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PREFACE

This text is specifically designed to be used in a one-semester undergraduate abstract
algebra course. It consists of three parts:

PART 1 (25% of text).  Lays a foundation for the algebraic construction
that follows.

PART 2 (50% of text).  Focuses exclusively on the primary abstract algebra
object: the GROUP.

PART 3 (25% of text):  Introduces additional algebra objects, including
Rings and Fields.

For our part, we have made every effort to assist you in the journey you are about to
take. We did our very best to write a readable book, without compromising mathematical
integrity. Along the way, you will encounter numerous Check Your Understanding boxes
designed to challenge your understanding of each newly-introduced concept. Detailed
solutions to each of the Check Your Understanding problems appear in Appendix A, but
you should only turn to that appendix after making a valiant effort to solve the given prob-
lem on your own, or with others. In the words of Desecrates:

We never understand a thing so well, and make it our own, when we
learn it from another, as when we have discovered it for ourselves.

I wish to thank my colleague, Professor Maxim Goldberg-Rugalev, for his invaluable
input throughout the development of this text.
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Part 1
Preliminaries

§1. FUNCTIONS

We begin by recalling a bit of set notation and some definitions
involving sets:

The symbol “ €” is read “is con-

tained iln orisanelementof.” In  DEFINITION 1.1 Two sets 4 and B are equal, written 4 = B if:
rt ;
pe lcua;eijeB SET EQUALITY xeA=>xeB and xeB=xe4

translates to:

Ifxisin 4, thenxisin B (OI'CXEAQXEB)

SUBSET The set A4 is said to be a subset of the set B,

5 written 4 C B, if every element in 4 is also
@ aneclementinB,ic:xe A=>x € B.

A<t PROPER SUBSET A is said to be a proper subset of B, written

AcB,ifAisasubsetof Band A #B.

INTERSECTION The intersection of 4 and B, written 4 N\ B, is
the set consisting of the elements common to
ANB = {x|xedandxe B} both 4 and B. That is:

ANB = {x]xeAandx € B}
A_ read such that

8

UNION The union of 4 and B, written 4 U B, is the
set consisting of the elements that are in A4 or
AUB = {x|xedorx e B} in B (see margin). That is:

AUB = {x|]xeAorx € B}

DISJOINT SETS Two sets 4 and B are disjoint if A "B = &

the empty set
ANB =0O
COMPLEMENT Let 4 be a subset of the universal set U. The

// complement of 4 in U, written 4¢, is the set of
A

=

elements in U that are not contained in A4:
AC = {x|xeUandx ¢ 4}
(More simply: {x|x & 4}, if U is understood)

While on the topic of notation we call your attention to the following
globally understood mathematical symbols:

v : read “for every”| |3:read “there exists”| | > read “such that’

For example:
Vx dysx+y>0

is read: for every x there exists y such that x+y is greater than 0
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All “objects” in mathematics
are sets, and functions are no
exceptions. The function f

given by f(x) = x2, is the

subset f = {(x,x%)|x e N}
of the plane. Pictorially:

A function such as

f= {nx)|xen)

is often simply denoted by
flx) = x2. Still, in spite of
their dominance throughout
mathematics and the sciences,
functions that can be described
in terms of algebraic expres-
sions are truly exceptional.
Scribble a curve in the plane
for which no vertical line cuts
the curve in more than one
point and you have yourself a
function. But whatis the “rule”
for the set g below?

Note that the set Sbelow, is not
a function:

S

o —

Why not?

You’ve dealt with functions in one form or another before, but have
you ever been exposed to a definition? If so, it probably started off with

something like:

A function is arule...........

or, if you prefer, a rule is a function.......

You are now too sophisticated to accept this sort of “circular defini-
tion.” Alright then, have it your way:

DEFINITION 1.2

CARTESIAN
PRODUCt

DEFINITION 1.3
FUNCTION

OPERATOR

DOMAIN

RANGE

IMAGEOF Ac X

INVERSE IMAGE OF
BcY

For given sets X and Y, we define the Carte-

sian Product of X with ¥, denoted by X' x Y,
to be the set of ordered pairs:

XxY = {(x,y)lxeXandy € Y}

A function f from a set X to a set Y is a subset
fcXxY such that for every x € X there

exists a unique y € Y.

A function ffrom a set X to itself is said to be
an operator on X.

The symbol f: X — Y is used to indicate that f
is a function from the set X to the set Y, and
v = f(x) denotes that (x,y) € f.
The set X is said to be the domain of £, and

{y € Y|(x,y) € ffor some x € X}

is said to be the range of /.

While the domain of fis all of X,
the range of fneed not be all of Y.

Moreover, for Ac X and BC Y:
flA] = {f(a)|a € A} is called the image of

A under £, and / [B] = {x € X|f(x) € B}
is called the inverse image of B.

COMPOSITION OF FUNCTIONS

Consider the schematic representation of the functions f: X — Y and
g: Y — Z in Figure 1.1, along with a third function gof: X —> T'.

gof
Figure 1.1

Asis suggested in the above figure, the function gof: X — Z is given by:

(g (x) = glf(¥)]

A
T first apply f
and then apply g
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Formally:
DEFINITION 1.4 Let /' X— Y and g: Y— Z be such that
COMPOSITION the range of /' is contained in the domain of
g. The composite function gof: X > Z is
given by:

(goN(x) = glf(x)]

Throughout the text the sym- EXAMPLE 1.1 . .S S :
bol R will be used to denote ’ Let /% >% and g: % - % be given by

the set of real numbers. f(x) = x2+1 and g(x) = 2x—5. Find:

(a) (goN(3) (b) (fog)(x)

SOLUTION:
() (goN)(3) = g[f(3)] = g(3%+1) = g(10) =2-10-5 = 15

(b) (fo2)(x) = flg(x)] = f2x-5) = (2x—5)> +1 = 4x2 - 20x+26

M, - ﬂaﬂ abede ER} EXAMPLE 1.2 |t 1 M, ,—>R? and g: R? > R (see mar-
C
(the set of two-by-two matrices) gln) be given by /(|:a b:D _ (ab’ Cd) and
R2 = {(a,b)|a, b € R} cd
(The set of two-tuples) _ . .
Ir: gertleralf ’ g(aa b) = a—b. Find:
R = (g g conn )} . :
(The set of n-tuples) (a) (gof) (b) (gof) a
24 cd
SOLUTION:

(a>(gof>( ! 3} =gf[ ! 3}} = g(1-3,2-4)
_24 L 4
= g(3,8) =3-8 = -5

(b) (goj)( a ZJ - g/( a ZH — g(ab,cd) = ab—cd
C ] C |

CHECK YOUR UNDERSTANDING 1.1

Let /1 M,,,—> R be givenbyfqa bD =a+d and g: R — R?
cd

be given by g(x) = (2x, x2). Determine:

Answer: () (10, 25) (a) (gof)({l 3:|J (b) (gof)u:a b:D
(b) 2a+2d, a® +2ad + d?) 24 cd
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BIJECTIONS AND THEIR INVERSES

DEFINITION 1.5 A function /* X > Y is:

ONE-TO-ONE One-to-one if f(a) = f(b)=>a = b
ONTO Onto if for every y € Y there exists x € X
such that f(x) = y.
BIJECTION A bijection if it is both one-to-one and onto.

EXAMPLE 1.3 et f: /4 > M, , be given by:

Sy, 2, w) = {‘y 2’1

3w z
Show that f'is a bijection

SOLUTION: To show that fis one to one, we start with

flx, y,z,w) = f(x, 9,2, W)
and go on to show that (x, y,z, w)) = (X, y,z, w:

R y=>J

— iy = 2x = 2X — =

fpow) =fEpam) = | P 2 = | P2 2T X=X
3w ¢ 3w ¢ 3w = 3w W= w

z =2z z =z

:(x’y’ z’ w) = (i’.)_)’ Z’ w)

To show that f'is onto, we take an arbitrary element {a b} eM,,,
cd

and set our sights on finding (x,y,z, w)e R* such that

f(x,y,z,w) = {a b}:

C
- 2x = b = b/2
fon,y,zw) = |40 = | 2x| = |a bl =¥ X
cd 3w z cd 3w=c w=c/3
z=d z=4d

The above argument shows that f will map the element

(Z—), —a, d, 9) eR 10|90 e M, , . Let’s check it out:
2 3 cd

f(b ” c)z (=) 2@ _ {a b}

=, —a =
3
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CHECK YOUR UNDERSTANDING 1.2

(a) Show that the function /i M,,,—>R* given by

f( a Z] = (d,—c, 3a, b) is one-to-one and onto.
c

(b) Show that the function f: M, ,—>M, , given by

+d 2b

7114 bl | b a is neither one-to-one nor onto.
Answer: See page A-1. cd c

Consider the bijection £ (0, 1,2,3} — {a, b, ¢, d} depicted in Fig-
ure 1.2(a) and the function f_lz {a,b,c,d} — {0,1,2,3} in Figure

1.2(b). The function f ! called the inverse of the function f, was

obtained from f by “reversing” the direction of the arrows in Figure
1.2(a).

X Y

f

(a) (b)

Figure 1.2
In general:

DEFINITION 1.6  The inverse of a bijection f: X — Y, is the
INVERSE FUNCTION  function f lyox given by:

/70) = x where fix) =
More formally:

-1
S ={0lxy) € f}
Returning to Figure 1.2, we observe that the inverse of the bijection f
is also a bijection. We also note that if we apply f'and then ! we will

‘ end up where we started, and ditto if we first apply /! and then f (see
margin). In general:

THEOREM 1.1 Let /: X— Y be a bijection. Then:
(a) f Ly X isalsoa bijection.
®) 7 [f(x)] = x Vx € X and

1=y vyey
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PROOF: (a) f*1 is one-to-one: If ffl(yl) = ffl(yz) = x , then:

Recall that to say that (1, X) ef_land (9, X) ef_l
f(x) =y is to say that

(x,y) 1. (see Defini- = (x,yy) € fand (x,y,) € f
tion 1.3).

=y, = », (since f'is a function)

fﬁ1 is onto: Let x € X. Since fis onto, there exists y € ¥

such that (x, y) € . Then: (y, x) ef_1:>f_l(y) = X.

(b) Let x € X. Since [x, f(x)] € f, [f(x), x] ef_l, which is to say:
x=f _l[f(x)]. As for the other direction:

CHECK YOUR UNDERSTANDING 1.3
Verify that for any bijection f: X —> Y :
Answer: See page A-2. f[fil(y)] —yVyeY

EXAMPLE 1.4 (a) Find the inverse of the binary function
f: R4 —> M, , given by:

Sy, 2, w) = [‘y 2’“}

3w z

(see Example 1.3)
(b) Show, directly, that

-

SOLUTION: (a) For given [a b} we determine (x, y, z, w) such that
cd
f(x,y,z,w) = [4°]:
cd
-y =a y=-a
_ 2x = b =b/2
feyzow) = |40 = | 2x) < |a b5 T
cd 3w z cdl 3w=c w=c/3
z=d z=d

Conclusion: f{ a bj = (é, -a, d, 9)
cd 2 3
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Note: In Example 1.3 we showed that for f(x, y, z, w) = [y 2)6} :

w Zz
G aag- |

That being the case: fl[ a bj = (1—7, —a, d, E) .
e d 2 3

D) e ) L

since f(x, y, z, w) = {—y 2x

w z

CHECK YOUR UNDERSTANDING 1.4

Find the inverse of the bijection f:M,, ,—>R* given by

Answer: cd

-1
7y, zw) = {2/3 W}
y x
For the rest: See page A-2.

f [ {a bD = (d, —c, 3a, b) and verify, directly, that:

cd cd

As it turns out, one-to-one and onto properties are preserved under
composition:

THEOREM 1.2 Let 1 X— Y and g: Y — Z be functions with
the range of f contained in the domain of g.
Then:

(a) If fand g are one-to-one, so is gof.
(b) If fand g are onto, so is gof.
(c) If fand g are bijections, so is gof.

PROOF: (a) Assume that both f'and g are one-to-one, and that:
(goN(x) = (goN(x,)
Which is to say: gU(xl)] = g[f(xz)]
Since g is one-to-one:  f(x;) = f(x,)

Since fis one-to-one: X| = X,



8 Part1 Preliminaries

This is an example of a so-
called “shoe-sock theorem.”
Why the funny name?

S$300S 9y} UAY) PUE JJO SWOD SAOYS Y,

:550001d 9519A01 Y} UJ
S90S uaY) $300s uo synd suQ

Answer: See page A-2.

(b) Assume that both f'and g are onto, and let z € Z. We are to find
x € X such that (gof)(x) = z . Let’sdo it:

Since g is onto, there exists y € Y such that g(y) = z.
Since fis onto, there exists x € X such that f(x) = y .

It follows that (gof)(x) = g[f(x)] = g(v) = z.
(c) If fand g are both bijections then, by (a) and (b), so is gof.

Theorem 1.2(c) asserts that the composition gof of two bijections is

again a bijection. As such, it has an inverse, and here is how it is related
to the inverses of its components:

THEOREM 13 If fX—Y and g:Y—>Z are bijections,
then:

(goN! =/ og™!
PROOF: For given z e Z , let x € X be such that (gof)(x) = z;
which is to say, that (gof)~!(z) = x . We complete the proof by
showing that (f~'eg~1)(z) is also equal to x:

(gof)'(2) = x
z = (goN(x)
z = g[fx)]
g 1(z) = fix)

et =x
(feg)(z) = x

CHECK YOUR UNDERSTANDING 1.5

The function /: R — M, ., given by f(x,y,zw) = {—y ZX} has
3w z

inverse f 1({61 bB = (g, —-a, d, 9 (see Example 1.4), and the func-
cd

cd S ox
Determine the function gof: R* — R+ and its inverse; and then show,
directly, that (gof)~! = f~log-1.

tion gqa bD = (d,—c, 3a, b) has inverse g ! (x, y, z, w) = {2/3 W} .
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EXERCISES

Ex cerises 1-19.Let U = {1,2,3, ...} 0= {1,3,5,...} E = {2,4,6,...},
A = {5nlne U} B = {3n|n e U} C={1,2,3,...,15},
D = {2,4,6,...10} F = {11,12,13,14} . Determine:

I. OUFE 2. ONnE 3. AnB 4. AUB

5. BucC 6. BNnC 7. CuD 8. CmD

9. O°UE* 10. O°n 4 1. CnO 12. (O A)©

13. (CND)UF 4. CNn(DUF) 15. (COF)nD 16. (CNF)UF

17. (BN C)u (DN O) 18. [[OUE)uU(AnNB)]¢ 19. [(ONE)YXN(0OUA)]©

20. Establish the following set identities (all capital letters represent subsets of a universal set U):
(a) DeMorgan’s Theorems:

(1) (AN B)¢ = A¢ U B¢ (i) (A U B)¢ = A°N B¢
(b) Associative Theorems:

(H)Auv(BuC)=(AuB)yuC {)AN(BNC)=ANnB)NnC
(c) Distributive Theorems:

HAN(BUC)=ANnB)uANnC) i) Au(BNC)=(AUB)N(A4uUC)

Exercises 21-23. Prove that:
21. [ACUB]¢ = AN B¢ 22. (AN B)YUB =A4A°UB 23. (ANnB)u(ANB° =4

Exercises 24-26. Give a counterexample to show that each of the following statements is False.
24. (AN B) = AN B¢ 25. (AUB) = AU B¢ 26. (ANB)NC = AN (BN C)°
Exercises 27-30. Is f: 'R —> R (a) One-to-one? (b) Onto?

3x—7
27. f(x) = xx+2

+1
+1

28. flx) = x*-3 29. fix) = ij 30. fix) = x3—x+2

Exercises 31-33. Is /: R — R2 (a) One-to-one? (b) Onto?

31. flx) = (x,x) 32. flx) = (x, 1) 33. flx) = (x2+2x,x+5)
Exercises 34-36. Is f: R2 — R2 (a) One-to-one? (b) Onto?

34. f(xay) = ()/,—X) 35. f(X,y) = (x7X+y) 36. f(xay) = (2x5X+y)
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Exercises 37-38. Is f: M, , , —> R* (a) One-to-one? (b) Onto?

37. f( “ b} (a,-2b,c,c—d) 38. f( a bjz (a—b,c,d, b—a)
cd cd
Exercises 39-40. Is /> R* — M, _, (a) One-to-one? (b) Onto?
9. flabed= | P 40. f(a,bc,d)=| ¢ PTa
c+b a?b? ct+tb d+ta

Exercises 41-49. Show that the given function f: X — Y is a bijection. Determine f tyosx
and show, directly, that (f_IOﬂ(x) = x Vx € X and that (fof )(y) =y Vye Y.

41, X =R, Y = R,and f(x) = 3x-2.

2. X = (2,000 (0,50), ¥ = (=0, 1)U (1,00), and flx) = L.
43. X = (=0,-1) U (=1, ®), ¥ = (—0,2) U (2, 0), and f{x) = -2,
x+1

44, X = Y = R2,and fla, b) = (-b,a).
45. X =Y = R2,and fla, b) = (5a,b+3).

4. X =Y =M, ,,andf||??|= |0
c d| d a
47. X =Y =M, ,,andf| ¢ 0= |¢ 29,
c d| la =b
48. X = R4 Y = M, ,,and f(a,b,c,d)= |20 ¢T1|.
d -a
a
49. X=M; ,Y =R}, andf| |p||= (2a,a-b,b+c).
C

50. Prove that a function f: ‘R — R is one-to-one if and only if the function g: R — R given by
g(x) = —f(x) is one-to-one.

51. Prove that for any given f: X —> Y, g: Y —> S, and h: S — T: ho(gof) = (hog)of.
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52. Letf: X—> Y,g: X—> Y, and h: Y —> W be given, with % a bijection.
(a) Prove that if hof = hog, then f = g.

(b) Show, by means of an example, that (a) need not hold when # is not a bijection.

53. Let Sc X, Y#O,and f: S — Y be given. Prove that there exists a function g: X — Y such
that f(x) = g(x) for every x € S. (That is, a function g which “extends” fto all of X.)

54. Let Sc X, Y# I, and f: X — Y be given. Prove that there exists a function g: S — Y such

that f(x) = g(x) forevery x € S. (That is, a function g which is the “restriction” of f'to the
subset S.)

Exercise. 55-60. (Algebra of Functions) For any set X, and functions /: X —> R and g: X > R,
wedefine f+g: X> R, f—g: X> R, f-g2: X> R, andé:X—)iR as follows:

(f+g)(x) = flx) + g(x) (f=g)(x) = flx)—g(x)
(f- &)(x) = flx) flx) _ fx) -
@(x) = ééﬁc-) if g(x)#0

55. Provethatforany  X>R and g: X>R:f+tg=g+f andf-g =g -f.

56. Exhibit f: R > R, g: R > R,suchthat f—g=g—f.

57. Exhibit one-to-one functions /: R —> R, g: R — R, such that f+ g is not one-to-one.
58. Exhibit onto functions f: R — R, g: R — R, such that f+ g is not onto.

59. Exhibit one-to-one functions /: R —> R, g: R — R, such that /- g is not one-to-one.
60. Exhibit onto functions f: R — R, g: R — R, such that /+ g is not onto.

PROVE OR GIVE A COUNTEREXAMPLE

6l. fANB+xd and BN C=,then AN C=J.

62. fANB=JdorBNnC=Y,thendAnC = .

63. fAc(BNnC)and Cc(BNnA),then 4 = C.

64. fAUB=A40C,thend = C.

65. fANnB=ANnC,thend = C.

66. fANB = AUB,thencither A = J orB = J.

67. fAc(BNnC)and Bc(CnD),then (AN C)c (BN D).
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68.
69.
70.

71.

Part 1 Preliminaries

(AuB)Nn(AuUC) =40 (BNC(C).
If no element of a set 4 is contained in a set B, then 4 cannot be a subset of B.

Two sets 4 and B are equal if and only if the set of all subsets of 4 is equal to the set of all
subsets of B.

D= (D).



A form of the Principle of
Mathematical Induction is actu-
ally one of Peano’s axioms,
which serve to define the posi-
tive integers.

[Giuseppe Peano (1858-1932).]

The Principle of Mathemati-
cal Induction might have been
better labeled the Principle of
Mathematical Deduction, for
inductive reasoning is used to
formulate a hypothesis or con-
jecture, while deductive rea-
soning is used to rigorously
establish whether or not the
conjecture is valid.

1.2 Principle of Mathematical Induction 13

§2. Principle of Mathematical Induction

This section introduces a most powerful mathematical tool, the Prin-
ciple of Mathematical Induction (PMI). Here is how it works:

PMI

Let P(n) denote a proposition that is either true or false, depend-
ing on the value of the integer n.

If: | 1. P(1) is True.

And if, from the assumption that: | [1.  P(k) is True

one can show that: | [TI. P(k+ 1) is also True.

then the proposition P(n) is valid for all integers n > 1

Step II of the induction procedure may strike you as being a bit
strange. After all, if one can assume that the proposition is valid at
n = k, why not just assume that it is valid at » = k+ 1 and save a
step! Well, you can assume whatever you want in Step II, but if the
proposition is not valid for all n you simply are not going to be able to
demonstrate, in Step III, that the proposition holds at the next value of
n. Just imagine that the propositions

P(1),P(2),P(3),...,P(k),P(k+1), ...
are lined up, as if they were an infinite set of dominoes:

.

n P©) |P7|| P@®)| [PO)|[P(10

If you knock over the first domino (Step 1), and if when a domino falls
(Step II) it knocks down the next one (Step III), then all of the domi-

noes will surely fall. But if the falling At domino fails to knock over
the next one, then all the dominoes need not fall.

To illustrate how the process works, we ask you to consider the sum
of the first » odd integers, for » = 1 throughn = 5:

Sum of the first n odd integers [ Sum I} Sulm
1 1
1+3 4 2 4
1+3+5 9 - | 3 9
1+3+5+7 16 4 116
1+3+5+7+9 25 5125
67

Figure 1.3
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Looking at the pattern of the table on the right in Figure 1.3, you can
probably anticipate that the sum of the first 6 odd integers will turn out

to be 62 = 36, which is indeed the case. Indeed, the pattern suggests

that: The sum of the first # odd integers is n2

Using the Principle of Mathematical Induction, we now establish the
validity of the above conjecture:

Let P(n) be the proposition that the sum of the first n odd integers

equals n?.
I. Since the sum of the first 1 odd integers is 12, P(1) is true.
The sum of the first 3 odd II. Assume P(k) is true; that is:
integers is: )
1+3+5+--+2k-1) =k
s — P seemargin—/l\

The sum of the first 4 odd
integers is:
1+3+5+7<—[2-4-1] the sum of the first £ + 1 odd integers

Suggesting that the sum of | | . )
the first & odd integers is: [1+3+5+--+Q2k-1)]+(2k+1) = k*+(2k+1) = (k+1)

1+3+ ... +(2k-1 | |
| induction hypothesis: Step II T

(see Exercise 1).

III. We show that P(k+ 1) is true, thereby completing the proof:

EXAMPLE 1.5 Use the Principle of Mathematical Induction to
establish the following formula for the sum of
the first n integers:

1+2+43+...+n = ”—(”2”)

SOLUTION: Let P(n) be the proposition:

1 +2+3+..+n = ’1(_”;___1_) (*)

I. P(1)istrue: 1 = l_(_l{_l_) Check!

II. Assume P(k) istrue:1+2+3+...+k = I@

III. We are to show that P(k + 1) is true; which is to say, that (*)
holds when n = k+1:

(k+D[(k+1D)+1] _ (k+1)(k+2)
2 2

1+2+3+..+k+(k+1) =
Let’s do it:
1+2+3+ ... +k+(k+1)=[1+2+3+---+k]+(k+1)
induction hypothesis: = k(k_2+12 T+ 1)

_k(k+1)+2(k+1) _ (k+1)(k+2)
2 2




Answer: See page A-3.

Answer: See page A-3.
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CHECK YOUR UNDERSTANDING 1.6

(a) Use the formula for the sum of the first » odd integers, along with
that for the sum of the first n integers, to derive a formula for the
sum of the first n even integers.

(b)Use the Principle of Mathematical Induction directly to establish

the formula you obtained in (a).

We pause momentarily to recall three number theory definitions. In
the present discussion, Z denotes the set of integers.

DEFINITION 1.7 ne Zisevenif 3ke Z>n = 2k.

EVENANDODD o o oddif ke Zon = 2k+1.

DIVISIBILITY A nonzero integer a divides b € Z, written
a|lb,if b = ak forsome ke Z.

THEOREM 1.4 Let b and ¢ be nonzero integers. Then:
(@) If a|b and b|c, then a|c.
(b)If a|b and a|c, then a|(b+c).

(c)If alb, then a|bc for every c.

PROOF: (a) If a|b and b|c, then, by Definition 1.7:

b = akand ¢ = bh forsome h and k .
Consequently:
¢ = bh = (ak)h = a(kh) = at (where t = kh).
It follow, from Definition 1.7, that a|c.

‘ Note how Definition 1.7 is used in both directions in the above proof. |

(b)If a|b and a|c,then b = ah and ¢ = ak for some 4 and k.
Consequently:

b+c =ah+ak = a(h+k) = at (wheret = h+k).
It follows that a|(b +c).

(¢c)If a|b, then b = ak for some k. Consequently, for any c:
bc = (ak)c = a(kc) = at (where t = kc).
It follows that a|bc.

CHECK YOUR UNDERSTANDING 1.7

Prove or give a counterexample.
(@)If a|(b+c),then a|b or a|c.

(b) If a|b and a|(b + ¢), then a|c.
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What motivated us to
write -1 in the form
—5+4 ? Necessity did:
We had to do something
to get “5kK—1” into the
picture (see II).
Clever, to be sure; but such
a clever move stems from
stubbornly focusing on

what is given and on what
needs to be established.

Answer: See page A-4.

API is often called the
Strong Principle of Induc-
tion. A bit of a misnomer,
since it is, in fact, equiva-
lent to PMI.

The “domino effect” of the Principle of Mathematical Induction need
not start by knocking down the first domino P(1). Consider the fol-
lowing example where domino P(0) is the first to fall.

EXAMPLE 1.6 Use the Principle of Mathematical Induction to
show that 4|(5” — 1) for all integers n>0.

SOLUTION: Let P(n) be the proposition 4|(5"—1).
L. P(0) istrue: 4[(5°—1),since 59—1 =1-1 = 0.
II. Assume P(k) is true: 4|(5%-1).
III. We show P(k+ 1) is true; namely, that 4|(54*1 - 1):
S5kt1_1 = 5(55) -1 = 5(5%) -5+ 4 (see margin)

=5(5k-1)+4
The desired conclusion now follows from Theorem 1.4:
Theorem 1.4 (c): 4|(5k -1)= 4|5(5k — 1) and then:

Theorem 1.4(b): 4|5(5F— 1) and 4|4 = 4|[5(5%— 1) + 4]

CHECK YOUR UNDERSTANDING 1.8

(a) Use the Principle of Mathematical Induction to show that
n! >n? for all integers n>4.
(b) Use the Principle of Mathematical Induction to show that

6|(n + 5n) for all integers n>1 .

ALTERNATE FORMS OF MATHEMATICAL INDUCTION

We complete this section by introducing two equivalent forms of the
Principle of Mathematical Induction — equivalent in that any one of
them can be used to establish the remaining two.

One version, which we will call the Alternate Principle of Induction
(API), is displayed in Figure 1.3(b). As you can see, the only difference
between PMI and API surfaces in (*) and (**). Specifically, the propo-
sition “P(k) True” in (a) is replaced, in (b), with the proposition “P(m)
True for all integers m up to and including & .

Let P(n) denote a proposition that is either true or false, depending on the value of the integer n.

PMI

API

If P(1) is True, and if:
(*) P(k) True = P(k+1) True

then P(n) is True for all integers n > 1

(2)

If P(1) is True, and if
(**): P(m) Truefor 1<m<k = P(k+1) True

then P(n) is True for all integers n > 1

(b)

Figure 1.4
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We establish the equivalence of PMI and API by showing that (*)
holds if and only (**) holds. Clearly, if (*) holds then (**) must also
hold. As for the other way around:

Assume that (**) holds and that (*) does not.
(we will arrive at a contradiction)

If (*) does not hold, then there must exist some k, for which
P(ky) is True and P(k,+ 1) is False. Since P(k,+ 1) is False,
and since (**) holds, we know that P(k;) is False for some
1 <k, <k,. But we are assuming that P(k,) is True. Hence
P(k,) 1s False for some 1 <k, <k,.
Repeating the above procedure with k, playing the role of k, we
arrive at P(k,) is False for some 1 <k, <k,.

Continuing in this fashion we shall, after at most k,— 1 steps, be

forced to conclude that P(1) is False — contradicting the assump-
tion that P(1) is True.

EXAMPLE 1.7 Use API to show that for any given integer
n > 12 there exist integers a > 0, b > 0 such that
n=3a+7b.

SOLUTION:

[. Claimholdsforn = 12:12 =3-4+7-0

II. Assume claim holds for all m such that 12 <m < k.

III. To show that the claim holds for » = £+ 1 we first show,
directly, that it does indeed hold if k+1 = 13 or if
k+1 = 14:

13=3-2+7-1and 14 =3-0+7-2
Now consider any £+ 1>15.

If k+1>15, then 12<(k+1)-3<k. Appealing to the
induction hypothesis, we choose a > 0, b > 0 such that:

(k+1)-3 =3a+7b
It followsthat k+1 = 3(a+ 1)+ 7b,and the proofis complete.
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Z" denotes the set of
positive integers.

Note that subsets of Zneed not
have first elements. A case in
point
{....,—4,-2,0,2,4, ...}
Note also that the bounded set
{x e R|5<x<9}

does not contain a smallest
element (5 is not in the set).

Answer: See page A-4.

Here is another important property which turns out to be equivalent to
the Principle of Mathematical Induction:

THE WELL-ORDERING PRINCIPLE FOR Z*

Every nonempty subset of Z* has a smallest (or least, or first) element.

We show that the Alternate Principle of Mathematical Induction
implies the Well-Ordering Principle:

Let S be a NONEMPTY subset of Z*.
If 1 € §, thenitis certainly the smallest element in S, and we are done.

Assume 1 ¢ §, and suppose that S does not have a smallest element
(we will arrive at a contradiction):

Let P(n) be the proposition that n ¢ S for n € Z*. Since, 1 ¢ S,
P(1) is True. Suppose that P(m) is True for all 1 <m <k, can
P(k+1) be False? No:

To say that P(k + 1) is False is to say that £+ 1 € . But that

would make &k + 1 the smallest element in S, since none of its
predecessors are in S. This cannot be, since S was assumed not
to have a smallest element.

Since P(1) is True (1 ¢ S) and since the validity of P(m) for
all 1 <m <k implies the validity of P(k+ 1), P(n) must be
True for all n € Z*; which is the same as saying that no ele-

ment of Z* is in § — contradicting the assumption that S is
NONEMPTY.

CHECK YOUR UNDERSTANDING 1.9

Show that the Well-Ordering Principle implies the Principle of Math-
ematical Induction.
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EXERCISES

Exercises 1-29. Establish the validity of the given statement.

1.

2.

10.

I1.
12.
13.
14.
15.
16.
17.

For every integer n > 1, 2n— 1 is the n'h odd integer.

. _3n2-n
Forevery integern>1,1+4+7+--+(3n-2) = 7

2 - n(2n—-1)2n+ 1).

For every integer n>1, 12+32+52+ -+ (2n—-1) 2

Forevery integer n>1, 124924324 ... 4,2 = nn+1)2n+1).

6
For every integer n> 1,4 +42+43 4+ ... + 47 = 4—(4”3_1).
Foreveryintegernzl,l+l+l+ R l—i
2 4 8 on on
B . 1 1 1 1y _
oreveryintegern>1,(1+=]|1+=]|1+=]...{1+=) =n+1.
1 2 3 n
. 1_xn+1
For every integer n > 1 and any real number x # 1, x0+ x! +x2+ -+ +x" = T
-X

n
a(l _rn+1)

For every integer n > 1, and any real number » # 1, Z art = 7
—-r

i=0
For every integer n>0: 5|(24”+2 +1).
For every integer n> 1 : 9|(43” -1).
For every integer n > 1: 3|(5" —2").
For every integer n > 1, 52" + 7 is divisible by 8.
For every integer n > 1, 337714+ 27 %1 ig divisible by 5.
For every integer n> 1, 47+ 1+ 52n-1 5 divisible by 21.
For every integer n>1, 327%2 -85 —9 is divisible by 64.

For every integer n >0, 2" > n.
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18. For every integer n > 5, 2n—-4>n.

19. For every integer n>5, 2">n? .

20. For every integer n >4, 3" > 2"+ 10.

!
21. For every integer n > 1, (;ni)' is an odd integer.
n!

22. For every integer n >4, 2n <n!.

23. (Calculus Dependent) Show that the sum of n differentiable functions is again differentiable.

24. (Calculus Dependent) Show that for every integer n > 1, dix” = nx"— 1,
X

Suggestion: Use the product Theorem: If f'and g are differentiable functions, then sois /- g

differentiable, and 9 [/(x)g(x)] = fix)Le(x) + g(x)IAx) .
dx dx dx

25.Leta, = 1anda, . = 3—ai.Showthatan+l>an.
n
26.Leta;, = 2 anda, | = 3—1a . Show that a, , | <a,.

n

27. For every integer n > 1, 1+l+L+---+L>2(A/n+1—1).

2B Jn

28. For any positive number x, (1 +x)">1+nx forevery n>1.

29. For every integer n > 8, there exist integers @ > 0, b > 0 such that n» = 3a+ 5b.

30. Let m be any nonnegative integer. Use the Well-Ordering Principle to show that every non-
empty subset of the set {n € Z|n >—m} contains a smallest element.

31. Use the Principle of Mathematical Induction to show that there are n! different ways of
ordering n objects, where n! = 1-2-3-...-n.
32. What is wrong with the following “Proof” that any two positive integers are equal:
Let P(n) be the proposition: If a and b are any two positive integers such
that max(a, b) = n, thena = b.

I. P(1) is true: If max(a, b) = 1, then both a and » must equal 1.
II. Assume P(k) is true: If max(a, b) = k,thena = b.
III. We show P(k+ 1) is true:
If max(a, b) = k+ 1 then max(a—1,b-1) = k.
Byll,a—1=b-1=a =b.
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§3. The Division Algorithm and Beyond

ALL LETTERS IN THIS SECTION WILL BE UNDERSTOOD TO REPRESENT INTEGERS.

5<9
dﬂ?’%a
Q<r
Check: 17 = 3-5+2
a=dq+r

Here is a “convincing argu-
ment” for your consideration:
Mark off multiples of d on the
number line:
| | [ |
I

2d d 0 d 2d
Case 1. If a = dg, then let
r=20.

Case 2. If a is not a multiple
ofd, then let dg be such that
dg<a<(d+1)q. We then
have a = dq +r, where:

d
<—r—>|

® f

dq a dq+d
In either case 0<r<d.

This is a common mathe-
matical theme:

To establish that some-
thing is unique, consider
two such “somethings”
and then go on to show
that the two “some-
things” are, in fact, one
and the same.

