7c3e x––+

c1e 7– x 2c2ex 3c3e x–––

c1e 7– x c2ex c3e x–+ +

=
f1 x 

f2 x 
e3x ex+
e3x– ex+

=

f x 
g x 
h x 

3
8
---– e 7– x 1

2
---ex 7

8
---e x–+ +

3
8
---– e 7– x ex 3

8
---e x–+–

3
8
---– e 7– x 1

2
---ex 1

8
---e x––+

=
A-concentration of alcohol: 4.8 2.8e

5
2
---t–

–

B-concentration of alcohol: 3.2 2.8e
5
2
---t–

+

.4     .6
.9      .1

A

B

A     B

.6
.3 .7

.4
A B
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11.     13.  

15.            17.            19.            29. (a)    (b)     (c)          31. 

33. (a) 0.247   (b) 0.265   (c) 0.273   (d)   (e-a) 0.281  (e-b) 0.274  (e-c) 0.274

(e-d) The initial state of the system has no bearing on the fixed or final state of the system. Inde-
pendent of the initial state, eventually (to five decimal places): 

17.141%, 17.767%, 24.065%, 12.204%, and 18.823% of the employees
will be enrolled in plans A, B, C, D, and E, respectively.

35. (a) 0.63     (b) 0.62     (c) 0.59         (d-a) 0.50     (d-b) 0.49     (d-c) 0.48     (e) 

37. (a) 0.33     (b) 0.25       (c) 

B C

A

D

.5 .2

.5

1

.3

.5

.4

.6

(a) Probability 1 of ending up at A. 
      (0 probability of ending up in B or C)

(b) Probability 1 of ending up at A.
      (0 probability of ending up in B or C)

(c) Probability 1 of ending up at A 
      (0 probability of ending up in B or C)

 

  

2
5
---

3
5
---

3
8
---

5
8
---

3
10
------

1
2
---

1
5
---

.62

.39
.64
.36

.66

.34

.40

.22

.38

.17141

.27767

.24065

.12204

.18823

.33333

.22222

.44444

1 4
1 4
1 4
1 4
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7.1  Dot Product, page 289.

1. 33         3.          5.          7.          9. 

11.          13.       

15. A normal form: ; a general form: ; 
a vector form: .

17. A normal form: ; a vector form: 

.                   19.                     21.                 

23.          25 (a)     (b)       (c)       

27. 

7.2  Inner Product, page 298.

1. 7       3.        5.        9.        11.        13. 

19.          21.           25 

27.          29. 

31.          33. 

13 15 a 15
2
------= a c= b 9

2c
------  for any c 0=

cos 1– 31
83 21

-------------------- 42 4
5
--- 0 8

5
---–  

  6
5
--- 3 3

5
---  

 

2 1 3   x 1– y 3– z 1+   0= 2x y 3z+ + 1=
0 1 0   r 1 2 0–  s 0 3 1– + + r s  

4 0 1   x 1– y z 3+   0=

0 0 1   r 1 0 4–   s 0 1 0  + + r s   2 1
19
------ 5529

9
21

---------- a b a– 3b–
2

-------------------  
  a b 
 
 
 

7c 5c– 4c   c   0 0 0   

3x 2y 6z+ + 6=

29 cos 1– 19–
7 21
------------- 
  126 14 77 cos 1– 18–

378
------------- 
  158

6 cos 1– 1–
2 21
------------- 
  96 2x2 x– 3+ 2 xd

0

1

 10.1

cos 1–
2x2 x– 3+  x2– x 5–+  xd

0

1



2x2 x– 3+ 2 xd
0

1

 x2– x 5–+ 2 xd
0

1


-----------------------------------------------------------------------------------------------------

 
 
 
 
 
 

174 ex x– 2 xd
0

1

 1.2

sin2x xd
–



 0.08 cos 1–
x x xdcossin

–





sin2x xd
–



 cos2x xd
–




---------------------------------------------------------------

 
 
 
 
 
 

0=
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7.3  Orthogonality, page 310

1.      3. No      5.  

7. No         9.           

11.  for .     13.     15.   for .

17.        19. 

21.          23. 

25.      27.      29. 

31.              33.  (a)      

(b)     (c)       

35. (a)    (b)     (c) 

37. , 

7.4  The Spectral Theorem, page 324

13.                   15.                 17. 

1
3

------- 1
3

------- 1
3

-------  
  1–

6
------- 2

6
------- 1–

6
-------  

  1–
2

------- 0
2

------- 1
2

-------  
  

 
 
  1

30
---------- 1 2

3 4
1
5

------- 2 1–
0 0

134
5

-------------
0 0
1
3
--- 1

4
---–

 

 
 
 
 
 

4
3

------- x2

3
------- x

3
------- 1

3
-------+ +

 
 
  5

6
------- x2

6
------- 2x

6
-------– 1

6
-------+

 
 
 

– 3
2

------- x2

2
------- 1

2
-------–

 
 
 

+

a r b 1– 3r–= = r  a 1= b 2= b r= a 12r– 6+
3– 4r+

----------------------= r 

1
105

-------------– 10
105

------------- 2
105

-------------  
  2

5
------- 0 1 5  
 

 
 
  1

5
------- 1

5
------- 1

5
------- 1

5
-------   

  7–
226

------------- 8
226

------------- 7–
226

------------- 8
226

-------------   
 

 
 
 

2
5

------- 0 1
5

-------  
  1

341
-------------– 18

341
------------- 4

341
-------------  

 
 
 
  1

5
------- 0

5
------- 2

5
------- 0

5
-------   

  36
3256

---------------- 40–
3256

---------------- 18–
3256

---------------- 6
3256

----------------   
 

 
 
 

5x2 25
31

----------x2 12
31

----------x– 6
31

----------–
 
 
  1

5
------- 2

5
------- 0 

 
 
 

0 0 1
2

------- 1
2

-------–   
  2

11
---------- 2 2

11
---------- 2

2 11
------------- 2

2 11
-------------   

 
 
 
 

x x3

6
------- x2

6
------- 2

6
-------+ + x3

30
---------- 5x2

30
----------– 2

30
----------+ 

 
 
  0 1 0   2 0 1–   

1 3 2–   3
5
--- 1 0 2  – 4

5
--- 2 0 1–   3 0 1 0  ++= 305

25
-------------

2– 0 1 0    0 1– 0 1     4 1 3 3 –  2 1 4 1    2 2 1 2–– += 9
5

-------

4 1 8    1 2 1–   1
23
------ 55 54 41   1

23
------ 32– 8– 64–  +=

2 1
1 3

1 2 3
2 1 0
3 0 2

2 1
1 3
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A
Abstract Vector Space, 40
Algebraic Multiplicity, 238
Angle Between Vectors, 281, 296
Augmented Matrices, 3

B
Basis, 94

Ordered, 177
Bijection, 135

C
Cauchy-Schwarz Inequality, 295
Change of Basis Theorem, 193
Characteristic Equation, 219, 225
Characteristic Polynomial, 219, 225
Closure Axioms, 40
Coefficient Matrix,18
Cofactor, 206
Column Space, 156
Composition, 117
Composition Theorem, 117, 182
Consistent Systems of Equations, 14
Coordinate Vector, 177
Counterexample, 13
Cross Product, 287

D
Decomposition Theorem, 267, 306
Dependent Vectors, 86
Determinant, 205

Cofactor, 206
Minor, 206

Diagonal Matrix, 161, 233
Diagonalizable Matrix, 233
Diagonalizable Operator, 233
Dimension, 98
Dimension Theorem, 126
Direction Vector, 72
Distance Between Vectors, 280, 294
Dot Product, 279

E
Eigenvalues, 218, 224
Eigenvectors, 218, 224
Eigenspaces, 218, 224
Elementary Operations, 2
Elementary Matrix, 168
Equivalent Matrices, 3
Equivalent Systems of Equations, 2

Consistent, 14
Inconsistent, 14

Euclidean Vector Space, 35
Euclidean Inner Product Space, 276
Expansion Theorem, 90, 100
Extension Theorem, 115

F
Fibonacci Numbers, 246

Formula for  term, 248
Function Space, 44
Fundamental Theorem of Homogeneous 
                         Systems of Equations, 20

G
Gauss-Jordan Elimination Method, 10
Geometric Multiplicity, 238
Golden Ration, 248
Grahm-Schmidt Process, 303

H
Homogeneous Systems of Equations, 20

I
Idempotent Matrix, 162
Image, 124
Inconsistent Systems of Equations, 14
Inner Product, 292
Inner Product Space, 292

Distance between vectors, 294
Norm of a vector, 294

Invertible Matrix, 164
Inverse Function, 136
Isomorphic Spaces, 139
Isomorphism, 138

nth 
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K
Kernel, 124

L
Laplace Expansion Theorem, 206

Proof, 212
Leading One, 7
Linear Combination, 77
Linear Independent, 86
Linear Independence Theorem, 22
Linear Extension Theorem, 115
Linear Transformation (map),111

Image, 124
Kernel, 124

M
Markov Chain, 259

Regular, 263
Fundamental Theorem, 264

Transitional Diagram, 259
Transitional Matrix, 259, 261

Initial State. 260
Fixed State, 261

Matrix
Augmented, 3
Coefficient, 18
Cofactor, 207
Column Space, 156
Determinant, 205
Diagonal, 233
Diagonalizable, 236
Elementary, 168
Equivalent, 3
Idempotent, 162
Invertible, 164
Minor, 206
Multiplication, 151

Properties, 153
Nilpotent, 162
Null Space, 155
Orthogonal, 321
Orthonormal, 321
Powers, 159, 167
Rank, 158
Representation of a Linear Map, 179
Row Space, 157
Similar, 195
Skew-Symmetric, 162

Space, 42
Symmetric, 161
Trace, 162
Transpose, 161
Upper Triangle, 207

N
n-Tuples, 33
Nilpotent Matrix, 162
Norm, 280, 294
Normal Vector, 269
Null Space, 158

Nullity, 124

O
One-To-One Function, 129
Onto Function, 129
Ordered Basis, 177
Orthogonal Complement, 290
Orthogonal Matrix, 321
Orthogonal Vectors, 282, 302
Orthogonal Projection, 307
Orthogonal Set of Vectors, 301
Orthonormal Matrix, 321
Orthonormal Set of Vectors, 302
Orthonormally Diagonalizable, 322

P
Pivoting, 4
Pivot Point, 5
Plane

General Form, 285
Normal Form, 285
Scalar Form, 285

   Vector Form 71 
Polynomial Space, 43

R
Rank, 124, 159
Recurrence relation, 249
Reduction Theorem, 100
Row-Echelon Form, 12
Row Operations, 2
Row-Reduced-Echelon Form, 7
Row Space, 157
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S
Scalar Product, 34
Similar Matrices, 195
Skew-Symmetric Matrix, 163
Spanning, 79
Spanning Theorem, 18
Spectral Theorem, 319, 322
Stochastic Process, 259
Subtraction, 55
Subspaces, 59

Of , 68
Of , 70

Symmetric Matrix, 161, 315
Symmetric Operator, 317
Systems of Differential Equations, 249
Systems of Linear Equations, 1

Equivalent, 2
Elementary Operations, 2
Homogeneous, 20

T
Theorems

Cauchy-Schwarz Inequality, 279
Change of Basis, 193
Composition Theorem, 182
Dimension Theorem, 126
Expansion Theorem, 90, 100
Fundamental Theorem of Homogeneous

                                 systems of Equations, 20
Grahm-Schmidt Process, 303
Laplace Expansion Theorem, 206
Linear Extension Theorem, 115
Linear Independence Theorem, 22
     For , 88
Reduction Theorem, 100
Spanning Theorem, 1
Spectral Theorem, 319, 322
Vector Decomposition Theorem, 267,306

Trace, 162
Translation Vector, 72
Transpose of a Matrix, 161, 264
Triangle Inequality, 296
Trivial Space, 48

U
Unit Vector, 302
Upper Triangle Matrix, 207

V
Vector, 31

Abstract, 40
Additive Inverse, 31
Addition, 34
Coordinate, 179
Cross Product, 287
Decomposition, 283
Normal, 285
Scalar product, 34
Sum, 25
Subtraction, 55
Standard Position, 32
Unit, 302
Zero, 35

Vector Space
Abstract, 40
Euclidean, 35
Function, 44
Matrix, 42
Polynomial, 43
Properties, 51, 56
Subspaces, 59
Trivial, 48

W
Weighted Inner Product Spaces, 292

Z
Zero Vector, 35Weigh

2

3

n
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	30. The systems of equations associated with the two augmented matrices:
	31. If the matrix A has n rows, and if contains less than n leading ones, then the last row of must consist entirely of zeros.
	§2. Consistent and Inconsistent Systems of Equations

	Consistent Inconsistent
	EXAMPLE 1.4
	EXAMPLE 1.5
	EXAMPLE 1.6

	Any variable that is not associated with a leading one in the row-reduced echelon form of an augmented matrix is said to be a free variable. In the current setting, the variable w is a free variable (see rref in Figure 1.3).
	Answer: (a) Inconsistent
	(b)
	(c):
	EXAMPLE 1.7