In elementary school you learned how to divide one integer into
another to arrive at a quotient and a remainder, and could then check

your answer (see margin). That checking process reveals an important
result:

THEOREM 1.5 Fpor any given a € Z and d € Z*, there exist

THE DIVISION nique integers g and r, with 0 < r < d, such that:
ALGORITHM —
a=dq+r

PROOF: We begin by establishing the existence of ¢ and 7 such that:

a =dg+r with 0<r<d
Consider the set:

S={a-dnlneZ and a-dn=>0} (*)
We first show that S is not empty:

Ifa>0,thena = a—d-02>0, and therefore a € S.
[0 is playing the role of n in (*)]

If a<0,then a—da>0, and therefore a —da € S.
[a is playing the role of # in (*) and remember that d € Z* ]

Since S is a nonempty subset of {0} U Z", it has a least element

(Exercise 30, page 20); let’s call it . Since r is in S, there exists ¢ € Z
such that:
r=a-dq (**)

To complete the existence part of the proof, we show that r < d.
Assume, to the contrary, that r > d . From:
r-d=(a—dq)—-d=-a-d(qg+1)
(ﬁ*)
we see that r—d is of the form a—dn (with n = g+ 1).
Moreover, our assumption that » > d implies that r —d > 0. It
follows that r — d € S, contradicting the minimality of r.
To establish uniqueness, assume that:
a=dg+r with 0<r<d and a=dq'+r" with 0<r' <d
[We will show that ¢ = ¢' and r = ' (see margin)]
Since >0 and ' <d (or ="' >-d): r—r'>20—-r'">0-d = —d.
Since r<d and ' 20 (or ' <0):r—r'<d-r'<d-0 =d
Thus: ~d<r—r'<d,or |r—r'|<d
From dg +r = dq' +r" wehave: r—r' = d(q' —q)
(a multiple of 4)
Butif |[r—r'| <d andif r — r' is a multiple of d, then »— ' = 0 (or
r = r'). Returning to dg + r = dg' + ' we now have:
dg+r=dq'+r'=dq=dq' =d(qg—-q') = O?q =q'
d#0
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EXAMPLE 1.8  Show that for any odd integer 1, 8|(n2—1).

SOLUTION: There are, at times, more than one way to stroke a cat:

Using Induction
We show that the proposition:

8|[(2m+1)>—1]

holds for all m > 0 (thereby covering all
odd integers n).

I. Validatm = 0: (2-0+1)2-1 = 0.

II. Assume valid at m = k; that is:
(2k+1)2—1 = 8t ordk?*+4k = 8¢
for some integer z.

III. We are to establish validity at
m = k+1;that is, that:

[2(k+1)+1]2-1 = 8s

for some integer s. Let’s do it:

[2(k+1)+1]2-1

Using the Division Algorithm
We know that for any » there exists ¢ such that:

n=2qorn =2q+1 (%
n=3qorn =3qg+tlorn =3qg+2 (+¥
n=4qorn =4q+1lorn =4qg+2orn = 4q+3

While (*) and (**) may not lead us to a fruitful conclu-
sion, the bottom line does. Specifically:

For any n:
n=4qorn =4q+lorn =4q+2o0rn = 4q+3
If n is odd, then there are but the two possibilities:
n=4g+1lorn =4q+3
We now show that, in either case 8|(n?—1).
Ifn = 49+ 1, then:

n2—1=(4qg+1)2-1=16¢>+8q+1-1 = 8k

= 2 _

(21§+ 3)2-1 (with k = 2¢%+q)
= 4k°+ 12k+38 If n = 4q + 3, then:
_ 2

(4k*+4k)+ (8k+38) n2_1 = (4q+3)2_1 = 16q2+24q+9_1 = 8%
= 8t+8(k+1) = 8(t+k+1) =

%t 8(k+1)=8(t+k+1) = 8s (with 7 = 2¢% + 3q + 1)

II

CHECK YOUR UNDERSTANDING 1.10

Answer: See page A-5 Prove that for any integer n, n> = 3q orn? = 3¢ + 1 forsome integerg.

DEFINITION 1.8 For given a and b not both zero, the greatest
GREATEST ComMon ¢ommon divisor of a and b, denoted by
DIVISOR gcd(a,b), is the largest positive integer that

divides both a and b.

THEOREM 1.6 Ifa and b are not both 0, then there exist s and ¢

such that:
gced(a, b) = sa+tb
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PROOF: Let
G = {x>0|x = ma + nb for some m and n}

Assume, without loss of generality that a # 0. Since both @ and —a are
of the form ma+nb: a = 1la+0b while —a = (-1)a+0b; and
since either a or —a is positive: G # . That being the case, the Well
Ordering Principle (page 18) assures us that G has a smallest element
g = sa+tb. We show that ¢ = gcd(a, b) by showing that (1): g
divides both a and b, and that (2): every divisor of a and b also divides g.
(1) Applying the Division Algorithm we have:
a=qg+trwithO<r<g.
*) (+%)
Substituting g = sa + th in (*) brings us to:
a = q(sa+th)+r
r=(-gs)a—tb
Since r is of the form ma + nb with r < g, it cannot be in G, and
must therefore be 0 [see (*+)]. Consequently a = gg, and g|a.
The same argument can be used to show that g|b.

(2)If d|a and d|b, then, by Theorem 1.4(b) and (c), page 15: d|g.

CHECK YOUR UNDERSTANDING 1.11

Show that for any a and b not both zero:
ged(a, b) = ged(lal, [b]).

Answer: See page A-5

DEFINITION 1.9 Two integers a and b, not both zero, are rela-
RELATIVELY PRIME tively prime if:
ged(a, b) =1
For example:
Since gcd(15,8) = 1, 15 and 8 are relatively prime.

Since gcd(15,9) = 3#1, 15 and 9 are not relatively prime.

THEOREM 1.7 Two integers, a and b, are relatively prime if
and only if there exist s,7e€ Z such that

1 =sa+th

PROOF: To say that a and b are relatively prime is to say that
gcd(a,b) = 1. The existence of integers s and ¢ such that
1 = sa+tb follows from Theorem 1.6.

For the converse, assume that there exist integers s and ¢ such that
1 = sa+tb. Since gcd(a,b) divides both a and b, it divides 1
[Theorem 1.4(b) and (c), page 15]; and, being positive, must equal 1.
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THEOREM 1.8 Leta,b,c e Z. Ifa|bc,and if ged(a, b) = 1,

then a|c.

PROOF: Let s and ¢ be such that:

1 = sa+tb
Multiplying both sides of the above equation by c:
c = sac+thc

Clearly a|sac. Moreover, since a|bc: a|tbc. The result now follows
from Theorem 1.4(b), page 15.

CHECK YOUR UNDERSTANDING 1.12

Let a, b, c € Z. Show that if a|bc and afb, then a and ¢ can not be
relatively prime.

Answer: See page A-5.

PRIME NUMBERS

Chances are that you are already familiar with the important concept
of a prime number; but just in case:

DEFINITION 1.10 An integer p > 1 is prime if 1 and p are its
PRIME only divisors.

For example: 2, 5, 7, and 11 are all prime, while 9 and 25 are not.
Moreover, since any even number is divisible by 2, no even number

So, 2 is the oddest prime (sorry). . .
greater than 2 is prime.

THEOREM 1.9 Ifp is prime and if p|ab, then p|a or p|b.

PROOF: If p|a, we are done. We complete the proof by showing that
if pfa,then p|b:
Since the greatest common divisor of p and a divides p, it is
either 1 or p. As it must also divide a, and since we are
assuming pja, it must be that gcd(p, a) = 1. The result
now follows from Theorem 1.8.

CHECK YOUR UNDERSTANDING 1.13

Let p be prime. Use the Principle of Mathematical Induction to show
ATETTES (930 PP s thatif p|a,a,---a,, then p|a, forsome 1 <i<n.

The following result is important enough to be called the Fundamen-
tal Theorem of Arithmetic.

THEOREM 1.10 Every integer n greater than 1 can be
expressed uniquely (up to order) as a product

of primes.
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PROOF: We use API of page 16 (starting at n = 2) to establish the
existence part of the theorem:
I. Being prime, 2 itself is already expressed as a product of primes.

II. Suppose a prime factorization exists for all m with 2 <m < k.

III. We complete the proof by showing that £+ 1 can be expressed
as a product of primes:
If £+ 1 is prime, then we are done.

If k+ 1 isnotprime,then k+1 = ab,with2<a<b<k.By
our induction hypothesis, both a and b can be expressed as a
product of primes. But then, socan k+1 = ab.

For uniqueness, consider the set:

S = {n € Z*|n has two different prime decompositions }

Assume that S # & (we will arrive at a contradiction).

The Well-Ordering Principle of page 17 assures us that S has a
smallest element, let’s call it m. Being in S, m has two dis-
tinct prime factorizations, say:

m = p\py..py = 4195-.-4,
Since P1\1’1P2---Ps and since pp,...p, = q145...q, W€
have p1|q1q2...qt. By CYU 1.13,p1|qj for some 1 < <+¢.
Without loss of generality, let us assume that p, ‘% . Since ¢q,

is prime, its only divisors are 1 and itself. It follows, since
p;#1,that p; = g,. Consequently:

PiPy---Ps = 9192---9,=> D P>r---Ps = P19>---4,
=>pPy---Ps—P192---9, = 0
=>p,Py.-P;—9q5.-.q,) = 0

p1#0: = py...p—q5...q, = 0
:>p2...ps¢=q2...qt

two distinct prime decompositions for
an integer smaller than m — contradicting the minimality on m in S

THEOREM 1.11 There are infinitely many primes.

PROOF: Assume that there are but a finite number of primes, say
S = {p,Py ---»P,} » and consider the number:

m = ppy...p, T 1
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Answer: See page A-5.

Since m ¢ S, it is not prime. By Theorem 1.10, some prime must
divide m. Let us assume, without loss of generality, that p, ‘m . Since

p; divides both m and pp,...p,: pl‘[m—(plpz...pn)] [Theorem
1.4(b), page 15]. A contradiction, since m — (pp,...p,) = 1.

CHECK YOUR UNDERSTANDING 1.14

Let a and b be relatively prime. Prove that if a|n and b|n, then ab|n.
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EXERCISES

Exercises 1-3. For given a and d, determine integers ¢ and r, with 0 < r < d,suchthata = dgq +r.

l. a=0,d=1 2. a=-5d =133 3. a=-134,d =5
Exercises 4-6. Find the greatest common divisor of @ and b.

4. a = 120,b = 880 5. a=-10,b = 55 6. a=-134,b =5
Exercises 7-10. The least common multiple of nonzero integers a,,a,,...,a,, written
lem(a,, a,, ..., a,), is the smallest positive integer that is a multiple of each a;; i.e. is divisible by
each a;. Find:

7. lem(12, 20) 8. lem(3,5,9) 9. lem(2,3,9,15) 10. lem(-3, 2, 4, 21)

11. Leta = p|'-py...p." and a = p‘};l : p}; p‘},Z’ , where the p; s are distinct primes and where

e;20 and f;>0 foralli. Let m; = min(e,, f;) (the smaller of the two numbers), and

M; = max(e;, f,) (the larger of the two numbers). Prove that:

(a) ged(a, b) = p}" - pat. pi (b) led(a, b) = py - py’...pi” (see Exercise 7-10)
12. Prove that if 3 does not divide n,then n = 3k+1 orn = 3k+2 forsome k € Z.

13. Let n be such that 3f(n? —1). Show that 3|n.

14. Show that if  is not divisible by 3, then n2 = 3m + 1 for some integer m.
15. Show that an odd prime p divides 27 if and only if p divides n.

16. Prove thatif a = 6n+ 5 for some n, then a = 3m + 2 for some m.

17. Show that 2|(n*—3) if and only if 4|(n? +3).

18. Prove that any two consecutive odd positive integers are relatively prime.

19. Let a and b not both be zero. Prove that there exist integers s and ¢ such that n = sa +¢b if
and only if »n is a multiple of gcd(a, b).

20. Prove that the only three consecutive odd numbers that are prime are 3, 5, and 7.
21. Show that a prime p divides n? if and only if p divides n.
22. Prove that every odd prime p is of the form 4n + 1 or of the form 4n + 3 for some n.

23. Prove that every prime p > 3 is of the form 6x + 1 or of the form 6n + 5 for some n.
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24.

25.

26.

27.

28.

29.

30.
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Prove that every prime p > 5 isofthe form 10n+ 1, 10n+ 3, 10n+ 7,0r 10n + 9 for some n.
Prove that a prime p divides n2 — 1 if and only if p|(n—1) or p|(n+1).
Prove that every prime of the form 37 + 1 is also of the form 6k + 1.

Prove that if » is a positive integer of the form 3% + 2, then »n has a prime factor of this form
as well.

Prove that @ > 1 and b > 1 are relatively prime if and only if no prime in the prime decompo-
sition of a appears in the prime decomposition of b.

Prove that if the integer n > 1 satisfies the property that if n|ab, then n|a or n|b for every
pair of integers a and b, then n is prime.

Prove that n > 1 is prime if and only if # is not divisible by any prime p with p < J/n.

PROVE OR GIVE A COUNTEREXAMPLE

31.
32.

33.
34.

35.
36.

There exists an integer n such that n2 = 3m — 1 for some m.
If a = 3m + 2 for some m, then a = 6n+5 for some n.

If m and n are odd integers, then either m + n or m —n is divisible by 4.

For any a, and b not both 0, there exist a unique pair of integers s and ¢ such that
ged(a,b) = s-a+t-b.

For every n, 3|(4"—1).
Forevery n € Z*, 3|(4"+ 1).




Recall that X x Y, called

the Cartesian Product
of X with Y, is the set of

all ordered pairs (x,y),
with xe X and y e Y.
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§4. EQUIVALENCE RELATIONS

In Section 2 we defined a function from a set X to a set Y to be a sub-
set f< X x Y such that:
For every x € X there exists a unique y € Y with (x,y) € f.

Removing all restrictions, we arrive at a far more general concept than

that of a function:

DEFINITION 1.11 A relation E from a set X to a set Y is any

RELATION

subset EC X x Y.
A relation from a set X to X is said to be a
relation on X.

Each and every subset of R x R, including the chaotic one in the

margin, is a relation on R, suggesting that Definition 1.11 is a tad too
general. Some restrictions are in order:

DEFINITION 1.12

REFLEXIVE

SYMMETRIC

TRANSITIVE

EQUIVALENCE
RELATION

A relation £ on a set X is a subset £ < X x X and
is said to be:

Reflexive: (x, x) € E forevery x € X.
(Every element of X is related to itself)

Symmetric: If (x, y) € E then (y,x) € E.

(If x is related to y, then y is related to x)
Transitive: If (x,y) e £ and (y,z) € E then
(x,z) e E.

(If x is related to y, and y is related to z, then x is related to z)

An equivalence relation on a set X is a relation
that is reflexive, symmetric and transitive.

The notation x~y is often used to indicate that x is related to y with
respect to some understood relation E. Utilizing that option, we can
rephrase Definition 1.12 as follows:

An equivalence relation ~ on a set X is a relation which is

Reflexive: if x~x for every x € X.

Symmetric: if x~y, then y~x.

and Transitive: if x~y and y~z, then x~z.

EXAMPLE 1.9

Show that the relation %~§ if ad = bc isan

equivalence relation on the set of rational
numbers.
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As you know, when it
comes to rational num-
bers, one simply writes

2 _ 4

= = 2 rather than 2~i
3 6 3

Recall that «|b means

that a divides b (see Defi-
nition 1.7, page 15).

An expression of the form
L _ 2hth

is unaccept-

able in the solution pro-
cess, since we are involved
with the set Z of integers
and not “fractions.”

Answer: See page A-6

SOLUTION:

. a a . _
Reflexive: P since ab = ba.

..a c _ _ c a
Symmetric: b~d:>ad = bc=>ch a’a:>d 5

a c c e
Transitive: —~- and -~-=ad = bc and cf = de
b d d f * (**)

We establish the fact that %~]§F by showing that af = be:

_be o _be de
Ad Tord o c
see (¥) see (**)

EXAMPLE 1.10  Show that the relation a~b if 2|(3a—b) is
an equivalence relation on Z.
SOLUTION: The relation a~b if 2|(3a—b) is:

Reflexive. a~a, since: 3a—a = 2a
here, a is playing the role of b

Symmetric. Assume that a~b , which is to say, that:
3a—b = 2h forsome h € Z (*)
We are to show that b~a , which is to say, that:
3b—a = 2n forsomen € Z
Lets do it. From (*) b = 3a-2h.

Hence: 3b—a = 3(3a—2h)—a = 2(4a—3h) = 2n
AT A

TRANSITIVE: Assume that a~b and b ~ c¢; which is to say, that:
(1)3a—b =2hand (2)3b—c = 2k for h,ke Z
We are to show that a~c ; which is to say, that: 3a—c = 2n.
Let’s do it. From (2): ¢ = 3b - 2k.
Hence: 3a-c¢ = 3a—(3b-2k)
From (1): = 2h+b—(3b—-2k) = 2(h+k—-b) = 2n
A A

CHECK YOUR UNDERSTANDING 1.15

Two sets A and B are said to have the same cardinality, written
Card(4) = Card(B), if there exists a bijection f: 4 — B.

Show that the relation A~B if Card(4) = Card(B) is an equiva-
lence relation on any collection S of sets.

Note: In a sense, the term “same cardinality” can be interpreted to mean “same
number of elements.” The classier terminology is used since the expression “same

number of elements” suggests that we have associated a number to each set, even
those that are infinite. A further discussion on cardinality if offered in the exercises.
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DEFINITION 1.13 Let ~ be an equivalence relation on X. For
each x, € X, the equivalence class of x,
EQUIVALENCE

CLASS denoted by [x,], is the set:
[xo] = {x € X|x~x,}

In words: The equivalence class of x,, consists of all elements
of X that are related to x,. We now show that any element in

[x,] will generate the same equivalence class:
THEOREM 1.12 Let~ be an equivalence relation on X. For any
X, X, €X:

PROOF: Assume that x; ~ x,. We show that [x,] < [x,] (a similar
argument can be used to show that [x,] < [x,] and that therefore

[x1] = [xz] ):

xe[x]=>x~x
By transitivity, since x;~X,: X ~ X, => X € [x,]

Conversely, if [x;] = [x,], then, since x; € [x,]: x; ~x,.

EXAMPLE 1.11  Determine the set {[n]}, ., of equivalence
classes corresponding to the equivalence rela-
tion a~b if 2|(3a—b) of Example 1.10.
SOLUTION: Let’s start off with a = 0. By definition:
[0] = {beZ| 2|(-b)} = {2n|n € Z} (the even integers)

Since 1 is not in [0], [1] will differ from [0] (Theorem 1.12).
Specifically:

[1] = {beZ| 2|(1-b)} = {2n+1|n € Z} (the odd integers)

In the above example the give equivalence relation decomposed Z
into disjoint equivalence classes; namely:

Z = [0]u[1l] = {even integers} U {odd integers }

To put it another way: the equivalence classes in Example 1.11
effected a partition of Z, where:
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DEFINITION 1.14 A set of nonempty subsets {S,}_ _ , ofa

o a1t ol thye PARTITION set X is said to be a partition of X if:
A partition of a set S chops
S up into disjoint pieces. (1) X = U S(x
aecd

(i) If S, N S, # @ then S, = S,

In the above, {S,} _, is being indexed by the set 4, as is the case with the union
U S, - Inparticular: If 4 = {1,2}, then:

acd
Sodgea =™ Sadgeq o = SpS)ad S, = U S =5VS
aed ae{l,2}

And,if 4 = Z* = {1,2,3, ...}, then:

0

{Sa}aeA = {Si}iEz+ = {Si}i:l and U S, = USi
ieZ" i=1

Figure 1.5(a) displays a 5-subset partition {S}, S5, S5, Sy, S5} of the

indicated set. An infinite partition of [0, o) is represented in Figure

1.5(b): {[m,n+1)}, _,

M | I | M | N | M | M | MR
L1 1 1 A& I X

(a) (b)
Figure 1.5

CHECK YOUR UNDERSTANDING 1.16
Determine if the given collection of subsets of R is a partition of R ?
(a) {[n,}’l"f' 1]}neZ

():No  (b): Yes (b) {{n}|neZy i, i+ D} oW {(-i-1,-i)};_,

There is an important connection between the equivalence relations
on a set X and the partitions of X, and here it is:

THEOREM 1.13 (a) If ~ isanequivalencerelation on X, then the
set of its equivalence classes, {[x]}, _ y,1s

a partition of X.
(b) If {S, }, . , isapartition of X, then therela-
tion x,~x, if x|, x, € §, for some a € 4

is an equivalence relation on X.
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PROOF: (a) We Show that:

X = lx]
xelX
and (i) If [x,;] N [x,] # D, then [x,] = [x,].

(1): Since ~ is an equivalence relation, x~x for every
x € X. It follows that x € [x] for every x € X, and that

therefore X = ) [x].
xeX

(ii): If [x;] N [x,] # <, then there exists x, € [x;] N [x,].
Since x, € [x,] and x, € [x,]: xy~x; and x,~x,.
By symmetry and transitivity: x,~x,

By Theorem 1.12: [x,] = [x,]

(b)Let {S,}, . , beapartition of X. We show that the relation:

x,~x, if there exists o € 4 such that x,x, € S, is an equiv-

alence relation on X:
Reflexive: To say that x~x, is to say that x belongs to the
same S, as itself, and it certainly does.

Symmetric: x~y =>dJdaedsx,ye S, =y, xe S, = y~x
Transitive: Assume x~y and y~z . We show that x~z :
Since x~y: x,y € §, forsome o € 4.

Since z~y: y,z € S for some aed.
Since §, N S-# & (y is contained in both sets): S, = S-.
It follows that both x and z are in S, (or in S if you prefer),

and that, consequently: x~z .

CONGRUENCE MODULO n

Here is a particularly important equivalence relation of the set of inte-
gers:

THEOREM 1.14 ¢t n € z*. Therelation a~b if n|(a—b) is

an equivalence relation on Z.

PROOF: Reflexive: a~a since n|(a—a).

Symmetric: a~b = n|(a-b) = n|(b—a) = b~a.
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Answer: See page A-6

Transitive:
a~b and b~c = n|(a—->b) and n|(b-c)
Theorem 1.4(b), page 15: = n | [(a — b) + (b — C)]

=>nl(a-—c)=a~c

In the event that n|(a —b) , we say that:
a is congruent to » modulo » and write a = b mod n

THEOREM 1.15 [t yc 7zt If a=amod n and b= b mod n,
then: _
(@)a+tb=a+bmodn

(b) ab=ab mod n

PROOF: (a) If n|(a —a) and n|(b—b), then:
n|[(a—a)+(b-b)]=n|[(a+b)—(a+b)]
(a) If n|(a—a) and n|(b - b), then:
(1)a—a = hn and 2) b—b = kn for h,ke Z
We are to show that n|(ab —ab); which is to say that ab —ab = ns
Lets do it: ab—ab = (ab—ab)+ (ab—ab)

= (a—a)b+a(b-b)
= hnb+akn = n(hb+ak) = ns
2

CHECK YOUR UNDERSTANDING 1.17

LetneZ". Leta=dn+r, and b=d,n+r, with0<r, <n and
0 <r,<n (see Theorem 1.5, page 21). Prove that:

a=bmodn ifandonlyifr, = r,

(same remainder when dividing by n)

Theorem 1.13 assures is that the equivalent classes associated with
the equivalence relation of Theorem 1.15 partition the set of integers.
Focusing on n = 5, we see that the equivalence class containing 0
consists of all multiples of 5, as the remainder of any multiple of 5
when divided by 5, is the same as that obtained by dividing 0 by 5 (see
CYU 1.17). Specifically:

[0]; = {...,-20,-15,-10,-5,0, 5,10, 15, 20, ... }

Note that the above equivalence class has many “names”. It can also,
be called the equivalent class containing 235, among infinitely many
other choices:
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[0]5 = [125]5 = [-15]5 = ---
The same can be said about the four remaining equivalence classes:
[1]s = {...,—14,-9,-4,1,6,11, 16, ...}
[2]5 = {...,—13,-8,-3,2,7,12,17, ...}
[3]s = {...,—-12,-7,-2,3,8,12,18, ...}
[4]5 = {...,—11,-6,-1,4,9,13,19, ...}

Note that [5] = [0].
Can we define a sum on the above five equivalence classes? Yes:

[0]5[+][b]5 = [a+ b]s
The above sum is well defined, in that it is independent of the chosen
representatives in the two equivalence classes. Indeed:

THEOREM 1.16  For given n € Z*, let [Z], denote the set of
equivalence classes associated with the equiv-
alence relation a~b if n|(a—>b) ;1i.e:

[Z], = {[0],, [1], ... [n—1],}
Then:
(a) For any [a],, [b], € [Z],, the operation
[a],+1[b], = [a+D],
is well defined.
(b) For any [a],, [b],,[c], € [Z],:
([a],t1100],)i41le], = [a],+1([2],[+1[c],)

(associative property)

PROOF: (a) We show that if [a], = [a], and [b], = [b],, then
[a+b], = [a+ b], (i.e the sum is independent of the chosen repre-

sentatives for the equivalence classes [a], and [b],):
[a], = [a],=>n|(a—a)=>a—-a = hn,forhe Z

and: [b] = [bl,=n|(b—b)=>b-b =kn,forkeZ.
Since (a+b)—(a+b) = (a—a)—(b—b) = (h—k)n:
[a+b], = [a+b],

(b) ([al,(+1[b] Di+1[c], = [a+b],I+1[c], = [(a+b)+c],
= [a+(b+)],

= [a], (+x1([b],1+1[c],)
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CHECK YOUR UNDERSTANDING 1.18

(a) Verify that the product [a],[b], = [ab], in Z, is well
defined. That is: if [a], = [a], and [b], = [b],, then:
[ab], = [ab],.

(b) Provethat  [a],([b],[c],) = ([la],[b],)c],

(c) Provethat [a] ([b],+1[c],) = [a],[b,]i+1[al,lc],




1.4 Equivalence Relations

37

EXERCISES

Exercises 1-3. Show that the given relation is an equivalence relation on Z.

1. a~biflal =|b]. 2. a~bif2|(a—3b). 3. a~bif5|(a-b).
Exercises 4-7. Show that the given relation is an equivalence relation on Q, the set of rational num-
bers.
a ¢ ..a ¢
Lo~ i === ) . =~ +
4 bdlfb deZ 5 bd1f2|(b d).
a ¢ 24 J2) = a ¢ 2 2 =
6. b p £ if (ad—bc)(b*+d*) = 0. 7. b p < if (ad)* - (bc) 0.
Exercises 8-13. Show that the given relation is an equivalence relation on R .
8. x~yifx2=y2 9. x~yiflx] = ]y. 10. x~y if [x+1] = [y +1].
11. x~yifx—yeZ. 12. x~y if sinx = sin(y +2n). 13. x~y ifx2—y% = 0.

Exercises 14-17. Show that the given relation is an equivalence relation on R2.
14. (xp, yo)~(xp,y)) ifxy+yy = x; +y,. 15. (xg, yo)~(x1, ¥1) i xpyg = X1y
16. (xg, yo)~(xp,») if x§+y§ = xf+yf. 17 (g y9)~(x,pp) ifxg = X
Exercises 18-21. Show that the given relation is not an equivalence relation on R2.

Exercises 22-30. Determine whether or not the given relation is an equivalence relation on R3.

22, (X0 Yo 20)~(x, ¥, 21) Ty = vy

23. (X Yo 20)~(x, ¥, 2)) i xg+yy+tzp = x+y, +2;.

24. (X0, ¥pr 20)~(x, ¥, 2y) ifxg = ¥y, T2,

25. (xp, Yo 2)~(x 1, ¥, 29) if xpzg+ 2y <x,z; + 2y, .

26. (xp, yp>20)~(x1,¥1,2y) W xy+2y,—32z) = x; +2y,-3z,.

. 2 2 2 2 2 2
28. (xp, ¥ 20)~(x1, ¥, 2y) W xy Ty tzp = x] +y] +z].

30. (xg, s 2)~(x1, ¥1> 2) I ‘yozo‘ = |y121|~
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Exercises 31-34. Determine whether or not the given relation is an equivalence relation on M, , 5.

31, (2D |ab|ir, =7,
cd|l |¢d

32. (2 0-|@ | it ube = abe
cd |ed

33, (4D |@b| it qd—be = ad-be
cd] |¢d

34, (24D |@D| it 4d_be = ad—be
cd|l |¢d

Exercises 35-41. Show that the given relation is an equivalence relation on F(Z) = {f: Z—> Z}
(the set of functions from Z to Z).

35. f~gif f(1) = g(1). 36. f~gif|fin)| = |g(n)| forevery n e Z.
37. f~gif |[f(n) = |g(n)| forevery n € Z. 38. f~gif 2|[f(n)+g(n)] forevery n € Z.
39. f~giff(n+m) = g(n+m) forevery n,m € Z.
40. f~gif 3|(2f(n) +g(n)) forevery n € Z.
41. f~gif 3|[2(gof)(n) +f(n)] forevery n € Z.
Exercises 42-47. Describe the set of equivalence classes for the equivalence relation of:
42. Exercise 1 43. Exercise 3 44. Exercise 5
45. Exercise 9 46. Exercise 15 47. Exercise 17

Exercises 48-52. Show that the given collection S of subsets of the set X is a partition of X.
48. X =R,S = {(—0,0)U {0} U (0,0)}.
49. X=2,S={{3nneZtu{3n+tlineZiu{3n+t2ineZ}}.

50 X =7 xZ ,8=1{S,} _ whereS,, = {(a, b)|gcd(a, b) = n} .
ne
51 X = Rx R, S = (S}, Where S, = {(x,»)|y=x+b}.

52. X =RxR,S= {(x,y)|x2+y2=”2}rem-

53 X = RxM, §={S,}, _y where S, = {(x,p)|x?+y?=r2}.

R

Exercises 53-54. (Congruences) Let n € Z* . Use the Principle of Mathematical Induction to show
that:

54. If a,=a; modn for 1 <i<m,thena,+a,+---+a

55. Ifa,=a; mod n for 1 <i<m,then a,a,...a, =a,a,---a, mod n.
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56. Show that the relation A~B if Card(4) = Card(B) is an equivalence relation on P(X) for

any set X. Suggestion: Consider Theorem 1.1, page 5.
PROVE OR GIVE A COUNTEREXAMPLE

57. The union of any two equivalence relations on any given nonempty set X is again an equiv-
alence relation on X.

58. The intersection of any two equivalence relations on any given nonempty set X is again an
equivalence relation on X.

59. Fora,b,n,me Z",letS, and S,, denote the set of equivalence classes associated with the
equivalence relations a~b if n|(a —b) and a~b if m|(a—b), respectively. If n < m , then
S, cS,.

60. If n> 2, then every integer is congruent modulo # to exactly one of the integers 0 <m < n.

61. IfCcX,A~B ifAn C = B C isan equivalence relation on P(X).

62. There exists an equivalence relation on the set {1, 2, 3,4, 5} for which each equivalence

class contains an even number of elements.
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Defloration - a professional takes Mirella's virginity

Part 2
Groups

§1. DEFINITIONS AND EXAMPLES

The following properties reside in the familiar set Z of integers:

Property Example:
Closure a+tbeZ Va,beZ 5+7eZ
Associative |1 g+ (b+c) = (a+b)+c Va,beZ |5+(4+1) = (5+4)+1
Identity 2.a+0=aVaecZ 4+0 =4
Inverse 3.at(-a) = 0VaeZ 54(-5)=0

A binary operator on a set X
is a function that assigns to
any two elements in X an ele-
ment in X. Since the function
value resides back in X, one
says that the operator is
closed.

Evariste Galois defined
the concept of a group in
1831 at the age of 20. He
was killed in a duel one
year later, while attempt-
ing to defend the honor of
a prostitute.

We show, in the next section,
that both the identity element
e and the inverse element a’
of Axioms 2 and 3 are, in fact,
both unique and “ambidex-
trous:”

axe = e*xa = a

axa = a'xa = e

A generalization of the above properties bring us to the definition
of a group — an abstract structure upon which rests a rich theory,
with numerous applications throughout mathematics, the sciences,
architecture, music, the visual arts, and elsewhere:

DEFINITION2.1 A group (G, *),or simply G, is a nonempty
GRoUP set G together with a binary operator, * (see
margin) such that:

Associative Axiom: 1. ax(bxc) = (a*b)*c forevery a,b,c € G.
Identity Axiom: 2. There exists an element in G, which we will
label e, such that axe = a foreverya € G.
Inverse Axiom: 3. For every a € G there exists an element,

a € G such that axa’ = e.

In particular, (Z, +) is a group; with “+, 0, and —a ” playing the role of
“x e, and a' ” in the above definition.

Is the set of integers under multiplication a group? No:
While “regular” multiplications is an associative
binary operator on Z, with 1 as identity, no integer
other than +1 has a multiplicative inverse in Z.

Yes, there is a number whose prod-
uct with 2 is 1:
1 1
2.5 = 1,but2ez.

Bottom line: The set of integers under multiplication is not a group.
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(a), (b), and (d) are groups.
(c) is not a group.

You are invited to for-
mally establish this result
in Exercise 51.

CHECK YOUR UNDERSTANDING 2.1

Determine if the given set is a group under the given operation. If
not, specify which of the axioms of Definition 2.1 do not hold.

(a) The set Q of rational numbers under addition.
(b)The set R of real numbers under addition.

(c)The set R of real numbers under multiplication.

(d)The set R* = {r e R|r>0} of positive real numbers under
multiplication.

We now move Theorem 1.16 of page 35 up a notch:

THEOREM 2.1 For given n € Z*, let [Z], denote the set of

equivalence classes associated with the equiva-
lence relation a~b if n|(a—>b) ;1i.e:

[Z], = {[0],, [1], ... [n—1],}
Then: ([Z],, (+1) with [a],(+1[b], = [a+b],
is a group

PROOF: We already know that [+] is a well defined associative oper-
ator. The identity and inverse axioms of Definition 2.1 are also met:

Identity: For any [a], € [Z],: [a],[+1[0], = [a+ 0], = [4a],.
Inverses: For any [a], € [Z],: [a],[+][-a], = [a—a], = [0],

Molding Theorem 2.1 into a more compact form by replacing each

equivalent class [a], with the smallest nonnegative integer in that class,
we come to:

THEOREM 2.2 Forgivenn e Z*,letZ, = {0,1,2,...,n—1},
andleta+b = r,wherea+b = dn—+r.
Then (Z,, +) is a group.

The above sum is called addition modulo 7.
Note that a4 0 = a for every a € Z,, and that

foranyae Z,:a+(n-a) =0

For example, if n = 5 then Z; = {0, 1,2,3,4}, and:
12 = 3, 4+544\= 3, and 32 =0
3=(4+4)mod>5




Answer: See page A-7.

Abelian groups are also said
to be commutative groups.
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CHECK YOUR UNDERSTANDING 2.2

Complete the following (self-explanatory) group table for (Z,, +.) .

+]1 0] 1123
3 < [since 07,3 = 3]

0
1 2
2 = [sinee 24,3 = 1]

0 | |2< [smeest=2]
A

since 14,1 = 2 | [since 3+,1 = 0|

Groups containing infinitely many elements, like (Z, +) and (R, +),
are said to be infinite groups. Those containing finite may elements,
like (Z,, + ) which contains n elements, are said to be finite groups.

DEFINITION 2.2 Let G be a finite group. The number of ele-
ORDER OF A GRoup ments in G is called the order of G, and is

denoted by |G .

GROUP TABLES AND BEYOND

The group Z, , with table depicted in Figure 2.1(a), has order 4. Another
group of order 4, the so-called Klein 4-group, appears in Figure 2.1(b).

.o Hl0 123 . e |la |b |c
Z4 . 4 K- *
0]0 (12| 3 e le |a |b |c
1 {1 (2]3]0 a |a |e |c |b
2123|011 b |b |c |e |a
313 (0]1] 2 c lc |b |ale
(a) (b)
Figure 2.1

Is K really a group? Well, the above table leaves no doubt that the
closure and identity axioms are satisfied (e is the identity element).
Moreover, each element has an inverse, namely itself:
ee = e,aa = e,bb = e, and cc = e. Finally, though a bit tedious,
you can check directly that the associative property holds [for example:
(ab)a = ca = b and a(ba) = ac = b]. You can also see that K is
an abelian group; where:

DEFINITION 2.3 A group (G, *) is abelian if
ABELIAN GROUP ax*b = bxq foreverya,b e G
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Answer: See page A-8.

An alternative proof is
offered in Appendix B,

page B-1.

We will soon show that Z, and K are the only groups of order 4, but
first:

THEOREM 2.3 Every element of a finite group G must
appear once and only once in each row and

each column of its group table.

PROOF: Let G = {e,ay, ay, ...,a, }.By construction, the i" row

of G’s group table is precisely a,e, a;a,, a;a,, .
that every element of G appears exactly one time in that row is a con-

sequence of Exercise 50, which asserts that the function f,: G - G

.»a;a, . The fact

given by f, (g) = a,g is a bijection. As for the columns:

CHECK YOUR UNDERSTANDING 2.3

Complete the proof of Theorem 2.3.

We now show that the two groups in Figure 2.1 represent all groups
of order four. To begin with, we note that any group table featuring the

four elements {e, a, b, c} must “start off” as in T in Figure 2.2, for e
represents the identity element.

x| e b | c
el e b|c
T %«
b| b
cl| ¢
| e bl c x|lelalb|c x|lelalb|c
el e bl c elelal|b]|c el|e bl c
E: ala]e B: ala|b C: ala
b|b b|b b|b
clec cl|ec clec
Figure 2.2

Since no element of a group can occur more than once in any row or
column of the table, the &-box in T can only be inhabited by e, b or ¢,
with each of those possibilities displayed as E, B, and C in Figure 2.2.
Repeatedly reemploying Theorem 2.2, we observe that while E leads to
two possible group tables, both B and C can only be completed in one
way (see Figure 2.3)
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x| el a| b| ¢
el e| a| b| c
P al a| e| c¢| b E]
x| e b| c x| e bl c x|lelalbl|c _ bl b| c| a| e
el e b| c el e b| c elel|al|b g cl c¢| b| el a
E: ¢]¢ ala alale b :%
b|b b|b b|b|c 'g' x|lelalbl|c
clec clec s clc|b . V’\ elelalbd]|c
. . alalel|lc| b E
only option only option bl b lelela 2

clec|blale

x| e bl c x| e b| ¢ e|a c x|lelalb| c

ele bl c el|e b elela elelal|b|c

B: ala alalb e alalb ala|b|c| e B
b|b b|b b|b|c b|lb|c|el|a
clec clec 7 clc)e 7 clclelalbd
only option only option only option
x| e b| c x| elal| b]| c x| elal|l b| ¢ s|lel|lalb|c
el e b| c ele|la|b| c ele|lal b| c elel|lal|b| c
C: ala alalcle b al al c alalc|lel|b C

b|b bl b bl b e blble|c|a

cle c|ec 7 clcel|d v clclblale

only option only option only option

Figure 2.3

At this point we know that there can be at most four groups of order
4, and their corresponding group tables appear in Figure 2.4. The group

tables for Z, and K of Figure 2.1 are also displayed at the bottom Fig-

ure 2.4.

Eli s|lelalb] c B: xlelal|b]| c C. x|elal|b| c E2: «s|lelalbl| c
elel|al|b|c elejalb]|c elel|alb|c elelald] ¢
alalel|lc| b alal|b|lc| e ala|cle|b alalelc| b
blblc|lale blb|c|el|a blble|c|a plolelela
clel|b|ela clcl|lelalb clc|blale clelblale

Z4Z )0 ]1]2]3 K: * |le |a |b |c
oo 1|23 e le la 16 e
111]1213]0 2 la le lc 1b
212 (3]0]1 b lb le le la
313]0(1] 2 e lc b la le

Figure 2.4

While table £, and the Klein group table K are identical, those of the

remaining four tables in Figure 2.4 look different.

But looks can be deceiving:
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This “appearances aside”
concept is formalized in
Section 4.

The composition operator
“©” is defined on page 3.

To show, for example, that Z, and E, only differ superficially, we
begin by reordering the elements in the first row and first column of Z,
in Figure 2.5(a) from “0, 1, 2, 3” to “0, 2, 1, 3” [see Figure 2.5 (b)]. We
then transform Figure 2.5(b) to £, in (c) by replacing the symbols “0,

2, 1, 3” with the symbols “e, a, b, ¢,” respectively, and the operator
symbol “+, ” with “*”,

Ly, H|0|112]3 + [0 2] 1]3 Ei: «|ejalb]|c
010 (|1]2]|3 olof2]1] 3 elelalb]|ec
111721310 2121031 alalel|lc| b
212(3|0]1 1f1]3]2]0 blblc|ale
31301112 33]1]o] 2 clelblela

(a) (b) (©)
Figure 2.5

So, appearances aside, the group structure of £, coincides with that
of Z,. In a similar fashion you can verify that tables B and C of Figure

2.4 only differ from table Z, syntactically.

PERMUTATIONS AND SYMMETRIC GROUPS

For any non-empty set X, let Sy = {f: X = X|f'is a bijection} . We
then have:

THEOREM 2.4 For any non-empty set X, (S, ©) is a group.
PROOF: Turning to Definition 2.1:
Operator. Vf, g € §y: gof € Sy [Theorem 1.2(c), page 7].
Associative. Vf, g, h € Sy : ho(gof) = (hog)of [Exercise 51, page 10].
Identity. Vf e Sy: fol, = Iyof = f, where I: X — X is the iden-

tity function: /y(x) = x forevery x € X.

Inverse. Vf'e Sy: fOfl = Iy [Theorem 1.1(b), page 5].

The elements (functions) in Sy are said to be permutations (on X),

and (Sy, ©) is said to be the symmetric group on X.

IN PARTICULAR:

For X = {1,2,...,n}, (Sy, o) is called the symmetric
group of degree n, and will be denoted by S, .

Let’s get our feet wet by considering the symmetric croup S, the set

of permutations on X = {1, 2, 3}. Since there are n! ways of ordering
n objects (Exercise 31, page 20), the group §; consists of

31 =1-2-3 = 6 elements:
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¢ &y 0 03 Oy 0s
1 -1 12 153 11 153 152
22 253 21 253 2572 2->1
33 31 352 352 351 353

Directly below each ele-
ments of the first row
appears its image under the
permutations. The fact that
3 lies below 1 in a,, for
example, simply indicates
that the permutation o,
maps 1 to3: 1> 3.

Juxtaposition may also be
used to denote the compo-
sition operation in S, . For

example, for 5,7 € S,:
TG represents toc

and o4 = coGoGoG

From Figure 2.6:

o) Oy
I-3 153
21 252
352 351

In a more compact (and more standard) form (see margin), we write:

(123 (123 /123
e_(l 23)’ 0‘1_(23 1)’ OL2‘(3 1 2)

(123 (123 (123
0‘3—(1 3 2)’0‘4‘(3 2 1)9 0‘5—(2 1 3)

Note that o, is the identity function e: ay(1) = 1, 0y(2) = 2, and a,y(3) = 3
The symmetric group S
Figure 2.6

Generalizing the above observation we have:

THEOREM 2.5  The symmetric group S, of degree n contains
n! elements.

EXAMPLE 2.1 Referring to the group S, featured in Figure 2.6,
Determine:

(a) a0, (b) o,a, (©) (oy)"
see margin
SOLUTION: (a) To find a,0a, we first perform o, and then apply a.,
to the resulting function values:
Oy O,

15352 152

2521 =000, =251 = 0Oj

35153 353
(b) Using the standard form we show that o jo0, = a5:

:1; ? zyﬁrstczz( | ;) (1 2 3)
L chenm( i T) = U400 = {1 3 2) %3

1 23
(c) Tor arrive at the inverse of the permutation o, = ( 1 2) )

simply reverse its action:

L1233 23
“2‘(312) ‘(123‘(231)‘0‘1
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Answer:
(1 2 3 4 5)

ToO .
54321

(1 2 3 4 5)
GoT:
4 3 2 51

CHECK YOUR UNDERSTANDING 2.4

With reference to the symmetric group S5, determine toc and too,

where:
123 45 1 23 45
G:( andr=( )
1 523 53 21

Adhering to convention, we will start using ab (rather than axb) to
denote the binary operation in a generic group. Under this notation, the
symbol a! (rather than a') is used to denote the inverse of a, while e
continues to represent the identity element. In a generic abelian group,
however, the symbol “+” is typically used to represent the binary oper-
ator, with 0 denoting the identity element, and —a denoting the inverse
of a. To summarize:

In Summery:

Original Form Product Form Sum Form
(Reserved only for abelian groups)
l. axbe G Ya,be G |1. abe G l.atbeG

™

3. axe=a

’
4, axa = e

Referring to the product form,
do not express a in the form

(there is no “division” in
t(/e group).
From its very definition we
find that the following expo-
nentrules hold in any group G:
For anyn,m e Z:
a*am = an+m
(an)m = gnhm

In the sum form, it is accept-

able utilize the notation a — 5 .

By definition:
a-b=a+(-b).

ax(bxc) = (axb)xc

For any positive integer #:

2. a(bc) = (ab)c 2.a+t(b+c)=(a+b)+c

3. ae = a 3.a+0=a

4. aal = ¢

4. a+(—a) =0

SOME ADDITIONAL NOTATION:
For any positive integer #:

a" represents aaa---a na representsa +a+a+ ... +a

Anasd g nas a4
and @™ = (a’')" and (—n)a = n(-a)
We also define a? to be e. We also define Oa to be 0.

Utilizing the above notation:

DEFINITION 2.4
CycLic GROUP

(Product form) A group G is cyclic if there
exists @ € G such that G = {an|n eZ}.

(Sum form) An abelian group G is cyclic if
there exists @ € G suchthat G = {na|n € Z}.

In either case we say that the element a is a gen-
erator of G, and write G = (a).

GENERATOR

EXAMPLE 2.2 Show that:

(a) Z4 is cyclic (b) S5 is not cyclic.
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SOLUTION: (a) Clearly Z, = (1) .In fact, as we now show, 5 is also a
generator of Z; (don’t forget that we are summing modulo 6):

Note that:
15)=5 | 5=0-5+5
2(5) = 5+,5 =4 10=1-6+4
3(5) = 5+45+c5 =3 15=2-6+3
4(5) = 5+5+45+c5 = 2 20=3-6+2
5(5) = S5+g5+5+45+5 = 1 25 =4-6+1
6(5) = 5+65+65+65+65+56 =0 30 =5-6+0

Since every element of Z, = {0,1,2,3,4,5} is a multiple of §, we
conclude that Z, = (5).

(b) We could use a brute-force method to verify, directly, that no element
of §; generates all of S5 . Instead, we appeal to the following theorem

[and Example 2.2(b)] to draw the desired conclusion.
THEOREM 2.6 Every cyclic group is abelian.

PROOF: Let G = (a) = {a"|n € Z} .Forany two elements a* and a’
in G (not necessarily distinct) we have:

aSaf — aS+t — at+S = atas

CHECK YOUR UNDERSTANDING 2.5

(a) Show that 1 and 5 are the only generators of Z, .

(b) Show that S, is cyclic.

Answer: See page A-8. (c) Show that S, is not cyclic for any n> 2.

At this point we have two groups of order 6 at our disposal:
(Zg, %) and S,

Do these groups differ only superficially, or are they
really different in some algebraic sense? They do differ
algebraically in that one is cyclic while the other is not,
and also in that one is abelian while the other is not.
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EXERCISES

Exercise 1-11. Determine if the given set is a group under the given operator. If not, specify why
not. If it is, indicate whether or not the group is abelian, and whether or not it is cyclic. If it is
cyclic, find a generator for the group.

l.
2.
3.

8.
9.

10. The set {a +bﬁ

. The set Q" of positive rational numbers, with axb =

The set {2n|n € Z} of even integers under addition.
The set {2n+ 1|n € Z} of odd integers under addition.

The set of integers Z, with axb = ¢, where c is the smaller of the two integers a and b (the
common value if a = b).

ab
=

2
. The set {x € R|x =0}, with axh = %.

The set {0, 2, 4, 6, 8} under the operation of addition modulo 10.

The set {0, 1, 2, 3} under multiplication modulo 4. (For example: 2%3 = 2, since
2:3=6=1-4+2;and3%x3 = 1,since3-3 =9 =2-4+1.)

The set {0, 1, 2, 3, 4} under multiplication modulo 5. (See Exercise 7.)
The set {a+ b./2

a, b € Z} under addition.

a, b € Q with not both a and b equal to 0} under the usual multiplica-
tion of real numbers.

11. Theset ZxZ = {(a,b)|a,b e Z},with (a,b)+ (c,d) = (a+c,b+d).

Exercise 12-23. Referring to the group S :

123 123 123 123 123 123
62(1 2 3), %:(2 3 1), 0‘22(3 1 2),013:(1 3 2), ‘*4:(3 2 1), Ots:(z 1 3)

determine:
12. a,a, and a,0, 13. ocg and 0‘; 14. agl forneZ".
15. oc'f forne Z*. 16. ocgz and oc;3 17. oc;" forne Z*.
18. oc;n forne Z*. 19. ocg and oag 20. oag forne Z".

21. oc; forn e Z*. 22. 062 and 063 23, ocgn forne Z*.



2.1 Definitions and Examples 51

Exercise 24-33. For

a=(123456j B=(123456j y=(123456j
234561 214365 654321
Determine:
24. af 25. Ba 26. Py 27. yB 28. aPy
29. o’ 30. o100 31. alol 32. ploo 33. plol

34.

35.

36.

37.

38.

39.

40.

41.

42.

43.

Let S = {1}.Show that (S, *) with 1%1 = 1 isa group. Is the group abelian? Cyclic?

Is (M, ,,+) with {a b} +|abl — fatabtb , group? If so, is it abelian? Cyclic?
ctcd+d

Is (M, 5, *) with {a b} * [a b] = [aa b[f] a group? If so, is it abelian? Cyclic?
cc dd

Is (M, ,, *) with {a b} x|@ D] = |laatbe al_) * bfl a group? If so, is it abelian? Cyclic?
ca+dc cb+dd

Let S = {a, b, ¢} along with the binary operator: , s (S, *) a group?

Let S = {0, 1,2} along with the binary operator: o1 Is (S, *) a group?

Let S = {(x,y)|x,y € R} . Show that (S, *) with (x,y)*(X,y) = (x+x—-1,y+y+1)is
a group. Is the group abelian? Cyclic?

For n>0, let P, denote the set of polynomials of degree less than or equal to n. Show that

n n n
z al.xiJ *[ Z bl.le = z (a;+b)x' is a group. Is the group abelian?
i=0 i=0 i=0

(P, +) with

Let S = {(x,y)|x,y € R} . Show that (S, *) with (x,y)*(X,y) = (x+x+2,y+p) i1sa
group. Is the group abelian?

Let O denote the set of rational numbers. Show that (Q, *) with axb = a+ b +ab isnota
group.
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44,

45.

46.

47.
48.

49.

50.

51.

52.
53.

54.

Part 2 Groups

Let Q = {a e Qla#—1}.Show that (Q, *) with axb = a+ b+ ab is a group. Is the
group abelian?

Let G = {e,a,,a,,...,a,_;}.Show that the function f, : G — G givenby f, (g) = ga; is
a bijection

(a) Give an example of a group G in which the exponent law (ab)” = a”b" does not hold in
agroup G, forne Z"
(b) Prove that the exponential law (ab)" = a"b" does hold if the group G is abelian.

(c) Express the property (ab)” = ab" in sum-notation form.
Let G be a group and a, b, c € G. Show thatif ha = ca,then b = c.
Let a be an element in a group G. Show that if |{a)| = 2, then ab = ba forever b € G.

Let p and ¢ be distinct primes numbers. Find the number of generators of Zyy-

(a) Show that the group Z, of Theorem 2.1 is cyclic for any n € Z*.

(b) Prove that m € Z, is a generator of Z, if and only if m and n are relatively prime.
Suggestion: Consider Theorem 1.7, page 23.

Let F(R) denote the set of all real-valued functions. For fand g in F/(*R), let f+ g be given
by (f+g)(x) = f(x)+ g(x). Show that (F(R), +) is a group. Is the group abelian?

Prove Theorem 2.2.
Let Gand H be groups. Let Gx H = {(g, h)|g € G, h € H} with:
(g h)*(g, h) = (g& hh)
(a) Show that (G x H, *) is a group.
(b) Prove that (G x H, *) is abelian if and only both G and H are abelian.

Let X be a set and let P(X) be the set of all subsets of X. Is (P(X), *) a group if:
(a) A*xB = AUB (b) A*xB = AN B
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PROVE OR GIVE A COUNTEREXAMPLE

55.

56.

57.

58.

59.

60.

61.

62.

The set R of real numbers under multiplication is a group
The set R* = {r € R|r>0} of positive real numbers under multiplication.
Let Gbeagroupand a,b,c € G.If b+ c, then ba#ca.

The group S; contains four elements o such that a? = e and three elements  such that
B3 =e.

The group (S, ©) is abelian.

Let Gbeagroupand a,b € G.If ab = b, then ac = c forevery c € G.

Let Gbeagroupand a,b € G.If ab = ba,then ac = ca forevery c € G.

The cyclic group (Z, +) has exactly two distinct generators.
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For aesthetic reasons, a set of
axioms should be indepen-
dent, in thatno axiom or part of
an axiom is a consequence of
the rest. One should not, for
example, replace Axiom 2 in
Definition 2.1, page 41:

Jdee Goae=aVae G
with:
dee Goae=ea = aVae G

In sum form:
at(-a) =0=>(-a)ta =0
at0=a=0+a =a

§2. ELEMENTARY PROPERTIES OF GROUPS

We begin by recalling the group axioms, featuring both the product
and sum notations:

Product Form Sum Form
(Typically reserved for abelian groups)
Closure abe G atbeG
Axiom 1. a(bc) = (ab)c|l. a+(b+tc)=(a+b)+c
Identity Axiom 2. ae = a 2.a+0=a
Inverse Axiom 3. aa! = e 3.at(-a)=0

Actually, as we show below, both the identity element of Axiom 2 and
the inverse elements of Axiom 3 work on both sides; but first:

LEMMA 2.1 et G be a group. If a € G is such that a2 = a,
then a = e.

PROOF:
aa =a=>(aa)a™! = aa™! ?a(aa‘l) —epae=eza=e

Axiom 1 Axiom 3 Axiom 2

THEOREM 2.7 Let G be a group. Fora € G:
@aa!=e=ala=e
(b)ae =a=ea=a

PROOF:

@) (ala)(a la) T [a Y (aa1)]a T (ale)a T ala
Axiom 1 Axiom 3 Axiom 2
We now know that (¢ 'a)(a"la) = ala.
Applying Lemma 2. we then have: ala = e.
(b) ea T (aa Ya T a(a la) T ae = a

Axiom 3 Axiom 1 part (a)

—||

>

xiom 3

Axioms 2 and 3 stipulate the existence of an identity and of inverses
in a group. Are they necessarily unique? Yes:

THEOREM 2.8 (a) There is but one identity in a group G.

(b) Every element in G has a unique inverse.



Answer: See page A-9.

Sum form:
atb=c+b=a=c
bta=bt+tc=a=c

Just in case you are ask-
ing yourself:
What if b is 0 and
has no inverse?
Tisk, every element in a
group has an inverse.

Answer: See page A-9.
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PROOF: (a) We assume that e and e are identities, and go on to show
that e = e:

Since e is an identity|
v

= ¢ée = e

EN

| Since e is an identit

<

(b) We assume that ¢! and a~! are inverses of @ € G, and show that
al=al:
Since aa~! and aa~! are both equal to the identity they must be
equal to each other:

aa! = aa!

Multiply both sides by a': a~l(aa™!) = al(aa!)

Associativity: (g la)a! = (ala)a!
eal = ea’!
a—l — C_l_l

CHECK YOUR UNDERSTANDING 2.6

Show that if a, b, ¢ are elements of a group such that abc = e, then

bca = e.

Both the left and right cancellation laws hold in groups:

THEOREM 2.9 Inany group G:
(@)Ifab = cb,thena = c.
(b)If ba = bc,thena = ¢

PROOF:
(a) ab = cb (b) ba = bc

(ab)b~! = (¢ch)b! b=l (ba) = b~ 1(bc)
a(bb™l) = ¢(bb™ 1) (b 'b)a = (b71b)c

ae = ce ea = ec

a =< a = c¢

CHECK YOUR UNDERSTANDING 2.7

PROVE OR GIVE A COUNTEREXAMPLE:
(a) In any group G, if ab = bc thena = c.
(b) In any abelian group G,ifa+b = b+c thena = c.
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Answer: See page A-9.

This is another shoe-sock

theorem (see page 8).

In the real number system, do linear equations ax = b have unique
solutions for every a, b € R ? No: the equation Ox = 5 has no solu-
tion, while the equation Ox = 0 has infinitely many solutions. This
observation assures us once more that the reals is not a group under
multiplication, since:

THEOREM 2.10 Let G be a group. Forany a, b € G, the linear

equations ax = b and ya = b have unique
solutions in G.

PROOF: Existence:

(a) ax = b (b) ya =b
al(ax) = a1b (ya)a_1 = bal
(ala)x = a1b y(aa™ 1) = ba”l

ex = alb ye = ba™l
x=alb y = ba!

Uniqueness: We assume (as usual) that there are two solutions, and
then proceed to show that they are equal:

Theorem 2.9(b)
(@ax,=bandax, =b=ax; = ax,=>x; = X,

Theorem 2.9(a)
(b)yja=bandy,a=b=ya = y,a=y, =y,

CHECK YOUR UNDERSTANDING 2.8

Since the set of real numbers under addition is a group, 2.9 applies.

Show, directly, that any linear equation in (R, +) has a unique solu-
tion.

The inverse of a product is the product of the inverses, but in
reverse order:

THEOREM 2.11 Forevery a, b in a group G:
(ab)! = b lg!

PROOF: To show that »~1a~! is the inverse of ab is to show that
(b-'a1)(ab) = e.No problem:

(b~ 'a Y (ab) = bYala)b = bleb = bbb = ¢



Answer: See page A-9.
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CHECK YOUR UNDERSTANDING 2.9

Give an example of a group G for which (ab)™! = a~'b~! does not

hold for every a, b € G.

The axiom of a group G assures us that an expression such as abc,
sans parentheses, is unambiguous [since (ab)c and a(bc) yield the
same result]. It is plausible to expect that this nicety extends to any
product a,a,...a, of elements of G. Plausible, to be sure; but more

importantly, True:

THEOREM 2.12  1et q,a,...a, € G. The product expression

a,a,-..a, is unambiguous in that its value is

independent of the order in which adjacent
factors are multiplied.

PROOF: [By induction (page 13)]:

I. The claim holds for n = 3 (the axiom).

II. Assume the claim holds for n = &k, with k> 3.

III. (Now for the fun part) We show the claim holds forn = k+1:

Let x denote the product a,a,...a; ,, under a certain pair-

ing of its elements, and y the product under another pairing
of'its elements. We are to show that x = y. Let’s do it:

Assume that one starts the two multiplication processes with
the following pairing for x and y:

A B C D
x = (ayay...a;)(a;, ...a; ;) and y = (a1a2...aj)(aj+1...ak+l)

Case 1. i = j: By the induction hypothesis (II), no matter
how the products in 4 and C are performed, 4 will equal C.
The same can be said concerning B and D. Consequently
x=AB =CD = y.

Case 2. Assume, without loss of generality, that i < . Break-
ing the “longer” product B into two pieces M and D we have:
A M D
X = (alaz...al-)(aH1...aj)(aj+1...ak+1)

By the induction hypothesis, 4, M, and D are well defined
(independent of the pairing of its elements in their products).
Bringing us to:

I: Claim holds for n = 3

x=AB=A(MD)i(AM)D=CD=y
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Answer: See page A-9.

In the additive notation,
am = e  ftranslates to
na = 0; which is to say:
atat..+a=0
(sum of n a's)

CHECK YOUR UNDERSTANDING 2.10

Use the Principle of Mathematical Induction, to show that for any
aa,.-.a, €G:

(a,...aya))' = aylaz!...a;!

THEOREM 2.13 For any given element a of a finite group G:

a™ = e forsome m e Z".

PROOF: Let G be of order n. Surely not all of the n+ 1 elements

a,a? a3, ...,a" "1 can be distinct. Choose 1 <s<¢<n+ 1 such that

a = a%.Since ala™ = a'=% = e:

am™ =e,form = t—s.

DEFINITION 2.5 Let G be a group, and let @ € G be such that

ORDER OF AN a™ = e for m € Z*. The smallest such m is
ELEMENT OF G called the order of a and is denoted by

o(a). If no such m exists, then a is said to
have infinite order.

EXAMPLE 2.3 (a) Determine the order of the element 4 in the
group (Zg, +¢) .

(b) Determine the order of the element
(1 2 3 4 D
G p—
3241
in the symmetric group S .
SOLUTION: (a) Since:

1(4) =4

2(4) = 4+,4 =2

3(4) = 4+4d4+4 = 2+,4 =0

The element 4 has order 3 in Z;.

(b) Since:
1 2345
$£3 2 415
o> 142135 ¢
o’ 12345
The element ¢ = (1 i i ‘11 DhasorderSinSS.




Answer: (a)4  (b) 6
(c) See page A-10.
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CHECK YOUR UNDERSTANDING 2.11

1 23 4

(a) Determine the order of the element ¢ = (
2 3 41

(b) Determine the order of the element 4 in Z,, .

n

ged(a, n)
See Definition 1.8, page 22

(c) Let a € Z, . Prove that o(m) =

)inS4.

Note: There is no “subtraction” in a group (G, +) . For
convenience, however, for given a, b € G, we define
the symbol a — b as follows:
a-b =a+(-b)
(add the additive inverse of b fo a)
There is no “division” in a group (G, -) . In this setting,

however, one does not ever substitute the symbol % for

ab~!. Why not? Convention.
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EXERCISES

9.
10

11.

12.

13.

14.

15

. Let G be a group and a, b, c € G. Solve for x, if:

(@) axal = e (b) axa™! = a (c) axb = ¢ (d) ba'xab™! = ba

Let G be a group. Prove that (a7 !)"! = a foreverya € G.

. Prove that for any element @ in a group G the functions f,: G — G given by f_ (b) = ab and

the function g,: G — G given by g_(b) = ba are bijections.

Let a be an element of a group G. Show that G = {ab|b € G}

. Let Gbe a group and let @ € G . Show that if there exists one element x € G for which ax = x,

thena = e.

Let a be an element of a group G for which there exists b € G such that ab = b. Prove that

a = e.

Prove that a group G is abelian if and only if (ab)™! = a~ 15! foreverya,b e G.

. Let G be group for which a~! = a for every a € G. Prove that G is abelian.

Let G be group for which (ab)? = a?b? for every a, b € G. Prove that G is abelian.

. Let G be a finite group consisting of an even number of elements. Show that there exists a € G,

a# e, such that a2 = e.

Let G be a group. Show that if, for any a, b € G, there exist three consecutive integers i such
that (ab)! = a'b’ then G is abelian.

Let *be an associative operator on a set S. Assume that for any a, b € S there exists ¢ € S such

that axc = b, and an element d € S such that dxa = b. Show that (S, %) is a group.

Let Gbeagroup and a € G . Define a new operation * on Gby bxc = ba lc forallb,c e G.
show that (G, *) is a group.

Let G be a group and a, b € G . Use the Principle of Mathematical Induction to show that for

any positive integer n: (a~'ba)" = a'b"a.

. Let a and b be elements of a group G. Show that if ab has finite order n, then ba also has

order n.
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16. Let G be a cyclic group of order n. Show that if m is a positive integer, then G has an element
of order m if and only if m divides n.

17. Let G be a group. Show that for every element a € G and forany n € Z: a™” = (a !)".

18. Let G be a finite group, and a, b € G. Prove that the elements a, a~! and bab~! have the
same order.

19. List the order of each element in the Symmetric group S; of Figure 2.6, page 47.

20. Let a € G be of order n. Prove that a* = a! if and only if n divides s — .

21. Prove that if a®> = e for every element a in a group G, then G is abelian.

22. Let * be an associative operator on a finite set S. Show that if both the left and right cancel-

lation laws of Theorem 2.8 hold under *, then (S, %) is a group.

PROVE OR GIVE A COUNTEREXAMPLE

23. If a, b, ¢ are elements of a group such that abc = e, then cha = e.
24. In any group G there exists exactly one element a such that a? = a.
25. In any group G (ab)2 = b2a2.

26. Let G be a group. If abc = bac then ab = ba.

27. Let G be a group. If abcd = bacd then ab = ba.

28. Let G be a group. If (abc)™! = alblc! thena = c.
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§3. SUBGROUPS

DEFINITION 2.6 A subgroup of a group G is a nonempty
SUBGROUP subset H of G which is itself a group under

the imposed binary operation of G.

As it turns out, apart from closure, to determine whether or not a non-
GROUP AXIOMS empty subset of a group is a subgroup you need but challenge Axiom3:
Closure: abe G

() = (el THEOREM 2.14 A nonempty subset S of a group G is a subgroup

Axiom 1. i -
Axiom 2. ae = a of G if and only if:
Axiom 3. aa’! = e (1) S is closed with respect to the operation in G.

(ii) s € S implies that s~ € S.

PROOF: If § is a subgroup, then (i) and (i1) must certainly be satisfied.
Conversely, if (i) and (ii) hold in S, then Axioms 1 and 2 also hold:
Axiom 1: Since a(bc) = (ab)c holds for every a,b,c e G,
that associative property must surely hold for every
a,b,ceS.
Axiom 2: Since ae = a for every a € G, then surely se = s

for every s € S. It remains to be shown that e € S.
Lets do it:

Choose any s € S. By (ii): s 1 € §.
By(i): ss! = eeS.

When challenging if S < G is a subgroup, we suggest that you first
determine if it contains the identity element. For if not, then S is not a
subgroup, period. If it does, then S # ¢ and you can then proceed to
challenge (i) and (ii) of Theorem 2.14.

EXAMPLE 2.4 Show that for any fixed n € Z the subset
nZ = {nm|\m e 2}
is a subgroup of (Z, +).

For example:
5Z=1{..,-10,-5,0,5,10,...}

SOLUTION: Since 0 = n0 e nZ, nZ+ 3.

(1) nZ is closed under addition:
nm;+nm, = n(m, +m,) e nZ

We remind you that, under (11) For any nm € nZ:

addition, —a rather than —(nm) = n(-m) € nZ
a' is used to denote the
inverse of a. Conclusion: nZ is a subgroup of Z (Theorem 2.14).
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CHECK YOUR UNDERSTANDING 2.12

The previous example assures us that 37 is a subgroup of (Z, +) . As

A : A-10. e .
nswer: See page A-10 such, it is itself a group. Show that 67 is a subgroup 3Z.

You are invited to show in the exercises that the following result holds
for any collection of subgroups of a given group:

THEOREM 2.15 If H and K are subgroups of a group G, then
H N K is also a subgroup of G.

PROOF: Since H and K are subgroups, each contains the identity ele-
ment. It follows that e € H N K and that therefore HN K+ . We
now verify that conditions (i) and (ii) of Theorem 2.13 are satisfied:

(1) (Closure) If a, b €e HN K ,then a,b € H and a, b € K. Since H

and K are subgroups, ab e H and ab € K. It follows that
abe HNK.

(i1) (Inverses) If a e HN K, then a € H and a € K. Since H and K

are subgroups, al'eH and a'eK. -consequently,
ale HNK.

CHECK YOUR UNDERSTANDING 2.13

Let H and K be subgroups of a G for which H " K = {e}. Prove:
Answer: See page A-10. hlkl = h2k2 = hl = h2 and kl = k2 ,

We recall the definition of a cyclic group appearing on page 48:

A group G is cyclic if there exists
a € G suchthat G = {a"‘n e’Z}.

DEFINITION 2.7 Let G be a group, and a € G. The cyclic
group (a) = {a"|n e Z} is called the
cyclic subgroup of G generated by a.

(In sum form: (a) = {na|n € Z})

CHECK YOUR UNDERSTANDING 2.14

Answer: (3) = Z;
(4) = {0,4} For G = Zg, determine (3) and (4) . (Use sum notation.)
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Answer: See page A-11.

In the event that G is
abelian, the elements of
(A) can be expressed

in a non-repetition form,
as with:

ab?c3a3c?a = a’b%c!

THEOREM 2.16 Every subgroup of a cyclic group is cyclic.

PROOF: Let H be a subgroup of G = (a).Ifa = e,then H = {e},
which 1 s cyclic. If a # e then let m be the smallest positive integer
such that a™ € H. We show H = (a™) by showing that every
a" € H is a power of a™ :

Employing the Division Algorithm of page 21, we chose

integers ¢ and r, with 0 <r<m, such that: n = mqg+r.
And so we have:

a = gt = (am4a”  (*) or: a” = (a™)9a" (**)
Since a” and a™ are both in H, and since H is a group:
(a™)™a" € H. Consequently, from (**): a” € H.

Since 0 <r < m and since m is the smallest positive integer
such that a” € H: r = 0. Consequently, from (*):

a" = (a™)a% = (a™)9 — a power of a”.

CHECK YOUR UNDERSTANDING 2.15

Let G = (a) with |G| = n.Let b € G with b = a’. Prove that:

_ n
0b) = gcd(n, s)

SUBGROUPS GENERATED BY SUBSETS OF A GROUP

We have seen that any element @ in a group G can be used to gener-
ate a subgroup of G — namely the cyclic group generated by a:

(ay = {a"|n e Z}

Generalizing the above concept, we start off with a nonempty sub-
set 4 of G, and consider the set (A4) of all elements of G consisting
of finite products of elements of (A), wherein repetitions of its ele-
ments may occur. For example, if 4 = {a, b, ¢}, then:

a’,c2b3, aa! = e,and ab?c3a3c?a are allin (A4).
Note that, by its very definition, (A4) is a subgroup of G:
(A) is certainly not empty and closed under multiplication.
Moreover, the inverse of any element in (A4) is again of the
form which positions it in (A4) . For example:
(ab2c3a3c?a)™! = alc2a3c3b2a!
(see CYU 2.10, page 58)



Note that commutativity
enables us to gather all of
the 2's and 3's together.

Answer: See page A-11.

Joseph-Louis Lagrange
(1736-1813).

We will eventually show that
the converse of Lagrange’s
Theorem holds for abelian
groups. It does not, however,
hold in general (Exercise 28,
page 102).
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Bringing us to:

DEFINITION 2.8 Let 4 be a nonempty subset of a group G.
GENERATED The subgroup of G generated by A,

SUBGROUP denoted by (A4), consisting of all finite
products of elements of (A4)

In particular, here is the subgroup of (Z, +) generated by {2, 12} :
(2,12) = {2"12"|n,m € Z} 7 {2"3M|n,m e Z}

since 12 = 22.3

THEOREM 2.17 Let 4 be a nonempty subset of a group G.
The following are equivalent:

@H § =<4
(i1) S is the intersection of all subgroups
of G containing A4.

PROOF: (i) = (ii): Since subgroups are closed under multiplication,
any subgroup of G that contains A4, including the subgroup
(A) has to contain (A) . It follows that (A4) is the intersec-
tion of all subgroups of G that contain 4.

(i) = (i) Your turn:

CHECK YOUR UNDERSTANDING 2.16

Verify that (ii) = (i) .

Here is a particularly important result:

THEOREM 2.18
(Lagrange)

If G is a finite group and H is a subgroup of
G, then the order of H divides the order of G:

e

(see Definition 2.2, page 43)

To illustrate: If a group G contains 35 elements, it cannot
contain a subgroup of 8 elements, as 8 does not divide 35.