	Unlike the TI-84+, the TI-89 and above have symbolic capabilities. In particular:
	EXAMPLE 1.8

	Here, unlike with the smaller system of equations in Example 1.8, the TI-89 (or higher) is of little help:
	The last row of the above rref matrix tells us that there is no solution to the system, but it “lies,” for solutions do exist for certain values of a, b, c, and d [see (*)].
	Answer: (a) It is consistent for all a, b, and c.
	(b) Consistent if and only if
	Figure 1.3
	Coefficient Matrix

	Let P and Q be two propositions (a proposition is a mathematical statement that is either true or false). To say “P if and only if Q,” (also written in the form ) is to say that if P is true then so is Q (also written ), and if Q is true then so ...
	THEOREM 1.2
	EXAMPLE 1.9
	Answer: (a) Yes (b) No
	Homogeneous Systems of Equations
	A system with fewer equations than unknowns (“wide”) is said to be underdetermined.
	A system with more equations than unknowns (“tall”) is said to be overdetermined.
	A square system is a system which contains as many equations as unknowns.
	THEOREM 1.3
	EXAMPLE 1.10
	Figure 1.4


	Answer:
	While underdetermined (“wide”) homogeneous systems of equations are guaranteed to always have non-trivial solutions, this is not the case with overdetermined (“tall”) systems of equations [see Exercises 27-28], or with square systems of equat...
	THEOREM 1.4
	1.
	2.
	3.
	4.
	5.
	6.
	7.
	8.
	9.
	10.
	11.
	12.
	13.
	14.
	15.
	16.
	17.
	18.
	19.
	20. Let S is a homogeneous system of equations. Prove that the last column of contains only zeros.
	21. Prove that if , then the system of equations:
	22. Show that if and are solutions of the system: , then, is also a solution for any given .
	23.
	24.
	25.
	26.
	27.
	28.
	29.
	30.
	31.
	32.
	33.
	34.
	35.
	36.
	37. For what values of a, b, c, and d will the homogeneous system of equations have a unique solution:
	38. Show that if is a solution of a given two by two homogeneous system of equations, then is also a solution for any .
	39. Show that if and are solutions of a given two by two homogeneous system of equations, then is also a solution.
	40. Let M be the solution set of and let T be the solution set of the corresponding homogeneous system . Show that:
	41. Let M be the solution set of and let T be the solution set of the corresponding homogeneous system . Show that for any , .
	42. The system of equations associated with the augmented matrix is consistent, independent of the values of the entries a through f.
	43. The system of equations associated with the augmented matrix is consistent, independent of the values of the entries a through f.
	44. The system of equations associated with the augmented matrix is consistent if and only if .
	45. If a homogeneous system of equations has a nontrivial solution, then it has infinitely many solutions.
	46. If the homogeneous system has only the trivial solution, then the system has a unique solution for all .
	47. Any system S of linear equations in n unknowns with has nontrivial solutions.
	48. A system of n linear equations in m unknowns S is consistent if and only if has m leading ones.


	n-tuple
	Solution Set of a System of Equations
	An n-tuple is a solution of the system, S, of m equations in n unknowns
	if each of the m equations is satisfied when is substituted for , for .
	Consistent and Inconsistent Systems of Equations
	A system of equations is said to be consistent if it has non- empty solution set. A system of equations that has no solution is said to be inconsistent.
	Equivalent Systems of Equations
	Two systems of equations are said to be equivalent if they have equal solution sets.
	Overdetermined, Underdetermined, and Square Systems of Equations
	A system of m equations in n unknowns is said to be:
	Overdetermined if (more equations than unknowns).
	Underdetermined if (fewer equations than unknowns).
	Square if .
	Elementary Equation Operations
	The following three operations on a system of linear equations are said to be elementary equation operations:
	Interchange the order of any two equations in the system.
	Multiply both sides of an equation by a nonzero number.
	Add a multiple of one equation to another equation.
	Elementary row operations do not alter the solution sets of systems of equations.
	Matrices
	Since A has 3 rows and 4 columns, it is said to be a three-by- four matrix. When the number of rows of a matrix equals the number of columns, the matrix is said to be a square matrix.
	Elementary Row Operations
	The following three operations on any given matrix are said to be elementary row operations:
	Interchange the order of any two rows in the matrix.
	Multiply each element in a row of the matrix by a nonzero number.
	Add a multiple of one row of the matrix to another row of the matrix.
	Equivalent Matrices
	Two matrices are equivalent if one can be derived from the other by means of a sequence of elementary row operations.
	Augmented Matrix
	Equivalent systems of equations corresponding to equivalent augmented matrices.
	Row-Reduced-Echelon Form of a Matrix
	Gauss-Jordan Elimination Method.
	Coefficient Matrix
	Spanning Theorem
	Homogeneous System of Equations
	Trivial Solution
	Fundamental Theorem of Homogeneous Systems
	You can use to solve a homogeneous system of equations S
	Linear Independence
	Theorem
	CHAPTER 2
	VECTOR SPACES
	§1. Vectors in the Plane and Beyond
	Figure 2.1
	Figure 2.2

	EXAMPLE 2.1


	Pick up the top vector and move it 2 units down and 3 units to the right to the right so that its initial point . In the process, the original terminal point is also moved 2 units to the right at 3 units down, coming to rest at .
	Figure 2.3

	Note that the two-tuple in the expression appears in bold-face, so as to distinguish it from the form which represents a point in the plane.
	Figure 2.4
	DEFINITION 2.1

	Scalar Product and Sums of Vectors
	Figure 2.5
	DEFINITION 2.2

	Vector Addition
	(a) (b)
	Figure 2.6

	While identical in shape, the “+” in differs in spirit from that in : the latter represents the familiar sum of two numbers, as in , while the former represents the newly defined sum of two n-tuples, as in:
	DEFINITION 2.3
	EXAMPLE 2.2

	Answer:
	Euclidean Vector Spaces
	DEFINITION 2.4

	No direction is associated with the zero vector. A zero force, for example, is no force at all, and its “direction” would be a moot point.
	DEFINITION 2.5
	THEOREM 2.1

	To emphasize the important role played by definitions, the symbol instead of will temporarily be used to indicate a step in the proof which follows directly from a definition. In addition, the abbreviation “PofR” will be used to denote that a ste...
	This associative property eliminates the need for including parenthesis when summing more than two vectors. In particular,
	is perfectly well defined.
	In this, and any other abstract math course:
	definitions Rule!
	Just look at the above proof. It contains but one “logical step,” the step labeled PofR; all other steps hinge on definitions.
	Answer: See page B-3.
	1.
	2.
	3.
	4.
	5.
	6.
	7.
	8.
	9.
	10.
	11.
	12.
	13.
	14.
	15.
	16.
	17.
	18.
	19. For , , and , find scalars r and s such that:
	20. Find scalars r, s, and t, such that:
	21. Find scalars r, s, and t, such that:
	22. Show that there do not exist scalars r, s, and t, such that
	23. Find the vector of length 5 that has the same direction as the vector with initial point and terminal point .
	24. Find the vector of length 5 that is in the opposite direction of the vector with initial point and terminal point .
	25. On page 37, we established Theorem 2.1(ii) for . Prove that theorem for and for .
	26. On page 37, we established Theorem 2.1(v) for . Prove that theorem for and for .
	27. Prove Theorem 2.1(i) for: (a) (b) (c)
	28. Prove Theorem 2.1(iii) for: (a) (b) (c)
	29. Prove Theorem 2.1(vi) for: (a) (b) (c)
	30. Prove Theorem 2.1(viii) for: (a) (b) (c)
	31. Prove that if v, w, and z, are vectors in such that , then .
	32. For , if then .
	33. For , if then .
	34. For and , if then .
	35. For , if and only if or .
	§2. Abstract Vector Spaces

	The elements of a vector space V are called vectors, and will be denoted by bold-faced letters (like v). Scalars will continue to be denoted by non- bold-faced letters .
	The binary operator need not be represented with a plus-sign—see Example 2.4, page 46.
	DEFINITION 2.6

	A set is said to be closed, with respect to an operation, if elements of that set subjected to that operation remain in the set.
	V is closed under addition:
	For every in V,
	V is closed under scalar multiplication:
	For every and ,
	We also point out that, by convention, no meaning is attributed to an expression of the form , wherein a vector v appears to the left of a scalar r.
	Matrix Spaces
	EXAMPLE 2.3

	We are again using to indicate that equality follows from a definition, and “PofR” for “Property of the Real numbers.”
	THEOREM 2.2

	Answer: See page B-3.
	Polynomial Spaces
	In particular:
	The Greek letter (Sigma) is used to denote a sum.
	THEOREM 2.3

	Answer: See page B-3.
	Function Spaces
	All “objects” in mathematics are sets, and functions are no exceptions. The function f given by , for example, is that subset of the plane, typically called the graph of f:
	Pictorially:
	THEOREM 2.4

	A function is defined to be equal to a function , if for every .
	The fact that is closed under addition and scalar multiplication is self-evident.
	As you can see, we elected to use the letter Z, rather than the symbol 0, for our zero vector. It’s just that an expression like would strongly suggest that a multiplication by zero is being performed, which is not the case.
	Answer: See page B-3.
	Additional Examples
	EXAMPLE 2.4
	EXAMPLE 2.5

	Answer: Zero vector:
	Inverse of :
	EXAMPLE 2.6
	EXAMPLE 2.7

	Answer: See page B-4.
	1. , , and .
	2. , , and .
	3. , , and .
	4. , , and .
	5. , , and .
	6. , , and .
	7. , , and .
	8. , , and .
	9. , , and .
	10. , , and .
	11. , and .
	12. ; , , ; and , .
	13. , , and .
	14. , , and .
	15. , , and .
	16. , , .
	17. Complete the proof of Theorem 2.2.
	18. Complete the proof of Theorem 2.3.
	19. Complete the proof of Theorem 2.4.
	20. Establish the remaining three axioms for the space of Example 2.4.
	21. Establish the remaining six axioms for the space of Example 2.5.
	22. A polynomial is an expression of the form for which there exists an m such that for . Show that, with respect to the following operations, the set of all polynomials is a vector space:
	23. Let V be a vector space, and let . If , then .
	24. Let V be a vector space, and let . If and , then .
	25. Let V be a vector space, and let . If and , then .
	26. Let V be a vector space, and let . If , then .
	27. Let V be a vector space, and let . If and , then .
	§3. Properties of vector Spaces

	Strategy for (a): Assume that 0 and are any two zeros, and then go on to show .
	Strategy for (b): Assume that a vector v has two additive inverses, and , and then go on to show that .
	Answer: See page B-4.
	Answer: See page B-4.
	Multiplying any vector by the scalar 0 results in the vector 0.
	Answer: See page B-4.
	Multiplying any vector by the scalar results in the additive inverse of that vector.
	Answer: See page B-5.
	Strategy: Show that if you add to v you end up with the vector 0.
	Subtraction
	DEFINITION 2.7

	A definition is the introduction of a new word in the language of mathematics. As such, one must understand all of the words used in its description. This is so in Definition 2.7, where the new word “” on the left of the equal sign is described b...
	Answer: See page B-5.
	1. Theorem 2.11 (iv): If and , then .
	2. Theorem 2.11 (v): If and , then .
	3. Theorem 2.11 (ix): .
	4. Theorem 2.11 (xiii): .
	5. Theorem 2.11 (xiv): .
	6. Theorem 2.11 (xvi): .
	7. Theorem 2.11 (xvii): .
	8. Theorem 2.11 (xviii): .
	9. Show that for any vector v in a vector space V, and any : .
	10. Show that for any vector v in a vector space V and any integer : .
	11. Let v, w, and z be any vectors in a vector space V, and let , with . Show that if , then .
	12. Let v and w be vectors in a vector space V, with . Show that if , then .
	13. Let v and w be vectors in a vector space V. Show that if and , then .
	14. Show that for any v and w in a vector space V, and for any :
	15. Let v and w be non-zero vectors in a vector space V. Show that if , with not both r and s equal to 0, then there exist unique numbers a and b such that and .
	16. All vector spaces contain infinitely many vectors.
	17. Any vector space that contains more than one vector must contain an infinite number of vectors.
	18. For any vector v in a vector space V and any :
	19. Let and be vector spaces. Let with operations given by:
	20. Let and be vector spaces. Let with operations given by:
	§4. Subspaces
	DEFINITION 2.8

	(i)
	(ii)
	(v)
	(vi)
	(vii)
	(viii)
	EXAMPLE 2.8

	The “ticket” to be in S is that the third component is equal to the sum of its first two components.
	Since has the “ticket,” it is in S.
	Answer: See page B-5.
	EXAMPLE 2.9

	Answer: See Page B-5.
	The “ticket” needed for a function f to get into S is that it maps 9 to 0.
	EXAMPLE 2.10

	Answer: Not a subspace.
	EXAMPLE 2.11

	Answer: See page B-5.
	Intersection and Union of Subspaces

	S intersect T
	(a)
	S union T
	(b)
	In the exercises you are asked to show that the intersection of any number of subspaces of V is again a subspace of V.
	Figure 2.7
	EXAMPLE 2.12

	Answer: See page B-6.
	1.
	2.
	3.
	4.
	5.
	6.
	7.
	8.
	9.
	10.
	11.
	12.
	13.
	14.
	15.
	16.
	17.
	18.
	19.
	20.
	21.
	22.
	23.
	24.
	25.
	26.
	27.
	28.
	29.
	30.
	31. The subset of even functions:
	32. The subset of odd functions:
	33. The subset of increasing functions:
	34. The subset of decreasing functions:
	35. The subset of bounded functions:
	36. (Calculus dependent)
	37. (Calculus dependent)
	38. (Calculus dependent)
	39. Let V be a vector space. Show that:
	40. (PMI) Establish the following generalization of Theorem 2.14.
	41. (PMI) Let be vectors in a vector space V. Show that is a subspace of V.
	42. Let S and T be subspaces of a vector space V. Show that is a subspace of V.
	43. Let S and T be subspaces of a vector space V, with . Show that every vector in the subspace of the previous exercise can be uniquely expressed as a sum of a vector in S with a vector in T.
	44. If S and T are both subsets of a vector space V, and if neither S nor W is a subspace of V, then cannot be a subspace of V.
	45. If S and T are both subsets of a vector space V, and if neither S nor W is a subspace of V, then cannot be a subspace of V.
	46. If S and T are subspaces of a vector space V, then (see Exercise 43).
	47. If S and T are subspaces of a vector space V, then (see Exercise 43).
	48. If S, T, and W are subspaces of a vector space V, then is also a subspace of V (see Exercise 43).
	49. If S, T, and W are subspaces of a vector space V, then (see Exercise 42).
	50. If S and T are subspaces of a vector space V with , then is a subspace of V.
	51. If S is a subspace of a vector space V, and if T is a subspace of S, then T is a subspace of V.
	52. If a vector space has two distinct subspaces, then it has infinitely many distinct subspaces.
	§5. Lines and Planes
	Subspaces of
	THEOREM 2.15

	For any vector :
	The vector v is said to be a direction vector for the line, and the vector u is said to be a translation vector.
	THEOREM 2.16

	Those not satisfied with this geometrical proof are invited to consider Exercise 62.
	Figure 2.8

	Note that the set:
	This brings us to the so- called parametric representation of L:
	Answer: See page B6.
	EXAMPLE 2.13
	Subspaces of


	One cannot envision a line in for . We can, however define, in vector form, the line passing through:
	and
	in to be the set:
	where:
	and:
	THEOREM 2.17
	EXAMPLE 2.14

	The line can also be expressed in parametric form (see margin note of Example 2.13):
	Answer: See page B6.
	THEOREM 2.18
	Figure 2.9

	THEOREM 2.19
	EXAMPLE 2.15

	P consists of all points such that:
	The above is said to be a parametric representation of the plane (with parameters r and s).
	Answer: See page B6.
	THEOREM 2.20
	1.
	2.
	3.
	4.
	5.
	6.
	7.
	8.
	9.
	10.
	11.
	12.
	13. Exercise 1
	14. Exercise 2
	15. Exercise 3
	16. Exercise 4
	17. Exercise 5
	18. Exercise 6
	19. Exercise 7
	20. Exercise 8
	21. Exercise 1
	22. Exercise 2
	23. Exercise 3
	24. Exercise 4
	25. Exercise 5
	26. Exercise 6
	27. Exercise 7
	28. Exercise 8
	29.
	30.
	31.
	32.
	33.
	34.
	35.
	36.
	37.
	38.
	39.
	40.
	41. Exercise 29
	42. Exercise 30
	43. Exercise 31
	44. Exercise 32
	45. Exercise 33
	46. Exercise 34
	47. Exercise 35
	48. Exercise 36
	49.
	50.
	51.
	52.
	53.
	54.
	55.
	56.
	57.
	58.
	59.
	60.
	61. Complete the proof of Theorem 2.15. Incidentally:
	62. Prove Theorem 2.16.
	63. Prove Theorem 2.17.
	64. Prove Theorem 2.18.
	65. Prove Theorem 2.19.
	66. Prove Theorem 2.20.


	Euclidean Vector Space
	Abstract Vector Space
	Subtraction
	Uniqueness of 0 and
	Cancellation Properties
	Zero Properties
	Inverse Properties
	Subspace
	A nonempty subset S of V which is itself a vector space under the vector addition and scalar multiplication operations of the space V.
	Closure says it all
	A one liner
	Intersection of subspaces
	Proper Subspaces
	Vector form of lines
	Vector form of planes
	CHAPTER 3
	BASES AND DIMENSION
	§1. Spanning Sets
	DEFINITION 3.1
	EXAMPLE 3.1


	Note that, except for the last column, this augmented matrix is the same as that of Example 3.1.
	Some Added Insight on Example 3.1
	Answers: (a) No (b) Yes
	THEOREM 3.1
	DEFINITION 3.2
	EXAMPLE 3.2

	System S was solved directly in Example 1.7, page 16. In that example, we labeled the variables x, y, and z, instead of r, s, and t.
	Answer: See page B7.
	EXAMPLE 3.3
	EXAMPLE 3.4

	Answer: See page B8.
	EXAMPLE 3.5
	THEOREM 3.2

	Answer: See page B8.
	1.
	2.
	3.
	4.
	5.
	6.
	7.
	8.
	9.
	10.
	11.
	12.
	13.
	14.
	15.
	16.
	17.
	18.
	19.
	20.
	21.
	22.
	23.
	24.
	25.
	26. For what values of c do the vectors span ?
	27. For what values of c do the vectors span ?
	28. For what values of a and b do the vectors and span ?
	29. Show that for any given set of vectors , for every .
	30. Let the set of vectors and be such that for and for . Prove that .
	31. Show that if span a vector space V, then for any vector the vectors also span V.
	32. Show that a nonempty subset S of as vector space V is a subspace of V if and only if for every .
	33. Let denote the vector space of all polynomials of Exercise 23, page 50. Show that no finite set of vectors in spans .
	34. Let S be a subset of a vector space V. Prove that is the intersections of all subspaces of V which contain the set S.
	35. If the vectors u and v span V, then so do the vectors u and .
	36. If the vectors u and v span V, then so do the vectors u and .
	37. If the vectors u and v are contained in the space spanned by the vectors w and z, then .
	38. If , and if for , then .
	39. If and are finite sets of vectors in a vector space V, then:
	40. If and are finite sets of vectors in a vector space V, then:
	41. If and are finite sets of vectors in a vector space V, then:
	42. If and are subspaces of a vector space V, then:
	§2. Linear Independence

	Note that if each , then surely
	will equal zero.
	To say that is linearly independent, is to say that no other linear combination of the vectors equals 0.
	DEFINITION 3.3
	EXAMPLE 3.6
	EXAMPLE 3.7

	Most graphing calculators do not have the capability of “rref-ing” a “tall matrix.” But you can always add enough zero columns to arrive at a square matrix:
	Answer: Yes.
	EXAMPLE 3.8

	Answer: See page B-8.
	THEOREM 3.3
	EXAMPLE 3.9

	Answer: See page B-9.
	THEOREM 3.4

	Contrapositive Proof
	Let P and Q be two propositions.
	You can prove that:
	by showing that:
	(After all if Not-Q implies Not-P, then you certainly cannot have P without having Q: think about it)
	THEOREM 3.5

	In the exercises you are invited to establish the converse of this theorem.
	THEOREM 3.6

	Answer: See page B-9.
	THEOREM 3.7

	Answer: See page B-9.
	1.
	2.
	3.
	4.
	5.
	6.
	7.
	8.
	9.
	10.
	11.
	12.
	13.
	14.
	15.
	16.
	17.
	18.
	19.
	20.
	21.
	22.
	23.
	24.
	25.
	26.
	27. , where denotes the set of positive numbers.
	28. For what real numbers a is a linearly dependent set in ?
	29. For what real numbers a is a linearly dependent set in ?
	30. For what real numbers a is a linearly dependent set in ?
	31. Find a value of a for which is a linearly dependent set in the function space ?
	32. Find a value of a for which is a linearly dependent set in the function space ?
	33. Let v be any nonzero vector in a vector space V. Prove that is a linearly independent set.
	34. Prove that every nonempty subset of a linearly independent set is again linearly independent.
	35. Prove that if is a linearly dependent set in a vector space V, then so is the set for any set of vectors in V.
	36. Establish the converse of Theorem 3.6.
	37. Let be a set of vectors in a space V. Show that if there exists any vector which can be uniquely expressed as a linear combination of the vectors in S then S is linearly independent.
	38. Show that is a linearly independent set in the vector space of Example 2.5, page 47.
	39. Let and be linearly independent sets of vectors in a vector space V with . Prove that is also a linearly independent set.
	40. If is a linearly dependent set, then for some scalar r.
	41. If is a linearly dependent set, then for some scalars r and s.
	42. If is a linearly independent set of vectors in a vector space V, then is also linearly independent.
	43. If is a linearly independent set of vectors in a vector space V, then is also linearly independent.
	44. For any three nonzero distinct vectors in a vector space V, is linearly dependent.
	45. If is a linearly independent set of vectors in a vector space V, and if then is also linearly independent.
	46. If is a linearly independent set of vectors in a vector space V, and if a is any nonzero number, then is also linearly independent.
	47. If and are linearly independent sets of vectors in a vector space V, then is also a linearly independent set.
	48. If and are linearly independent sets of vectors in a vector space V, then is also a linearly independent set.
	§3. Bases
	DEFINITION 3.4 Basis


	Standard bases in
	EXAMPLE 3.10

	If you take the time to solve the system directly, you will find that:
	Figure 3.1
	EXAMPLE 3.11

	In words: There cannot be more lineally independent vectors than the number of vectors in any spanning set.
	THEOREM 3.8

	Since is a solution of (**):
	THEOREM 3.9
	DEFINITION 3.5

	In the exercises you are asked to show that the polynomial space of Exercise 23 of page 50 is an infinite dimensional space.
	So, if the number of vectors equals the dimension of the space, then to show that those vectors is a basis you do not have to establish both linear independence and spanning, for either implies the other.
	THEOREM 3.10

	The cycle:
	insures that the validity of any of the three propositions implies that of the other two.
	THEOREM 3.11
	THEOREM 3.12

	Procedure: Keep adding vectors, while maintaining linear independence, till you end up with n linearly independent vectors.
	EXAMPLE 3.12
	EXAMPLE 3.13
	Figure 3.2


	Note that c and d are the free variables in rref[coef (s)]
	THEOREM 3.13
	1. (a) Prove that is a basis for . Express as a linear combination of the vectors in .
	2. (a) Prove that is a basis for , and express as a linear combinations of the vectors in .
	3. (a) Prove that is a basis for , and express as a linear combinations of the vectors in .
	4.
	5.
	6.
	7.
	8. (a) Prove that the matrix space has dimension 4.
	9.
	10.
	11.
	12.
	13.
	14.
	15.
	16. (a) Prove that the polynomial space is of dimension 4.
	17.
	18.
	19.
	20.
	21.
	22.
	23.
	24.
	25.
	26.
	27.
	28.
	29.
	30.
	31.
	32.
	33.
	34.
	35.
	36.
	37.
	38.
	39.
	40.
	41.
	42. Show that is a subspace of , and then find a basis for that subspace.
	43. Show that is a subspace of , and then find a basis for that subspace.
	44. Show that is a subspace of , and then find a basis for that subspace.
	45. Show that is a subspace of , and then find a basis for that subspace.
	46. Find all values of c for which is a basis for .
	47. Find all values of c for which is a basis for .
	48. Find a basis for the vector space of Example 2.5, page 47.
	49. Suppose is a basis for a vector space V. For what values of a and b is a basis for V?
	50. Let S is a subspace of V with . Prove that .
	51. Suppose that is a linearly independent set of vectors in a space V of dimension n, and that spans V. Prove that .
	52. A set of vectors S in a finite dimensional vector space V is said to be a maximal linearly independent set if it is not a proper subset of any linearly independent set. Prove that a set of vectors is a basis for V if and only if it is a maximal l...
	53. A set of vectors S in a finite dimensional vector space V is said to be a minimal spanning set if no proper subset of S spans V. Prove that a set of vectors is a basis for V if and only if it is a minimal spanning set.
	54. Let H and K be finite dimensional subspace of a vector space V with , and let . Prove that . (Note: you were asked to show that is a subspace of V in Exercise 42, page 67.)
	55. Let H and K be finite dimensional subspace of a vector space V, and let . Prove that:
	56. Prove that the polynomial space of Exercise 22, page 50, is not finite dimensional by showing that it does not have a finite base.
	57. (Calculus dependent) Show that is a subspace of the polynomial space P of Exercise 22, page 50. Find a basis for S.
	58. Prove that a vector space V is infinite dimensional (not finite dimensional) if and only if for any positive integer n, there exists a set of n linearly independent vectors in V.
	59. If is a basis for a vector space V, and if , , and are nonzero scalars, then is also a basis for V.
	60. If is a linearly independent set of vectors in a space V of dimension n, and if , then is a basis for V.
	61. If is a linearly independent set of vectors in a space V of dimension n, and if , then is a basis for V.
	62. If is a spanning set of vectors in a space V of dimension n, then is a basis for V.
	63. If is a spanning set of vectors in a space V of dimension n, and if , then is a basis for V.
	64. If is a basis for a vector space V, then is also a basis for V.
	65. It is possible to have a basis for the polynomial space which consists entirely of polynomials of degree 2.
	66. Let be a spanning set for a space V of dimension n satisfying the property that . If you delete any vector from the set , then the resulting set of n vectors will be a basis for V.
	67. If V is a space of dimension n, then V contains a subspace of dimension m for every integer .