A proof of Lagrange’s Theorem is offered at the end of the section. At
this point, we turn to a few of its consequences, beginning with:

THEOREM 2.19 Any group G of prime order is cyclic.

PROOF: Let |G| = p, where p is prime. Since p >2, we can choose
an element a € G distinct from e. By Lagrange’s theorem, the order of
the cyclic group (a) = {a"|n € Z} must divide p. But only 1 and p
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The symmetric group S,

is an example of a non-
abelian group of order 6.

We remind you that o(a)
denotes the order of a
(Definition 2.5, page 58).

Answer: S,

See Definition 1.11 page 29.

See Definition 1.13 page 31.

divide p, and since (@) contains more than one element, it must con-
tain p elements, and is therefore all of G.

THEOREM 2.20 Every group of order less than 6 is abelian.

PROOF: We know that Z, and the Klein group are the only groups of

order 4, and that each is abelian. The trivial group {e} of order 1 is
clearly abelian. Any group or order 2 or 3, being of prime order, must
be cyclic (Theorem 2.19), and therefore abelian (Theorem 2.6, page 49).

THEOREM 2.21 For any element a in a finite group G:
o(a)| |G|
PROOF: If o(a) = m, then {(a) = {a,a? ...,am L a"=e} is a

subgroup of G consisting of m elements. Consequently: o(a)‘ |G| .

THEOREM 2.22 If G is a finite group of order n, then
a" = e foreverya € G.
(Sum notation: na = 0 for every a € G)

PROOF: Let a € G, with o(a) = m. Since m divides n (Lagrange’s
Theorem), n = tm for some ¢t € Z*. Thus:

a = atm = (am)t: et: e

CHECK YOUR UNDERSTANDING 2.17

Determine the subgroup of the symmetric group S5 :

123 123 123
e=(1 2 3)= 0t1=(2 3 1)» O622(3 1 2)

123 123 123
a3=(1 3 2)=0t4=(3 2 1)7 OLs=(2 1 3)

generated by the set {a,, a5} .

PROOF OF LAGRANGE’S THEOREM

We begin by recalling some material from Chapter 1:
An equivalence relation ~ on a set X is a relation which is
Reflexive: x~x for every x € X,

Symmetric: If x~y, then y~x,
Transitive: If x~y and y~z ,then x~z .
For x, € X the equivalence class of x, is the set:

[xo] = {x € X|x~x,}.
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LEMMA 2.2 Let H be a subgroup of a group G The relation a~b if
ab~! € H is an equivalence relation on G Moreover,

the equivalence class containing a € G is the set:
[a] = {ha|h e H}

PROOF:
~is reflexive: x~x since xx ! = e € H.

~ is symmetric:.
a~b = ab! = h forsome h e H —

= (ab)! = K

Theorem 2.11, page 56: :(b*l)*lafl = p1

m<dnoi3 e st g7

S

Exercise 2, page 60: = ba ! = h! = b~a since h!

~ is transitive: If a~b and b~c, then:
ab'e H and bc' e H

= (ab V)b e H
=a(b'b)cleH
—aecleH
=ac!e H=a~c

Having established the equivalence part of the theorem, we now ver-

ify that [a] = {ha|h e H}:

belal]©ob~asba! =h forsome he H

< b = ha forsome he H

NOTE: The above set {ha|h € H} will be denoted by Ha,

and is said to be a right coset of H:
Ha = {ha|lh € H}

We are now in a position to offer a proof of Lagrange’s Theorem:
If H is a subgroup of a finite group G, then |H| ‘ |G].

PROOF: Theorem 1.13(a), page 32, and Lemma 2.2, tell us that the
right cosets of H, {Ha|a € G}, partition G. Since G is finite, we can
k
choose ay, a,, ..., a; such that G = |y Ha; with Hal.mHaj =
i=1
ifi#j.
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We now show that each Ha; has the same number of elements as H,
by verifying that the function f;: H — Ha,; given by f,(h) = ha; is a
bijection:
f; is one-to-one:
fi(hy) = f;(hy) = hja = hya
= (hya)a™! = (hya)a™
= hy(aa”') = hy(aa™') = hy = h,
f; is onto:
For any given ha; € Ha,, f(h) = ha;.
Since G is the disjoint union of the k sets Ha,, Ha,, ..., Ha,, and

since each of those sets contains |H| elements: |G| = k|H|, and there-
fore: IHI‘IGI
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EXERCISES

Exercise 1-5. Determine if the given subset S is a subgroup of (Z, +) .
1. §= {n|niseven} 2. S={nn=+1} 3. §={n|nisodd}

4. § = {n|nisdivisible by 2 and 3 } 5. § = {n|nisdivisible by 2 or 3}

Exercise 6-8. Determine if the given subset S'is a subgroup of (Zg, + ) (see Theorem 2.1, page 42).

6. S=1{0,2,4,6} 7. S =1{0,3,6} 8. §=1{0,23,4}
Exercise 9-12. Determine if the given subset S is a subgroup of (R, +).

9. S={x|x=Tyforye R} 10. S = {x|x=Tyfory=0}

1. §={x|x=T7+yforye R} 12. §={x|x=T7+yfory=0}

Exercise 13-18. Determine if the given subset S is a subgroup of (S5, o) where:
123 123 123 123 123 123
%z(l 2 3) OL1=(2 3 1)»0‘22(3 1 2)»a3=(1 3 2)» OL4=(3 2 1)» OL5=(2 1 3)
13. § = {og o} 14. S = {og 0, 15. § = {ag a5}

16. S = {ag 0,0y} 17. S = {ay a3, 05} 18. S = {ay, ay, 03, Oy, OLs |

Exercise 19-21. Determine if the given subset S is a subgroup of (R3, +).
19. S = {(a,b,0)|a,be R} 20. S = {(a,b,1)|a,b e R}

21. S = {(a,b,c)lc=a+Db} 22. S = {(a,b,c)|lc=ab}

Exercise 23-26. Determine if the given subset S is a subgroup of (M, ,, +).

23. S={ @ ba,beiR} 24, Sz{ @ ba,be?fi}
at+b 0 lat+b 1
25, Sz{ a b a,beiﬁ} 26. S:{a b a,b,ceiR}
atb ab lc 2a+tc
Exercise 27-30. Determine if the given subset S'is a subgroup of ( F(R), +) (see Exercise 49, page 52).
27. S = {f]fis continuous } 28. S = {f]f1s differentiable }
29. §={f(1)=1} 30. S = {f)f(1)=0}
Exercise 31-34. Determine if the given subset S is a subgroup of (S, ©) (see Theorem 2.4, page 46).
31. S = {f]fis continuous } 32. § = {f]fis differentiable }

33, S = {fif(1)=1} 34, S = {f)f(1)=0}
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35.
36.

37.

38.

39.
40.
41.

42.

43.

44,

45.

46.

47.

48.

49.

50.
51.

Prove that all subgroups of Z are of the form nZ.

Find all subgroups of (Z, + ).

Prove that if {e} and G are the only subgroups of a group G, then G is cyclic of order p,
for p prime.

Show that a nonempty subset S of a group G is a subgroup of G if and only if
1,beS=ables

Show that for any a, b € Z*, S = {na+mb|n,m € Z} is a subgroup of Z.
Show that for any group G the set Z(G) = {a € Glag = ga Vg € G} is a subgroup of G.
Let G be an abelian group. Show that for any integer n, {a € G|a" = e} is a subgroup of

G.

Prove that the subset of elements of finite order in an abelian group G is a subgroup of G
(called the torsion subgroup of G).

Let G be a cyclic group of order n. Show that if m is a positive integer, then G has an ele-
ment of order m if and only if m divides n.

Let a be an element of a group G. The set of all elements of G which commute with a:
C(a) = {be Glab = ba}
is called the centralizer of @ in G. Prove that C(a) is a subgroup of G.

Let H be a subgroup of a group G. The centralizer C(H) of H is the set of all elements of
G that commute with every element of H: C(H) = {a € G|ah = ha forall h € H} . Prove

that C(H) is a subgroup of G.

The center Z(G) of a group G is the set of all elements in G that commute with ever ele-
ment of G: Z(G) = {a € Glab=ba forall b € G}.

(a) Prove that Z(G) is a subgroup of G.

(b) Prove that a € Z(G) if and only if C(a) = G (see Exercise 43.)

(c) Prove that Z(G) = M C(a).
aeG

Show that Table C in Figure 2.4, page 45, can be derived from Table B by appropriately
relabeling the letters e, a, b, ¢ in B.

Let H and K be subgroups of an abelian group G. Verify that HK = {hk|h € Hand k € K}
is a subgroup of G.

Let H and K be subgroups of a group G such that k~' Hk < H for every k € K. Show that
HK = {hk|h € Hand k € K} is a subgroup of G.

Prove that H is a subgroup of a group G if and only if HH ' = {ab~'la,b e H} c H.

Let H and K be subgroups of an abelian group G of orders n and m respectively. Show that
if HNK = {e},then HK = {hk|h € H and k € K} is a subgroup of G of order nm.



52.

53.

54.
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(a) Prove that the group (Z, +) contains an infinite number of subgroups.
(b) Prove that any infinite group contains an infinite number of subgroups.

Let S be a finite subset of a group G. Prove that S is a subgroup of G if and only if ab € S
forevery a,b € S.
n

(a) {Hl.}?: , be subgroups of a group G. Show that ~ H; is also a subgroup of G.

i=1

0

(b) Let {Hl.};)o= , be a collection of subgroups of a group G. Show that ~ H; is also a

subgroup of G. =1

(c) Let {H,} . , beacollection of subgroups of a group G. Show that ~ H, isalso a

ae€A

subgroup of G.

PROVE OR GIVE A COUNTEREXAMPLE

55.
56.

57.

58.

59.
60.
61.

62.
63.

If H and K are subgroups of a group G, then H U K is also a subgroup of G.

It is possible for a group G to be the union of two disjoint subgroups of G.

In any group G, {a € G|a" = e for some n € Z} is a subgroup of G.

In any abelian group G, {a € G|a" = e for some n € Z*} is a subgroup of G.
Let G be a group with a, b € G.If o(a) = n and o(b) = m, then (ab)" = e.
If a group G has only a finite number of subgroups, the G must be finite.

If Hand K are subgroups of a group G,then HK = {hk|h € H and k € K} isalsoasubgroup
of G.

In any group G, {a € G|a3 = e} is a subgroup of G.

No nontrivial group can be expressed as the union of two disjoint subgroups.
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The word homomorphism

comes from

the Greek

homo meaning “same” and
morph meaning “shape.”

You can easily verify that

G' = {71’1}5

under stan-

dard multiplication

*11

-1

1|1

-1

—1]-1
is a group.

Since (Z,+) is abelian, we

1

need not consider a = 2n+ 1

and b = 2m,

See page 42 for a discussion
of the group (Z,, 4 ) .

§4. HOMOMORPHISMS AND ISOMORPHISMS

Up until now we have focused our attention exclusively on the inter-
nal nature of a group G. The time has come to consider links between
them:

DEFINITION 2.9 A function ¢: G - G' from a group Gto a
HOMOMORPHISM group G’ is said to be a homomorphism if
d(ab) = ¢(a)d(b) forevery a,b € G.
Let’s focus a bit on the equation:
¢(ab) = ¢(a)o(b) (*)

The operation, ab, on the left side of equation (*) is taking place in the
group G while that on the right, ¢(a)d(b), occurs in the group G'.
What (*) is saying is that you can perform the product in G and then
carry the result over to G’ (via ¢ ), or you can first carry a and b over to

G' and then perform the product in that group. Those groups and prod-

ucts, however, need not resemble each other. Consider the following
examples:

EXAMPLE 2.5 Let G = (Z +),andlet G' = {—1, 1} under
standard integer multiplication (see margin).
Show that /1 G — G' given by:

o(n) :{ 1 1fn1§even
—1 if n is odd

is a homomorphism.
SOLUTION: We consider three cases:
Case 1. (Both integers are even). If ¢ = 2n and b = 2m, then:
d(a+b) = ¢(2n+2m) = 1 (since 2n+2m is even)
And also: ¢(a)d(b) = ¢(2n)o(2m) = 1-1 = 1.
Case 2. (Bothareodd).Ifa = 2n+1 and b = 2m + 1, then:

O(at+b) =¢[2n+1)+(2m+1)] = 62n+2m+2) =1
And also:

¢(a)p(b) = ¢(2n+1)¢(2m+1) = (-1)(-1) = 1.
Case 3. (Evenandodd).If a = 2n and b = 2m + 1, then:
d(a+b) =¢[2n)+(2m+1)] = ¢[2(n+m)+1] = -1
And also: ¢(a)dp(b) = ¢(2n)¢(2m+1) = (1)(-1) = —1.

EXAMPLE 2.6 Show that the function ¢: (Z, +) > (Z , %)

given by ¢(m) = r where m = nqg +r with
0 <r<n is a homomorphism.




See page 46 for a discussion on
the symmetric group (S, o) -

Answer: See page A-11.
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SOLUTION: Let a = ng,+r;, b = nqg,+r, with 0<r, <n and
0<r,<n,andlet r, +r, = ngy+r; with 0 <r; <n, then:
d(a+b) = ¢[(”ql+’”1)+(’7Q2+7’2)]

= ¢[”(Q1+C]2)+(’”1+’”2)]

= ¢[n(q, +q,) +(ng; +ry)] with0<ry<n

= ¢[n(q, +q,+q3)tr;] = ry(since 0<ry<n) o S

And: §(a)+ d(b) = d(ng, +r )% (dng, +ry) 5

= rytiry = ry(since r| +r, = nqy+ry with 0£r3<n)/

EXAMPLE 2.7 For any fixed element a in a group G, let
f,;G— G be given by f,(g) = ag. Show

that the function ¢: G — (S, °) given by

¢(a) = f, is a one-to-one homomorphism.
SOLUTION: ¢ is one-to-one:

d(a) =9(b) =/, =/, ?fa(e) =/fle)=>ae =be=a=b

in particular
To show that ¢ is a homomorphism we need to show that
d(ab) = d(a)od(b), which is to say, that the function /,,: G — G is
equal to the function f,of,: G — G. Let’s do it:
Forany x € G: f,,(x) = (ab)x
and (f,0/;)(x) = f,[fp(x)] = fo(bx) = a(bx)

By associativity, (ab)x = a(bx), and we are done.

CHECK YOUR UNDERSTANDING 2.18

Show that for any two groups G and G’ the function ¢: G > G’
given by ¢(a) = e for every a € G is a homomorphism (called the
trivial homomorphism from G to G').

Homomorphisms preserve identities, inverses, and subgroups:

THEOREM 2.23 Let ¢: G — G' be a homomorphism. Then:
(a) ¢(e) = ¢’
(b) ¢ah) = [d(@)]!
(c) If H is a subgroup of G, then:
O(H) = {¢(h)|h € H}
is a subgroup of G'.
(d) If H' is a subgroup of G', then:

0~'(H') = {g e Glo(g) e H'}
is a subgroup of G.
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Answer: See page A-11.

PROOF:
(a) Since ¢ is a homomorphism: ¢(e) = dp(ee) = d(e)(d(e)).
Multiplying both sides by [¢@(e)]~! yields the desired result:

[p(e)]'o(e) = [o(e)] ' [d(e)d(e)]
e’ = ([o(e)] ' [d(e)Dd(e)
e’ = e'd(e) = ¢(e)
(b)Since ¢(a p(a) = ¢(a'a) = ¢(e) (7)6
a
(@) = [o(a)] .
(c) Weuse Theorem 2.14, page 62, to show that the nonempty set ¢ (H)
is a subspace of G':
Since d(a)dp(b) = d(ab): ¢(H) isclosed withrespectto the
operation in G'.
Since, forany a € G, ¢(a ') = [d(a)]!:
[0(a)]! € §(H) forevery ¢(a) € d(H).
(d) We use Theorem 2.14 to show that the nonempty set ¢~ (H') is a
subspace of G :
Let a,b € ¢~ 1(H"). To say that ab € ¢—1(H") is to say that
¢0(ab) € H', and it is:
Since ¢p(ab) = ¢(a)d(b), and since H', being a subgroup of
G',isclosed with respectto the operationsin G': ¢(ab) € H'.
Let a € o~'(H'). To say that a! € ¢$~1(H") is to say that
d(a!) e H', and it is:
Since ¢(a!) = [dpa]™', and since H' contains the

inverse of each of its elements: ¢p(a1) € H'.

CHECK YOUR UNDERSTANDING 2.19

Let ¢: G— G’ and 0: G' > G" be homomorphisms. Prove that the
composite function 6o¢: G — G" is also a homomorphism.
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IMAGE AND KERNEL
For any given homomorphism ¢: G — G', we define the kernel of ¢

to be the set of elements in G which map to the identity e’ € G’ [see
Figure 2.7(a)]. We define the set of all elements in G’ which are “hit”
by some ¢(a) to be the image of ¢ [see Figure 2.7(b)].

G G o o
¢
ﬁh»
>
Kernel of ¢ Image of ¢
@ | (b)
More formally: Figure 2.7

DEFINITION2.10 Let ¢: G— G’ be a homomorphism.

o . KERNEL The kernel of ¢, denoted by Ker(¢), is
Utilizing the notation of .
Definition 1.3, page 2: given by:
Ker(9) = ¢'[{e'}] Ker(¢) = {a e G|¢p(a) = €'}
Im(¢) = ¢[G] )
IMAGE The image of ¢, denoted by Im(¢), is
given by:

Im(¢) = {¢(a)|a € G}

Both the kernel and image of a homomorphism turn out to be sub-
groups of their respective groups:

THEOREM 2.24 Let ¢: G— G’ be a homomorphism. Then:
(a) Ker(¢) is a subgroup of G.
(b) Im(¢) is a subgroup of G'.
PROOF: (a) A consequence of Theorem 2.23(d) and the fact that
{e'} is a subgroup of G’
(b) A consequence of Theorem 2.3(c¢).

CHECK YOUR UNDERSTANDING 2.20

Show that the function ¢: 2Z — 4Z given by ¢(2n) = 8n is a
Answer: See page A-11. homomorphism. Determine the kernel and image of ¢ .
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Definition 2.10 tells us that a homomorphism ¢: G — G’ is onto if

A homomorphism ¢: G— G’ and only if Im(¢) = G'. The following result is a bit more interesting,

$u5t map e to e’ What this ;) 41,21 4 agserts that in order for a homomorphism to be one-to-one, it
eorem is saying is that if e is

the only element that goes to need only behave “one-to-one-ish” at e (see margin):

e', then no element of G’ is ) )

goingtobe hitby morethatone 1T HEOREM 2.25 A homomorphism ¢: G — G’ is one-to-one
element of G. This is certainly . . _

not true for arbitrary functions: if and only if Ker(¢) = {e}.

> PROOF: Suppose ¢ 1is one-to-one. If a € Ker(¢), then both

0(a) = €' and ¢(e) = e’ [Theorem 2.22(a)]. Consequently a = e
(since ¢ is assumed to be one-to-one). Hence: Ker(¢) = {e} .

- Conversely, assume that Ker(¢p) = {e}. We need to show that if
fx) = 0(a) = &(b), then a = b. Let’s do it:

d(a) = ¢(b)
d(a)d(D)] ! = ¢
Theorem 2.22(b): d)(a)d)(b_l) =e'

¢ is a homomorphism: d(ab!) = €'
Ker(¢) = {e}: ab™l = e
(ab~1)b = eb

a=>»>

CHECK YOUR UNDERSTANDING 2.21

Let ¢: G —> G' be a homomorphism. Show that if there exists an
element ¢ € G (not necessarily the identity e) such that if
d(c) = ¢(a) then ¢ = a,then ¢ is one-to-one.

In other words: for a homomorphism ¢: G — G’ to be one-to-one, it

Answer: See page A-11. need only behave “one-to-one-ish” at any one-point in G.”

The word isomorphism | ISOMORPHISMS

fi the Greek i . .
Icl?égﬁisngom“eqeual’r»ee al;g As previously noted, a homomorphism ¢: G — G’ preserves the

morph meaning “shape.” algebraic structure in that ¢(ab) = ¢(a)d(b). An isomorphism also
preserves set structures, in that it pairs of the elements of the set G with
those of the set G'. More formally:

DEFINITION 2.11 A homomorphism ¢: G—> G’ which is
also a bijection is said to be an isomor-
ISOMORPHISM phism from the group G to the group G’.

An isomorphism ¢: G — G 1is said to be

AUTOMORPHISM automorphism on G

ISOMORPHIC Two groups G and G' are isomorphic,

written G = G', if there exists an isomor-
phism from one of the groups to the other.



In this discussion we are not
using e to denote the identity
element in (R*,-) (which is
1). Here, e is the transcen-
dental number e~2.718.

Answer: See page A-12.

Answer: See page A-12.
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EXAMPLE 2.8 Show that the group (R, +) of real numbers
under addition is isomorphic to the group

(R™*,-) of positive real numbers under multi-
plication.

SOLUTION: We show that the function ¢: (R, +) —> (R™,-) given by
d(a) = e? is an isomorphism:
Homomorphism:
dlatb) = e™h = eteb = d(a)d(b)
One-to-one: (See Theorem 2.24)
The identity in (R™,-) Jj The identity in (R, +)
0(a) = 1=e?=1=a=0

Onto: For a € (R™,-), we have: ¢(lna) = eln? = ¢,

CHECK YOUR UNDERSTANDING 2.22

(a) Prove that = is an equivalence relation on any set of groups (see
Definition 1.12, page 29).

(b) Prove that nZ=mZ forany n,m € Z*.
(c) Let g € G. Prove that the map i g G — G given by
i,(x) = gxg ' Vxe G

is an automorphism (called an inner automorphism.)

Algebraically speaking, there is but one cyclic group of order n, and
but one infinite cyclic group:

THEOREM 2.26 (a) Ifthe cyclic group G = (a) is of order
n,the G=(Z,,+).

(b) If G = (a) is infinite, the G= (Z, +) .
PROOF: (a) We show that the function:
¢0:{0,1,2,...,n—1} > {go, al,a?, ...,a" 1}
givenby ¢(i) = a' is an isomorphism from (Z,,+) to G = (ay):
One-to-one. For 0<i<j<mn:

W) =0()=a=d=a"T =a"=i-j=0=i=j
Onto. For a’ € {a% al, a2, ...,a" 1}, ¢(i) = a
Homomorphism: ¢(i +j) = a'*/ = ald/ = ¢(i)P())

(b) Your turn:

CHECK YOUR UNDERSTANDING 2.23

Show that every infinite cyclic group is isomorphic to (Z, +) .
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A ROSE BY ANY OTHER NAME

Let ¢: G > G’ be an isomorphism. Being a bijection it links every
element in G with a unique element in G’ (every element in G has its
own G’ counterpart, and vice versa). Moreover, if you know how to
function algebraically in G, then you can also figure out how to func-
tion algebraically in G' (and vice versa). Suppose, for example, that
you forgot how to multiply in the group G’ , but remember how to mul-
tiply in G. To figure out a'b’ in G’ you can take the “ ¢! -bridge”
back to G to find the elements @ and b for which ¢(a) = @' and
o(b) = b', perform the product ab in G, and then take the “¢ -bridge”
back to G' to determine the product a'b’: ¢p(ab).

Basically, if a group G is isomorphic to G', then the two groups can
only differ in appearance, but not algebraically. Consider, for example,
the two groups which previously appeared in Figure 2.1, page 43:

Z4I |0 |12 3 K: * le |a |b |c
oo |1]2] 3 e |le |a |b |c
111(2(3]0 a |la |e |c |b
212 13]0] 1 b |b |c |e |a
3131011 2 c lc |b |ale

(a) (b)

Both contain four elements ({0,1,2,3} and {e,a,b,c}); so, as far as sets
are concerned, they “are one and the same” (different element-names,
that’s all). But as far as groups go, they are not the same (not isomor-
phic). Here are two algebraic differences (either one of which would
serve to prove that the two groups are not isomorphic):

1. Z, is cyclic while the Klein 4-group, K, is not.

2. There exist three elements in K of order 2 (see Definition
2.5, page 58), while Z, contains but one (the element 2).

To better substantiate the above claims:

THEOREM 2.27 1If G=G’, then:
(a) G is cyclic if and only if G’ is cyclic.

(b)For any given integer n, there exists an
element a € G such that a"” = e if and
only if there exists an element a' € G’
such that (a')" = e'.
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PROOF: Let ¢: G — G’ be an isomorphism.
(a) Suppose G is cyclic, with G = (a). We show G' = (d(a)) by
showing that for any b’ € G', there exists n € Z such that
b' = [¢(a)]":
Let b € G be such that ¢(b) = b'. Since G = (a), there
exists n € Z such that b = a”. Then:

b= ¢(b) = ¢la"] = [9(a)]"

Exercise 16

The “only-if” part follows from the fact that if G is isomorphic
to G', then G’ is isomorphic to G [see CYU 2.23(a)].
(b)Let @ € G be such that a” = e. Then:

[0(a)]" = ¢(a") = ¢(e) = €
The “only-if” part follows from CYU 2.22(a).

CHECK YOUR UNDERSTANDING 2.24

Answer: See page A-12. Prove that if G= G', then G is abelian if and only if G’ is abelian.

A property of a group G that is shared by all groups isomor-
phic to G is said to be a group invariant property. For exam-
ple, abelian and cyclic are group invariant properties. Other
group invariant properties are cited in the exercises.

In general, one can show that two groups are not isomorphic
by exhibiting a group invariant property that holds in one of
the groups but not in the other. For example, the permutation
group S5 is not isomorphic to (Z,, %) as one is abelian

while the other is not.

The following results underlines the importance of symmetric groups
(see discussion on page 46).

Arthur Cayley (1821-1885) THEOREM 2.28 Every group is isomorphic to a subgroup of
(Cayley) a symmetric group.
PROOF: The function ¢: G — S given by

o(g) = fg: G->G wherefg(x) = gx (Vxe G)
was shown to be a one-too-one homomorphism in Example 2.7.
Since ¢ it is onto the subspace ¢(G) of S :

¢: G — ¢(G) is an isomorphism.
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EXERCISES

Exercise 1-10. Show that the given function ¢: G — G’ from the group G to the group G’ is a
homomorphism.

. G=G' = (Z+ and ¢(n) = 2n.

2. G=G = (R, +)and ¢,(x) = rx forre R.

3. G=<(Z+),G" = (R, +) and ¢(n) = n.

4. G =(Z+),G' = Zyand ¢§(n) = r where n = 3m+r with 0 <r<3.

5. G =(Z+),G = ({-1,1},-) and ¢(n) = 1 ifnisevenand f(n) = —1 if nis odd.

6. G=2;,G = Z,and ¢(n) = r where n = 2d+r with 0<r<2.

G' = (My, 5+ andd)qa bD - {“*b d]
cd - 0

G = SS’G, = S4and [(I)(G)](l) — { G(Z) if i<4 :
ifi=4

~
Q
I

o

9. G = G' with G abelian, and ¢(a) = a”! fora e G.

10. G = G' with G abelian, n € Z*, and ¢(a) = a" fora e G.

Exercise 11-15. Show that the given function ¢: G — G’ from the group G to the group G’ is not
a homomorphism.

1. G=G' =(Z+ and ¢(n) = n+1.

12. G =2;,G" = Z, and ¢(n) = r where n = 2d+r with 0<r<2.

13. G =G = (My o+ andd)ua bD - {“”’ d]
cd - 1

14.G = (My,,,+),G' = % and q)q“ bD = ad - be.

15. G=G' =S;and §(a) = a! foraeG.

Exercise 16-27. Find the kernel and image of the homomorphism of:

16. Exercise 1. 17. Exercise 2. 18. Exercise 3.

19. Exercise 4. 20. Exercise 5. 21. Exercise 6.
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22. Exercise 7. 23. Exercise 8. 24. Exercise 9.
25. ExerciselO. 26. Exercise 11. 27. Exercise 12.

28. Let (R, +) denote the group of all real numbers under addition, and (R*,-) the group of
all positive real numbers under multiplication. Show that the map ¢: R™ — R given by
¢(x) = Inx is an isomorphism.

29. Let ¢: G — G' be a homomorphism and let @ € G . Prove that ¢(a”) = [¢(a)]” for every
nelZz.

30. Let ¢: G — G' be a homomorphism and let @ € G. Show that the map ¢: Z — G given by
¢(n) = a" is a homomorphism.
31. Let ¢: G — G’ be a homomorphism with G' finite. Show that |$p(G)| is a divisor of |G'|.
32. Let ¢: G — G' be a homomorphism. Prove that for all @, b € G:
¢(ab™!) = ¢(a)$p(b) " and ¢(a 'b) = ¢(a) '$(D)
33. Let ¢: G > G' be a homomorphism, Show that:
(a) If ¢ is onto and if G is abelian, then G’ is abelian.

(a) If ¢ is one-to-one and if G’ is abelian, then G is abelian.

34. Prove that a group G is abelian if and only if the function /2 G — G given by f(g) = g ! is
a homomorphism.

35. Let G = (a) becyclic and let G’ be any group. Let ¢: G — G’ be a homomorphism.
Prove that Im(¢) is cyclic.

36. Let ¢: G — G’ be a homomorphism. Show that if k € Ker(¢), then gkg~! e Ker(¢) for
every g € G.

37. Let G, G', and G" be groups. Show that if ¢: G - G’ and y: G' - G" are homomor-
phisms, then so is yod: G > G".

38. Let ¢: G — G'be a homomorphism. Show that ¢(G) is abelian if and only if for all
a,be G:aba'b! € Ker(9).
39. Let ¢: G — G'be a homomorphism. Prove that, for any given x € G:
{g€Glo(g) =d(x)} = {xk|k € Ker(¢)}

40. Let G = (a) be cyclic and let H be any group. Prove that for any chosen /# € H there
exists a unique homomorphism ¢: G — H such that ¢(a) = h.

So, a homomorphism on a cyclic group G = (a) is completely determined by its action on a.

41. Let ¢: G —> G' be a homomorphism. Prove that, for any given x € G :
{g € Glo(g) = 0(x)} = {xk|k € Ker(9)}

42. Let A, B, C, and D be groups. Show thatif 4= B and C= D, then 4 x C= B x D (see
Exercise 52, page 52).
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43. Let G and G’ be groups. Show that G x G' = G’ x G (see Exercise 52, page 52).

44. (a) Show thattheset Zx Z = {(a, b)|a,b € Z} ,with (a,b)*(c,d) = (a+c,b+d) isa

group.
(b) Verify that the functions ¢,: Zx Z— Z and ¢,: Zx Z— Z givenby ¢,(a,b) = a and

¢,(a, b) = b, respectively, are homomorphisms.
(c) Show that the function ¢: Zx Z— Z given by ¢(a,b) = 2¢,(a, b) +3,(a, b) is a
homomorphism.
(d)Show that the function 0: Zx Z — Z x Z given by 0(a, b) = [¢,(a, D), ¢,(a, b)] is an
isomorphism.
45. Forme Z, m#0,let ¢,: Z— Z be givenby ¢, (n) = mn.

(a) Show that ¢,, is a one-to-one homomorphism.
(b) Show that ¢, is an isomorphism if and only if m = *1.

46. Let F(*R) denote the additive group of real valued function (see Exercise 49, page 52), and
let R denote the additive group of real numbers. Prove that for any ¢ € R the function
d.: F(R) —> N givenby ¢ .(f) = f(c) for f'e F(R) is a homomorphism (called an evalu-
ation homomorphism.)

47. Let D(*R) denote the set of differentiable functions from ‘R to R.
(a) Show that (D(®R), +) is a group.
(b) Show that for any ¢ € R the function ¢,.: D(R) - R given by ¢.(f) = f(c) is a

homomorphism.
(c) Is ¢, one-to-one for any c?
(d) Is ¢, onto for any c?
48. Let C(R) denote the set of continuous real valued functions.
(a) Show that ( C(*R), +) is a group.
(b) Show that for any closed interval [a, b] in R the function ¢: C(R) > R given by
o(f) = Ib f(x)dx is a homomorphism.
a

(c) Show that the function 0: C(R) —> R given by ¢(f) = .[;f(x)der ZI:f(x)dx is a
homomorphism.
49. Show that for any 1 € S5, the function ¢: §; — S; given by ¢(c) = oot is a homomor-
phism. Is it necessarily an isomorphism?
50. Let G be a group. Prove that Aut(G) = ({¢|¢: G — G is an automorphism }, o) is a
group.
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Exercise 34-40. Show that the give property on a G is an invariant.

51. |G| — the order of a finite group G.
52. G contains a nontrivial cyclic subgroup.
53. G contains an element of order n for given n > 1.
54. G contains m elements of order n for given n > 1.
55. G contains a subgroup of order of order n for given n > 1.
56. The number of elements in 7, = {g € G|o(g) = n} (see Definition 2.5, page 58).
57. The number of elements in Z(G) — the center of a finite group G. (See Exercise 45, page
70.)
PROVE OR GIVE A COUNTEREXAMPLE
58. The additive group R is isomorphic to the additive group Q of rational numbers)

59.
60.

61.

62.

63.

The additive group Z is isomorphic to the additive group Q of rational numbers)

If ¢ is a homomorphism from a group G to a cyclic group G' = (a), then Ker(¢) is a
cyclic subgroup of G

If ¢ is an isomorphism from a group G to a cyclic group G' = (a), then Ker(¢) is a
cyclic subgroup of G

For C(R) the group of continuous real valued functions under addition the function

b: C(R) > R given by d(f) = ( j; f(x)dx) (jz f(x)dx) is a homomorphism.

Ifn+m,S, and §,, are not isomorphic.
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In general, a cycle of the form

(ny, ny, ..., 0y)
is said to be a k-cycle,

In writing a permutation
ceS, as a product of
cycles, we generally don’t
include cycles of length 1,
as any such cycle is the
identity in S, . In particular,
it is understood that the per-
mutation
c =1(1,3,4,7)2,5 €S,

leaves 6 fixed.

§5. SYMMETRIC GROUPS

Cayle’s Theorem asserts that every group is isomorphic to a subgroup
of a symmetric group. It follows that if one knew everything about
symmetric groups, then one would know everything about groups in
general. Alas, however, symmetric groups (Sy, o) are not “easy to
own,” especially if X is an infinite set.

In this section we focus our attention on finite symmetric groups, spe-
cifically on the groups S, of section 2.1 (see page 46).

CYCLE DECOMPOSITION

Consider the permutation:

62(1234567J
3547261

To get a sense of its action, let’s use the symbol 1 — 3 to indicate that
c maps 1 to 3. We then have: ;

1>3—>4—>7->1;or, better yet:
4

3

Adhering to convention we let the symbol (1,3,4,7) represent the per-
mutation m S that acts like ¢ on the integers 1, 3, 4, and 7, and leaves

2,5, and 6 fixed:

(Ll{7):{1234567]
3247561

(said to be a 4-cycle of the permutation c)
Proceeding as above, but starting with 2 (or 5) we arrive at the 2-

cycle:
(2’5):{1234567]
1534267

All that remains is 6. But 6 is stationary under &, so;

1234567
®)=[
1234567

At this point we can express ¢ as a product of cycles; specifically:
c=(1,3,4,7)(2,5) ie:

(1234567)2(1234567J[1234567j
3547261 3247561 1534267
Since (1, 3, 4, 7) does not move 2 or 5, and since (2,5) does not effect

1, 3, 4, or 7, the two cycles are said to be disjoint and must commute
(see Exercise 21):

(1,3,4,7)(2,5) = (2,5)(1,3,4,7)

J < the identity permutation



Just as any integer can be
expressed as a product of
primes, so then can permuta-
tions be expressed as prod-
ucts of cycles.

Note that c”(1) cycles
back to 1.
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In general:

THEOREM 2.29 Every permutation in S, can be expressed as
a product of disjoint cycles.