	Linear Combination
	Spanning
	If , then is said to span the vector space V.
	If every vector in a set is contained in the space spanned by another set , then is a subset of .
	Linearly Independent Set
	Unique representation.
	No vector can be built from the rest.
	Expanding a linearly independent set.
	Linear Independence Theorem.
	Linear independence in .
	Basis
	All bases for a vector space contain the same number of vectors.
	You can show that a set of n vectors in an n-dimensional vector space is a basis by either showing that they span the space, or by showing that it is a linearly independent set—you don’t have to do both:
	Expansion Theorem
	Reduction Theorem
	Reducing a set of vectors S in to a basis for Span(S)
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	CHAPTER 4
	LINEARITY
	§1. Linear Transformations


	A linear transformation is also called a linear function, or a linear map. A linear map from a vector space to itself is said to be a linear operator.
	DEFINITION 4.1
	EXAMPLE 4.1

	A smoother approach:
	EXAMPLE 4.2

	You can also show that the above function is not linear by demonstrating, for example, that . To show that a function is not linear you need only come up with a specific counterexample which “shoots down” either (1) or (2) of Definition 4.1.
	Answer: See page B-12.
	In order to distinguish where the different zeros preside, we are using and to indicate the zero is in the vector space V and W, respectively.
	Answer: See page B-12.
	You can perform the vector operations in V and then apply T to that result: , or you can first apply T and then perform the vector operations in W: . Either way, you will end up at the same vector in W.
	Answer: See page B-12.
	See Theorem 2.13, page 61
	A Linear map is completely determined by its action on a basis

	Yes:
	A linear transformation is completely determined by its action on a basis of V
	Answer: See page B-12.
	EXAMPLE 4.3

	Answer: See page B-12.
	Composition of Linear Functions
	EXAMPLE 4.4

	Answer: See page B-13.
	1. , where .
	2. , where .
	3. , where .
	4. , where .
	5. , where .
	6. , where .
	7. , where .
	8. , where .
	9. , where .
	10. , where .
	11. , where .
	12. , where .
	13. , where .
	14. , where .
	15. , where .
	16. , where .
	17. , where .
	18. , where , and V is the vector space of Example 2.5, page 47.
	19. Let the linear map be such that:
	20. Let the linear map be such that:
	21. Let the linear map be such that:
	22. Let the linear map be such that:
	23. Show that there cannot exist a linear transformation such that:
	24. Show that there cannot exist a linear transformation such that:
	25. Show that the identity function , given by for every v in V, is linear.
	26. Show that the zero function , given by for every v in V, is linear. (Referring to the equation , where does 0 live?)
	27. In precalculus and calculus, functions of the form are typically called linear functions. Give necessary and sufficient conditions for a function of that form to be a linear operator on the vector space .
	28. Show that for any the function , where is linear. (See Theorem 2.4, page 44.)
	29. (Calculus Dependent) Let be the subspace of the function space consisting of all differentiable functions. Let be given by , where denotes the derivative of f. Show that T is linear.
	30. (Calculus Dependent) Show that the function , given by is linear.
	31. (Calculus Dependent) Show that if the linear function is such that , and , then T is the derivative function.
	32. (Calculus Dependent) Let denote the vector space of all real-valued functions that are integrable over the interval . Let be given by . Show that T is linear.
	33. Let be linear and let S be a subspace of V. Show that is a subspace of W.
	34. (PMI) Use the Principle of Mathematical Induction to prove Theorem 4.3.
	35. Let , with addition and scalar multiplication given by:
	36. (a) Show that if a function satisfies the property that for every and , then is a linear function: which is ti say, that it must also satisfy the property that for every .
	37. Let satisfy the condition that for every . Show that:
	38. Let satisfy the condition that for every . Show that:
	39. , where is given by and by .
	40. , where is given by and by
	41. , where is given by and by .
	42. , where is given by and by .
	43. , where is given by , by , and by .
	44. , where is given by , by , and by .
	45. (PMI) Let be linear, for . Show that is linear.
	46. For any the function given by is linear.
	47. For any the function given by is linear.
	48. Let be linear. If is a linearly independent subset of W then is a linearly independent subset of V.
	49. Let be linear. If is a linearly independent subset of V then is a linearly independent subset of W.
	50. If for given functions and the composite function is linear, then both f and g must be linear.
	51. If for given functions and the composite function is linear, then f must be linear.
	52. If, for given functions and , the composite function is linear, then g must be linear.
	§2. Kernel and Image
	Figure 4.1

	DEFINITION 4.2
	DEFINITION 4.3

	In particular, if
	is a basis for V, then
	will span .
	EXAMPLE 4.5

	Answer: (a) See page B-13.
	(b) ,
	Why can’t you simply show just one of the two?
	EXAMPLE 4.6

	System S is certainly easy enough to solve directly. Still:
	Recall that:
	Answer: See page B-14.
	One-To-One and Onto Functions

	The first part of this theorem is telling is that if a linear map is “one-to-one at 0,” then it is one-to-one everywhere. Certainly not true for other functions:
	DEFINITION 4.4
	EXAMPLE 4.7

	Answer: See page B-14.
	1. , where
	2. , where
	3. , where
	4. , where
	5. , where
	6. , where
	7. , where
	8. , where
	9. , where
	10. , where
	11. , where
	12. , where
	13. , where
	14. , where
	15. , where
	16. , where
	17. , where
	18. , where
	19. , where
	20. , where
	21. , where
	22. , where
	23. , where
	24. where
	25. where
	26. where
	27. where
	28. Let be given by .
	29. Let be given by .
	30. Determine a basis for the kernel and image of the linear transformation which maps to , to , and to .
	31. Determine a basis for the kernel and image of the linear transformation which maps to , to , and to .
	32. Determine a basis for kernel and image of the linear transformation which maps to , to , to 5, and to .
	33. Find, if one exists, a linear transformation such that:
	34. Find, if one exists, a linear transformation such that:
	35. Let , and let be the linear operator , for . Enumerate the possible values of and .
	36. Let be linear with and . Enumerate the possible values of and .
	37. Let be linear with and . Enumerate the possible values of and .
	38. Let be a one-to-one linear map. Determine the rank and nullity of T.
	39. Let be an onto linear map. Determine the rank and nullity of T.
	40. Let be a linear operator, with . Prove that if and only if T is one-to-one.
	41. Let be linear, with . Prove that is a basis for V if and only if is a basis for W.
	42. Give an example of a linear transformation such that .
	43. Let be a linear transformation, with . Prove that T is one-to-one if and only if .
	44. Let be linear, with . Prove that T is one-to-one if and only if T is onto.
	45. Let and be linear.
	46. If then .
	47. There exists a one-to-one linear map .
	48. There exists a one-to-one linear map .
	49. There exists an onto linear map .
	50. There exists an onto linear map .
	51. If is linear and , then T cannot be onto.
	52. If is linear and , then T cannot be one-to-one.
	53. If is linear and , then T cannot be onto.
	54. If is linear and , then T cannot be one-to-one.
	55. There exists a linear transformation such that .
	56. There exists a linear transformation such that .
	57. There exists a linear transformation such that .
	58. There exists a linear transformation such that .
	59. If is linear and if W is finite dimensional, then V is finite dimensional.
	60. If is linear and if V is finite dimensional, then W is finite dimensional.
	61. If is linear and if V is finite dimensional, then is finite dimensional.
	62. If is linear and if is finite dimensional, then V is finite dimensional. If is linear and if is finite dimensional, then either V or W is finite dimensional.
	63. Let and be linear. If , and , then .
	64. Let and be linear. If , , and , then .
	65. Let and be linear. If , , and , then .
	66. Let and be linear, with and . If T is one- to-one and L is onto, then .
	§3. Isomorphisms
	Bijections and Inverse Functions
	DEFINITION 4.5

	A bijection serves to pair of each elements of A with those of B (see margin).

	Only bijections
	have inverses
	Figure 4.2
	Answer: See page B-14.
	DEFINITION 4.6
	Back to Linear Algebra

	EXAMPLE 4.8

	Answer: See page B-14.
	DEFINITION 4.7 Isomorphism
	EXAMPLE 4.9

	This theorem asserts that “isomorphic” is an equivalence relation on any set of vector spaces. See Exercises 37-39.
	Answer: See page B-15.
	DEFINITION 4.8

	Answer: See page B-15.
	A rose by any other name

	Answer: See page B-16.
	EXAMPLE 4.10

	For , and :
	Answer: See page B-16.
	turns out to be the zero in X.
	turns out to be the inverse of .
	EXAMPLE 4.11

	Answer: See page B-16.
	1. , where .
	2. , where .
	3. , where .
	4. , where .
	5. , where .
	6. , where .
	7. , where .
	8. , where .
	9. , where .
	10. , where .
	11. ,where .
	12. , where .
	13. , where .
	14. , where .
	15. , where .
	16. , where .
	17. , where .
	18. , where .
	19. , where .
	20. , where .
	21. , where .
	22. , where .
	23. given by .
	24. given by .
	25. Show that if the functions and have inverses, then the function also has an inverse and that .
	26. For , let be given by . For what values of r is an isomorphism?
	27. For a vector in the space V let be given by .
	28. Find a specific isomorphism from to .
	29. Show that the vector space of Example 2.4, page 46, is isomorphic to the vector space of real numbers, .
	30. Find an isomorphism between the vector space of Example 2.5, page 47 and .
	31. Suppose that a linear transformation is one-to-one, and that is a linearly independent subset of V. Show that is a linearly independent subset of W. (In particular, the above holds if T is an isomorphism.)
	32. Suppose that a linear transformation is onto, and that is a spanning set for V. Show that is a spanning set for W. (In particular, the above holds if T is an isomorphism.)
	33. Prove that a linear transformation is an isomorphism if and only if for any given basis for V, is a basis for W.
	34. Let V be a vector space of dimension n, and let be the vector space of linear transformations from to (see Exercise 35, page 122). Prove that is also of dimension n and is therefore isomorphic to V. (The space is called the dual space of V.)
	35. Let V be a vector space of dimension n, and let W be a vector space of dimension m. Let be the vector space of linear transformations from to W (see Exercise 35, page 122). Prove that .
	36. A partition of a set X is a collection of mutually disjoint (nonempty) subsets of X whose union equals X. (In words: a partition breaks the set X into disjoint pieces.)
	37. Show that the relation defined by if and only if is an equivalence relation on the set Q of rational numbers (“fractions”).
	38. Show that the relation if the vector space V is isomorphic to the vector space W is an equivalence relation on any set of vector spaces.
	39. (a) If is an onto function, then so is the function onto for any function .
	40. (a) Let and . If is onto, then f must also be onto.
	41. (a) If is a one-to-one function, then so is the function one-to-one for any function .
	42. If and are isomorphisms, then .
	43. If is an isomorphism, and if , then given by is also an isomorphism.
	44. Let and be linear. If is an isomorphism, then T and W must both be isomorphisms.
	45. If and are isomorphisms, then so is the function given by an isomorphism.

	Linear Transformation
	The two conditions for linearity can be incorporated into one statement.
	The above result can be extended to encompass n-vectors and scalars.
	Linear transformations map zeros to zeros and inverses to inverses.
	A linear transformation is completely determined by its action on a basis.
	A method for constructing all linear transformations from a finite dimensional vector space to any other vector space.
	The composition of linear maps is linear.
	Kernel
	Image
	Both the kernel and image of a linear transformation are subspaces.
	Nullity
	Rank
	The Dimension
	Theorem.
	One-To-One
	Onto
	Bijection
	The composite of bijections is again a bijection.
	Inverse Function
	The inverse of a linear bijection is again linear.
	Isomorphism
	Every vector space is isomorphic to itself. If V is isomorphic to W, then W is isomorphic to V. If V is isomorphic to W, and W is isomorphic to Z, then V is isomorphic to Z.
	All n-dimensional vector spaces are isomorphic to Euclidean n-space.
	CHAPTER 5
	MATRICES AND LINEAR MAPS
	§1. Matrix Multiplication


	Take two matrices of equal dimension, and simply multiply corresponding entries to obtain their product.
	As with:
	In general, we will use:
	or
	to denote an m by n matrix with entries .
	DEFINITION 5.1

	In Words: To get of , run across the row of A and down the column of B, multiplying and adding along the way (see margin).
	Note: The above is meaningful only if the number of columns of the matrix on the left equals the number of rows of the matrix on the right.
	EXAMPLE 5.1

	Answers:
	(a)
	(b) See page B-18.
	Matrix multiplication is not commutative.
	THEOREM 5.1

	The properties of this theorem are not particularly difficult to establish. The trick is to carefully keep track of the entries of the matrices along the way,
	Why we are restricting this discussion to square matrices?
	Because:
	Powers of Square Matrices
	DEFINITION 5.2

	In , .
	Why not for ?
	Answer: See page B-18.
	THEOREM 5.2
	Column and Row Spaces

	DEFINITION 5.3
	THEOREM 5.3
	DEFINITION 5.4
	EXAMPLE 5.2

	Answer: See page B-18.
	System of Equations Revisited
	Figure 5.1

	THEOREM 5.4

	Answer: See page B-18.
	THEOREM 5.5

	Prove that the solution set of any homogeneous system of m equations in n unknowns is a subspace of .
	From matrices to Linear Transformations

	Note that:
	THEOREM 5.6
	THEOREM 5.7
	DEFINITION 5.5
	THEOREM 5.8

	Note: The dimension of the null space of A is called the nullity of A.
	[Approproate terminology, in that ]
	EXAMPLE 5.3

	Answer: See page B-18.
	THEOREM 5.9

	Answer: See page B-18.
	1.
	2.
	3.
	4.
	5.
	6.
	7.
	8.
	9. (a) Show that each column of (as a vertical two-tuple) is a linear combination of the columns of .
	10. Let and let be the column matrix whose entry is 1 and all other entries are 0. Show that is the column of A, for .
	11. (a) (Dilation and Contraction) Let for . Show that maps every point in the plane to a point r times a far from the origin.
	12. Show that for any given linear transformation there exists a unique matrix such that .
	13. Let . Prove that if for every , then .
	14. Determine all such that for every .
	15. Prove Theorem 5.1(ii).
	16. Prove Theorem 5.1(iii).
	17. Prove Theorem 5.1(iv).
	18. A square matrix for which if is said to be a diagonal matrix. Show that if is a diagonal matrix and if is a column matrix, then . For example: .
	19. The transpose of a matrix is the matrix , where . In other words, the transpose of A is that matrix obtained by interchanging the rows and columns of A.
	20. A square matrix A is symmetric if the transpose of A equals A: (see Exercise 19).
	21. A square matrix A is said to be skew-symmetric if (see Exercise 19).
	22. A matrix is said to be idempotent if .
	23. A matrix is said to be nilpotent if for some integer k.
	24. The sum of the diagonal entries in the matrix is called the trace of A and is denoted by : .
	25.
	26.
	27.
	28.
	29.
	30.
	31. (PMI) Show that if , then for any positive integer n, .
	32. (PMI) Let and . Show that if , then for every positive integer n.
	33. (PMI) Show that if the entries in each column of sum to 1, then the entries in each column of also sum to 1, for any positive integer m.
	34. (PMI) Show that if is a diagonal matrix, then so is . (See Exercise 18.)
	35. (PMI) Show that if is an idempotent matrix, then for all integers . (See Exercise 22.)
	36. (PMI) Show that for any , and for any positive integer n, . (See Exercise 19.)
	37. (PMI) Let , for . Show that:
	38. (PMI) Let for . show that:
	39. For and , if then either or .
	40. Let A and B be two-by-two matrices with . If , then .
	41. If A and B are square matrices of the same dimension, and if AB is idempotent, then . (See Exercise 22.)
	42. For all , .
	43. For any given matrix , all entries in the matrix are nonnegative.
	44. For and , if A has a column consisting entirely of 0’s, then so does AB.
	45. For and , if A has a row consisting entirely of 0’s, then so does AB.
	46. For and , if A has two identical columns, then so does AB.
	47. For and , if A has two identical rows, then so does AB.
	48. For , is a subspace of .
	49. For , is a subspace of .
	50. For , is a subspace of . (See Exercise 24.)
	51. If A is a nilpotent matrix, then so is . (See Exercise 23.)
	52. A is idempotnet if and only if is idempotent. (See Exercise 22 and 19.)

	Since all identity matrices are square we can get away by specifying just one of its dimensions, as with:
	instead of .
	We will soon show, that a matrix A can have but one inverse.
	§2. Invertible Matrices
	Invertible Matrices
	DEFINITION 5.6
	EXAMPLE 5.4
	EXAMPLE 5.5

	The system of equation on the right also has no solution.
	Answer: See page B-19.
	From the given conditions, we know that and exist. What we do here is to show that the product is, in fact, the inverse of AB.
	The inverse of a product of invertible matrices is the product of their inverses, in the reverse order.
	Answer: See page B-19.
	DEFINITION 5.7
	Elementary Matrices


	Elementary row operations were introduced on page 3.
	DEFINITION 5.8

	Answer: See page B-19.
	Figure 5.2

	Answer: See page B-19.
	Any matrix A is equivalent to .
	EXAMPLE 5.6

	Answer: See page B-19.
	Answer: See page B-20.
	1.
	2.
	3.
	4.
	5.
	6.
	7.
	8.
	9.
	10.
	11.
	12.
	13.
	14.
	15.
	16.
	17.
	18.
	19.
	20.
	21.
	22.
	23.
	24.
	25. Prove Theorem 5.11(ii).
	26. Prove Theorem 5.12.
	27. Prove Theorem 5.13.
	28. Prove that if A is invertible, then .
	29. Let . Prove that there exists an invertible matrix such that .
	30. Let be a linearly independent set of vectors in , and let be invertible. Show that is linearly independent.
	31. Let be a basis for , and let be invertible. Show that is also a basis.
	32. Show that a (square) matrix that has a row consisting entirely of zeros cannot be invertible.
	33. Show that a (square) matrix that has a columns consisting entirely of zeros cannot be invertible.
	34. Show that if a row of a (square) matrix is a multiple of one of its other rows, then it is not invertible.
	35. State necessary and sufficient conditions for a diagonal matrix to be invertible. (See Exercise 18, page 161.)
	36. Prove that is invertible if and only if the rows of A constitute a basis for .
	37. Prove that the transpose of an invertible matrix A is invertible, and that . (See Exercise 19, page 161.)
	38. Prove that is invertible if and only if the columns of A constitute a basis for .
	39. Prove that if a symmetric matrix is invertible, then its inverse is also symmetric. (See Exercise 20, page 161.)
	40. Prove that if is an idempotent invertible matrix, then . (See Exercise 22, page 162.)
	41. Prove that every nilpotent matrix is singular. (See Exercise 23, page 162.)
	42. (a) Prove that is invertible if and only if .
	43. Let be such that . Show that A is invertible.
	44. Let be such that , with . Show that A is invertible.
	45. Let be such that . Show that A is invertible.
	46. (PMI) Show that if is invertible, then so is for every positive integer n.
	47. (PMI) Let A and B be invertible matrices of the same dimension with . Sow that:
	48. If A is invertible, then so is , and .
	49. If is a linearly independent set in the vector space , and if is not the zero vector, then is linearly independent.
	50. Let A be an invertible matrix, and . If , then .
	51. Let be invertible, and . If , then
	52. If A and B are invertible matrices, then is also invertible, and .
	53. If and , then A is not invertible.
	54. If a square matrix A is singular, then .
	55. If A and B are matrices, and if is invertible, then both A and B are invertible.
	56. If A and B are matrices, and if is singular, then both A and B are singular.
	§3. Matrix Representation of Linear Maps
	DEFINITION 5.9
	EXAMPLE 5.7

	Answer:
	Throughout this section the term “basis” will be understood to mean “ordered basis.”
	We remind you that we are using to denote
	(gamma) is the Greek letter c.
	DEFINITION 5.10
	EXAMPLE 5.8

	Answer:
	Figure 5.2

	Note that the dimensions match up:
	Since
	EXAMPLE 5.9

	Incidentally, noting that the coefficient matrix of system (*) is identical to that of (**) we could save a bit of time by doing this
	Answer: See page B-20.
	EXAMPLE 5.10

	Answer: See page B-21.
	We recall that denotes the identity matrix of dimension n, and that denotes the identity map from V to V.
	Answer: See page B-21.
	1.
	2.
	3.
	4.
	5.
	6.
	7.
	8.
	9.
	10.
	11.
	12.
	13.
	14.
	15.
	16.
	17.
	18.
	19.
	20.
	21.
	22.
	23. (Calculus Dependent) Let be the linear map given by and let be the differentiation linear function: . Determine the given matrices for the basis of , and the basis of .
	24. (Calculus Dependent) Let V be the subspace of spanned by the three vectors 1, , and . Let be the differentiation operator. Determine for , and show directly that .
	25. (Calculus Dependent) Let be the differentiation operator. Determine for , and show directly that .
	26. Find the linear function , if for .
	27. Find the linear function if for and .
	28. Find the linear function if for and .
	29. Find the linear function if for and .
	30. Let and be the linear maps given by:
	31. Let and be the linear maps given by:
	32. Prove that the linear function of Theorem 5.21 is an isomorphism.
	33. Prove Theorem 5.24.
	34. Let be a linear map from a vector space V of dimension n to a vector space W of dimension m. Let and be bases for V and W, respectively. Show that if is such that for every , then .
	35.
	36.
	37.
	38.
	39. Let be given by (See Exercise 19, page 161). Let:
	40. Let be a linear operator. A nontrivial subspace of V is said to be invariant under T if . Assume that and . Show that there exists a basis for V such that , where is the zero matrix.
	41. Let be a linear function and let and be bases for the finite dimensional vector spaces V and W, respectively. Let . Show that:
	42. Let V and W be vector spaces of dimensions n and m, respectively. Prove that the vector space of Exercise 35, page 122, is isomorphic to .
	43. (PMI) Let be vector spaces and let be a basis for , . Let be a linear map, . Use the Principle of Mathematical Induction to show that .
	44. Let be an isomorphism, and let be a basis for V. Then, for every , , where .
	45. Let be linear, and let and be bases for V and W, respectively. Let be defined by . Then: .
	46. Let be a basis for V, and let . If is a linear operator on V, then .
	47. If is the zero transformation from the n-dimensional vector space V to the m- dimensional vector space W, then is the zero matrix for every pair of bases and for V and W, respectively.
	48. Let be the identity map on a space V of dimension n, and let and be (ordered) basis for V. Then if and only if .
	49. Let be given by . There exists a basis such that is a diagonal matrix (See Exercise 18, page 161).
	50. Let be given by . There exists a basis such that is a diagonal matrix (See Exercise 18, page 161).
	51. For and and any basis for : .
	§4. Change of Basis


	Change of Base Matrix
	EXAMPLE 5.11
	Answer: See page B-21.
	EXAMPLE 5.12
	Figure 5.3


	Answer: See page B-21.
	The adjacent identity map is pointing in two directions. The left-to-right direction gives rise to the change-of- base matrix , while the right-to- left directions brings us to . Are and related? Yes:

	In other words: and are invertible, with each being the inverse of the other.
	A generalization of this result appears in Exercise 24.
	In reading the composition of functions, you kind of have to read from right to left: the right-most function being performed first.
	Figure 5.4
	EXAMPLE 5.13
	As advertised:
	Answer: See page B-21.
	DEFINITION 5.11


	The column of , namely:
	equals the column of P,
	since:
	EXAMPLE 5.14
	Answer: See page B-21.
	1. , , , and .
	2. , , , and .
	3. , , , and .
	4. , , , and ,
	5. , , , and .
	6. , , , and .
	7. , , , and .
	8. Find the coordinates of the point in the xy-plane with respect to the coordinate axes obtained by rotating the standard axes in a counterclockwise direction. (See Example 5.12.)
	9. , given by , , and .
	10. , given by , , and .
	11. , given by , , and .
	12. , given by , , and .
	13. (Calculus Dependent) , given by , , and .
	14. Let be the linear operator given by . Find a basis for such that , where and .
	15. Let be a linear operator. Find the basis for such that , where: and .
	16. Let be a linear operator. Find the basis for such that , where and .
	17. Show that and are similar.
	18. Show that and are not similar.
	19. Find all matrices that are similar to the identity matrix .
	20. Let be the linear map given by .
	21. Show that “similar” is an equivalence relation on . (See Exercises 37-39, page 147 for the definition of an equivalence relation).
	22. Show that in the proof of Theorem 5.27 is a basis for V.
	23. Let be similar. Show that there exists a linear operator and bases and for such that and .
	24. (A generalization of Theorem 5.26) Let be a linear map from the finite dimensional vector space V to the finite dimensional vector space W. Let and be bases for V, and let and be bases for W. Prove that: .
	25. , , , , , and
	26. , , , , , and .
	27. , , , , , and .
	28. , , , , , and .
	29. , , , , and .
	30. Let be linear. Let be bases for the n-dimensional space V, and let be bases for the m-dimensional space W. Prove that there exists an invertible matrix and an invertible matrix such that .
	31. Let and be linear maps. Let be bases for V, be bases for W, and be bases for Z. Show that .
	32. Let be a linear operator, and let and be a bases for V. If , then .
	33. If A and B are similar matrices, then and are also similar.
	34. If A and B are similar invertible matrices, then and are also similar.
	35. If A and B are similar matrices, then at least one of them must be invertible.
	36. If A and B are similar matrices, then so are their transpose. (See Exercise 19, page 161.)
	37. If A and B are similar matrices, and if A is symmetric, then so is B. (See Exercises 20, page 161.)
	38. If A and B are similar matrices, and if A is idempotent, then so is B. (See Exercises 22, page 162.)
	39. If A and B are similar matrices, then . (See Exercises 24, page 162.)