PROOF: [By (APM) induction on n—see page 16]

Let P(n) be the proposition that every permutation in S, can be
expressed as a product of disjoint cycles.

L P(1)istrue: S, = (D = (1).
II. Assume P(m) istrue for l <m <k

II1. We show that P(k + 1) is true, thereby completing the proof:
Let 6 € §; ;. Since S, is a finite group, ¢ has finite

order, say o(c) = i.

Ifi = k+1,then 6 = (1,5(1),52(1), ..., (1)) —
a cycle.

If i < k+ 1, then consider the set

0,(1) = {1,0(1),0%(1),...,c'=1(1)}
(called the orbit of 1 under o)
Pulling the above orbit out from {1,2,...,k+1}:
{1,2, .., k+1}-04(1)
we arrive at a permutation o, onasetof s = (k+1)—1
clements, with 1 <s<k. By I, o, can be written as a
product of disjoint cycles ¢, ¢,, ..., c,. It follows that:
G = cy-Cyc Oy(1)
(note that the orbit O (1) is disjoint from all of the c,’s)

In the next example we again focus on the cycle-decomposition-pro-

cedure, but in reverse.

EXAMPLE 2.9 Construct a permutation c € S, that can be
expressed as a product of a 2-cycle, a 3-cycle,
and a 4-cycle.

SOLUTION: Any such permutation must leave 10— (2+3+4) = 1
element fixed. We decide to go with the element 3 [see Figure 2.8(a)].

(123456789mj {123456789m]
3 3 9 7
(a) (b)
(123456789wj (123456789mjn
2431 9 7 2431105967 8
(c) (d

Figure 2.8
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Answer:
(@) (1,3,4)(2,9,8,7)
(b) See page A-13.

We then choose 7, along with 9, to generate the 2-cycle (7,9) [see
Figure 2.8(b)]. Of the remaining 7 elements we decide to go with 1, 2,
and 4 to create the 3-cycle (1, 2, 4) [Figure 2.8(c)]. All that’s left are
the elements 5, 6, 8, 10, and decide to mold them into the cycle
(8,6,5,10) — bringing us to the completed permutation ¢ € S}, in
Figure 2.8(d) with cycle decomposition:

c =1(7,9)(1,2,4)(8,6,5,10)

CHECK YOUR UNDERSTANDING 2.25

12345678910
39415627810

(b) Construct a permutation ¢ € S, that can be expressed as a
product of two 2-cycles and a 5-cycle.

(a) Express ¢ = { ] as a product of cycles.

ORDER OF PERMUTATIONS

We already know that the symmetric group S, has order n!. We now

turn our attention to the task of determining the order of permutations
in S, . Let’s start off by considering the 4-cycle:

c=1(2,6,35¢€eS, fornz6
Focusing on the element 2 we have:
6(2) = 6, 62(2)=3, 63(2)=35, c*%2)=2
So, the smallest power s of ¢ such that 65(2) = 2 is s = 4, and the
same can be said for the elements 6, 3, and 5. It follows, since all of the
remaining elements in {1,2,...,n} are held fixed by o, that
o(c) = 4.Indeed, as you are invited to establish in the exercises:

THEOREM 2.30  Every k-cycle in S, has order k.

Moving things along we reconsider the permutation

62(1234 5 678910j = (7,9)(1,2,4)(8,6,5,10)
2431105967 8

that surfaced in Example 2.9. We know, from Theorem 2.30, that:
o[(7,9)] = 2, o[(1,2,4)] = 3,and 0[(8,6,5,10)] = 4

It follows that ¢° = e for any s that is divisible by 2, 3, and 4. In par-
ticular, s = lem(2, 3,4) = 12 will work. Moreover, since the three

cycles are disjoint, no positive integer smaller that lcm(2, 3, 4) will do
the trick, bringing us to:



Note the “disjoint cycles”
condition in the theorem.
A case in point:
The 2-cycles (1,2),(1,3)
are not disjoint, and their
product is not of order 2:
o[(1,2)(1,3)]
=0(1,3,2) =3

Answer: 6

Note that the decomposition
of a cycle as a product of
transposition is not unique.
A case in point:

(3,2,5,1) = (3,1)(3,5)(3,2)

= (3,1)(3,5)(3,2)(1,2)(L,2)

Answers:

(a) (3,7)(3,4)(3,6)(3, 1)

(b) (1,4)(1,2)(5, 6)(5,8)(5,10)(7,9)
(c) Se page A-13.
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THEOREM 2.31

If 6 € §, has a cycle decomposition of dis-
joint cycles of order (length) k, k5, ..., k,
then:

o(c) = lem(ky, ky, ..., k,)

CHECK YOUR UNDERSTANDING 2.26

Determine the order of the permutation:

62[12345678J
38674152

A cycle in §, is, in a sense, a primitive object in that it cannot be
decomposed into a product of smaller disjoint cycles. It can, however,
always be decomposed into a product of 2-cycles, called transposi-
tions. Consider, for example the cycle o = (3,2,5,1):

While the above 4-cycle could reside in any S, with n =5, all

elements other that 1, 2, 3, and 5 are immune to its action. That
being the case, we might as well embed it in §5. We then have:

3.2) 12345
Go 132451 156 =(3,1)(3,53,2)
ﬁ. 15243 Note the pattern:T

first switch 3 with 2
then switch 3 with 5
finally switch 3 with 1

— 35241

Generalizing the above pattern, we have (Exercise 29):

THEOREM 2.32 Any cycle can be expressed as a product of
transpositions.

Merging the above result with Theorem 2.29 we come to

THEOREM 2.33 Every permutation can be expressed as a
product of transpositions. Specifically:

(ajay---a,) = (aya,,)(aa, _,)...(ajay)

CHECK YOUR UNDERSTANDING 2.27

(a) Express th cycle (3, 1, 6,4, 7) as a product of transpositions.

12345 678910Jasaprod—

(b) Express the permutation [
2431105967 8

uct of transpositions.

(c) Show that for any transpositions t: 17! = 1.
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Here is the identity matrix
in M,:

100 0[< 1
0100[</
001 0/< 1,
000 1j<7,

And here is the transposi-
tion (1, [5) :

0010 switched

first and
Vi we ]third row
1000

of L
0001

Answers: (a) See page A-13.

(b) Even.

As previously noted, the decomposition of a permutation as a product
of transposition is not unique. However:

THEOREM 2.34 No permutation can be expressed as both a
product of an even number of transpositions
and as a product of an odd number of trans-
positions.

PROOF: Chances are that you are familiar with the matrix space
M along with the determinant function det: M,  , — R. You

nxn?’
may also recall that:

. {If two rows of 4 € M, , are interchanged, then, then

the determinant of the resulting matrix is —det(4).

(A brief development of the above result appears in Appendix B.)

At this point, rather then focusing on a permutation o; on the set
{1,2,...,n} of integer, we turn our attention to a permutation G, on
the nrows {I,,1,, ..., I,} of the identity matrix / e M,

gin). In this new environment, a transposition is the switching of two
rows. Let 4 € M, be achieve by permuting the rows of /. Can that

be done by both an even number and an odd number of transposi-
tions? No, for by (*), det(4) would have to equal both 1 and —1:

det(4) = (=1)%det(7) = 1 while det(4) = (—1)%*det(]) = -1
(Note: det(/) = 1)

DEFINITION 2.12 A permutation is even, or odd, if it can be
Even and Odd expressed as the product of an even, or odd,

Permutations number of transpositions, respectively

(see mar-

CHECK YOUR UNDERSTANDING 2.28

(a) Show that the identity permutation e € S, is even.

(b) Is the permutation( 123456789 IOJ even or odd?
2431105967 8

At this point we know that any symmetric group S, can be partitioned

into the set of even permutations and the set of odd permutations. Since
the set of odd permutations does not contain the identity element [CYU

2.28(a)], it cannot be a subgroup of S, . On the other hand:

DEFINITION 2.13 The alternating group of degree n is the
Alternating Group subgroup 4, of even permutations of the
symmetric group S, .

Lest there be any doubt:



Answer:
A5 = ({e,ayp, 05}, 0)
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THEOREM 2.35  For n>2, the set 4, of even permutations is
n!

a subgroup of §, of order >

PROOF: Since the identity permutation is even, 4, # & .
Closure: If ¢ and o are even permutations, then each can be
expressed as a product of an even number of transpositions, say:
G = T T, Ty, and G =TTy Ty
It follows that o can be expressed as a product of 2(k + /) transpo-

sitions; namely: GG = T;T,--- T T1T2---T2p

Inverse: If 6 = 1,1,-.-T,;, then 6~! can also be expressed as a prod-

uct of 2k transpositions; namely:

1 1

S T I P
G T YTy Ty Kfzk"'Tzfl

CYU 2.10, page 58 CYU 2.27(c).

Conclusion: 4, is a subgroup of S, (Theorem 2.14, page 62).

Verifying that |4, = %'
Let B, denote the set of odd permutations in §, . We show that the
function f: 4, — B, given by f(c) = (1, 2)c is a bijection.
One-to-one:

flo) = flo) = (1,2)0 = (1,2)c
=(1,2)(1,2)c = (1,2)(1,2)6 =>6 =G

Onto: Forc € B, (1,2)c € 4, and:
f1(1,2)c] = (1,2)(1,2)c = o
We now know that 4, and B, have the same number of elements.

The fact that A, "B, = & and that 4, U B, = S, with ‘Sn‘ = n!
'

assures us that |An‘ = ’12—

CHECK YOUR UNDERSTANDING 2.29

Determine A, utilizing the notation:

(123 /123 /123
e—(lzs)s 0‘1—(231)9 0‘2—(312)

S; =
(123 /123
0c3—(132), 0‘4—(321)a Og

Il
N\
N —
—_— N

(V8]
Nadb
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EXERCISES

Exercise 1-9. Express the given permutation as a product of disjoint cycles and also as a product

of transpositions.
2
1 (12345] 2(12345} 3(12345j
35412 52413 25431
2
4‘[123456j 5 123456] 6. 123456]
654123 153264 543126
2
7[1234567} . 1234567j 0 1234567j
6541237 5741236 3421576
Exercise 10-16. Find the order of the permutation in Exercise:
10. 1 11. 3 12. 4 13. 5 14. 7 15. 8 16. 9
Exercise 17-20. Solve for ¢ in the symmetric space S .
17. (1,3,5)c = (2,4,1) 18. (1,3,5)0 = (2,4,1)(4,5)
19. (2,4,1)(4,5)c = (1,3,5) 20. (1,3,5)%c = (2,4,1)3

21.

22.

23.

24.
25.
26.
27.
28.

29.

Let a be an element of a group G. Show that the map A,: G — G givenby A g = ag isa
permutation on the set G.

Referring to Exercise 21, show that H = {A a|a € G} is a subgroup of S; (the group of all
permutations on G).

Prove that if ¢, 0 are disjoint cycles in S, , then 66 = c0.

Prove that there is no permutation ¢ such that 6(1,2)c~! = (1,2, 3).

Prove that for any permutation ¢ and any transposition t: 6to~! is a transposition.
Prove that if T is a k-cycle, then cto~! is also a k-cycle for any permutation G .
Prove that there is a permutation ¢ such that 6(1,2,3)c"! = (4,5, 6).

Prove that every k-cycle in S, has order £.

Use induction to show that any cycle (a,, a,, ..., a,) in §, can be expressed as a product of
transpositions as follows:
(ay,ay,...,a,) = (a,a.)(ay, a,_;)...(aya,)
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30. Show that if & is a cycle of odd length, then o2 is a cycle.

31. List all the elements in the alternating group of degree 4: 4, .

32. Let Hbe a subgroup of S, . Prove that either all of the elements of H are even, or that exactly
one-half the elements in H are even.

33. Express the k-cycle (a, a,, ..., a;) as a product of k + 1 transpositions.

34. Let 1, 1, be transpositions with T, # t,. Show that:
(a) If T, and 7, are disjoint, then 1,7, can be expressed as the product of two 3-cycles.
(b) If T, and 7, are not disjoint, then 1,7, can be expressed as a product of 3-cycles.

35. Show that every even permutation ¢ € 4, , with n > 3, is a product of 3-cycles. Suggestion:

consider Exercise 34.

36. Let o be a k-cycle. Show that 6 € 4, if and only if oto~! € 4, for every transposition t.

PROVE OR GIVE A COUNTEREXAMPLE

37. The permutation equation (1,2, 3)c"! = (1,2, 4)(5, 6, 7) has a solution.
38. The transposition (1, 2) in S5 can be expressed as a product of 3-cycles.

39. The identity in S, cannot be expressed as a product of three transpositions.
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§6. NORMAL SUBGROUPS AND FACTOR GROUPS

An important recollection from page 67:

If H is a subgroup of a group G, then a~b if ab™' e H
is an equivalence relation on G. Moreover, the equiva-
lence class [a] is the set:

Ha = {ha|h € H} — aright coset of H.

Let’s switch from right to left, and replay the above development:

THEOREM 2.36 If H is a subgroup of a group G, then a~b if

a'b e H is an equivalence relation on G.
Moreover, the equivalence class [a] is the set:
aH = {ah|h € H} — aleft coset of H.

If G is finite:

The number of elements in each aH equals |H] .

.ot . . v . -1 _
This proof mimics that of PROOF: ~ is reflexive: x~x since x 'x ec H.

LI 2.2, [P S0 ~ is symmetric: a~b = alb =h forsomehe H

= (a7 1h)! = bl
=>bla=h'=b~asince ' e H
~ is transitive: If a~b and b~c, then:
albeH and b'lce H= (ab V) (bc)e H
=aec'e H=ac' e H= a~c
Having established the equivalence part of the theorem, we now ver-
ify that [a] = {ah|h € H}:
belalob~asa~beallb = hforsomehe H
&b =ahsbeaH

As for the rest of the proof:

CHECK YOUR UNDERSTANDING 2.30

Let H be a subgroup of a finite group G. Show that each left coset

aH contains |H| elements.

A : B-14. . . .
nswer: See page Suggestion: Consider the function /: H —> aH.

If H is a subgroup of an abelian group G then for any a € G':
alH = {ahlhe H} = {halh e H} = Ha
(every left coset is also a right coset)
This need not be so if G is not abelian. A case in point:




e=(133.4=231 EXAMPLE 2.10

W —

[\S}
—_
N
Q
)

Il
N —

[\8}
W W
N

SOLUTION: Since |S;|
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Find the partition of §; (margin) into both the

left and right cosets of the subgroup
H = {e,ay}.

= 6 and |H| = 2, each partition is composed

of 3 subsets, one of which is the subgroup H itself (eH = He = H).

As for the

Left Cosets:

eH:H:{e,()L3} (x_123
2132 = as
o
/ 213/

o H = {a,a0y} = {0, 0
O H = {0, 0y03} = {0y, 0y}

Left-Cosets Partition

o, = asH 1 Os

eH = o;H——

6(13

R

S3

rest of the story:

Right Cosets:

He = H = {e, a3} ﬂlﬂﬂ
—231|=q
ol 4
/ 321/

Hoy = {a, 0300} = {oy, 0y

Ha, = {0, 050,} = {0,, 0}

Right-Cosets Partition

e 0Oy s——He = Hoy

o, o5 5—— Ho,, = Hols

S

The above example illustrates the fact that a left cosets aH of a sub-

group H of G need not equal the right coset Ha . Of particular impor-
tance are those subgroups for which left and right cosets are one and

the same:

DEFINITION 2.14

Clearly both G and {e} NORMAL SUBGROUP

are normal subgroups of
any group G.

Index of Nin G

A subgroup N of a group G is said to be
normal in G if for every a € G:
aN = Na
(The symbol NG is read: N is normal in G)
If G is finite, then the number of cosets of

Nin G, namely |G|/|H|, is called the
index of Hin G.

THEOREM 2.37 Let H be a subgroup of a group G. The follow-
ing are equivalent:

(1) aH = Ha foreverya e G.

(i.e: H is normal in G)

(i) aHc Ha foreverya e G.
(iii) aha! € H forevery he Handa € G.
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PROOF: (i) = (ii): Clear.
(ii) = (iii): Let h € H and a € G be given.
Since aH c Ha, ah = ha for some 1 € H. Consequently:
aha! = heH
(iii) = (i) : We show that a H — Ha . A similar argument can
be used to show that Ha c aH:
geaH=g=ahforhe H

=ga! = aha!
by (i) = ga! = hforhe H

=g=ha=ge Ha

Note: If N < G then every element of n € N almost commutes with
every element of g € G in that:
ng = gn for n € N (and not just ng = gn)

Note: One way or showing that a subgroup H of G is normal in G:
grab any element from H

If ahale H
then H is normal

and any element of G

We showed, in Theorem 2.23, page 71, that homeomorphisms pre-
serves subgroups. They fair nearly as well when it comes to normal

subgroups. Specifically:
THEOREM 2.38 [ ¢ $: G — G be a homomorphism.
(a) If N is normal in G, and if ¢ is onto, then
®(N) is normal in G .
(b) If N is normal in G, then ¢—!(N) is nor-
mal in G.
PROOF: (a) Assume that ¢ is onto and that NV is normal in G.
We are to show that for any ¢(n)e ¢(N) and any ae G,
adp(n)a! € §(N) . Let’s do it:
Choose a € G such that ¢(a) = a. Then:
ap(mya = d(a)dp(m)[¢(a)]™!
Theorem 2.23(b), page 73: = q)(a)d)(n)d)(a*l)
¢ is a homomorphism: = d)(ana‘l) % d)(N)

N is normal in G



Answer: See page A-14.

From Example 2-10:
—{1 2 3k
Q0 =312 | =¢
=12 3k
while:
—1 2 3k
oo, 2 321
5%4 .
131 2k

1L%)
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(b) Let N be normal in G. We show that the subgroup
o '(N) = {n e G|¢(n) € N} isnormal in G
by showing that for a € G and n € ¢ 1(N), ana™! € $~1(N):
d(ana) = p(@)b(mp(a) € N

N is normal in G

CHECK YOUR UNDERSTANDING 2.31

Give an example illustrating that a homomorphism ¢: G — G that is
not onto need not carry normal subgroups of G to normal subgroups

of G. (Suggestion: Consider Example 2.10.)

Let’s reconsider the left-coset partition of the subgroup
H = {e, a;} of Example 2.10. That partition, appearing 0L, Os

on the right, broke the group S into three disjoint pieces;
each of which has “two names:”
o H = osH,eHd = a;H,and a,H = a,H

€ Oj

Oy Oy

Can we impose a group structure on that partition? Here is a noble

attempt:
(ocl.H)(och) = (ocl-ocj)H

Yes, the above product certainly yields another left coset, but there is
a fatal flaw — the “product” is simply not defined:

(o,00)H=eH=H
BUT: while (see margin)
(asoy)H = o, H

o H=osH
o,H = a,H

The above fatal flaw is averted whenever the coset-partition of a
group G stems from a normal subgroup of G.

THEOREM 2.39 If N« G and
G/N = {aN|a € G}
then G/N is a group under the operation

(aN)(bN) = (ab)N

G/ N is said to be the factor group of G by N,
read: G modulo H or G mod H

Factor groups are also said to be quotient groups.

PROOF: We first show that the operation (aN)(bN) = (ab)N is well
defined:

For aN = aN and bN = bN we need to establish the set
equality (ab)N = (ab)N.We show that (ab)N c (ab)N and
leave it for you to verify that (ab)N < (ab)N:
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Answer: See page A-14.

g€ (ab)N =g = abn forsome n € N
Since a e aNand b e bN: —=> g = an bn,n for some n,n, € N
=g = c‘z(nll_))n3 where ny; = n,n
Since N is normal in G: => g = a(5n4)n3 for some n, € N
=g = ZZB(n4n3) € (ab)N
Having legitimatized the operation (aN)(bN) = (ab)N, we now

verify that, under that operation, the nonempty set G/N 1is a group
(see Definition 2.1, page 41):

Closure: For every aN, bN € G/N, (aN)(bN) = (ab)N € G/N.
Associative: (¢NDN)(cN) = (ab)N(cN)
= [(ab)c]N = [a(bc)]N
= aN(bc)N = aN[bNcN]
Identity: For every aN € G/N, aNeN = aN.
Inverses: For every aN € G/N, aNa 'N = aa !N = eN (=N).

When confronted with the factor group G/N it is important that you
keep in mind that you are dealing with a set of sets!
In particular, the identity element in G/N is the set N itself,
which may have many names:
N = eN = aN foranya € N

Similarly, the inverse of the element (set) aN is the element
a !N, which may also have many names:
a'N = (a'b)N forany b € N
(after all, the set bN equals the set N for any b € N)

THEOREM 2.40 Let N be normal in G. The natural projection
map n: G —> G/N givenby n(g) = gN isa
homomorphism, and Ker(m) = N.

PROOF: For g, g € G: n(gg) = ggN = gNgN = n(g)n(g).
Moreover: g € Ker(n) & n(g) = gN = Noge N

/I\
Recall that N is the identity in G/N

CHECK YOUR UNDERSTANDING 2.32

(a) Show that if G is a finite group and if N < G, then:

_ l¢]
|G/ N| N

(b) Let N be a normal subgroup of a cyclic group G. Prove that G/N
is also cyclic.
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THE CENTER AND COMMUTATOR SUBGROUPS

Every group G contains two particularly important normal subgroups,
the center of G and the commutator subgroup of G, where:

DEFINITION 2.15 The center of G, denoted by Z(G), is the set

of elements of G that commute with every
element of G-

CENTER OF G Z(G) = {ae Glag=ga Vge G}
COMMUTATOR The commutator subgroup of G, which we
SUBGROUP OF G (epote by C(G), is the generated group:

C(G) = (aba'b|a, b e G)
As advertised:

THEOREM 2.41 Both Z(G) and C(G) are normal subgroups
of the group G.

PROOF: Turning to the center of G. Since ¢ € Z(G), Z(G) = D.
Closure: For a,b € Z(G),andany g € G:
(ab)g = a(bg) T a(gh) = (ag)b T (ga)b = g(ab)
b e Z(G) b e Z(G)

Inverses: For g € Z(G) and forany a € G (sameas “forany a!' € G )

ag=ga=(ag)"! = (ga) ' =>gla! =alg!
Replacing @ with a~! in the above argument we conclude

that g~! commutes with every element of G.
Normal: Employing Theorem 2.37(ii) we show that for every a € G
Using Theorem 2.37(iii): aZ(G)c Z(G)a:
ForzeZ(G) anda e G: x € aZ(G)=x = ag with g € Z(G)

aza™! = aalz = z € 2(G) =x = ga=xeZ(G)a

Now for C(G). We already know that C(G) is a subgroup of G (see
Definition 2.8, page 65). As for the rest of the story:

Normal: For x = aba 'b! and any c e G, let x = cab and
y = a'b~lc! . We then have:
xyx~lyl = (cab)(a 'b e ) (b la e ) (cha)
= (cab)(a'b~lcl) = c(aba b 1)c!
So: c(aba'bc ! = xyx1y1 e C(G)
Turning to Theorem 2.37(iii), and the Principle of Mathematical
Induction, we now verify that C(G) is normal in G.
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LIfx = (aba7'byl), then, forany c € G: cxc™! € C(G).

II. Assume that for n = k and any ¢ € G':

x = (a;bya7'biM)(ayb,a5'05Y) - (aybra; bit) = exce™! € C(G)
II1.Then:

cl(aybyar'by)(aybyay'byt) - (apbyai b )y by yah bk e
= cla\byay' by ) (aybyay'by") - (apbyap! by e(ay 4 by yagh bl )]
= le(aybyai'by' Y aybyay' by ") (@b b e Nlea o by yaih 1 bk )e']
i) )

By Il: (*) € C(G). By L: (**) e C(G)
Consequently:
x = (aybyay'bih)--(a, o 1byy a5k 1 bpk ) = exe™! € C(G)

THEOREM 2.42 For N normal in G, the factor group G/N is
abelian if and only if C(G) < N.
PROOF: G/N is abelian if and only if for any a, b € G:
aNbN = bNaN < abN = baN < (ba) '(ab) e N
<alblabe No C(G)c N

CHECK YOUR UNDERSTANDING 2.33

Let G be an abelian group. Show that Z(G) = G and that
Answer: See page A-14. C(G) = {e}

ISOMORPHISM THEOREMS

THEOREM 243 If ¢: G—> G’ is a homomorphism, then

FIRST K = Ker(¢) is normal in G and:
ISOMORPHISM
THEOREM G/K=¢(G)

PROOF: We utilize Theorem 2.37(iii) to establish the normality of K.
Fork € K and g € G weshow that gkg~! € K ; whichis to say,

that ¢(gkg™!) = e':
i i 2
d(ghkg™) = d(@)d(H)d(g™)
Theorem 2.230). page 73 = §(2)e’[d(g)]! = ¢()[d()]" = ¢
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We complete the proof by showing that the function
y: G/K— ¢(G) given by y(gK) = ¢(g)
is an isomorphism. To begin with, we need to verify y is well defined:
aK = bK=ab ' e K= ¢(ab’!) = ¢’
= ¢(a)p(b!) = ¢’
= ¢(a) = ¢(b) = y(aK) = y(bK)
v is One-to-one: We are to show that:
y(aK) = y(bK) = aK = bK
Which is to say: y(aK) = y(bK)=>ab! € K.Let’s do it:
y(aK) = y(bK) = ¢(a) = ¢(b) = d(a)[9(D)]! = ¢’
= (p(@)p(d 1) =e)

=¢(ab)=e' =ab ek

vy is Onto: For given ¢(g) € ¢(G), v(gK) = ¢(g).

v is a homomorphism: Y(aKDK) = y[(ab)K]
= ¢(ab) = dp(a)(b)
= Y(aK)y(bK)

EXAMPLE 2.11 Show that:
(Z,%)=Z/(nZ)

SOLUTION: In Example 2.6, page 72, we showed that the function
¢: (Z,+) > (Z,, +) given by ¢(m) = r where m = ng+r with

0 <r<n is a homomorphism.
While ¢ is not necessarily one-to-one it is certainly onto, as, for any
seZ, ¢(s) = s. Applying Theorem 2.43, we then have:
Z,=7/K where K = Ker(9).
Noting that:
Ker(¢) = {m|dp(m)=0} = {kn|k e Z} T nZz
Example 2.4, page 62
we conclude that: Z,=27/(nZ)

CHECK YOUR UNDERSTANDING 2.34

Represent the group G = {—1, 1} (under standard integer multipli-
cation) as a factor group of the symmetric group S, .

Answer: G=S,/4,
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Here are a couple more isomorphism theorems for your consider-

ation:
THEOREM 2.44 Let H be a subgroup of a group G, and N a normal
SECOND subgroup of G. Then:
ISOMORPHISM _
THEOREM HN = {hn|h € H,n € N}

is a subgroup of G, H N N is normal in G, and:
H/(HNN)=(HN)/N

PROOF: See Exercise 29.

THEOREM 245 Tet ¢: G— G’ be an onto homomorphism with

THIRD kernel K. If N’ is normal in G', then:
ISOMORPHISM
THEOREM N =o¢6'(N') = {aeG|d(a) e N'}
1s normal in G and:
G/N=zG'/N'

PROOF: See Exercise 30.

CHECK YOUR UNDERSTANDING 2.35

Use Theorem 2.42 to verify that the isomorphism G/N=G'/N' in
Theorem 2.44 can also be expressed in the form:
G/N=(G/K)/(N/K)

Answer: See page Al4. (“cancel” the K in the numerator and denominator)
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EXERCISES

1-4. Determine if the give subgroup / is normal in the symmetric group ;.

1

L H = ((1,2)) 2. H=1((1,2,3) 3. H=((1,3,2) 4 H=4,

5. (a) Show that Z x Z/{(1, 1)) is an infinite cyclic group.

10.

11.

12.
13.

14.
15.

16.

17.

18.

19.

20.

(b) Show that Z x Z/((2, 2)) is not a cyclic group

Show that if N, and N, are normal subgroups of G, then N; N N, is also normal in G.

Let N be a normal subgroup of G and let H be any subgroup of G. Show that
NH = {nh|n € Nand h € H} is a subgroup of G.

Let G be abelian and let H be a subgroup of G. Show that G/ H is abelian.
Let G be cyclic and let H be a subgroup of G. Show that G/H is cyclic.

Let {N,}, . 4, beacollection of normal subgroup of G. Prove that ~ N, is normal in G.
oacd

Show that if there are exactly 2 left (or right) cosets of a subgroup H of a group G, then

H<G.

Show that if a finite group G has exactly one subgroup H of a given order, then H< G.

Show that if H is a finite subgroup of G and if H is the only subgroup of G with order |H]|,
then H<G.

Let n be the index of the normal subgroup N in G. Show that a”” € N forevery a € G.

Let G be a group containing at least one subgroup of order n. Show that the intersection of all
subgroups of order # in G is normal in G. Hint: first show that if a group H if of order », then

show that gHg! is also a subgroup of order n forall g € G.

Show that the set of inner automorphisms of a group G is a normal subgroup of the group of
all automorphisms of G. [see CYU 2.22(c), page 77]

Let G be a group. Show that the set S = {g € G|gxg ! =x Vx € G} is a normal subgroup
of G.

Let N be a normal subgroup of G, and let a, b, ¢, d € G be such that aN = ¢N and
bN = dN. Show that abN = cdN.

Let G be a finite group of even order with n elements, and let H be a subgroup with n/2 ele-
ments. Prove that H must be normal. Suggestion: Consider the map ¢: G — (—(1, 1),-).

Let A and K be normal subgroups of G with H N\ K = {e}. Show that hk = kh for all
heHand ke K.
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21.
22.
23.

24.

25.
26.
27.

28.

29.

30.

31

Let N be a normal subgroup of G such that G/N is cyclic. Show that G is cyclic.
Let G be a group. Show that any subgroup of Z(G) is a normal subgroup of G.

Let G be a group. show that C(a) = {g € G|ag = ga} is a subgroup of G (called the cen-
tralizer of a).

Prove that the center of a group G is the intersection of all the centralizers in G; that is:

Z(G) =  C(a) (See Exercise 22).
aeG
Show that a € Z(G) if and only if C(a) = G. (See Exercise 22).

Find both the center and the commutator subgroup of S .

Let ¢: G — G’ be an onto homomorphism with kernel K. Prove and if H' is a subgroup of
G',andif H = ¢~ (H'),then H/K=H'.

Verify that there is no subgroup of order 6 in the alternating group 4, . (Note that ‘A 4| = 12).
Sow that if NV is not a normal subgroup of G, then the coset operation (aN)(bN) = (ab)N is
not well defined.
Prove Theorem 2.44.

. Prove Theorem 2.45.

PROVE OR GIVE A COUNTEREXAMPLE

32. If Nq G and if H is a subgroup of G, then HNN< G.

33. If H«a G and K< H, then K<« G.

34, If HN N< G then either H or N must be normal in G.

35. Le ¢: G = G' be a homomorphism. If N« G, then ¢(N)« G'.

36. Le ¢: G — G' be a homomorphism. If N <1 G’, then ¢-1(N")< G-

37. Le ¢: G — G’ be an onto homomorphism. If N <1 G', then ¢-1(N")< G.
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§7. DIRECT PRODUCTS

We begin by extending the Cartesian product definition of page 2:
DEFINITION 2.16 The Cartesian Product of » nonempty sets:

CARTESIAN X, Xy oos X,
PRrRODUCt is denoted by:

n
X, xXyx--xX |or HXI
i=1
and consists of all n-tuples:

(x5 X5, ..., x,,) Where X; eXl. for 1<i<n

In particular: R xR is the familiar Cartesian plane while
R x R x R is the Euclidean three-dimensional space.
Imposing a group structures we arrive at:

DEFINITION 2.17 The (external) Direct Product of the n
DIRECT PRODUCT groups G, G,, ..., G, is denoted by:
(EXTERNAL) n
G, xG,x -+ xG, orby HGZ.
i=1
consists of all ordered n-tuples

(a,a,, ..., an)whereal. € Gi forl1 <i<n
and where their multiplication is defined
component-wise; that is:

(aj,ay, ....,a,)(b, by, ....;b,) = (a;b),ayb,, ...,a,b,)

e Uy Uy

CHECK YOUR UNDERSTANDING 2.36

(a) Verify that G, x G, x --- x G, is a group.

(b) Prove that the group G, x G, x --- x G, is abelian if and only if
Answer: See page A-15.

each G; is abelian.

EXAMPLE 2.12 (a) Verify that Z, x Z; is cyclic.
(b) Verify that Z, x Z; x Z, is not cyclic.
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SOLUTION: (a) We know that |Z, x Z3| = 2-3 = 6. Using the sum

notation in the abelian group, we simply observe that the element
(1, 1) has order 6:

2(1,1) = (0,2)
3(1, 1) = (1,1)+2(1,1) = (1,1)+(0,2) = (1,0)
4(1,1) = (1, 1H)+3(1,1) = (1, 1)+ (1,0) = (0, 1)
5(1,1) = (1,1)+4(1,1) = (1,1)+(0,1) = (1,2)
6(1,1) = (1,1)+5(1,1) = (1,1)+(1,2) = (0,0) Ah!
(b) We show that the group Z, x Z; x Z,, which is of order 24, con-

tains no element of order greater than 12:
Let (a, b, c) € Z, x Zy x Z,. Since:

12a = 0,12b = 0, 12¢ = 0 in the groups Z,, Z5, Z,,
respectively: 12(a, b, c¢) = (0,0,0).

In the above argument, 12 is the smallest positive integer that is divis-
ible by 2, 3, and 4. In general:

DEFINITION 2.18 The least common multiple of nonzero inte-

LEAST COMMON gers ay, a,, ..., a,, written lem(a,, a,, ..., a,)
MULTIPLE is the smallest positive integer that is a multiple
of each a;; i.e. is divisible by each q;.

THEOREM 2.46 n
Let (a;, a,, ...,a,) € H G, . If the order of a;

i=1
in G, is r;, then the order of (a,, a,, ..., a,) in

G xGyx--xG,islem(r,ry, ..., 7,).
PROOF: Let M = lem(r(, r,, ..., r,) . Since each ri‘M:
(ay, ap, ...,a,)" = (e, e,, ..., €,)
Moreover, for any positive integer 0 <m < M :
m m m
(a,ay, ....,a,)" = (ay,a,,...,a,)# (e, e, ...,e,)
Why is that so? Because since M is the smallest positive integer divis-

. m
ible by each 7;, some a; #e;.

EXAMPLE 2.13  Find the order of (1, 5,4) in Z, x Zg x Z5,.

SOLUTION: Let 7, r,, r; denote the order of 1 in Z,, the order of 5

in Z, and the order of 4 in Z,, respectively.
Employing CYU 2.11(c), page 59 (margin) we find that:
ry=2,r,=6,ry=15

Forme Z,:

n

o(m) = ged(m, n)
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All that remains is to calculate the least common multiple of the
above orders:

o(1,5,7) = lem(2, 6,15) = 30 |
PR

3.5: needone 2, one 3,andone 5: 2-3-5

2

CHECK YOUR UNDERSTANDING 2.37
Determine the order of (3,3,4) in Zgx Zy x Z 4.

Answer: 4

THEOREM 2.47 The group Z, x Z, is cyclic and isomorphic

to Z,, if and only if n and m are relatively
prime.

PROOF: Assume that n and m are relatively prime. Theorem 2.42 tels
us that o(1, 1) = nm; which is to say:
Z,xZ, = ((1,1))
Since |Z, x Z,,| = nm:
Z,xZ, =(Z,. %) [see Theorem 2.26(a), page 77]

As for the converse, assume that gcd(n, m) = d> 1. Noting that

’% is divisible by both n and m, we find that, for any

(a,b)eZ,xZ,: ’%(a, b) = (0,0). Since no element of Z, x Z,

has order greater than % , Z,x Z, is not cyclic.