	A connection between matrix multiplication and linear transformations.
	Properties
	Coordinate
	Vector
	Matrix Representation of a Linear Map
	The matrix representation of a linear map T describes the “action” of T.
	The matrix of a composition function is the product of matrices of those functions.
	Relating coordinate vectors with respect to different bases.
	The matrix of the inverse of a transformation is the inverse of the matrix of that transformation.
	Relating matrix representations of a linear operator with respect to different bases.
	Similar Matrices
	Similar matrices represent linear maps with respect to different basis.
	CHAPTER 6
	Determinants and Eigenvectors
	§1. Determinants
	DEFINITION 6.1 Determinant
	EXAMPLE 6.1


	Note that the sign of the has an alternating checkerboard pattern
	Note: is called the minor of , and is called the cofactor of A
	EXAMPLE 6.2

	Answer: See page B-23.
	An upper triangular matrix is a square matrix with zero entries below its main diagonal. For example:
	A lower triangular matrix is a square matrix with zero entries above its main diagonal. For example:
	Answer: See page B-23.
	Prove that the determinant of a lower diagonal matrix equals the product of the entries along its diagonal.
	Row Operations and Determinants

	Matrix A and B differ only in the row, and that row has been removed from both A and B to arrive at the matrices and .
	Answer: See page B-23.
	EXAMPLE 6.3

	Answer: See page B-23.
	Note that
	The restriction is imposed in (b) since we are concerned with elementary row operations (see page 3).
	Answer: See page B-24.
	You can add this result to the list of equivalences for invertibility appearing in Theorem 5.17, page 172:
	(vi)
	If , then:
	If , then its last row consists entirely of zeros, and
	Austin Cauchy, a prolific French mathematician (1789-1857).
	Answer: See page B-24.
	For the brave at heart:
	The column-expansion part of the theorem is relegated to the exercises.
	Proof of the Laplace Expansion Theorem

	This will show that the expansion about any row equals that of expanding about the first row.
	Figure 6.1
	1.
	2.
	3.
	4.
	5.
	6.
	7.
	8.
	9.
	10.
	11.
	12.
	13.
	14.
	15.
	16.
	17.
	18.
	19.
	20.
	21.
	22.
	23. While one can certainly find matrices such that , prove that one can not find matrices such that .
	24. Show that the matrix is invertible if and only if the numbers a, b, and c, are all distinct.
	25. Prove that if a matrix A contains a row (or column) consisting entirely of zeros, then .
	26. If is a diagonal matrix and if is the column matrix whose entry is 1 and all other entries are 0, then .
	27. Let . Prove that , where denotes the transpose of A (see Exercise 19, page 161).
	28. Prove that if is skew-symmetric, then (see Exercise 21, page 162). What conclusion can you draw from this result?
	29. For , let B be obtained from A by interchanging pairs of rows of A m times. Express as a function of m and .
	30. Let A be similar to B (see Definition 5.11, page 195). Prove that:
	31. Show that is an equation of the line passing through the points and in .
	32. Show that is an equation of the plane passing through the points , , and in .
	33. Show that the area of the triangle with vertices at , , and is given by , where the sign () is chosen to yield a positive number.
	34. (Cramer’s Rule) If is a system of n equations in n unknowns, with A invertible, then the system has a unique solution [Theorem 5.17(ii), page 172]. Cramer’s rule asserts that:
	35. Prove the “column-expansion-part” of Theorem 6.3 (Laplace Expansion Theorem).
	36. For any m and , .
	37. For any and : .
	38. Prove that for and any positive integer m: .
	39. If is of the form , where I is the identity matrix, 0 is the zero matrix, and X and Y are and matrices, respectively, then: .
	40. If is of the form , where X and Z are square matrices and 0 is a zero matrix, then: .
	41. For , if , then .
	42. For , if , then A is the zero matrix.
	43. For , if , then both A and B are invertible and .
	44. For any , .
	45. For any , .
	46. If is nilpotent, then (see Exercise 23, page 162).
	47. If and , and if , then: .



	,
	The German word eigen translates to: characteristic.
	At one time, eigenvalues were called latent values, and it is for this reason that (lamba), the Greek letter for “l” is used.
	We remind you that we use to denote , and that is the vector in “column form.”
	§2. Eigenspaces
	DEFINITION 6.2
	EXAMPLE 6.4


	Recall that null(A) denotes the solution set of the homogeneous system of equations .
	DEFINITION 6.3

	is the solution set of the homogeneous system:
	EXAMPLE 6.5
	Answer: See page B-24.
	Characteristic Polynomials

	How does one go about finding the eigenvalues of a matrix?
	DEFINITION 6.4

	For , the n-degree polynomial is said to be the characteristic polynomial of A, and is said to be the characteristic equation of A.
	EXAMPLE 6.6


	A better choice is to expand about the second column. If you do, pay particular attention to the checkerboard sign pattern of page 206.
	EXAMPLE 6.7

	A TI-92 teaser:
	Answer: See page B-24.
	Turning to Linear Operators


	Compare with Definition 6.3, page 218.
	DEFINITION 6.5

	Note that the linear map T stretches the eigenvector by its eigenvalue 4, and by :
	EXAMPLE 6.8

	Compare with Definition 6.4, page 219.
	Compare with Example 6.5.
	DEFINITION 6.6
	EXAMPLE 6.9
	Answer: See page B-25.

	Note that
	(Why?)
	Theorem 5.28, page 193, and Exercise 30(b), page 216, tell us that
	for any bases and
	DEFINITION 6.7
	Let be a linear operator on a vector space V of dimension n. The characteristic polynomial of T is the n-degree polynomial where is any basis for V, and is said to be the characteristic equation of T.

	Compare with Theorem 6.8
	EXAMPLE 6.10
	Answer: See page B-25.
	1.
	2.
	3.
	4.
	5.
	6.
	7.
	8.

	The adjacent example illustrates how the above result can be used to factor certain polynomials.
	9.
	10.
	11.
	12.
	13.
	14.
	15. given by .
	16. where and .
	17. given by .
	18. given by .
	19. given by .
	20. , where .
	21. , where .
	22. , where .
	23. , where and .
	24. given by .
	25. given by .
	26. , if , , and .
	27. , if .
	28. given by .
	29. , where , , , and .
	30. , where I is the identity map: .
	31. , where Z is the zero map: .
	32. (Calculus Dependent) Let V be the vector space of differentiable functions, and let be the derivative operator. Show that is an eigenvector for D.
	33. Prove that a square matrix A is invertible if and only if 0 is not an eigenvalue of A.
	34. Let A be an invertible matrix with eigenvalue and corresponding eigenvector v. Prove that is an eigenvalue of with corresponding eigenvector v.
	35. Let and be distinct eigenvalues of . Prove that
	36. (a) Show that similar matrices have equal characteristic polynomials (see Definition 5.11, page 195).
	37. Let , with P invertible. Prove that if is an eigenvector of A, then is an eigenvector of .
	38. Let . Prove that a, and c are eigenvalues of A.
	39. For , find necessary and sufficient conditions for A to have:
	40. Let . Prove that , and are eigenvalues of A.
	41. (a) Let be a linear operator with eigenvalue . Prove that:
	42. For , show that .
	43. Prove that 0 is an eigenvalue for a linear operator if and only if .
	44. Show that if v is an eigenvector for the linear operator . then so is for any .
	45. Let be an isomorphism. Show that v is an eigenvector in V if and only if is an eigenvector in W.
	46. Let v be an eigenvector for the linear operators and . Show that v is also an eigenvector for the linear operator . Find a relation between the eigenvalues corresponding to v for T, L, and .
	47. Show that if and are distinct eigenvalues of a linear operator , then .
	48. Let and be eigenvectors corresponding to distinct eigenvalues and of a linear operator . Show that is a linearly independent set.
	49. Let be a linear operator on a vector space V of dimension n, and let be an isomorphisms. Prove that is an eigenvalue of T if and only if is an eigenvalue of the matrix , where S is the standard basis of , and that .
	50. Let be an isomorphism. Show that if v is an eigenvector of the linear operator , then is an eigenvector of the linear operator .
	51. Let be a basis for a space V of dimension n, and a linear operator. Prove that if is an eigenvector of T with eigenvalue , then is an eigenvector of with eigenvalue .
	52. Show that if is an eigenvalue of then is also an eigenvalue of . (See Exercise 19, page 162)
	53. Show that if is nilpotent, then 0 is the only eigenvalue of A. (See Exercise 23, page 163.)
	54. Show that the characteristic polynomial of can be expressed in the form , where Trace(A) denotes the trace of A (see Exercise 24, page 163).
	55. Let . Prove that the characteristic polynomial of A is of the form , and that . (This is the Cayley-Hamilton Theorem for square matrices of dimension 2.)
	56. (PMI) Let . Use the Principle of Mathematical Induction to show that the coefficient of the leading term of the characteristic polynomial of A is .
	57. (PMI) Let . Show that the constant term of the characteristic polynomial of A is .
	58. (PMI) Let be the distinct eigenvalues of A for . Prove that are the distinct eigenvalues of .
	59. (PMI) Let A be a square matrix with eigenvalue and corresponding eigenvector v. Show that for any positive integer n, is an eigenvalue of with corresponding eigenvalue v.
	60. (PMI) Let A be a square matrix with eigenvalue and corresponding eigenvector v. Show that for any integer n, is an eigenvalue of with corresponding eigenvalue v.
	61. (PMI) Let be an eigenvalue for a linear operator . Use the Principle of Mathematical Induction to show that is an eigenvalue for , where is defined inductively as follows: , and .
	62. If is an eigenvalue for then it is also an eigenvalue for , where .
	63. If is an eigenvalue for the two operators and , then it is also an eigenvalue for the operator , where .
	64. For , if and are eigenvalues of A and B, respectively, then is an eigenvalue of .
	65. For , if and are eigenvalues for A and B, respectively, then is an eigenvalue for AB.
	66. If is an eigenvalue of the linear operator , then is an eigenvalue of .
	67. If and are eigenvalues for the linear operators and , respectively, then is an eigenvalue for .
	68. If and are eigenvalues for the linear operators and , respectively, then is an eigenvalue for .
	69. If v is an eigenvector for and , then v is also an eigenvector for .
	70. If is a linear operator with eigenvector v, then is also an eigenvector of T for every .
	71. For , if and only if is the only eigenvalue of .
	72. Let T be a linear operator on a vector space V of dimension n. Let be an eigenvalue for T and let be a basis for . Then, for any , is an eigenvalue for , and is a basis for .
	§3. Diagonalization
	DEFINITION 6.8


	The ‘s can be zero and need not be distinct (several of the eigenvectors in may share a common eigenvalue).
	Answer: See page B-25.

	Since is an eigenvector corresponding to :
	Answer: See page B-26.
	Returning to Matrices
	DEFINITION 6.9


	This theorem asserts that any diagonalizable matrix is similar to a diagonal matrix. The converse also holds (Exercise 37). And so we have:
	is diagonalizable if and only if it is similar to a diagonal matrix.
	(See page 193)
	EXAMPLE 6.11
	Answer: See page B-26.
	Answer: See page B-27.
	Algebraic and geometric multiplicity of eigenvalues
	EXAMPLE 6.12


	Recall that is the linear operator given by:
	Recall that the column of consists of the coefficients of the vector with respect to the basis .
	EXAMPLE 6.13
	Answer: See page B-27.
	1. given by .
	2. given by .
	3. given by .
	4. where and .
	5. where and .
	6. given by .
	7. given by .
	8. where , , and .
	9. where , , and .
	10. given by .
	11. given by .
	12. given by .
	13. where , , , and .
	14. where , , , and .
	15. given by .
	16. given by .
	17. given by .
	18. where , and .
	19. given by .
	20.
	21.
	22.
	23.
	24.
	25.
	26.
	27.
	28.
	29.
	30.
	31.
	32.
	33.
	34.
	35. Let be such that . Show that:
	36. Let be diagonalizable. Prove that the rank of A is equal to the number of nonzero eigenvalues of A.
	37. Prove that if is similar to a diagonal matrix, then A is diagonalizable.
	38. Let . Prove that A and its transpose have the same eigenvalues, and that they occur with equal algebraic multiplicity (see Exercise 19, page 161).
	39. Let . Prove that if is an eigenvalue of A with geometric multiplicity d, then is an eigenvalue of its transpose with geometric multiplicity d (see Exercise 19, page 161).
	40. Let be an isomorphism on a finite dimensional vector space. Prove that:
	41. Let be a linear operator on a space of dimension n. If are distinct eigenvalues of T, and if there exists a basis for V such that is a diagonal matrix, then .
	42. Let be the distinct eigenvalues of a linear operator on a vector space V of dimension n. The operator T is diagonalizable if and only if .
	43. If are both diagonalizable, then so is .
	44. If are such that is diagonalizable, then both A and B are diagonalizable.
	§4. Applications
	Fibonacci numbers and
	Systems of Differential Equations


	Leonardo Fibonacci (Italian; circa 1170 - 1250), is considered by many to be the best mathematician of the Middle Ages. The sequence bearing his name evolved from the following question he posed and resolve in 1220:
	Assume that pairs of rabbits do no produce offspring during their first month of life, but will produce a new pair of offspring each month thereafter. Assuming that no rabbit dies, how many pairs of rabbits will there be after k months?
	The number has an interesting history dating back to the time of Pythagoras (c. 500 B.C.). It is called the golden ratio ( is the first letter in the Greek spelling of Phydias, a sculptor who used the golden ratio in his work).
	Basically, and for whatever aesthetic reason, it is generally maintained that the most “visually appealing” partition of a line segment into two pieces is that for which the ratio of the length of the longer piece L to the length of the sorter pi...