CHECK YOUR UNDERSTANDING 2.38

Prove: The group Zy XZ, X X2, is cyclic and isomorphic to

Zy p,..n, ifand only all pair of the numbers n,, n,, ..., n, are
Answer: See page A-15.

relatively prime.

INTERNAL DIRECT PRODUCT

On the surface, the following definition appears to be far removed
from Definition 2.17:

DEFINITION 2.19 A group G is said to be the (internal) direct
product of n normal subgroups

DIRECT PRODUCT
(INTERNAL) Ny, Ny, s N,

if every g € G has a unique representation
of the form

g = a,a,...a,

where each a; e N, for 1 <i<n.
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CHECK YOUR UNDERSTANDING 2.39

Show that if G is the internal direct product of two normal subgroups
Answer: See page A-16. Hand K, then HN K = {e}.

Appearances aside, the internal and external direct product concepts
are “algebraically equivalent,” in that every internal product space is
isomorphic to an external product space, and every external product
space is isomorphic to an internal product space.

Taking the easy way out, we will content ourselves by establishing the
above claim in the special case when the group G is the internal direct
product of just two normal subgroups:

THEOREM 2.48 (a)lf G is the internal direct product of the
normal subgroups H and K, then:

HK=HxK
(b) If G = G, x G,, then there exist normal
subgroups N, and N, in G such that:
G, x G,=N,|N,

PROOF: (a) We first show that forall # € H and k € K
hk = kh (%):
Since i € H and H« G: kh k' € H. So: h(kh 'k ') e H.
Since K< G: hkh™' € K. So: (hkh~V)k! e K.
Since, by CYU 2.39, hkh 'k'' e HNK = {e}: hk = kh.

Turning to the external product H x K of the two groups H and K, we

now show that the function ¢: H x K — HK given by ¢(h, k) = hk
is an isomorphism:

One to one: O(%y, k) = &(hy, ky) = hiky = hyk,
=h, = hyand k; = k,
= (hy, k) = (hy, ky)
Onto: Clear.
Homomorphism: For (4, k), (h,, k,) e Hx K:
¢[(h1=k1)(h2a kz)] = ¢(h1h29 klkz) = h1h2k1k2

= ¢(h13 k])d)(hza kz)
(b) Let G = G, x G,. It is easy to see that:
Ny = {(e},g)|g € G} and N, = {(g,¢,)|g € G}
are normal subgroups of G with Ny "N, = {e} <(e}.e)),
and that G = N|N,. That being the case, the identity map itself

is an isomorphism from the external direct product G = G, x G,
to the internal direct product G = NN, .
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THE FUNDAMENTAL THEOREM OF FINITELY

GENERATED ABELIAN GROUPS

And here it be, presented without proof:

THEOREM 2.49 Every finitely generated abelian group is isomor-

While an abelian group gener-
ated by an element of order 2,
one of order 8, another of
order 9, and a couple of gen-
erators of infinite order need
not consist of S-tuples, it is
nonetheless isomorphic to (*).

FUNDAMENTAL COUNTING
PRINCIPLE:
If each of n choices is fol-
lowed by m choices, then the
total number of choices is
given by n-m .
There are three choices
for the number of 2’s in
the direct product, a
choice of one for the
number of 3’s, and a
choice of two for the
number of 5°s.
Total number of
choices:
3-1-2=6

Answer: See page A-15.

phic to a direct product of cyclic groups of the
form:

Zr XZr X"'XZr XZm
pll p22 pnn

where the p; are primes, not necessarily distinct,
and where the 7; and m are positive integers.
Moreover, the direct product is unique, up to order.

For example:
G =ZyxZgxZyx ZxZ (*)
is a finitely generated abelian group, and here is a particularly nice
choice for its generators:
(1,0,0,0,0),(0,1,0,0,0),(0,0,1,0,0),(0,0,0, 1,0),(0,0,0,0, 1)

could have chosen any 1 <i<7 T could have chosen any non-zrto inte/lg\er

could also have chosen 2, 4, 5, 7, or 8

EXAMPLE 2.14 Find all abelian groups of order 600 (up to iso-
morphism).

SOLUTION: Any finite abelian group G is surely finitely generated
(the elements of G itself generate G).
Employing Theorem 2.45 to:

600 = 23.3.52
we arrive at the following six possibilities (see margin):
G, = ZyxZyxZyx Ly x Ls X Zs
Gy = ZyxZy X Loy x Zy X Zys
Gy = ZyxZyx Ly x Zsx Zs
Gy = ZgxZyxZsxZs
Gy = ZyxZy X Zy X Zys
Gy = Zg X Zy X Zys

It can be shown that none of the above groups is isomorphic to any of
the rest. For example, since G5 contains an element of order 4 while

G, does not: G, 7.% G5 (see Exercise 36, page 82).

CHECK YOUR UNDERSTANDING 2.40

Referring to the above example, show that G, % Gy
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Lagrange’s Theorem assures us that the order of any subgroup H of a
The alternating group 4, , of  finite group G must divide the order of G. In the event that G is abelian,

order 12, has no subgroup of  the converse also holds:
order 6. Yes, but 4, is not an

abelian group. THEOREM 2.50 If mdivides the order of an abelian group G,
then G has a subgroup of order m.

PROOF: Theorem 2.45 enables us to express G in the form:
Zplr] X Zp;z X+ X anrn
Since m divides the order of G:
m = p|'py..p., where 0<s,<r,.
By CYU 2.15, page 64:
py’
ged(pi's pi ™)

0<p;’i_si> = = plf’i—(ri—si) = psi

It follows that:

'y =38

(P10 x{p ) x o x(py )
is a subgroup of G of order m.
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EXERCISES

Exercise 1-6. Find the order of the given element if the give group.

1.

(2,3) in Z, x Z, 2. (2,3)inZsxZy,

3. (2,2,8)inZyxZyxZ, 4. (2,2,8)inZyxZyx Zy,

123 ]]. 123 ]).
5. 12, mnzZ,xS 6. |3, mzZ,xS
([213D S [(231D S

Exercise 7-10. Find the order of each element if the given group.

7.

Zy X Zy 8. Z,xZ, 9. Z,xZ,xS, 10. Z; xS,

Exercise 11-14. Find all proper subgroups of the given group.

1.

Zyx Zy 12. Z,xZ, 13. ZyxZyxS§, 14. Z; xS,

Exercise 15-18. Find all abelian groups G of the give order (up to isomorphism).

15. o(G) = 36 16. o(G) = 100 17. o(G) = 180 18. o(G) = 243

19.

20.

21.

22.
23.
24.

25.

26.

27.

28.

Determine the number of elements of order 6 in Z; x Zj, .

Determine the number of elements of order 7 in Z,4 x Z.

Show that the Klein 4-group V' (Figure 2.1, page 43) is isomorphic to Z, x Z, .

Show that (Zx Z2)/{((1,1))=Z.

Show that (ZxZxZ)/{((1,1,1))=Zx Z.

Use the Principle of Mathematica Induction to show that for finite groups G, G,, ..., G, :
|Gy x Gy x - x G| = [G]|Gy...|G,|

Let G, and G, be groups. Show that G, x G, = G, x G, .

Let G, and G, be groups. Show that Z(G, x G,) = Z(G,) x Z(G,) (see Definition 2.15,
page 96).

Let G, and G, be groups. Show that {¢;} X G, < G| X G, and that:
(G, xGy)/ (e} xGy) =G,

Let H< G, and K< G, . Show that # X K < G| x G, and that:
(G, x G)/(HxK)=G,/Hx G,/K
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29.

30.

31.

32.

Part 2 Groups

Let G, and G, be groups. Show that the order of (a, b) € G| x G, is the leas common
multiple of o(g) and o(h).

Prove that the order of an element in a direct product of a finite number of finite groups

{G; }lr.l= , 18 the least common multiple of the orders of its components:
O(gla g29 cee gn) = lcm[o(g1)9 O(gZ)a seey O(gn)]
Let Gbeagroupand K = {(g,2)|(g € G)} < G x G. Prove that
() K=G (b) K<1G x G if and only if G is abelian.

Let G = G, x G, x -+ x G, be a direct product of groups. Show that the projection map
n;: G— G; givenby n,(g, 85, --» & ---»&,) = &; 15 a homomorphism

PROVE OR GIVE A COUNTEREXAMPLE

33.

34.

35.

36.

The groups Z, x Z,, and Z, x Z are isomorphic.
The groups Z, x Z, x Z3 and Zg x Zg are isomorphic.
The groups Z, x Z; x Z; and Z3 x Z, x Z, are isomorphic.

Let G, H, K denote groups. If G x K= H x H,then G= H.




From an axiomatic point of
view, multiplication takes
a back seat to addition. Its
only obligation, apart from
closure and the associative
axiom, is to cooperate with
addition via the left and
right distributive property
of Axiom 3.

Answer: (a) No
(b) See page A-16.
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Part 3
From Rings To Fields

§1. DEFINITIONS AND EXAMPLES

The familiar set of integers can boast or two operators: addition and
multiplication. Though The integers under addition turns out to be an
abelian group, the multiplication operator does not fair as well: (5, for
example, has no multiplicative inverse).

Multiplication is, however, an associative operator:
a(bc) = (ab)c Ya,b,ce Z
and it plays well with addition:
a(b+c) =ab+acVa,b,ce”Z
Just as the integers under addition directed us, in part, to the defini-
tion of a group (“in part,” as a group need not be abelian), so then do
the integers under addition and multiplication direct us, in part, to the

definition of a ring (“in part,” as a ring need not have a multiplicative
identity). Specifically:

DEFINITION 3.1 A ring (R,+,-) (or simply R) is a set R

RING together with two binary operators, called
addition and multiplication; for which:

Group Axiom: 1. (R, +) is an abelian group.

Associativity Axiom: 2. Forall a,b,ce R:a-(b-c) = (a-b)-c
(multiplicative)
Distributive Axioms: 3. Forall a,b,c € R:

a-(b+tc)y=a-b+ta-c
(a+b)-c=a-c+b-c

The set Z of integers under standard addition and multiplication is a
ring. The same can be said for the set O or rational numbers, and the set

R of reals.

CHECK YOUR UNDERSTANDING 3.1

(a) Does there exist an operator «x» on the permutation group
S; = (85, ©) for which (S§;, o, *) is a ring?

(b) Let (G, +) be an abelian group. Show that there exists an opera-
tor «» on G for which (G, +, %) is aring.
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EXAMPLE 3.1 Let R, and R, be rings. Prove that the group

Noe that addition and mul-

tiplication in R, x R, are (R{ xR,, +,-) where
both being defined in
terms of their correspond- (a,b)+(c,d) = (atc,b+d)
ing established operations _
in R, and R,. o (a,b)(c,d) = (ac, bd)
1S a ring.

SOLUTION: Appealing directly to Definition 2.1, page 41, we first
show that (R, x R,, +) is an abelian group:
Associative:
Forany (ay, b)), (a,, b,), (a3, b3) € Ry xR,
(ay, by) +[(ay, by) + (a3, b3)] = (ay, b)) +(ay tas, by + b3)
= [a,t(ay +a3), b, +(by+ b3)]
= [(a,tay) tas (b +by) +b3] = [(ay, by) + (ay, by) ]+ (a3, b3)
Identity: For any given (a, b) € Ry X R,:

(a,b)+(0,0) = (a+0,b+0) = (a,b)
Inverses: For any given (a, b) € R; xR,
(a,b)+(—a,-b) = (a—a,b—-b) = (0,0)
Noting that for any (a,, b,), (a,, b,) € Ry xR,
(ay, b))+ (ay by) = (a,+tay, by +b,) = (ay+a;,b,+b)) = (a,, b,) +(a, b))
we conclude that (R, x R,, +) is an abelian group.

Moving on to the multiplicative axioms of Definition 3.1:
Associative: For any (a, by), (ay, b,), (a3, b3) € R| xR,
(a1, by)[(ay, by)(as, by)] = (ay, by)(azas, bybs)
= la,(aya3), b(b;05)]
= [(ayay)as, (b15,)bs] = [(ay, by)(ay, by)1(as, b3)
Distributive: For any (a,, b)), (a,, b,), (a3, b3) € R; xR,
(ay, by)[(ay, by) + (a3, b3)] = (ay, by)(ay + az, by +b3)
= la,(ay * a3), b(b, + b3)]
= (aya,t ayaz, b1by + bbs)
= (a,a;, b1by) + (aya3, b,b3) = (ay, by)(ay, by) + (ay, by)(as, b3)
In a similar fashion once can show that:

[(ay, by) +(ay by)](as, by) = (ay, by)(as, by) +(ay, by)(as, by)

CHECK YOUR UNDERSTANDING 3.2

Answer: See page A-16 Sow that nZ, under standard addition and multiplication, is a ring.




There is only one product tak-
ing place in n(ab) ; namely the
ab. The n is not involved in a
product— it represents a sum.
For example:

3(ab) = ab+ab+ab

Given your arithmetic evolu-
tion, you may be thinking
along these lines:

(-a)(=b) = (-1a)(-1b) = ab
Tisk. For one thing, the ring R
need not even have a unity.
That —a, for example, is the
additive inverse of a. That
being the case: —(—a) = a

Answer: See page A-16

An element a € R distinct
from 0 is a multiplicative
identity (or unity) if for
every be R: ab = ba = b.
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THEOREM 3.1 Letaandb be clements of a ring R. Then:

(a) a0 = Oa

0

(b) a(=b) = (-a)b
(©) (-a)(=b) = ab
(d) n(ab) = (na)b

PROOF: (a) a0 = a(0+0) = a0+ a0

a0—a0 = a0
0 = a0
(b) Since a(-b) +ab = a(—b+b)
Since (—a)b+ab = (—a+a)b

a0
0b

= —ab

a(nb) for any integer n.

(see margin)

0: a(-b)
0: (~a)b

—ab.
—ab.

Since a(-b) = —ab and (—-a)b = —ab: a(-b) = (-a)b.
(c) (—a)(-b) r [—(—a)]b = ab (see margin).

by (b)
As for (d):

CHECK YOUR UNDERSTANDING 3.3

Let a and b be elements of a ring R. Show that for every n € Z:

n(ab) = (na)b = a(nb)

While Definition 3.1 stipulates that addition is a commutative operator

tinaring ( R, +, - ), no such attribute is imposed on the product operator.
Moreover, while every ring contains the additive identity “0”, a ring

need not contain a multiplication identity “1” (see margin).

Bringing us to:

DEFINITION 3.2

Commutative Ring

Ring with Unity

if ab = ba forevery a,b € R.

A ring (R, +,-) is said to be commutative

A ring with a multiplicative identity (or

unity) is said to be a ring with unity.

For any n > 1, the commutative ring nZ of CYU 3.2 is an example of
a ring that does not have a unity. Here is an example of a ring that is not

commutative:
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EXAMPLE 3.2 Show that the set of two-by-two matrices:

M2X2={ab a,b,c,deﬁR}
Ch h cd

ances are that you are ) .. o .
already familiar Vi’ith the with addition and multiplication given by:
matrix space M, ,, which -5 o ~ C
possesses both an additive ab 4 |a bl _ latab+b
and multiplicative structure. d _ = _ ~
If so, then you already know L€ a4 d ctcd+d

that, forany n>2, M, , isa

non-commutative ring. _a b_ !a [_)] _ {aa +bé ab+ bc_i}

and o
¢ d] ca+de chb+dd
is a non-commutative ring.

SOLUTION: In CYU 3.4 below you are invited to show that

Is it a commutative ring? No:
10O 1) _ |01} (pie (011]10] 100
00]]00 00 00[00 00

CHECK YOUR UNDERSTANDING 3.4

(a) Verify that M, , = (M, ,, +,-) is aring with unity.

Answer: See page A-17. (b) Prove that if a ring contains a unity, then that unity is unique.

You need to distinguish PEFINITION 3.3 Let R be a ring with unity 1. An element

between “unity” and “unit.” . . . - .
it Mkl e et Unit a € R is a unit if there exists b € R such

unit: An element that has a that ab = ba = 1.

multiplicative inverse. The element b is called the inverse of @ and is denoted by a! .

EXAMPLE 3.3 (a) Show that the ring M, , of Example 3.2

has a unity.
(b) Show that {—5 2

is a unit, and that
9 4

23 isnotaunitin M, ,.
—4 -6

SOLUTION: (a) [l 0} is the unity in M, _ ,:
01

Ll by -



A linear algebra approach:

Since det {5 2} #0,

{_5 2} is invertible.

Answer: See page A-18.
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(b) Does there exist a matrix {a b} for which:
cd

5 2[ab] _lad|[-5 2] _ [10],
9 —4llcd |ed|o -4 |o1

Let’s see:
-5 2 ||a _ 10<:> 2a+ 3¢ 2b+3d | _ |10
9 4||lcd 10 1] |—4a—6¢ —4b—6d 01
2a+3c = 1
2b+3d =0
=
—4a—-6¢c =0
—ab-6d =1

If you take the time to solve the above system of equations you will
find that: @ = 2, b = 3, ¢ = -4, and d = —6; leading us to:

522 3| _110
9 —4||-4 -6 01
Also, as you can easily check: {2 3} [_5 2} = [l 0]

-4 6|19 -4 0
As for 23 :
—4 -6

CHECK YOUR UNDERSTANDING 3.5

Verify that {2 3} isnotaunitin M, ,.
-4 -6

THEOREM 3.2 Let R be a ring with unity 1. Then:

(@) (-D(=1) =1
(b) Forany a € R: (-1)a = a(-1) = —a
PROOF: (a) (—1)(-1) T (H)(1) =1
Theorem 3.1(c)
(b) (-1)a T 1(—a) = —a and a(-1) 7 —[a(1)] = —a

Theorem 3.1(b) Theorem 3.1(b)
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You are invited to establish the following result in the exercises:

THEOREM 3.3 o any integer n> 1, (Z,, %, 'n), under addi-

tion and multiplication modulo #; which is to
say,fora,b e Z,:

For example, in

atb =r where:a+b = gn+r,0<r<n
Zg = {0,1,2,3,4,5} .
and (see margin)
143 = 4 and 245 = 1
while a-,b=r where:ab = gn+r,0<r<n

1,3 =3and 2,5 = 4 is a ring.

CHECK YOUR UNDERSTANDING 3.6

(a) Determine the units in the ring Z;

Answer: (a) 1, 5

e q (b) Show that m € Z, is a unit if and only if m and » are relatively
eepage A-18.

prime.

As might be anticipated:

DEFINITION 3.4 A subring of a ring R is a nonempty subset
S of R which is itself a ring under the
imposed binary operations of R.

As was the case with groups, the above subring definition can be
recast in a more compact form:.

THEOREM 3.4 1t (R,+,-) be aring. A subset S of R is a
subring of R if and only if:

(1) (S, +) isasubgroup of (R,+).
(i1) S is closed under multiplication, i.e:

s, 5€S=>s55€S

PROOF: If S is a subring of R then (i) and (ii) clearly hold. Con-
versely, if (i) and (ii) hold then, since a(bc) = (ab)c along with
a(b+c) = ab+ac and (a+b)c = ac+ bc hold for all elements
a, b, c € R, they must surely hold for all elements a, b,c € S.

CHECK YOUR UNDERSTANDING 3.7

Let (R, +,-) be aring. A subset S of R is a subring of R if and only
if for every s,5 € S:
(i)s—seSand(ii) ss € S

Answer: See page A-18 Suggestion: Consider Exercise 38, page 70
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EXAMPLE 3.4 (a) Show that, for any n € Z*, the additive

group nZ under standard multiplication is a
subring of Z.

(b)IsU,,, = {A|Aisaunitin M, ,} a
subring of M, _ ,?
(a) Forany a, b € Z:
na—nb = n(a—>b) e nZ,and (na)(nb) = n(nab) € nZz.
(b) No. U, , is not closed under addition:

Incidentally (U,,,, ) is 10 L 0 10 10 00
a group (under multipli- - - =
cation) (Exercise 40) L) J’ {0 _J € Uz but [0 1:| - [0 _J [ :| # Usua-

CHECK YOUR UNDERSTANDING 3.8

(2) Show that H = {{0 0}
ab

(b) Let a be and element of a ring R. Show that
S, = {xeRlax=0}

a,b e ER} is a subring of M, , 5.

Answer: See page A-18. is a subring of R.
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EXERCISES

Exercise 1-12. Determine if the given set it a ring under the give addition and multiplication oper-
ations. If it is a ring, indicated whether or not it is commutative, and whether or not it has a unity.

1.

2.

3.

© N w

10. The set {

11. The set{

The set nZ under standard addition and multiplication.
The set {2n|n € Z+} of positive even integers under standard addition and multiplication.

The set {2n|(n>0)} of nonnegative even integers under standard addition and multiplica-
tion.

Theset a+b.2 ‘ (a, b € R) under standard addition and multiplication.
The set a + b./2 | (a, b € Q) under standard addition and multiplication.
The set {0, 1} under standard addition and multiplication.

The set 2Z x Q under component addition and multiplication.

The set 2Z x {0, 1} under component standard addition and multiplication.

a,b,ce ER} under matrix addition and multiplication. (See Example 3.2.)

IQQI

= S

a,b,ce iR} under matrix addition and multiplication. (See Example 3.2.)

o Sy

4Oa, b,ce iR} under matrix addition and multiplication. (See Example 3.2)
0

12. The set of polynomials, p(x), with real coefficients, of degree less than or equal to 5, under

standard polynomial addition and multiplications.

Exercise 13-20. Determine if the given subset S of the giver ring R is a subring of R.

13.R=Q,and S = Q*. 14 R=Qand S = Z.
15R=ZxZand S = {(n,n)}. 16.R = Q,and S = {¢?|q € O}.
17.R =ZxZand S = {(n,n)|n<0} . 18R =7ZxZand S = {(n,2n)}.

19.R=M2X2and5:{[‘la}}_ 200R =M, ,, and{ “ a—b]

00 la-b b
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Exercise 21-27. Find the units in the give ring.

21.Z 22.5Z 23.Zs  24.Zs 25. Zx Z 26. Zx Q 27. Z % Zy

28.

29.

30.

31.

32.

33.
34.
35.

36.

37.

38.

39.

40.

41.
42.

43.

44,
45.

46.

47.

Show that any abelian group (G, +) can be turned into a ring by defining ab = 0 for every
a,bedG.
Verify that for any 4, B, C € M, , (see Example 3.2):

(a) (AB)C = A(BC) (b) ABB+C) = AB+AC  (c) (A+B)C

AC+BC

Let R, and R, be rings. Prove that R, " R, is a ring.

Let {R;}"_ be a collection of rings. Prove that ~ R; is aring.

Let {R,}, _ 4, beacollection of rings. Prove that (M R, is aring.
acd

Let a and b be element in a ring R. Show that nm(ab) = (na)(mb) for any integer n and m.
Describe all of the subrings of the ring of integer.

Let the ring R be cyclic under addition. Prove that R is commutative.

Let F(R) denote the set of all real-valued functions. For fand g in F(R), let f+ g be given
by (f+g)(x) = f(x)+g(x) and (fg)(x) = f(x)g(x). Show that under these operation
F(R) is a ring with unity.

The center of a ring R is the set {x € R|ax = xa Va € R} . Sow that the center of R is a sub-
ring of R.

For a and element of aring R, let C(a) = {x € R|xa = ax} . Show that C(a) is a subring of
R containing a.

Show that the center of a ring R is equal to (M C(a). (See Exercises 36 and 37.)

acR

cd

Prove that if @ € R is a unit, then it has a unique inverse.

Prove that [a b} is aunitin M, , ifand only if ad —bc#0.

Prove that the set U, , , = {4]|4 isaunitin M, ,} isa group under multiplication.
Let R be aring, and let @ € R. Show that the set S, = {axa|x € R} is a subring of R.

Show that the multiplicative inveres of any unit in a ring with unity is unique.

Let R be a commutative ring with unity, and let U(R) denote the set of units in R. Prove that
U(R) is a group under the multiplication of R.

Show that if there exists an integer n greater than 1 for which x” = x for every element x in a
ring R, thenab = 0 = ba = 0.

Let & be the least common multiple of the positive integers m and n. Show that
mZNnZ = kZ.
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48.
49.

50.

51.

52.

53.
54.

55.

Let R be a commutative ring. Prove that a2 — b2 = (a+b)(a—b).

An element a of a ring R is idempotent if a2 = a. Show that the set of all idempotent ele-
ments of a commutative ring is closed under multiplication.

An element a of a ring R is nilpotent if a” = 0 for some n € Z*. Show that if a and b are
nilpotent elements of a commutative ring R, then a + b is also nilpotent.

A ring R is said to be a Boolean ring if a2 = a for every a € R . Prove that every Boolean
ring is commutative.

Give an example of finite Boolean ring, and an example of an infinite Boolean ring (see Exer-
cise 50).

Prove Theorem 3.3.
Prove that m is a unit in Z, if' and only if gcd(n, m) = 1.
Let R}, R,, ..., R, berings. Show that:
(@) R; xRy x ... xR with operations
(aj,ay, ....,a,)*t (b, by, ...,b,) = (a;+b,a,+b,y,...,a,+b,)

(aj,ay, ...,a,)(b, by, ....,b0,) = (a\b,ayb,, ...,a,b,)
is a ring.

(b) Ry xR, x ... xR, is commutative if and only if R; is commutative for 1 <i<n.

(¢) Ry xR,x...xR, hasaunity if and only if R, has a unity for 1 <i<n.

PROVE OR GIVE A COUNTEREXAMPLE

56.
57.
58.
59.
60.
61.
62.

If R, and R, are rings, then R U R, is aring.

Inanyring R, ab = 0 = ba = 0.

If x3 = x for all elements x in a ring R, then6x = 0 forall x € R.

In any ring R: a>— b2 = (a+b)(a—b).

If R, and R, are Boolean ring, then R; N R, is a Boolean ring. (See Exercise 50).
If R, and R, are Boolean ring, then R; x R, is a Boolean ring. (See Exercise 50).

The set of all idempotent elements in a ring R is a subring of R. (See Exercise 48).
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§2. HOMOMORPHISMS AND QUOTIENT RINGS

Moving the group-homomorphism concept of page 72 up a notch we

So, a ring homomorphism €OME to::
preserves both the sum and

product operations: DEFINITION 3.5  The function ¢: (R, +,-) > (R',+,.) isa
You can perform sums and RING homomorphism if, for every a, b € R:
products in R and then HoMmoMorphism
carry the results over to the p (1) d(a+b) = d(a)+d(b)
ring R' (via ¢ ), or you can
first carry a and b over to and (2) ¢(ab) = d(a)d(d)
R’ and then perform the
tions in that ring. . ) , D
operations in that ring SR A hgmomorphlsm ¢:R—>R .whlch 18 E.IISO
a bijection is said to be an isomorphism
from the ring R to the ring R'.
ISOMORPHIC Two rings R and R’ are isomorphic, written

R =R’ ifthere exists an isomorphism from
one of the rings to the other.

Condition (1) above assures us that a ring homomorphism is also a
group homomorphism ¢: (R, +) — (R’', +). That being the case, pre-
viously encountered group-homomorphic results remain in effect in the

Why Ker(¢) = {0} rather  cyrrent setting. In particular, Theorem 2.25, page 76, tells us that:

than Ker(¢) = {e}?

gi%agﬁglgg garr:ugsalmg A ring homomorphism ¢: (R, +, - ) = (R', +, - )
(R,+) and (R’, +) is one-to-one if and only if Ker(¢p) = {0} .
that’s why.

EXAMPLE 3.5 et ¢: Z—Z, be given by ¢(a) = ry
where a = g,n+r,, with 0 <7, <n. Show

that ¢ is a ring homomorphism.

SOLUTION: A consequence of CYU 1.18, page 36, and the fact that:
¢(a+b)=[¢(a)+¢(b)] mod n and ¢(ab)=¢(a)p(b) mod n

As it is with group homomorphisms, we have:

THEOREM 3.5 Let ¢: R —> R’ be a ring homomorphism.

(a) If H is a subring of R, then ¢(H) is a sub-
ring of R'.

(b) If H' is a subring of R', then ¢~ 1(H") is a
subring of R.

PROOF: We establish (a) and invite you to verify (b) in CYU 3.9.

Appealing to CYU 3.7, page 116, we show that the nonempty
set ¢(H) is closed under subtraction and multiplication:

O(hy) = d(hy) = d(hy —hy) € 6(H)
0(h)d(hy) = ¢(hyhy) € $(H)



122 Part 3 From Rings To Fields

Answer: See page A-19.

A R

Note that the factor group
R/H exists, as every sub-
group of an abelian group
is normal.

CHECK YOUR UNDERSTANDING 3.9

(a) Let ¢: R —> R' be a homomorphism. Prove that if H' is a sub-
ring of R, then d)‘l(H’) is a subring of R.
(b) Show that the rings 3Z and 5Z are not isomorphic.
(Compare with CYU 2.22(b), page 77)

Everyring ( R, +, -) is, in part, an abelian group: (R, +) . Choosing to
use the sum notation in Theorem 2.39 (page 95) we have:

For any subring H of the ring (R, +,-), the factor group
G/H = {a+H},_; is a group under the coset operation:

(a+H)+(b+H) = (a+b)+H

Fine, but will that factor group G/N evolve into a ring under the

“natural” product operation (a + H)(b+ H) = (ab)+ H? Not neces-
sarily. Indeed, that coset “product” need not be defined. A case in point:

EXAMPLE 3.6 00
Consider the subring H = {{ J a,be ‘R} of
a

CYU 3.8(a), page 117. Show that

SR R

is not a well defined operation.

SOLUTION: To be well define, the set products must yield the same
result, independently of the chosen representative for the two given
cosets. However, while:

POl = |10 v mand |04l = |01 4
0 0] margin [0 1 00 01
10101 + H is not equal to 10101 +H.
00/]00 01/]01
Why not? Because: Lot _ 101 , 011101} _ |02
00/]00 00 0001 00
and |01/ (02 - |0~ ¢ H
00 |00 00
The above example illustrates the fact that for a given subring H of a
ring R, one can not expect that the factor group R/H of Theorem 2.39,
page 95, will become a ring under the (attempted) product

(a+ H)(b+H) = ab+ H. Of particular importance are those subring
for which that expectation will be realized:
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DEFINITION 3.6 A subring/or aring R is a (two-sided) ideal
IDEAL if forany a € [ and every r € R:

raeland arel

Justifying our expectation:

THEOREM 3.6 If/is an ideal in R then the (additive) factor
group R/I turns into a ring under the imposed
multiplication (a + I)(b+1) = (ab) +1.

R/1 is said to be the quotient ring of R by /V.
Quotient rings are also said to be factor rings.

PROOF: The first order of business is to show that the above coset
product operation is well defined; which is to say that:
Ifatl=a+landb+1=0b"+1thennab+1 = a'b'+1.
Lets do it:
atl=a+I=>a-a" e€el=(a-a)bel=ab-abel
since / \IJ/S an ideal
b+I=b+I=b-b"el=a(b-b")el=a'b-a'b el
Since both ab—a'b and a'b—a'b" arein I:
(ab—a'b)+(a'b—a'b") = ab—a'b' el
Thus ab+1 = a'b’' +1
(as 1, being a subgroup of an abelian group, is normal.

As for the ring part of the proof, we need only establish the associative
and distributive axioms of Definition 3.1 (page 111), as we already

know that R/ is an abelian group. Not a serious challenge, now that
we know that the coset multiplications is well defined:

Associative: (a + N[(b+1)(c+ )] = (a+D)[(bc)+1]
= a(bc)+1 = (ab)c+1
= [(a+D)(b+D](c+])
Distributive:
(a+D[b+D+(c+D] = (a+D[(b+ )]
= la(b+o)]+]
= (ab+ac)+1
= (ab+ 1)+ (ac+])

=(a+DHb+DH+(a+D)(ct+])
In the same fashion, one can show that:
[(b+D+(c+D](a+]) = (b+D(a+ D)+ (ctD(at]
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Answer: See page A-19.

Answer: See page A-19.

CHECK YOUR UNDERSTANDING 3.10

(a) Show that /is an ideal in Zifand only if / = nZ.

(b) Let ¢: R — R’ be an onto ring homomorphism. Show that if 7 is
an ideal in R then ¢(/) is an ideal in R’

Roughly speaking:

NORMAL SUBGROUPS ARE TO GROUPS
AS
IDEALS ARE TO RINGS

A case in point (compare with Theorem 2.43, page 98):
THEOREM 3.7  If ¢: R— R’ is a ring homomorphism, then

FIRST K = Ker(¢) is an ideal of R and:
ISOMORPHISM
THEOREM R/K=¢(R)

PROOF: We already know that K = Ker(¢p) = ¢~1{0} is an additive
subgroup of R. It is, in fact, an ideal since, for any a € K and every
r € R, both ra and ar are in K:
¢(ra) = ¢(r)9p(a) = ¢(r)(0) = 0 and ¢(ar) = 0
The proof of Theorem 2.43 serves to show that the function
y: R/K— ¢(R) givenby y(r+K) = ¢(r)
is a group isomorphism. Indeed, it a ring isomorphism:
yl(r + K)(r + K)] = yl(rry) + K]

= 0(ryry) = ¢(r)od(r,)

= y[(r +K)]y[(r, + K)]

CHECK YOUR UNDERSTANDING 3.11

Let ¢: R > R' be an onto ring homomorphism with kernel K. If I’
is an ideal of R', then I = @~1(I') is an ideal in R containing K and:
I/7K=T

In CYU 3.10(a) you were invited to show that, under standard addi-

tion and multiplication, nZ is an ideal of Z. More can be said:

EXAMPLE 3.7 Show that for any positive integer n:
Z,=7/(nZ)

SOLUTION: In Example 2.6, page 72, we showed that the function

¢: Z— Z, given by ¢(m) = r where m = ng+r with 0<r<n is

a group homomorphism. You are invited to show, in CYU 3.12, that

the function also preservers products; in other words, that it is a ring

homomorphism from the ring Z to the ring Z,, .
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While ¢ is not one-to-one, it is certainly onto. As such we know, by
Theorem 3.7, that:

Z,=7Z/K where K = Ker(9).
Noting that:

Ker(¢) = {m|p(m)=0} = {kn|k e Z} T nZz

Example 2.4, page 62
we conclude that: Z = Z/(nZ).

CHECK YOUR UNDERSTANDING 3.12

Let ¢: Z— Z, be given by ¢(m) = r where m = ng+r with

Answer: See page A-19. 0 <r<n.Show that forany a, b € Z: ¢(ab) = ¢d(a)dp(b).
You are invited to establish the next two isomorphism theorems in the
exercises.
THEOREM 3.8 Let H be a subring of a ring R, and / an ideal
SECOND of R. Then:
ISOMORPHISM — : ;
THEOREM H+1={h+ilheH,iecl}

is a subring of R, [ is an ideal of H + /, and:
(H+D/I=zH/(HN1I)
(Compare with Theorem 2.44, page 99.)

THEOREM 3.9  Let ¢: R—> R’ be an onto homomorphism

THIRD with kernel K. If I’ is an ideal of R’, then:
ISOMORPHISM
THEOREM I=¢1") = {aeR|d(a) e}
is ideal of R and:
R/I=R'/(I")

(Compare with Theorem 2.45, page 99.)
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EXERCISES

Exercise 1-6. Determine if the given map ¢@: R — R’ is a ring homomorphism.

. R=R = Z,and ¢(n) = 3n. 2. R=Z,R" = 3Z and ¢(n) = 3n.
3. R=R =M, ,and [P = |78 4 R=pR =M, ,and¢[??] = [0 O]
cd d c cd 0 cd

5. R=M, ,,R =R andd{aj =a. 6. R=M, ,,R= ‘Randd{aj = ad—bc.
C C

Exercise 7-10. Determine if the given subset S of the ring R is an ideal of R.