	Recursive Relation
	Answer: See page B-27.
	Systems of Differential Equations (calculus dependent)


	If the derivative of a function is zero, then the function must be constant.
	In alternate notation form:
	EXAMPLE 6.14

	Any other two eigenvectors corresponding to the two eigenvalues will do just as well.
	Answer: See page B-28.
	Answer: See page B-28.
	EXAMPLE 6.15

	Answer: See page B-29.
	1. , , and for .
	2. , , and for .
	3. , , and for .
	4. , , and for .
	5. , , and for .
	6. , , and for and .
	7. , , , and for .
	8. , , , and for .
	9. (PMI) Let denote the Fibonacci number. Prove that , for .
	10. Let and be the first two elements of a sequence and let be a recurrence relation which defines the remaining elements of the sequence. Prove that if the quadratic equation has two distinct solutions, and , then for some .
	11. Let the entries of the matrices and be differentiable function, and let C be a matrix with scalar entries (real numbers). Given that the dimensions of the matrices are such that the operations can be performed, prove that:
	12.
	13.
	14.
	15.
	16.
	17.
	18.
	19.
	20.
	21.
	22. Given enough space and nourishment, the rate of growth of plants A and B are given by and , respectively, where t denotes the number of months after planting. One year, 50 of A and 30 of B were planted, and in such a fashion that the rates of gro...
	23. Assume that initially, tank A contains 20 gallons of a liquid solution that is 10% alcohol, and that tank B contains 30 gallons of a solution that is 20% alcohol. At time , the mixture in A is pumped to B at a rate of 1 gallons/minute, while that...


	Stochos: Greek for “guess.” Stochastices: Greek for “one who predicts the future.” Andrei Markov: Russian Mathematician (1856-1922).
	Transition matrices are also called probability matrices.
	Since the entries in the transition matrix are probabilities, they must lie between 0 and 1 (inclusive). Moreover, since the entries down either column account for all possible outcomes (staying in Y, or leaving Y, for example), their sum must equal ...
	Figure 6.2
	If T is the transition matrix of a Markov process with initial-state matrix , then the state matrix in the chain is given by:

	Answer: 757, 686, and 636 of the current freshmen will live in the dorm in their sophomore, junior, and senior year, respectively.
	Powers of the Transition Matrix
	DEFINITION 6.10

	Let T denote the transition matrix of a Markov chain. If the process starts in state j, then the element in the row of the column of represents the probability of ending up at state i after m steps.
	EXAMPLE 6.16
	DEFINITION 6.11
	EXAMPLE 6.17


	For example:
	is regular, since:
	DEFINITION 6.12
	Note that it is possible to eventually go from any state to any other state in a regular Markov chain (see Theorem 6.24).

	In other words, is that matrix obtained by interchanging the rows and columns of A. For example:
	DEFINITION 6.13
	A-1: If and , then . [Exercise 19(f), page 161.]
	A-2: If is an eigenvalue of then is also an eigenvalue of . (Exercise 52, page 231.)

	Note that is an eigenvector of the transpose of T, and not necessarily of T.
	In a sense, independently of its initial state:
	The fixed state of a regular transition matrix is also the final state of the matrix
	That “(s)” in is not an exponent; it is there to indicate that we are considering the matrix
	EXAMPLE 6.18

	How large is large enough? If the rows look different, then take a higher power.
	Answer: Approximately 41%, 26%, 33% of the population, will vote democratic, republican, green, respectively.
	1.
	2.
	3.
	4.
	5.
	6.
	7.
	8.
	9.
	10.
	11.
	12. Determine the probability of ending up at states A and B after two steps of the Markov chain associated with the transition matrix in Exercise 9, given that you are initially in state:
	13. Determine the probability of ending up at states A, B and C after two steps of the Markov chain associated with the transition matrix in Exercise 10, given that you are initially in state:
	14. Determine the probability of ending up at states A, B, C and D after two steps of the Markov chain associated with the transition matrix in Exercise 11, given that you are initially in state:
	15.
	16.
	17.
	18.
	19.
	20.
	21. Show that the matrix is not a regular matrix, by:
	22. Show that for any transition matrix T, the system of equations stemming from has infinitely many solutions.
	23. Let be a regular transition matrix. Prove that is a factor of the characteristic polynomial of T.
	24. Show that if the entries in each column of sum to k, then k is an eigenvalue of A.
	25. Referring to the proof of Theorem 6.26, show that:
	26. Establish Theorem 6.26 for an arbitrary transitional matrix T.
	27. Prove that if is any eigenvalue of a regular transition matrix, then .
	28. Show that if is an eigenvalue of a regular transition matrix, then .
	29. (Rapid Transit) A study has shown that in a certain city, if a daily (including Saturday and Sunday) commuter uses rapid transit on a given day, then he will do so again on his next commute with probability 0.85, and that a commuter who does not ...
	30. (Dental Plans) A company offers its employees 3 different dental plans: A, B, and C. Last year, 550 employees were in plan A, 340 in plan B, and 260 were in plan C. This year, there are 500 employees in plan A, 360 in plan B, and 290 in plan C. A...
	31. (Campus Life) The following transition matrix gives the probabilities that a student living in the Dorms, at Home, or Off-campus (but not at home), will be living in the Dorms, at Home, or Off-campus (but not at home) next year (assume that all f...
	32. (Higher Learning) The transition matrix below represents the probabilities that a female child will receive a Doctorate, a Masters, or a Bachelors (terminal degree), or No degree; given that her mother received a D, M, B (terminal degree), or No ...
	33. (HMO Plans) A company offers its employees 5 different HMO health plans: A, B, C, D, and E. An employee can switch plans in January of each year, resulting in the following transition matrix:
	34. (Mouse in Maze) On Monday, a mouse is placed in a maze consisting of paths A and B. At the end of path A is a cheese treat, and at the end of path B there is bread. Experience has shown that if the mouse takes path A, then there is a 0.9 probabil...
	35. (Cities, Suburbs, and Country) Within the period of a year, 2% of a population currently residing in cities will move to the suburbs, while 2% of them will move to the country. 4% of those living in the suburbs will move to the cities, while 3% o...
	36. (Crop Rotation) A farmer rotates a field between crops of beans, potatoes and carrots. If she grows beans this year, then next year she will grow potatoes or carrots, each with 0.5 probability. If she grows carrots, then she will grow beans with ...
	37. (Wolf Pack) A wolf pack hunts on one of four regions: A, B, C, and D:
	Eigenvalue and Eigenvector
	Eigenspace
	Characteristic Polynomial and Characteristic Equation
	Diagonal Matrix
	Diagonalizable Matrices and Linear Operators
	Algebraic and Geometric Multiplicity of Eigenvalues
	Diagonalizing a Matrix
	is a fixed state for a transition matrix if .
	If T is the transition matrix of a Markov process with initial-state matrix , then the state matrix in the chain is given by:
	CHAPTER 7
	Inner Product Spaces
	Basically, an inner product space is a vector space augmented with an additional structure, one that will enable us to generalize the familiar concepts of distance and angles in the plane to general vector spaces.
	§1. Dot Product
	DEFINITION 7.1


	Answer: See page B-30.
	DEFINITION 7.2
	Figure 7.1


	is defined to be the length of v.
	is defined to be the distance between .
	Answer: See page B-30.
	Angle Between Vectors
	Figure 7.2



	For any , is defined to be that angle whose cosine is x.
	In Exercise 44 you are asked to verify that
	Assuring us that: exists.
	DEFINITION 7.3
	EXAMPLE 7.1

	We remind you that, for any , is that angle such that .
	So, if , then , or: .
	Orthogonal Vectors in
	The angle between the vectors depicted in the adjacent figure has a measure of (), and we say that those vectors are perpendicular or orthogonal. Appealing to Definition 7.3 we see that:
	Answer: See page B-31.
	DEFINITION 7.4

	Note: The zero vector in is orthogonal to every vector in .

	Orthogonal
	Projection
	Figure 7.3
	EXAMPLE 7.2
	Answer: See page B-31.
	EXAMPLE 7.3

	(a) (b) 4
	Planes Revisited

	Note that a normal to the plane can easily be spotted from any of the above forms. For example, is a normal to the plane:
	EXAMPLE 7.4

	Answer: See page B-31.
	EXAMPLE 7.5

	Answer: See page B-31.
	EXAMPLE 7.6


	Any point satisfying the equation would do just as well.
	Answer: See page B-32.
	Cross Product
	DEFINITION 7.5

	The cross product of and is denoted by , and is expressed in the form:
	EXAMPLE 7.7

	Answer: See page B-32.
	1.
	2.
	3.
	4.
	5.
	6. Find all values of c such that .
	7. Find all values of a such that the vector is orthogonal to the vector .
	8. Find all values of a such that the vector is orthogonal to the vector .
	9. Find all values of a and b such that the vector is orthogonal to the vector .
	10.
	11.
	12.
	13.
	14.
	15.
	16.
	17.
	18.
	19. Find the distance from the point and the line L in passing through the points and .
	20. Find the distance from the point and the line L in passing through the points and .
	21. Find the distance from the point and the line L in passing through the points and .
	22. Find the distance from the point to the plane .
	23. Find the distance from the point to the plane .
	24. Determine the angle of intersection of the planes and . Suggestions: Consider the normals to those planes.
	25. Find the set of vectors in orthogonal to:
	26.
	27.
	28. Find the angle between a main diagonal and an adjacent edge of a cube of volume .
	29. Prove Theorem 7.1(i).
	30. Prove Theorem 7.1(ii).
	31. Prove Theorem 7.1(iv).
	32. Establish the following properties for and :
	33. Show that two nonzero vectors and are normal to a given plane if and only if each is a scalar multiple of the other.
	34. (Normal form equation of a line in ) Express the line in the form , where , p is a point on the line, and is a normal to the line
	35. Let , and let . Show that . (See Exercise 19, page 161).
	36. . Show that the function given by is linear. What is the kernel of ?
	37. Let . Show that if for every , then .
	38. (Pythagorean Theorem in ) Let . Show that if and only if .
	39. (Parallelogram Law in ) Let . Show that:
	40. Let . Prove that if and only if and are orthogonal.
	41. Prove that if is such that if , then is a basis for .
	42. Let . Prove that if u is orthogonal to each , , then u is orthogonal to every .
	43. (Cauchy-Schwarz Inequality in ) Show that if , then .
	44. Use the above Cauchy-Schwuarz Inequality to show that for any nonzero vectors :
	45. Establish the following properties for and :
	46. (Metric Space Structure of ) Define the distance between two vectors to be . Prove that for all :
	47. (PMI) Use the principle of mathematical induction to show that for any and any : .
	48. Let . If and if , then .
	49. Let . If for every , then .
	50. Let . If and with and multiples of v, and if and are orthogonal to u, then and .
	51. Let , with . If u is orthogonal to both v and z, then for some .
	52. The function given by is linear.
	53. for all .
	§2. Inner Product


	While the scalar product assigns a vector to a scalar r and a vector v, the inner product assigns a real number to a pair of vectors.
	DEFINITION 7.6

	Why are we requiring the c’s to be positive?
	EXAMPLE 7.8
	For :
	Answer: See page B-33.

	In the exercises you are asked to establish the following generalization and combination of (b) and (c).
	Answer: See page B-33.
	distance in an inner product space

	Answer: See page B-33.
	DEFINITION 7.7
	EXAMPLE 7.9

	(a) (b)
	The Cauchy-Schwarz Inequality


	The proof sketched out in Exercise 43, page 275, can also be used to establish this result.
	Answer: See page B-34.

	The Cauchy-Schwarz inequality plays a hidden role in this definition. (Where?)
	DEFINITION 7.8
	EXAMPLE 7.10
	1. The magnitude of the vector .
	2. The magnitude of the vector .
	3. The distance between the vectors and .
	4. The distance between the vectors and .
	5. The angle between the vectors and .
	6. The angle between the vectors and .
	7. Verify that the Cauchy-Schwarz inequality holds for the vectors and .
	8. Verify that the Cauchy-Schwarz inequality holds for the vectors and .
	9. The magnitude of the vector .
	10. The magnitude of the vector .
	11. The distance between the vectors and .
	12. The distance between the vectors and .
	13. The angle between the vectors and .
	14. The angle between the vectors and .
	15. Verify that the Cauchy-Schwarz inequality holds for the vectors and .
	16. Verify that the Cauchy-Schwarz inequality holds for the vectors and .
	17. For in the vector space , define:
	18. The magnitude of the vector .
	19. The magnitude of the vector .
	20. The distance between the vectors and .
	21. The angle between the vectors and .
	22. Verify that the Cauchy-Schwarz inequality holds for the vectors and .
	23. Verify that is an inner product on the polynomial space .
	24. (Calculus Dependent) (a) Show that is a subset of the function vector space of Theorem 2.4, page 44.
	25. The magnitude of the vector in the inner product space .
	26. The distance between the vectors and in the inner product space .
	27. The angle between the vectors and in the inner product space .
	28. The magnitude of the vector in the inner product space .
	29. The distance between the vectors and in the inner product space .
	30. The angle between the vectors and in the inner product space .
	31. The magnitude of the vector in the inner product space .
	32. The distance between the vectors and in the inner product space .
	33. The angle between the vectors and in the inner product space .
	34. Verify that the Cauchy-Schwarz inequality holds for the vectors and in the inner product space .
	35. Verify that the Cauchy-Schwarz inequality holds for the vectors and in the inner product space .
	36. Prove that ordinary multiplication in the set of real numbers R is an inner product on the vector space .
	37. Prove Theorem 7.3(a).
	38. Prove Theorem 7.3(b).
	39. Prove Theorem 7.3(c).
	40. Prove Theorem 7.3(e).
	41. Prove Theorem 7.3(f).
	42. Let , V an inner product space. Show that
	43. Let , V an inner product space. Show that .
	44. Let , V an inner product space. Show that if and only if .
	45. Let , V an inner product space. Show that is a subspace of V.
	46. (PMI) Let V be an inner product space.Use the principle of mathematical induction to show that for any and any :
	47. Let , V an inner product space. If and if , then .
	48. Let . If for every , then .
	49. There exists an inner product on for which .
	50. There exists an inner product on for which .
	51. There exists an inner product on for which .
	§3. Orthogonality

	DEFINITION 7.9
	EXAMPLE 7.11
	THEOREM 7.7
	Answer: See page B-34.

	Normalization
	DEFINITION 7.10
	DEFINITION 7.11
	THEOREM 7.8
	Answer: See page B-34.
	THEOREM 7.9

	Note: To obtain an orthonormal basis for an inner product space, simply normalize the orthogonal basis generated by the Gram-Schmidt process.
	EXAMPLE 7.12


	Multiplying any in the Gram-Schmidt process by a nonzero constant will not alter that vectors “orthogonality-feature,” but will simplify subsequent calculations.
	This brute force approach is not always practical. Software, such as Maple and MATLAB, include the Gram-Schmidt process as a built-in procedure. Yes, the Gram-Schmidt process works off of a basis for the inner product space, but that is not a problem...
	Answer: See page B-35.
	Orthogonal Complement

	W
	Line W passing through the origin.
	Plane passing through the origin with normal W.
	Plane W passing through the origin.
	Line passing through the origin orthogonal to W.

	Orthogonal Complement
	THEOREM 7.10

	In this part of the theorem we assume that W is finite dimensional (the result does, however, hold in general).
	Answer: See page B-35.

	Compare with Theorem 7.2, page 283.
	THEOREM 7.11

	Note: is said to be the orthogonal projection of v onto W, and we write: .
	EXAMPLE 7.13

	We know that will turn out to be of dimension 2. How?
	and

	Since is orthogonal to , so is
	Answer:

	Consider Example 7.3, page 284.
	THEOREM 7.12
	Answer: 3
	1. in the Euclidean inner product space .
	2. in the weighted inner product space of Example 7.8, page 292, with .
	3. in the weighted inner product space of Example 7.8, page 292, with .
	4. in the polynomial inner product space of CYU 7.11, page 293.
	5. in the inner product space of Exercise 17, page 298.
	6. (Calculus Dependent) in the inner product space of Exercise 24, page 299.
	7. (Calculus Dependent) in the inner product space of Exercise 24, page 299.
	8. Use Theorem 7.8 to express in the Euclidean inner product space as a linear combination of the vectors in the orthonormal basis .
	9. Use Theorem 7.8 to express in the polynomial inner product space of CYU 7.11, page 293, as a linear combination of the vectors in the orthonormal basis .
	10. Find all values of a for which is an orthogonal set in the Euclidean inner product space .
	11. Find all values of a and b for which is an orthogonal set in the Euclidean inner product space .
	12. Find all values of a and b for which is an orthogonal set in the weighted inner product space of Example 7.8, page 292, with .
	13. Find all values of a and b for which is an orthogonal set in the weighted inner product space of Example 7.8, page 292, with .
	14. Find all values of a, b, and c for which is a n orthogonal set in the weighted inner product space of Example 7.8, page 292, with .
	15. (Calculus Dependent) Find all values of a and b for which is an orthogonal set in the inner product space of Exercise 24, page 299.
	16. (Calculus Dependent) Find all values of a, and b for which is an orthogonal set in the inner product space of Exercise 24, page 299.
	17. in the Euclidean inner product space .
	18. in the Euclidean inner product space .
	19. in the Euclidean inner product space
	20. in the Euclidean inner product space .
	21. in the weighted inner product space of Example 7.8, page 292, with .
	22. in the polynomial inner product space of CYU 7.11, page 293.
	23. The solution set of in the Euclidean inner product space .
	24. The solution set of in the Euclidean inner product space .
	25. (Calculus Dependent) in the inner product space of Exercise 24, page 299.
	26. (Calculus Dependent) in the inner product space of Exercise 24, page 299.
	27. Find an orthonormal basis for in the Euclidean inner product space .
	28. Find an orthonormal basis for in the Euclidean inner product space .
	29. Find an orthonormal basis for in the Euclidean inner product space .
	30. Find an orthonormal basis for in the weighted inner product space of Example 7.8, page 292, with .
	31. Find an orthonormal basis for in the polynomial inner product space of CYU 7.11, page 293.
	32. , .
	33. , .
	34. , .
	35. , .
	36. , .
	37. Find a basis for the orthogonal complement of the subspace in the weighted inner product space of Example 7.8, page 292, with , and express the vector as a sum of a vector in W and a vector in .
	38. Find a basis for the orthogonal complement of the subspace in the polynomial inner product space of CYU 7.11, page 293, and express the vector as a sum of a vector in W and a vector in .
	39. Prove that the standard basis of page 94 is an orthonormal basis in the Euclidean inner product space .
	40. Prove that is an orthonormal basis in the polynomial inner product space of CYU 7.11, page 277.
	41. Let V be an inner product space. Prove that and that .
	42. Let in an inner product space V. Prove that if and only if for all , .
	43. Let be an orthogonal set in an inner product space V. Show that if and , then .
	44. Let be a subspace in an inner product space V. Prove that .
	45. Let w be a vector in an inner product space V of dimension n. Prove that is a subspace of V of dimension .
	46. Let S be a subset of an inner product space V. Prove that is a subspace of V.
	47. Let S be a subspace of an inner product space V of dimension n. Prove that
	48. Let be an orthonormal basis in an inner product space V. Show that for any . (See Definition 5.9, page 178.)
	49. Sow that the following are equivalent:
	50. Prove that every orthogonal matrix is invertible, and that its inverse is also orthogonal.
	51. Prove that a product of orthogonal matrices (or the same dimension) is again orthogonal.
	52. Prove that if A is orthogonal, then .
	53. Prove that if A is orthogonal then the rows of A also constitute an orthonormal set.
	54. Prove that if A is orthogonal, and if B is equivalent to A, then B is also orthogonal.
	55. Prove that every orthogonal matrix is of the form or where .
	56. Show that every orthogonal matrix is of the form or .
	57. Show that every orthogonal matrix corresponds to either a rotation or a reflection about a line through the origin in .
	58. (a) Prove that the null space of is the orthogonal complement of the row space of A.
	59. (Bessel’s Equality) Let be an orthonormal basis for an inner product space V. Prove that for any : .
	60. If is an orthogonal set in an inner product space V, then is an orthogonal set for all scalars .
	61. If is an orthonormal set in an inner product space V, then is an orthonormal set for all scalars .
	62. Let W be a subspace of an inner product space V. If with , then .
	63. Let be a basis for an inner product space V such that each for is orthogonal to every for . If , then .
	64. Let be an orthogonal basis for an inner product space V. If hen .
	§4. The Spectral Theorem


	In other words, the row of A is the column of . For example:
	The transpose of a matrix is the matrix , where
	DEFINITION 7.12
	THEOREM 7.13

	We remind you that we are using to denote . For we now define to be the dot product of the corresponding vertical n-tuples (see margin). It is easy to show that ,with defined to be , is an inner product space (see Definition 7.6, page 292). Note, tha...
	THEOREM 7.14
	EXAMPLE 7.14


	Note:
	Answer: See page B-37.
	THEOREM 7.15

	Answer: See page B-37.
	Symmetric Operators


	Compare with Theorem 7.15.
	DEFINITION 7.13
	THEOREM 7.16
	THEOREM 7.17
	Answer: See page B-38.

	Note that V contains an orthonormal basis if and only if it contains a normal basis.
	THEOREM 7.18
	Answer: See page B-38.
	Matrix Version of the Spectral Theorem
	THEOREM 7.19


	Recall that for :
	(see page 307)
	DEFINITION 7.14
	THEOREM 7.20
	THEOREM 7.21
	Answer: See page B-39.

	Note: In the literature the term orthogonally diagonalizable is typically used to refer to what we are calling .
	DEFINITION 7.15
	THEOREM 7.22

	See Theorem 5.27, page 194)
	(1), (2), (3) and (*) tell us that:
	is a diagonal matrix, with an orthonormal matrix.
	In particular:
	A is !
	Moreover:
	with the column of P.
	Answer: See page B-39.
	1.
	2.
	3.
	4.
	5.
	6.
	7.
	8.
	9. Exercise 5.
	10. Exercise 6.
	11. Exercise 67
	12. Exercise 8.
	13.
	14.
	15.
	16.
	17. Verify that is a symmetric operator on the weighted inner product space with . Verify that is an orthonormal basis in this inner product space, and determine .
	18. (a) Verify that is a symmetric operator on the standard inner product space : . (b) Use the Grahm-Schmidt process of page 303 on the basis to arrive at the orthonormal basis . Verify that is not symmetric, and that is symmetric.
	19. Let denote the standard Euclidean dot product inner product space. Find a symmetric linear operator and a basis for which .
	20. Let denote the weighted inner product space with . Find a symmetric linear operator and a basis for which .
	21. Let denote the standard inner product space : . Find a symmetric linear operator and a basis for which
	22. Show that for any both and are symmetric.
	23. Show that if are orthonormally diagonalizable, then so is:
	24. (PMI) Show that if is orthonormally diagonalizable, then so is for any positive integer n.
	25. (PMI) Show that if is orthonormally diagonalizable for , then so is .
	26. Show that if is an invertible orthonormally diagonalizable matrix, then so is .
	27. Prove that if A is a real symmetric matrix, then the eigenvalues of A are real.
	28. If is a symmetric matrices, then so is .
	29. If is a symmetric matrices, then so is .
	30. If are symmetric matrices, then so is .
	31. If are symmetric matrices, then so is .
	32. If are orthonormally diagonalizable, then so is .
	33. If is orthonormally diagonalizable, then so is .
	34. If is orthonormally diagonalizable, then so is .
	35. Let V be an inner product space. If is a symmetric operator, then so is for every .
	36. Let V be an inner product space. If and are symmetric operators, then so is .
	37. Let V be an inner product space. If and are symmetric operators, then so is .

	Dot Product
	Properties
	distributive property:
	Angle between
	vectors
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	(PMI)
	Let denote a proposition that is either true or false, depending on the value of the integer n.
	If:
	I. is True.
	And if, from the assumption that:
	II. is True
	one can show that:
	III. is also True.
	then the proposition is valid for all integers

	The Principle of Mathematical Induction might have been better labeled a Principle of Mathematical Deduction; for:
	Inductive reasoning is a process used to formulate a hypotheses or conjecture, while deductive reasoning is a process used to rigorously establish whether or not the conjecture is valid.
	Figure 1.1

	The sum of the first 3 odd integers is: The sum of the first 4 odd integers is: Suggesting that the sum of the first k odd integers is:
	(see Exercise 1).
	EXAMPLE 1.1
	EXAMPLE 1.2
	III: We need to show that holds for ; which is to say, that: :
	Recall that:.
	EXAMPLE 1.3
	EXAMPLE 1.4
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