7. R=M2X2,S={a0 a,deiR}. 8. R=sz2,5={“1 a,deiR}.
0d 0d
9. R=72ZxZ,5 = {(a,-a)|laeZ}. 10.R =2ZxZ,S8 = {(2a,a)|lae Z}.

11. Let ¢: R - R’ be a homomorphism from R onto R’. Show that:
(@) d(a") = [¢(a)]" forallae R and n>0.

(b) If R possesses a unity then so does the ring ¢(R).
(c) If a is a unit of R, then ¢(a) is a unit of ¢(R).
12. Let ¢: R—> R' and 6: R" — R" be ring homomorphisms. Prove that the composite function

Bod: R — R" is also a homeomorphism.

13. Let S be a subset of a ring R. Show that S is an ideal of R if and only if the following two con-
ditions hold:

(1) S is an additive subgroup of R.
(i1) Forevery s € S and » € R we have rs € § and sr € S.

14. Let F(R) denote the ring of all real-valued functions of Exercise 36, page 119, and let
a € R. Show that the map ¢ : F(R) > R given by ¢, (f) = f(a) is a homomorphism.

15. Let I be an ideal is commutative ring R with unity 1. Show that R/ is a commutative ring
with unity.

16. Let R be a ring with unity. Show that if / is an idea of R that contains a unit, then / = R.

17. Let I be an ideal in a ring R. Show that there exist an onto ring homomorphism ¢: R — R/[
with Ker(¢) = 1.

18. Let I be an ideal in a ring R. Show that if K is an ideal in 7, then K = {a+I|a € K} is an
ideal in R/ 1.
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19. Let I be an ideal in a ring R. Show that if K is an ideal in R/, then there exists an ideal K in
Rwith Ic K suchthat K = K/I = {a+1|aeK}.
20. Describe all ring homomorphisms from Z to Z.
21. Describe all ring homomorphisms from Zto Z x Z.
22. Show that if n # m , then the rings nZ and mZ are not isomorphic.
23. Prove that = (isomorphic) is an equivalence relation on any set of rings (see Definition 1.12,
page 29).
24. Show that the function ¢: Z— Z, givenby ¢(m) = r where m = ng+r with 0<r<n
preservers products: ¢(st) = ¢(s)d(¢) Vs, t € Z.
25. Find a subring of Z x Z that is not an ideal of Z x Z.
26. Prove that / is an ideal of a ring R if and only if:
i) 0el
(1) Ifa,bel.thena—-bel
(i) Ifa € I and » € R, then ra € R
27. An element a of a ring R is nilpotent if a” = 0 for some n € Z*. Show the collection of nil-
potent elements of commutative ring R is an ideal of R.
28. Let R be a commutative ring and a € R. Show that {x € R|xa = 0} is an ideal of R.
29. Prove that if /, and /, are ideals of R, then /; N I, is an ideal of R.
30. Let A and B be ideals of R, and let / be the set of all elements of the form ab with a € 4
and b € B. Prove that / is an ideal of R.
31. Let H be a subring or R that is not an ideal of R. Verify that the operation
(a+ H)(b+H) = ab+ H is not well defined..
32. Prove Theorem 3.8.
33. Prove Theorem 3.9.
PROVE OR GIVE A COUNTEREXAMPLE
34. If I, and I, are ideals of R, then /; U I, is an ideal of R.
35. If [ is an ideal of R and if H is a subring of R, then / n H is an ideal of R.
36. For every element a of a ring R, the set {x € R|xa = 0} is an ideal of R.
37. Let ¢: R > R' be a homomorphism from R onto R’. Show that if R possesses a unity then so
does R'.
38. The collection of nilpotent elements n a ring R is an ideal of R. (See Exercise 27).
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Note that Every field is
an integral domain.

Answer: (a) Field.
(b) Commutative ring
with unity.

§3. INTEGRAL DOMAINS AND FIELDS

The set Z of integers under addition led to the definition of a group on
page 41. Tossing multiplication into the mix brought us to the defini-
tion of a ring on page 111. How about “division”? Can one perform

(grade school) division in the ring Z, or Q, or ‘R ? Absolutely not in Z,

where you can only divide by 1 or —1. Q and R fair much better in that

one can divide by any number other then 0. As it turns out, Q and R
are examples of fields:

DEFINITION 3.7 A zero-divisor in a commutative ring R is a
ZERO DIVISOR nonzero element a for which there exits a

nonzero element b € R with ab = 0.

INTEGRAL DOMAIN  An integral domain is a commutative ring R
with unity that contains no zero-divisors.

FIELD A field is a commutative ring with unity in
which every nonzero element is a unit.

As is depicted below, fields are at the top of our algebraic pecking
order, and groups are at the bottom:

Fields: Q, ...

not a field: 2 has no multiplicative inverse

i
Integral Domains: O, Z, ...

not an integral domain: 2-6 = 0
Commutative Rings with unity: O, Z, Z,

no unity not commutative

Y T
Rings: 0,7,7,,2Z, M,  ,

not a ring, see CYU 3.1(a), page 111

\J 0
Groups: 0,7, 74,272, M, , ,, S;

CHECK YOUR UNDERSTANDING 3.13

Assign to the given group its highest algebraic rank (Field at the top,
and Group at the bottom).

(a) Zs (b) Z15




1S

gi’ = 2 (ifa#0)
C C

Answer: See page A-20.

Answer: See page A-20.
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The familiar high school cancellation law (margin) holds in any inte-

gral domain:

THEOREM 3.10 Let D be an integral domain, and a, b, c € D.
Ifab = ac and a#0,then b = ¢

PROOF: ab = ac=>ab—ac = 0= a(b—-c) = 0. Since D is an
integral domain, and since a#0: b—c = 0.

CHECK YOUR UNDERSTANDING 3.14

(a) Prove that a commutative ring with unity is an integral domain if
and only if the cancellation property of Theorem 3.10 holds.

(b) Let D be an integral domain, and let a # 0 be an element in D.
Show that the function f,: D — D given by f_ (x) = ax is one-
to-one.

THEOREM 3.11 A commutative ring with unity R is a field if
and only if {0} and R are the only ideals in R.

PROOF: Let R be a field and let / be an ideal in R with /# {0} . Chose
ael, a#0. Since R is a field and / is an ideal, we then have:
ala=1el. Since [ is an ideal: {r-1|re R} = Rc. Thus:
I =R.
To establish the converse, we show that if {0} and R are the only
ideals in R, then every nonzero element in R is a unit:
Let a#0 be an element of R. Consider the ideal I = (a).
Since I# {0}, I = R. We then have 1 € I = (a). It follows

that a” = 1 for some n € Z, and that ¢~ ! is the inverse if a.

THEOREM 3.12 Any finite Integral domain is a field.

PROOF: Let D be a finite integral domain, and let a # 0 be an ele-
ment in D. CYU 3.14(b) assures us that the function f : D — D
given by f (x) = ax is one-to-one. It follows, since D is finite, that

the function is also onto. In particular, there must exist some b € D

such that ab = 1, and a is seen to be a unit. Since a was an arbitrary
nonzero element in D, D is a field.

CHECK YOUR UNDERSTANDING 3.15

Prove that for every prime p, Z,isa field.
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We focus briefly, and somewhat loosely, on the set P,[x] of polyno-
mials with integer coefficients, as well as the sets P, [x] of polynomi-

als with coefficients taken from the rings Z, = {0,1,2,...,n—1}.

All turn out to be commutative rings (with unity) under the following
standard sum and product operations:

In PZ[X] In PZG[X]

(Bx2+4x+5)+(x2+4x+1) = 4x2+8x+6 (3x?+dx+5)+ (x2 +4x+1) = 4x?+2x

(2x2 —4x)(5x - 2)

Answer: (a) 3, 6, 7, 10
(b)3,6

2x2(5x—2) —4x(5x-2) | (2x2—4x)(5x—2) = 2x2(5x—2) — 4x(5x—2)
10x3 — 4x2 — 20x2 + 8x 4x3 —4x2 - 2x2 +2x
10x3 — 24x2 + 8x 4x3 +2x

Note that while the coefficients of a polynomial p(x) in P, [x] are

elements of the ring Z, = {0,1,2,...,n—1}, the degree of such a
polynomial can be any nonnegative integer. In particular, while
3x% —5x2+x—1 might very well be a polynomial in Py [x] (of

degree 9), it can not be a polynomial in P, [x] (5¢Zs).

Consider the polynomial x2—x — 6. Since the distributive property
holds in both P,[x] and in lez[x] we can express the polynomial in
factored form in either ring:

x2-x-6=(x-3)(x+2)
But while the equation:
x2-x-6=(x-3)(x+2)=0
has but two solutions in P,[x] (3 and -2 ), the same equation turns out
to have four solutions in lez[x] . The reason, you see, is that while the
ring Z is an integral domain (no zero divisors), the same cannot be said
for Z,, . Indeed there are several pairs on nonzero elements in Z,
with product equal to zero:
2:6=0,3-4=0,8-3=0,9-49=0,10-6=0
4 A

24 =0 mod 12

Your turn:

CHECK YOUR UNDERSTANDING 3.16

Solve the equation x2—x—6 = 0 in:

(a) Z,, (b) Zg




nx = xtx+--+x

n of them

Answer: See page A-21.

Answer: See page A-21.
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DEFINITION 3.8 The characteristic of a ring R is the least
CHARACTERISTIC positive integer n such that nx = 0 for

every x € R. If no such integer exists, then
R is said to have characteristic 0.

The ring Z has characteristic 0, and the cyclic ring Z, has characteris-

tic n. Clearly no finite ring is of characteristic 0. Must every infinite
ring have characteristic 0? No:

CHECK YOUR UNDERSTANDING 3.17

Prove that the infinite ring P, [x] has characteristic 7.

To determine the characteristic of a ring with unity, one need look no

further than its unity:

THEOREM 3.13 Let R be a ring with unity. If n1 =0 for all
neZ", then R has characteristic 0. If

nl = 0 for some n € Z*, then the smallest
such # is the characteristic of R.

PROOF: If nl#0 for all n € Z" then surely there cannot exist
n € Z* such that nx = 0 for every x € R, and R has characteristic 0.
On the other hand, if n1 = 0 for some positive integer n, then, for
any x € R:
nx =nx =x+tx+--+x=(1+1+...+1)x=ml)x =0x =0
L n of them —/I\

The smallest such 7 is then the characteristic of R.

THEOREM 3.14 The characteristic of an integral domain D is
either 0 or prime.

PROOF: Assume that D has positive characteristic n, and that n is not

prime. Then n can be writtenas n = st with 1 <s<n and 1 <t<n.
We then have:

0 =nl = (st)1 = (st)12 = (s1)(¢1)
Since D has no zero divisors, either s1 = 0 or 11 = 0. But this can-

not occur, since 7 is the least positive integer such that nl = 0.
Conclusion: n must be prime.

CHECK YOUR UNDERSTANDING 3.18

Let D be an integral domain of characteristic 3. Show that for every
a,beD:(a+b)’ = a’>+b3.
In the exercises you invited to show that for any prime p, if D has characteristic p then:
(a+b)y =ar+p.
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Note: A proper ideal of R
is, by definition, an ideal in
R that is distinct for R itself.

Answer: See page A-21.

The converse of both (a)
and (b) also hold. See Exer-
cise 25 and Exercise 26.

We already know that
R/I is a commutative
ring with unity (see The-
orem 3.6, page 123).

PRIME AND MAXIMAL IDEALS

DEFINITION 3.9 LetR be a commutative ring.

PRIME IDEAL A prime ideal of R is a proper ideal / of R
for which:

abel=aeclorbel

MAXIMAL IDEAL A proper ideal / of R is a maximal ideal if R
is the only ideal containing /.

EXAMPLE 3.8 (a) Show that an ideal / in Z is prime if and
only if / = pZ, where p is a prime.

(b) Show that 57 is a maximal ideal in Z.

SOLUTION: (a) Let p be prime. If ab € pZ then, by Theorem 1.9,
page 24, p|a or p|b; which is to say, that a € pZ or b € pZ.

Conversely, assume that / = nZ where n>1 is not prime. Let
n = ab for some positive integers a and b. Then ab € I with neither
a nor b in I (neither is a multiple of n).
(b) If /1s an ideal properly containing 57, then there must exists a € 1
with a ¢ 57, i.e. 5 does not divide a. It follows, since 5 is prime, that
gcd(5,a) = 1. Employing Theorem 1.7, page 23, we have:

1 = S5s+at
for integers s and . Since 5s and atare bothin /: 1 € /. It follows, since
Iisanideal in Z, that / = Z.

CHECK YOUR UNDERSTANDING 3.19

(a) Show that pZ is a maximal ideal for any prime p.

(b) Prove that / is a maximal ideal in Z if and only if it is prime.

THEOREM 3.15 Let / be an ideal in a commutative ring R
with unity.
(a) If I1s a prime ideal then R/ is an integral
domain.

(b) If [ is a maximal ideal then R/ is a field.

PROOF: (a) We need to show that R/ has no zero divisors; which
is to say that if ab+1 = I, then either a+1 =1 or b+1 = I;
which is to say that if ab € I then either a € I or b € I. And this is
so, as [ is a prime ideal.
(b) Invoking Theorem 3.11, we show that the only ideals of R// are
{0} and R/I:
Let / be a maximal ideal in R, and let K be an ideal in R/1.
Exercise 18, page 126, assures us that there exists an ideal K in R
with 7 K R such that K = K/I. Since / is a maximal ideal,
either K = I, in which case K = {0}, or K = R, in which case
K =R/I.
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FIELDS OF QUOTIENTS

Let’s mimic the development in which the integers Z blossom into the
field of rational numbers Q, to one that nurtures a general integral
domain D into its field of quotients F:

From Zto Q

LetS, = {;_)l a,b e Z, with (b;tO)}.

In Example 1.9, page 29, we demonstrated that

. a c
the relation = ~ =
b d

relation on .

if ad = bc is an equivalence

Let Q denote the set of equivalent
classes associated with the above equiv-

alence relation on §,.

Define addition and multiplication in Q as fol-
lows:

a c a+tc allc ac
—|+|=| = —|=| =|=
u M [ bd } and M M [bd}
You are invited to show in the exercises that the
above operations are well defined; whichistosay:

!

a a' c c .
Ibeb’ andd~d,,then.
atec a'+c n ac _a'c
bd b'd bd b'd

You are also invited to show in the exercises that:

(Q, +, -) isafield, with zero [(ﬂ and unity [ﬂ .

From D to the field of quotients F

Let S, = {(a,b)|a,b € D,with (b#0)}.

Following the procedure of Example 1.9, page
29, one can show that the relation (a, b) ~ (¢, d)
if ad = bc is an equivalence relation on §,.

Let F denote the set of equivalent
classes associated with the above equiv-

alence relation on S, .

Define addition and multiplication in F as fol-
lows:

[(a, b)]+[(c,d)] = [(ad +cb, bd)]
and [(a, b)][(¢c,d)] = [(ac, bd)]

You are invited to show in the exercises that the
aboveoperations are well defined; whichistosay:

If (a,b)~(a',b") and (c,d) ~(c¢',d"), then:
(ad+cb,bd)~(a'd +c'b',b'd")
and (ac, bd) ~ (a'c', b'd")
You are also invited to show in the exercises that:
(F, +, ) is a field, with zero [(0, a)]
and unity [(a, a)], forany a #0.

As is the case with the rational numbers, where the equivalence class [ﬂ is simply denoted by the “fraction”

, SO

SR

then one generally represents an element [(a, b)] in the field of quotients F by the two-tuple (a, b) .




134 Part 3 From Rings To Fields

EXERCISES

Exercise 1-6. Find the zero-divisors of the given ring.

1.

37 2. 7, 3. Zyx Z,

4. ZxZs 5. Z,xZs 6. Z,xZq

Exercise 7-12. Determine the characteristic of the given ring.
7. 3Z 8. Z, 9. ZyxZg

10. Zx Zs 1. Zyx Z, 12. Z, % Zg

Exercise 13-15. Solve the equation x2—5x+6 = 0 in:

13. Z, 14. Z, 15. Z,,

Exercise 16-18. Solve the equation x> —3x -4 = 0 in:

16. Z, 17. Z, 18. Z,,

19.
20.
21.
22.

23.

24.

25.

26.

27.

28.

29.

Show that Z, has no zero divisors for any prime p.
Show that the zero divisors of Z, are the nonzero elements that are not relatively prime to n.
Show that every nonzero element in Z, is a unit or a zero-divisor.

Let R be a finite commutative ring with unity. Prove that every nonzero element in Z, is a unit
or a zero-divisor.

Give an example of a ring R that contains a nonzero element that is neither a zero-divisor nor
a unit.

Show that any nonzero element a in a commutative ring R is a zero-divisor if and only if
a’b = 0 forsome b#0.

Let R and S be nonzero rings. Can R x S be an integral domain?
Give an example of a commutative ring R without zero-divisors that is not an integral domain.

A nonempty subset S of an integral domain D is called a subdomain of D if it is an integral
domain under the operations of D. Prove that a nonempty subset of D is a subdomain of D if
and only if S is a subring of D that contains the unity of D.

Prove that the intersection of two subdomains of an integral domain D is also a subdomain of
D. (See Exercise 18.)

Find all subdomains of Z. (See Exercise 27.)




30.

31.

32.
33.

34.

35.
36.

37.

38.

39.

40.
41.

42.

43.

44,

45.
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Show that the only subdomain of Zp , for p prime, is Zp . (See Exercise 18.)

Let D be an integral domain of prime characteristic p. Show that for every a, b € D
(a+b)y = aP+bP
Prove that every maximal ideal in a commutative ring with identity is a prime ideal.

Let / be an ideal in a commutative ring R with unity. Prove that / is a prime ideal of R if and
only if R/[ is an integral domain. [See Theorem 3.15(a).]

Let / be an ideal in a commutative ring R with unity. Prove that / is maximal in R if and only if
R/1 is afield. [See Theorem 3.15(b).]

Prove that every proper ideal on a ring with unity is contained in a maximal ideal.

Let R be a commutative ring. Prove that if P is a prime ideal of R that contains no zero-divi-
sors, then R is an integral domain.

Let R be a commutative ring. Let / and J be ideals of R. Show that if P is a prime ideal of R
that contains / N J, then either / or J is contained in P.

Show that the subset S = {0, 3} is anideal in Z,. Show that while § is not an integral
domain, Z,/S§ is a field.

Show that any ring homomorphism ¢: /' — R from a field F'to aring R # {0} is one-to-one.

Let R be a commutative ring. Prove that R is a field if and only if {0} is a maximal ideal.

Referring to the “From D to the field of quotients F”’ development on page 133,verify that the
operations:

[(a,D)] +[(c,d)] = [(ad +cb, bd)] and [(a, D)][(c,d)] = [(ac, bd)]
are well defined.

Referring to the “From Z to O development on page 133,verify that the operations:
a c atc allc ac
Zl+ 2| = = = | =
HiFNEESH F-
Referring to the “From Z to Q” development on page 133,verify that (Q, +, -) is a field, with

Zero [QJ and unity [l}

1 1
Referring to the “From D to the field of quotients F”’ development on page 133,verify that
(F,+,-) is a field, with zero [(0, @)] and unity [(a, a)], forany a #0.

are well defined.

Establish Fermat’s Little Theorem: If a € Z and if p is a prime not dividing p, then:
a?~1=1 (mod p)
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46. Show that for any prime p and any a € Z: a” =a (mod p)

PROVE OR GIVE A COUNTEREXAMPLE

47. The intersection of subdomains of an integral domain D is a subdomain of D. (See Exercise
18.)

48.If ¢: D — R is a homomorphism from the integral domain D to a ring R, then ¢(D) isan
integral domain.

49. Let R be a commutative ring with unity. If P is a prime ideal of R and if J is a subring of R,
then P N J is a prime ideal of R.

50. Let R be a commutative ring with unity. If P is a prime ideal of R and if / is an ideal of R, then
P N J is a prime ideal of R.
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APPENDIX A

CHECK YOUR UNDERSTANDING SOLUTIONS

PART 1
PRELIMINARIES

1.1 Functions

CYU1.1 For f:M, ,—> R, given by fqa szaer, and g: R —> R? given by
cd

g(x) = (2x, x2), we have:

(a) (gof)wl 3}] = g[f{{l 3m = g(1+4) = g(5) = (2-5,5%) = (10,25)
24 24

(b) (gof)q‘cZ ZD = g{fﬂ‘z Zm =g(a+d) = 2(a+d), (a+d)?)

= (2a+2d, a*+2ad + b?)

CYU1.2 (a)Letf: M,,,—> R* be given by f([“ bD — (d,—¢,3a, b)
d

C

One-to-one: fqa bD = f( [Ez ?D = (d,—c,3a,b) = (d,—¢,3a, b)
cd cd

d = d=d

eT el el lab ab
3a = 3a a=a cd cd
b = b=5h

Onto: For given (x, y, z, w), we find {a b} such that [ {a ZB = (x,p,z,w):

cd c
d=x d=x
190 = conzw)=(d—c3a,b) = (urzw=_ (=" 7
cd 3a =z a=2z/3
b=w b=w

Hence: fq2/3 WB = (x,y,z,w).
v x



A-2 APPENDIX A

(b)qu ZD: Lfdzab} is not one-to oneifqg 8}} =fq‘1’ gD - L‘; ((j
Al d)- a6

CYU 13 Let y € Y. Since [,/ ()] e/ ", [f (), v] € f, which s to say: f[f ()] = ».

/1s not onto, since no element |4 b 1s mapped to 10 :
cd 03

CYU 1.4 The function f: M, , —> R* given by fqa bD = (d,—c,3a, b) is a bijection [see
c

CYU 1.2(a)]. To find its inverse we determine [a j for which f ( [a j] = (X, z,w):
c c

d=x a=1z/3
—c = b =
f(|:a bi|] = (x’y’Z, W):>(d, —C, 361, b) = (X,y’Z’ W):) C y — w
¢ d 3a = Z Cc = _y
b=w d = x
Conclusion: f_l(x,y, Z,w) = [2/3 w}
—y X

Moreover: ﬂf_l(x,y, z,w)] = qu/3 WB = (x, —(—y), 3@), wj = (x, 9,2, W)
yox

and: fl{fqa bm — 1 Nd—c.3a.b) = {3(a/3) b} _ {a b}
cd ~(-¢) d| |cd

CYU 1.5 From f(x,y,z,w) = v 2x and g( ab J = (d,—c, 3a, b) we have:
3w z cd

(goN(X, 3, 2, W) = g[Ax, 3,2, w)] = g( {‘y 2xD = (z,-3w, -3, 2x)
3w z

To find its inverse of gof: R* — R* we start with (x, y, z, w) € R* on the right side of
goft R* > R* and find (a, b, c, d) (on the left side) for which (gof)(a, b, ¢, d) = (x,y,z, W)

(we will then turn things around to arrive at (go ﬂfl ). Let’s do it:
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(goN(a, b,c,d) = (x,y,z,w) = g[fa, b, c,d)] = (x,y,z,w)

:g({_b ZaD = (x,y,z,w) = (¢, -3d,-3b,2a) = (x,y,z, w)

3d ¢
c=x a=w/2
-3d =y b=-z/3
= =
-3b =z c =X
2a = w d=—-y/3
At this point we have (gOﬂ(Vz—V, —%, X, —%’) = (x,¥,z, w); and, consequently:
o 71 = Z‘-j _z _Z)
(gof) (x,y,z,w) (2, 7573
. -1 w oz y
We now verify that (f og')(x, y, z, w) also equals 5 b -3 where
gil (x:ya Z, W) = 23w andfl[ ¢ bj = (éa —a, da g)
-y X cd 2 3

-1 PSS - _ 4 |z2/3wl| (W _z Y
(f g D, yzow) = f g (xy,zw)] =f qz_y XD (2° 3% 3)

1.2 Principle of Mathematical Induction

CYU 1.6 (a) Theequation2+4 = 1+2+3+4—(1+ 3) illustrate that the sum of the first
two even integers can be expressed as the sum of the first four integers minus the
sum of the first two odd integer. Generalizing, we anticipate that the sum of the
first n even integers is the sum of the first 2n integers minus the sum of the first n
odd integers; leading us to the conjecture that the sum of the first » even integers

equals n% +n:

_|_

2n2rt 1) 2 9p24n_p2 = 244

sum or first 2n integers A\ /[\—surn of first n odd integers
(Eample 1.16) (page 34)

(b) Let P(n) be the proposition that the sum of the first n even integers equals n2 +n.
I. Since the sum of the first 1 even integers is 2, P(1) = 12+ 1 = 2 is true.

II. Assume P(k) istrue; thatis: 2+4+6+---+2k = kK2 +k .
III. We complete the proof by verifying that P(k+ 1) is true; which is to say,

that 2+ 4+ 6+ +2k+2(k+1) = (k+1)2+(k+1):

2+4+6+ - +2k+2(k+1) = K2+k+2(k+1)

= (R2+2k+ 1)+ (k+1) = (k+1)2+(k+1)
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CYU 1.7 (a) False — a counterexample: 4|(3 + 1), and 4 divides neither 3 nor 1.

(b) True: Since a|b, there exists 4 such that: (1) b = ah.
Since a|(b + c), there exists k such that: (2) b+ ¢ = ak.
From (2): ¢ = ak—b.From (1): ¢ = ak—ah = a(k—h).

Since ¢ = at (wheret = k—h): a|c.

CYU 1.8 (a) Let P(n) be the proposition n! > n?
I P(4)istrue: 4! = 1-2-3.4 = 24>42.
II. Assume P(k) is true: k! > k% (for k> 4)
I11. We show P(k+ 1) is true; namely, that (k+ 1)! > (k+ 1)2:
(k+ 1) = K(k+1)>k2(k+1)
()
Now what? Well, if we can show that k2(k+ 1) > (k+ 1)2, then we will be done. Let’s do it:
Since k>4, k> 2, and therefore k2 = k- k>2k>k+1.
Multiplying both sides by the positive number (k+ 1): k2(k+ 1) > (k+ 1)2.
(b) Let P(n) be the proposition that 6|(n> + 5n) for all integers n>1 .
[. Trueatn = 1:6|(13+5-1).
II. Assume P(k) is true; that is: 6|(k3 + 5k).
III. To establish that 6|[(k+1)>+5(k+1)], we begin by noting that
(k+1)3+5(k+1) = (kK +3k%+8k)+ 6 and then set our sights on showing
that 6 |(k3 + 3k> + 8k) (for clearly 6]6).
Wanting to get II into play we rewrite k3 +3k%+ 8k in the form

(k3 + 5k) + (3k% + 3k) . Our induction hypothesis allows us to assume

that 6|(k> + 5k). If we can show that 6|(3k%+3k), then we will be
done, by virtue of Theorem 1.6(b), page 28. Let’s do it:

Since 3k%+ 3k = 3k(k+ 1), and since either k or k+ 1 is even:

6 is a factor of 3x2 + 3k.

CYU 1.9 Let P(n) be a proposition for which P(1) is True and for which the validity at k&
implies the validity at £+ 1. We are to show, using the Well-Ordering Principle, that
P(n) is True for all n. Suppose not (we will arrive at a contradiction):

Let S = {n € Z*|P(n) is False } . Since P(1) is True, S # &. The Well-Ordering
Principle tells us that S contains a least element, n,. But since the validity at n — 1

implies the validity at n,,, n,— 1 must be in S — contradicting the minimality of 7.
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1.3 The Division Algorithm and Beyond

CYU 1.10 The division algorithm tells us that » must be of the form 3m,or 3m+ 1,0r 3m+2,
for some integer m. We show that, in each case, n2 = 3q or n?2 = 3¢ + 1 for some
integer ¢:

If n = 3m, then n2 = 9m? = 3q with ¢ = 3m?.
Ifn =3m+1,thenn? = 9m2+6m+1 =3Bm2+2m)+1 = 3q+1.

Ifn =3m+2,thenn? = 9m2+ 12m+4 = 33m?+4m+1)+1 = 3¢+ 1.

CYU 1.11 We simply show that ¢ > 0 divides n € Z if and only if ¢||n] :
c = knele = |lkn| < || = |k||n] ?c = h|n| where h = |k
since ¢ > 0

CYU 1.12 Proof by contradiction: Assume that gcd(a, c) = 1. From Theorem 1.9: if a|bc,
and if gcd(a, ¢) = 1, then a|b — contradicting the given condition that afb .

CYU 1.13 Let P(n) be the proposition that if p|a,a,---a, , then p|a; forsome 1 <i<n.
I. P(1) is trivially True.
II. Assume P(k) is True: If p|a,a,---a,, then p|a; for some 1 <i<k.
III. Suppose p|a,a,---a,a,; , ; or, to write it another way: p|(a,a,---a;)a; , |-
If pla, ., then we are done. If not, then by Theorem 1.8: p|(a,a,---a;).

Invoking II we conclude that p|a; for some 1 <i<k.

CYU 1.14 Let a = p{'py2...pes, b = q{"g5"...q;" be the prime decompositions of a and b, with
distinct primes p, p,, ..., p,, and distinct primes g, ¢,, ..., g,.
Since a|n: n = ak = py'py...p;* - k. It follows that and each p;’ must appear in
the prime decomposition of n, for 1 <i <s (with possibly additional p;’s appearing
in the prime decomposition of k). Similarly, since b|n, each ¢;"" must appear in the
prime decomposition of n, for 1 <i<t.
Since a and b are relatively prime, none of the p,'s is equal to any of the ¢,'s . It fol-

lows that pi'p3*...piqi"'q5™...q;" appears in the prime decomposition of n, and

that therefore ab = p|'p3>...pyqi"'q5...q," divides n.
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1.4 Equivalence Relations
CYU 1.15 Reflexive: Let 4 € S.Sincel: A — A4, givenby I(a) = a Va € A isabijection, 4 ~ a.

Symmetric: If 4~B for 4, B € §, then there exists a bijection f: 4 — B. Theorem
1.1(a), page 5, tells us that f71: B — A is a bijection. Hence, B ~ 4.

Transitive: If A~B and B~C with 4, B, C € S, then there exists bijections f: 4 — B
and g: B — C. Theorem 1.2(c), page 7, tells us that gof: A — C is a bijection. Hence,

A~C.

CYU 1.16 (a) No: [1,2]1n[2,3]1# OD.
(b) Yes: Every element of R is either an integer or is contained in some (i,i+ 1) for
some integer i > 0 or in some (—i,—i— 1) for some i > 1. Moreover the sets in

{{n}|neZy i@, i+ 1)};_ U {(=i,—i—1)};_ | are mutually disjoint.

CYUll7 Leta=dn+r, andb=dyn+r, with0<r <nand 0<r,<n.
Ifr, =r,,thena-b =dn-dn = n(d,—d,).Since n|(a—b),a=bmodn.
Conversely, assume that r, # r, , say: 0 <7, <r_ <n.Then:
a-b=(dn+tr,)—(dn+ry) = (d,—dy)n+(r,—rp)
Assume that n|(a —b). Since r,—r, = (a—b)—(d,—d,)n, n would have to divide

(r,—rp); which it cant, sine 0 <7, —r, <n.It follows that r,#r, = az b mod n.

CYU 1.18 (a) [a], = [a], = (a—a) = hn and [b], = [b],= (b—b) = kn,for h,ke Z.
Then: ab—ab = (hn+a)b—a(b—kn) = hbn+ab—ab+kan = (hb+ ka)n
Since n|(ab —ab), [ab], = [ab],.

(b) [a],([b],[c],) = [al,([bcl,) = [a(bo)],
= [(ab)c], = [ab],[c], = ([a],[b],)]c],

(0 a1, (161, + [c],) = [al,([b+cl,) = [a(b+0)],
= [ab+ac], = [ab], + [ac], = [a],[b],+[a],[c],
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PART 2
GROUPS

2.1 Definitions and Examples
CYU 2.1 (a) Closure: The sum of two n-tuples is again an n-tuple.

Associative: [(ay, ag, ..., a,) ¥ (b, by, ..., 0)] +(cy, ¢y, ..0s¢,) = (a; T hy,ay+ by, .oya, +b,) (¢, ¢y, .05 C))
=(a;tb,ay,+b,y ...,a,+b,)+(c|,cy....Cp)
= ([a; +b\]1+cp, [ay+ Dyl +cy, ... [a,+b,]+c,)
= (a;+[by+cyl,ay +[bytcyl, .sa,+[b,+c,])

= (aj,ay, ...,a,) T [(b, by, ..., D)+ (cp ¢y, ..0h )]
Identity: (ay, a,, ..., a,) +(0,0,...,0) = (a; +0,a,+0,...,a,+0) = (a,a,, ...,a,)

Invere: ((11, aza seey an) + (_ala _Clz, seey _an) = (al + (_al)’ (12 + (—Cl )’ seey an + (_an))
~ (0,0, ...,0)

(b) Closure: The sum of 2 two-by-two matrices is again a two-by-two matrix.
Associative: | |91 b L% by L9 by| _ |aytay bitbh, L byl _ |(aytay)tay (by+by)+by
¢, d, ¢y dy ¢y dy ¢y te, d+d, ¢y dy (c;tey)tey (dy+dy)+d,

_|a;+(ay+ay) b +(by+bsy)
cpt(ctey) dy+(dy+dy)

_ @by ]2 0o |93 0s
= Cldl Czdz C3d3
Identity: |4 2| + |00 = |a*0 b+0 _ lab
cd 00 c+t0 d+0 cd
Inverse: {a b} + {—a _b} - {C“L(—a) b+(—b)} _ {O O}
cd |-c-d |[ct-c) dt(-d) |00

CYU 2.2 The values in column a follow from the observation that O+ n = n for 0 <n < 3.
As for column b, row 3: 3+,1 = 0,since3+1 =4=1-4+0

a b ¢ d

As for column ¢, rows 2 and 3: 2+,2 = 0 and 3+,2 = 1, since: 10111213
2+2=4=1-4+0and3+2=5=1-4+1. 04 0] 1]2]3

As for column d, rows 1, 2, and 3: 1+,3 = 0, 2+,3 = 1, 111121310
and 3+,3 = 2, since: 1+3 =4 =1-4+0, 2121310 |1

243 =5=1-4+1,3+3=6=1-4+2. 30301 |2
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CYU23 LetG = {e,ay,a,,...,a, ,}.By construction, the i column of G’s group table is
precisely ea;, aya, aya, ..., a, a,.The fact that every element of G appears exactly one time in
that row is a consequence of Exercise 37, which asserts that the function k, : G — G given by

k,(g) = ga; is a bijection.

1 23 45 1 23 45
CYU 24 From o =( and T :( we have:
1 523 53 21
1 23 45
o 1 23 45
T°0 1 52 3 4| = toG:
v T 54321
54321
123 435
T 1 23 435
oot 5 32 1 4|=o0co1:
y O 4 2 5 1
4 2 51 3

CYU 2.5 (a) We know that 1 and 5 are generators of Z, [Example 2.2(a)]. The remaining 4 ele-

ments in Z, are not:

04,0 = 0 2462 =4 3+3=0 At =2
2+2+2 =0 4+4+4 = 0
Qo o
(b) S,: =1 1-2 is cyclic, with generator o : o joa; = =21 o -
252 2->1 2 5152

(c) For n > 2, consider the following bijections 3,y € S, :
B(1) = 2,B(2)=1,and B(i) = i for3<i<n
v(2) = 3,v(3) =2, and B(i) = i for i not equal to 2 or 3
Since (voP)(1) = v[B(1)] = y(2) =3 and (Bey)(1) =BLy(D)]=p(1) =2,

S, 1s not abelian, and therefore not cyclic.
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2.2 Elementary Properties of Groups
CYU 2.6 Since (bca)(bca) = (bc)(abc)a = (bc)e(a) = bca: bca = e (Theorem 2.6).

1->2 1->2 1-3
CYU 2. 7 (a) False: For B,y,8 € S; givenby B: 253, y:2—-1 and 6: 22 we have:
31 353 31
1—B>21>1 16—>3[3—>1
YoP:2—->3->3 and Pod:2->2-3 aswell
35152 35152

(b)True:at+b=b+tc=>b+ta=b+tc=a=c

commutativity Theorem 2.9

CYU 2.8 We show that the equation a + x = b has a unique solution in (R, +):
Existence: a+x=b=>—-a+(a+x)=-a+b=>(—a+a)+x =—-a+b
=>0+x=—-a+tb=>x=-a+b

Uniqueness: If x and x then:a+x=banda+x=b=a+tx =a+ti=>x =X
Theorem 2.8

CYU 2.9 We know that we have to consider a non-abelian group, and turn to our friend S5 . Spe-

153 1->3 1-3
cifically for o, p € S; givenby a:2—>2 and B = 21 we have: a! = 252,
351 352 31
152 la—>3f>2 152
Bl=253,and o = 25251 =21, so that:
31 35153 3-53
a—l -1
1->2 1531 1—>1
(Boa)™ =21 while Bloa™! = 25253 =253
353 3512 32

CYU2.10 L (a,...aya;)"! = ay'az'...a;,! clearly holds forn = 1.
IL. Assume (a;---a,a;)"' = ajlaz'...a;'. Then:

II1. (ay.q-ap-—aya)™ = [a, . (a;---aya)]!

-1 -1
N _ - - 1, 1
Theorem 2.12: = (ak"'azal) lak+1 T allazl...ak “Ap g

II
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1234 b) 1(4) = 4
CYU2.11 (a) To Y aa (b) e s
N 62 341 3 e 3(4) = 8+,,4 = 12
Jo3 4123 4(4) = 12+,,4 = 16
i) L34 5(4) = 16+,,4 = 20

6(4) = 20+,,4 = 0: 4 has order 6
o has order[4]

(c) Let gcd(a, n) = d. We show that d is the smallest positive integer m such that

ma = kn for some k:
)
kn
a

ma = kn=>m = = (*)
a
d
Since gcd(a,n) = d: g and z—; are relatively prime. It follows, from (*), that i-il k.
Turningto m = kn we see that m will be smallest when £ is smallest; which is to say,
a
a
k d"
when k = £. Hence, the smallest m turns out to be Mm-_2 __1
d a a d

2.3 Subgroups

CYU 2.12 We already know that 6Z is a subgroup of Z. To show that it is a subgroup of 3Z we
need but observe that 6Zc 3Z: n€6Z=n = 6mforme Z
=>n =32m)=>ne3Z

CYU2.13 hyk, = hyky = h5'h = kki' =

f

both in A and K --so

{hzlhl —e=h, = h,
k' = e=>k, =k

CYU 2.14 We show that (3) = Zg = {0,1,2,3,4,5,6,7} by demonstrating that every ele-
ment of Z; is a multiple of 3:
1:3=3,2-3=3+3=6, 3-3 =3+3+3=1, 4:3=3+3+3+3=14
5:3=3+3+3+343=7, 6:3=2,7-3=5,8-3=0

Claim: (4) = {0,4}:1-4 =4, 2.4 = 4 +¢4 = 0. Fine, but can we pick up other ele-
ments of Zg by taking additional multiples of 4? No:
The division algorithm assures us that n = g4 +r for any n € Z, with
0 <r<4. From the above we know that 1 -4 and 2-4 arein {0,4}, and
surely 0 -4 € {0, 4} . The only possible loose end is 3 - 4. Let’s tie it up:
3:4=(4+g4)+g4 =0+g4 =4
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CYU 2.15 A direct consequence of CYU 2.11(c), page 57.

CYU2.16 (ii) = (i) : Let S be the intersection of all subgroups of G that containing A. Since
(A4) is a subgroup of G containing A4 that is contained in every subgroup of G that
contains 4: § = (A).

CYU 2.17 We show that (a,, a;) = S; by observing that every element in

123 123 123 123 123 123
S; = e=(1 2 3)> 0‘1:(2 3 1)»0‘2:(3 1 2)=0‘3=(1 3 2)= OL42(3 2 ljs 0‘5=(2 1 3)

can be expressed a a product of the permutations o,, o3 (details omitted):

= 2 = 2 = = = =
e =05, O] = oy, Oy = Oy, O3 = O3, Oy = OOz, O5 = O30y

2.4 Homomorphisms and Isomorphisms

CYU2.18 Let ¢: G — G’ be given by ¢(a) = e. Since for every a,b € G,
d(ab) = e = ee = ¢(a)d(b), ¢ is a homomorphism.

CYU 2.19 For a, b € G we have:
(000)(ab) = 6[d(ab)] = B[¢(a)d(D)] = 6[d(a)]6[4(D)]
= [(82¢)(a)][(B0)(b)]

CYU 2.20 Homomorphism:
&(2n, +2n,) = ¢[2(n, +n,y)] = 8(n; +n,) = 8n; +8n, = ¢(2n,) + ¢(2n,)
Ker(¢) = {2n|¢(2n) =0} = {2n|8n =0} = {0}.
Im(¢) = {¢(2n)} = {8n} = 8Z

CYU 2.21 We are to show that forany a, b € G, ¢(a) = ¢(b)=>a = b.Let’sdo it:

d(a) = ¢(b) = d(ca) = ¢(cb) = d(c)p(a) = ¢(c)9(b)
= d(c) = d(c)d(D)[d(a)]!
= d(c) = d(c)o(D)p(a')
= ¢(c) = d(cbal)=c = cba!
=cle = ¢ leba!

Se=bal=a=0»b
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CYU 2.22 (a) We show that the relation = given by G= G’ if G is isomorphic to G’ is an
equivalence relation:

Reflexive G = G since the identity map /(g) = g is clearly an isomorphism.

Symmetric G=G' = G'= G: Let ¢: G — G’ be an isomorphism. Theorem 1.1(a),

page 5, assures us that the map ¢~!: G’ = G is a bijection. We show that it is also a
homomorphism:

Fora',b' € G' ¢ 1(a'b") = ¢ (a")(o~1(b")) since
let a, b € G be such that ¢(a) = a' and ¢(b) = b'. Since ¢(ab) = a'b":
o71(a'd") = ab = ¢~ H(a)(o71(D").
Transitive G, =G, and G, = G; = G, = G5 : Follows from Theorem 1.2(c),
page 7, and CYU 2.19.
(b) We show that the map ¢: nZ — mZ given by @(nz) = mz is an isomorphism:
One-to one: ¢p(nz) =o(nz) >mz=mz=z = z
Onto: For given mz € mZ: ¢(nz) = mz.
Homomorphism:

O(nz+nz) = ¢[n(z+2)] = m(z+z) = mz+mz = ¢(nz) + ¢(nz)
(c) Let g € G. The map s GG is a bijection:
One-to one: i (a) = i (b) = gag! = gbg ' = g 'gaglg = g''ghg'g=a = b
Onto: Fora € G, i (g 'ag) = glglaglg™ = a
Homomorphism: i (ab) = gabg™' = (gag')(gbg™") = i,(a)i (b)

CYU 2.23 We show that ¢: (a) - Z given by ¢(a”) = n is an isomorphism:
One-to-one: ¢p(a”) = ¢(a”)=>n = m=>a" = a™
Onto: Forn € Z, ¢(a”) = n.
Homomorphism: ¢(a”a™) = ¢(a”*™) = n+m = ¢(a”) + dp(a™).
CYU2.24 Let ¢: G—> G' be an isomorphism. For a',b' € G' let a,b € G be such that
0(a) = a' and ¢(b) = b'. Then:
a'b’ = ¢(a)o(b) = ¢(ab) = ¢(ba) = ¢(b)¢(a) = b'a’
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2.5 Symmetric Groups

12345678910]W6have:
394156278 10

o(l) = 3,6%(1) = 6(3) = 4,63(1) = c(4) = 1 =(1,3,4) isacycle.
Picking the first element not moved by the above cycle; namely 2, we have:
c(2) = 9,6%(2) = 6(9) = 8,53(2) = o(8) = 7,6%2) = o(7) = 2=(2,9,8,7)
acycle
Since the elements not contained in either of the above two cycles are stationary under o :
c=1(1,3,4)(2,9,8,7)

(b) One possible answer: (1, 2)(3,4)(5,6,7,8,9).

CYU 2.25 (a)For o = [

CYU 2.26 For 6 = ( 1234567 8] we have:
38674152

02:[12345678j 032(12345678] 04:[12345678j
62157348 18345672 32674158

5 [12345678j 6 (12345678j Since 6 is the smallest n for
o> = , 06 = '
68157342 12345678/ whicho” =e,0(c) =6

CYU 2.27 (a) Following the construction above Theorem 2.32 we have:
(3,2,5,1) = (3,1)(3,5)(3,2)

[ P24 56789 “’j = (1,2.4)(5.10,8,6)(7.9)
®\2431105967 8
= (L, 4)(1,2)(5, 6)(5, 8)(5,10)(7,9)
(c) Since (4,/)(i,/) = (i,7), (i)' = (i.))
CYU 2.28 (a) Since e(i) = i forevery 1 <i<n, e can be expressed as a product of 0 transposi-

tions, and 0 is certainly an even number.
(In the event that n > 1, you also have: e = (1, 2)(1,2))

(b) Since( 123456789 10) = (1,4)(1,2)(5, 6)(5, 8)(5, 10)(7, 9) , the
2431105967 8

transposition is even.

CYU 2.29 As you can easily check, e, o, o, are even and the rest are odd. Consequently:

Ay = ({e,ap, 0,1, 0)
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2.6 Normal Subgroups and Factor Groups

CYU 2.30 We show that the function f: H — aH given by f(h) = ah is a bijection:
One-to-one: f(h,) = f(h,) = ah, = ah, ? hy = h,.

Theorem 2.10, page 56
Onto: For ah € aH, f(h) = ah

CYU 2.31 Consider the homomorphism ¢: (Z,, ) — S5 given by:
00) = [ 123 ana g1y = [ 123

123 132

While Z, isnormal in Z,, ¢(Z,) = {( ! i i],( ! § ;]} fails to be a normal sub-
1 1

group of S5 (see Example 2.10).
CYU 2.32 (a) Follows from CYU 2.31.

(b) Let G = (a) and let N« G (actually every subgroup of G is normal). We show
that G/N = (aN):

Let gN € G/N. Since g € (a), there exists m such that g = a™, We then have:
gN = a™N = aNaN---aN = (aN)" = gN € (aN)

m times
The above argument shows that G/N < (aN) . Clearly: (aN) c G/N.
CYU 2.33 Since, forany a € G, ag = ga forevery g € G:
Z(G) = {aeGlag=gaVge G} =G
Since forany a, b € G, aba 'b! = qa 'bb! = e:

C(G) = (aba'b'a,b e G) = (e) = {e}
CYU 2.34 We first show that the function ¢: S, — {—1, 1} given by:

1 if ¢ 1s an even permutation ) .
o(o) = { P is ahomomorphism by considering four cases:

—1 if & 1s an odd permutation
If 6 and t are even, then so is 67, and we have: ¢(ct) = 1 = 1-1 = ¢(c)d(7)
If o and t are odd, then o7 is even, and we have: ¢(ct) = 1 = (=1)(-1) = ¢(c)d(1)
If 6 is even and 1 is odd, then ot is odd, and we have: ¢(ct) = -1 = (1)(-1) = d¢(o)d(1)
If 6 is odd and 7 is even, then ot is odd, and we have: ¢(ot) = —1 = (-1)(1) = d¢(o)d(1)

Since 1 is the identity in the group {1, 1}, Ker(¢) = 4, . Invoking the First Isomorphism
Theorem, we have: G=S,/4, .

CYU 2.35 Employing Theorem 2.42 to the homomorphism ¢: G — G" we have: G'= G/K.
Restricting ¢ to the group N we arrive at a homomorphism ¢,: N — N'. In this setting,

Theorem 2.42 tels us that N' = N/K . Consequently: G/N=(G/K)/(N/K)
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2.7 Direct Products
CYU 2.36 (a) Associativity:
For (a,ay, ..., a,), (b, by, ..., b,),(c|,Cy ...c,y) € Gy X Gy x - X G
[(ay,ay, ....,a,)(by, by, ....;b,)](cy, ¢y, ...ic,) = [(a;b))cy, (ayby)ey, ..., (a,b,)c,]
= [a,;(byc}), ay(bycy), ..., a,(b,c,)]
= (ay,ay, ...,a,)[(by, by, ..., b,)(c|,Cyy ..., )]
Identity: Letting e; denote the identity in G; we have:
(aj,ay, ....,a,)(e, ey ....e,) = (ae,ae,, ...,a,e,)a;,a,, ..., a,)
Inverses: (a, a,, ...,a,)(a7',a3', ...,a;1) = (e, €5 ... €,)
(b) If each G, is abelian, then:
(aj,ay, ....,a,)(b, by, ....;D0,) = (a;by,ayb,, ...,a,b,)
= (b,a;, bya,, ...,b,a,) = (b, b,,....,b,)(a,,a,,...,a,)
Conversely, assume that not all of the G, are abelian. For definiteness, assume that G, is not

abelian, with ab # ba . We then have:
(a, ey, ...,e,)(b,e,,....e,) = (ab,e,, ..., e,)
#(ba, e,, ...,e,) = (b, ey, ...,e,)(a,e,, ...,e,)

CYU 2.37 Noting that 3 has order 2 in Z and is of order 4 in Z,, and that 4 has order 4 in 16, we
conclude that (3, 3, 4) has order lem(2, 4,4) = 4 in Z,.

CYU 2.38 Using Induction on s we show that if n|, n,, ..., n  are relatively prime, then the group
Z, XZ, X XZ, is cyclic and isomorphic to VAR
I. True if s = 2, by Theorem 2.44.
II. Assume True for s = k;i.e: an X an X eee X an is cyclic and isomorphic to annz---nk'
ITI. We establish validity for s = £+ 1; i.e, that

5 S " . . . ) .
an an an anﬂ is cyclic and isomorphic to Z,Wmnknﬁ1 :

an ><Zn2>< xanxanHE(an xanx xan) xZ

Nyt

by II: = Zn1n2-~-nk X an+l (with Zn1n2-~-nk cyclic)

byl: 2Z =7
y (nyny---ndng, nyNy-- Nl

note that the two number (n,n,---n;) and n, , | are relatively prime

In the event that n,, n,, ..., n are not relatively prime, an X an X oo X Zns is not iso-

morphic to annz---nx since no element in an X an X eee X Zn‘ has order nn,...n_.

s
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CYU 2.39 We are given that G = HK with every a € G having a unique representation of the
form hk. Suppose that a € H N K, with a = hk.But a = ae is also a representation
of a, where a € H and e € K. It follows, from the unique representation condition,
that £ = e. Similarly, since a = ea: h = e. Consequently: a = e.

CYU 2.40 G5 has an element of order 8 while G does not.

PART 3
From Rings To Fields

3.1 Definitions and Examples

CYU 3.1 (a) Since S; = (S5, °) is not an abelian group, it cannot be turned into a ring by
imposing any additional operator x>,
(b) Let (G, +) be an abelian group. By defining axb = 0 for every 4 beG, we

arrive at aring (G, +, %) .

CYU 3.2 We already know that (nZ, +) is an abelian group (Example 2.4, page 62). In addition,

nZ is closed under multiplication: (rna)(nb) = n(anb). Moreover, since the associa-
tive and distributive properties hold for all in integers, they will surely hold for the inte-
gers in nZ.

CYU 3.3 Using induction we first show that n(ab) = (na)b = a(nb) forn>0:
I. n(ab) = (na)b = a(nb) forn = 0.
II. Assume k(ab) = (ka)b = a(kb) for given k>0

II1. We show (k+ 1)(ab) = [a(k+ 1)b] (A similar argument can be used to show that
[(k+1)alb = [a(k+1)b]):
(k+1)(ab) = k(ab)+ab 7 a(kb)+ab = a(kb+b) = a(k+1)b
by II

In the event that n < 0 we have:
n(ab) = a(nb) & —[n(ab)] = —[a(nb)] </?> [-n(ab)] 7 a(—nb)
by Theorem 3.1(b) -n>0
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CYU 3.4 (a) We first verify that the nonempty set M, , = (M, ,, +) satisfies the three prop-
erties of Definition 2.1, page 41:

E b, L] |9 b, L9 b,y _|u b, N a,tay by,+b, _ a;+(aytasy) b+ (by+by)
¢ d ¢y dy| |3 dy cpdy |eates dytds citleytey) dyt(dy+dy)
_|(a;+tay)+ay (b +by)+by

(eyfep) ey (dy+dy)+dy

_ |1 b (a2 bof | |43 05
¢y dy ¢, dy 3 dy
a+0b+0| _ |ab
ct0d+0 cd
3. For given |4 % en, i |* 0|+ | @b = |¢-ab=b - |00
cd cd —c —d c—cd-d 00
Moreover, the group (M, , ,, +) is abelian:
ay by . _‘12 by| _|aytay bytby _|aytay bythy ap b, L% b,
¢, d, ¢y d,y ¢y te, di+d, ¢y tep dytd ¢y d, ¢ d,
Properties 2 and 3 of Definition 3.1 are also satisfied:
) a, by|| |ay b, as b3_ _al b, aza3+b2€3 412173+b2d3
ey di| ey dyf |y dy ) di|\|era3 +dyes cyby+dydy

a(ayay +bycy) +by(cya3 T dye3)  ay(azby+bydy) +by(cyby+ dzda)l

ab . lab 00| _
2. For every LJeszz. LJJ{OO}

N
Il

_cl(a2a3 +bycy) td(craytdyes)  cp(ayby+bydy) +d(cyby+dydy)

(ajay +bicy)as+(aby+bidy)ey  (aja, +bycy)by+(a b, +bd,y)d,
[(cray tdicy)az +(c\by+dydy)ey (cray+d cy)by+(c by +ddy)dy

_ | @1 by||ay byl ||as by

¢ dy| e dy)) |5 dy
3 a, by|| |ay by N as by _ _”1 bi|lay*tay by+by
) ¢y di|l |¢cp dy cy dy €1 di||cytey dyt+dy

_Jayaytay+by(ey ey ay(by+by)+ by, +d3)1

_cl(a2 tay)+d(cyte3) cy(by+bsy)+d(d,+d;)

_ (aya, +bicy) +(ajay+bicy) (ayby+bidy)+(aby+bds)
_(c1a2+dlcz)+(cla3+d163) (c;by+didy)+(c by +ddy)

_ |1 bif|ax by |4y by)|a; by
€1 di||c, dy ¢y dl|cs dy

. ) b b b b b b b
In a similar fashion one can show that: | [“1 7] + |2 72| ||#3 73] = |91 P1]]93 P3| 4 |92 72|93 73
¢y d ¢y dy|)|c3 dy ¢y dy||cs dy cy dy||c5 dy
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It is easy to show that {1 0} is the unity in M, _ ,:

01 bl E e -

(b)If 1 and 1 are unities in a ring R, then: 1 = (1)(1) = 1

cd cdl|-4 -6 2c—4d 3c-6d 01
1+4b

CYU 3.5 Does there exist {a b} such that {a b} {2 3} = {261_4[7 3a—6b} = {1 0} ?

If so, then: 2a—4b = 1 and 3a—6b = 0,0r: a = and a = 2b, or:

L4H4b _ oy 1 44p = 4hb=1 = 0!

CYU 3.6 (a) Challenging each element in Z; = {0,1,2,3,4,5} we find that, apart from 1,
only 5 has a multiplicative inverses:

multiplying | 2 3 4 5
mod 6
2 4 0 4
3 5 3 0 3
4 2 0 4 2
5 4 3 2 1 Ah!5.5 =1

(b) If m and n are relatively prime then, by Theorem 1.7, page 23: 1 = sm + tn for

some integers s and ¢. It follows that sm = 1 —tn which says that sm is congruent
to 1 modulo n, and that m is a unit.

If gecd(m,n) = d>1. Then, by Theorem 1.6, page 22: d = sm + tn for some
integers s and ¢. It follows that sm = d —tn which shows that 1 is not congruent

to sm modulo # (it is congruent to d modulo n, with 1 <d < n). It follows that m is
not a unit.

CYU 3.7 Expressing Exercise 38 (page 70) in additive form we have:
A (nonempty) subset S of a group G is a subgroup of Gifandonly if s,5 € S=>s—-5€ §.

It follows that property (i) of Theorem 3.2: (S, + ) is a subgroup of (R, +)
can be replace d with: s,5 e S=>ss 1 € S.
CYU 3.8 Employing CYU 3.7:

Sl I ) E el R Y
ab cd a—-cb-d abl|lcd bc bd

(b) Letx,y e §S,.Since a(x—-y) = ax—ay = 0-0=0:x-yeS§,.

Since a(xy) = (ax)y = 0y = 0:xy e §,
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3.2 Homomorphisms, and Quotient Rings

CYU3.9 (a) Leta,be ¢'(H'). To say that a— b and ab are contained in ¢~!(H") is to say
that ¢(a —b) and ¢(ab) are contained in ¢~!(H"); and they are:
¢(a—b) = ¢(a)—¢(b) € H' and ¢(ab) = ¢(a)9(b) € H'
(since H' is a subring of G")
(b) Assume there exists an isomorphism ¢: 3Z — 5Z. If so, then:
¢(9) = ¢(3-3) = ¢(3)9(3) and ¢(9) = ¢(3+3+3) = 3¢(3)
This implies that ¢(3)¢(3) = 3¢(3) or that [¢(3)—-3]d(3) = 0. Since ¢(3)
can’t be zero (if it were, then ¢ would map everything to zero), ¢(3) must equal
3 — a contradiction since 3 ¢ 5Z.

CYU 3.10 (a) We already know that / = nZ is a subring of Z [Example 3.4(a), page 117]. It is
an ideal since, for any m € Z and ns € nZ: m(ns) = n(ms) € nZ.
The converse follows from the fact that all subgroups of Z are of the form nZ
(Exercise 35, page 70).

(b) We already know that ¢(/) is a subring of R" [Theorem 3.4(a)]. It is an ideal:
For x" € R', choose x € R such that ¢(x) = x'. Then, for any ¢(a) € ¢(/) we have:
x'¢(a) = ¢(x)9(a) = ¢(xa) € ¢(/) and ¢(a)x’ = ¢(a)d(x) = ¢(ax) € ¢(/)
I

since / is an ideal

CYU 3.11 Theorem 2.23(d), page 73, assures us that / = ¢~!(I") is an additive subgroup of R.
As for the second part of Definition 3.6:
Let iel and r € R. To show that ri e I we need but verify that

¢(ri) € I' . Easy enough. Since ¢(i) € I' and since /' is an ideal in R":
o(ri) = ¢(r)9(i) e I'

A similar argument can be used to show that ir € 1.
As 0" e I', K< I. Noting that the function ¢,: / = I' given by ¢,(i) = ¢(i) is an
onto homomorphism with kernel K, we have: I/K=1".

CYU3.12 For a, b € Z, let:
(Da=qmn+r, orr, = a—q,n, where 0<r,<n.So:¢(a) = r,.
2Q)b=gqyn+ry, orr, = b—q,n, where 0<r, <n.So: ¢(b) = r,.
(3)ab=gn+r, orr = ab—gqn, where 0 <r<n.So ¢(ab) = r.
We compete the proof by showing that 7 —7 7, =0 mod n:

lagdz
(ab—qn)—r,yr, = ab—qn—(a—q n)(b—qyn)
= ab—-qn—(ab—-bg,n—aq,n+q,nq,n)

|| «wo

l”—l”al"b

—gn+bg,nn+aqyn—q,nqyn

(—q+bg,Taq,+q.ng,)n



A-20 APPENDIX A

3.3 Integral Domains and Fields

CYU3.13 (a) Z5 = {0,1,2,3,4} is a commutative with unity 1. It is easy to see that it has no
zero divisors and that every nonzero element has a multiplicative inverse:

1-1=1, 2:3=3-2=1, 4-4=1

Conclusion: Z; is a field.

(b) Z;5 = 10, 1,2, ..., 14} is a commutative ring with unityl. It fails to be an inte-
gral domain as it has zero divisors (3 -5 = 0).

CYU 3.14 (a) Let R be a commutative ring with unity in which the cancellation property holds.
We show that R has no zero divisors (i.e, that R is an integral domain):

Let ab = 0. Since a0 = 0: ab = a0. “Canceling the a,” we have b = 0.

On the other hand, if R is an integral domain then, by its very definition, it has no
zero divisors.

(b) f(x) =f,(y) = ax = ay=>x = y.

CYU 3.15 By CYU 3.6(b), page 116, every nonzero element in Zp =1{0,1,2,..,p—1} isa

unit. It follows that Zp is an integral domain, and therefore a field (Theorem 3.12).

CYU 3.16 (a) Consider the factored form x2—x -6 = (x—3)(x+2) = 0. Clearly x = 3 is a
solution. Not quite as clear is that 10 is also a solution, as 10 +2 = 0. From the
discussion preceding this CYU we know that there are five pairs of numbers in
Z,=10,1,2,3,4,5,6,7,8,9,10,11} (not involving 0) whose product equals
0 (in Z,, )— specifically: (2, 6), (3,4), (8, 3),(9,4) and (10, 6). The plan, now,
is to find those elements x in Z,, for which the product (x —3)(x +2) turns out to

involve any or the above five pairs. A direct calculation shows that 6 and 7 are the
only winners:

For x

6: (x—3)(x+2) = (6-3)(6+2) = 3-8
7:(x=3)(x+2) = (7-3)(7+2) = 4-9

Conclusion: 3, 10, 6, and 7 are the solutions of x2—x—6 = 0 in Ziy.

For x

(b)In Zg = {0,1,2,3,4,5,6,7} the equation x>—x—6 = (x—3)(x+2) = 0 is
seen to have solutions 3 and 6 (since 6 +2 = 0). Here are the only pairs (not
involving 0) with product equal to 0 (in Zg): (2,4) and (4, 6). A direct calcula-
tion shows that for no x in Zg does the product (x—3)(x +2) involve either
(2,4) or (4,6). For example, if x = 5, then (x—3)(x+2) involves the pair
2,7).

Conclusion: 3 and 6 are the solutions of x2—x—6 = 0 in Zg.
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CYU 3.17 We first acknowledge the fact that the ring P, [x] is infinite, for it contains the infinite
set of polynomials {x”}_ . As the coefficients of any polynomial p(x) in P, [x]
are elements in Z, , np(x) = 0 for every p(x) € P, [x]. Moreover, forno 0 <m <n

is it true that np(x) = 0, where p(x) is the constant polynomial 1. It follows that
P, [x] has characteristic n.

CYU 3.18 Expanding (a + b)3 we find that (a + b)3 = a3+ 3a2b + 3ab? + b3. Since the given
domain D had characteristic 3, the terms 3a%b and 3ab? are zero. Consequently:
(a+b) =a’+b3.

CYU 3.19 (a) If pZ is not a maximal ideal, then pZ < nZ for some n>1 [see CYU 3.10(a),

page 124]. Consequently p = nm for some m € Z — contradicting the given
condition that p is prime.

(b) Assume that [/ = mZ is a maximal ideal. If m is not prime, then m = ab with
neither a nor b equal to 1. But then:

mZ aZ%Z
mk € aZ Nk € Z since mk = a(bk) leaZ

Contradicting the given condition that mZ is a maximal ideal in Z.

So, every maximal ideal in Z is of the form pZ for p

prime. As such, it is a prime ideal, for:

ab epZ:p|ab?p|a orblb=>aepZorbepZ

Theorem 1.9, page 24

Conversely, assume that / = mZ is a prime ideal in Z. If m is not prime, then m = ab
with neither a nor b equal to 1. But then / is not a prime ideal, since ab € mZ with
neither @ nor b contained in mZ. So:

I = mZ prime = m prime ? I = mZ maximal

(2)
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APPENDIX B

We offer Professor Goldberg’s proof that the groups Z, and K appear-
ing in Figure 2.1, page 43, are the only groups of order 4.

PROPOSITION: Let S be a group of order 4, with identity e.
Then, for every a € §, there exists a positive integer d so that:

e al=e;

« ak= e, for any positive integer k smaller than d; and

e d=1,2, or 4.
PROOF: Choose an arbitrary element a of S. Consider the fol-

lowing elements of S: e, a, a2, a®. Since S has 4 elements, by
an elementary application of the pigeonhole principle, either:

case l.a’ = e, i = 1,2,3,0r4 and/or
case 2. a' = o/, some integers i,j, 1 <j<i<4.
In either case (using inverses for case 2), we obtain that
ak = e for some integer k € {1,2,3,4}:
forcase 1, k = i;forcase2 k = i—j.

Hence the set {k € Z*|a* = e} is not empty. Let d be the
minimum of this set. From the above, 1 <d<4.

To finish the proof of the Proposition, it remains to show that
d cannot be 3:
If d = 3, the elements e, a, a2 are distinct. Since S is

of order 4, 3beS with b¢g{ea a?}. So,

{e, a, a2, b} = §.Byclosure, ab € S. But note that:
ab#b,since ab = b= a = e, impossible;
ab # a?,since ab = a> = b = a, impossible;
ab #a,since ab = a = b = e, impossible;
ab#e, since ab = e = a*(ab) = a? (using that a3 = e),
impossible.

Hence S contains at least 5 distinct elements, contradicting
thatithasorder4.Sodcannotbe3.

Using the above Proposition, it is easy to classify groups of order 4. By
the Proposition, there are 2 cases:

2

case 1. Ja e S witha#e,a’+#e,a’#e, anda*#e, or

case2. Vae S, a% = e.

2

In Case 1, wehave S = {e, a,a?, a’} and a* = e Up to “renaming”,

Sis Z,.In Case 2, pick an element a € S with a # e. Next, pick an ele-

ment b # e with b # a. Since we are in Case 2, a®> = b? = e, and
e = (ab)? = abab . Multiplying on the left by a and on the right by b

we obtain ab = ba.Hence, S = {e, a, b, ab} (itis easy to see that ab
does not equal e, a, or b), each element is of order 2, and S is commuta-
tive.
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DETERMINANTS
We define a function that assigns to each square matrix a (real) num-
J/j‘hcolumn ber:
=7 —— DETERMINANT
g For 4 = |¢ b :
% cd
. / det|? b| = ad—be
nxn cd
W ForAeMnxn,withn>2,letA1i denote the
resulting iltlr?‘ (n—1) x (n—1) matrix obtained by deleting
square matrix
O% dimension the firstrow and j th column of the matrix 4 (see
n—1 margin). Then:
n

det(4) = Z (—l)Hfalj det(4,)
i=1
The above definition defines the determinant of a matrix by an expan-
sion process involving the first row of the given matrix. The following

theorem (proof omitted), known as the Laplace Expansion Theorem,
enables one to expand along any row or column of the matrix.

THEOREM 1 For given 4 e M, ,, 4; will denote the
(n—1)x(n—1) submatrix of 4 obtained

Note that the sign of the by deleting the i row and jth column of 4.

i+ We then have:
(-1 has an alternat- .
ing checkerboard pattern EXPANDING ALONG .
— +7
TEEEE e THE ih ROW det(4) = > (=1)'"Vay; det(4;;)
o o e 2 I o
+|-[+]-[F]-[+]- j=1
EREEEEE and:
g el el B EXPANDING ALONG :
— - B - n
e s e THE j™ COLUMN o
BB S 4 det(4) = 3" (~1)*Jay det(4,)

i=1

THEOREM 2 The determinant of the identity matrix
I,eM,  , isl.

n

PROOF: By induction on the dimension, n, of M, .

1. Holdsforn = 2: de{1 0} = 1.
01
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Determinants B-3

II. Assume claim holds for n = k: det(/;) = 1
III. We establish validity at n = k+1: det(/,, ;) = 1

Expanding across the first row of 7, , | (see margin) we have:

det(,, ) = det(y) = 1

THEOREM 3 If two rows of 4 € M are interchanged,

nxn
then the determinant of the resulting matrix is
—det(A4).

PROOF: By induction on the dimension of the matrix 4. For n = 2:

det| b = ad—be and det|€ 9| = cb-da
cd ab

T— negative of each other J

Assume the claim holds for matrices of dimension k> 2 (the induc-
tion hypothesis).

Let 4 = [al.j] be a matrix of dimension £+ 1, and let B = [bl.j

denote the matrix obtained by interchanging rows p and g of 4. Leti be
the index of a row other than p and ¢. Expanding about row i we have:
k+1 k+1

det(4) = 3" (~1)i*/a det(4,) and detB= Y (~1)'*/b,det(B,)

j=1 j=1
Since rows p and g were switched to go from A4 to B, row i of B still
equals that of 4, and therefore: bl.j = a;. Since B, is the matrix A
with two of its rows interchanged, and since those matrices are of
dimension &, we have: detBij = —detA ij (the induction hypothesis).

Consequently:
k+1 k+1

det(B) = Z (—l)i+jbljdet(Bij) = Z (-1)""Va,[-det(4;)]
j=1 j=1

k+1
= _Z (_1)i+faljdet(z4,j) = —det(A)

j=1
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Appendix C
Answers to Selected Exercises
Part 1
Preliminaries

1.1 Functions.
1.U 3. {15n|n € U} 5.B 7.D 9.U 11. I 13. F 15.D
17. {1,3,5,7,9, 11,13, 15} 19. E 27. One-to-one and onto

29. Not one-to-one, not onto 31. One-to-one not onto 33. Not one-to-one, not onto
35. One-to-one and onto 37. Not one-to-one, not onto 39. Not one-to-one, not onto
aym -2 a2 s an) = (L-3)
3 2—-y 5
_ . i
c —d 2
~lla b| _ -1 — 1
47. f = b 49. 1 (a,b,c) = Z(s—2b)
cd a3 2
%(— a+2b-2c)

1.2 Principle of Mathematical Induction.

Each exercise calls for a verification or proof.

1.3 The Division Algorithm and Beyond.

l.g=7r=20 3. = 27,r=1 5.5 7. 60 9.90

1.4 Equivalence Relations.
23. Yes 25. No 27. Yes 29. No 31. Yes 33. Yes

43. [n] = {n+5k|lk e Z} 45. [x] = {—x,x} 47. [(xg.y0)] = {(xo,y)‘(ye R)}
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Part 2
Groups

2.1 Definitions and Examples.

1. A cyclic group with generator 2. 2. Not a group. It does not contain an identity.

3. Not a group. It does not contain an identity. 5. Not a group. It does not contain an identity.
7. Not a group. 1 is the identity, but 2 has no inverse. 9. Abelian group. Not cyclic.

11. Abelian group. Not cyclic.

e ifn=0mod3
13,a§=e,a§=oc3 15. a'f: o, if n=1mod 3 17.0L;n={

o, if n=2 mod 3

e if n is even
o4 if n is odd

e ifn=0mod 3 e ifn=0mod 3
19.a§=a1,a§=e 21. o) = 1 a, ifn=1mod 3 23.0," ={ o, ifn=1mod 3
o, if n=2 mod 3 o, if n=2 mod 3
25.5&2{123456} 27.YB:(123456J 29.a5=a1=(123456J
143652 563412 612345
31.a101=a5=a_1=(123456j 33_Blo1=BS=B_1=(123456J
612345 214365
35. An abelian non-cyclic group. 37. Not a group 39. A cyclic abelian group

2.2 Elementary Properties of Groups.
l.aye (b)a (c)aleb! (d)aba

2.3 Subgroups.
I.Yes 3. No 5. Yes 7.No 9. Yes 11. Yes 13. No 15. Yes 17. No
19. Yes 21. Yes 23. Yes 25. No 27. Yes 29. No 31. Yes 33. Yes

2.4 Homomorphisms and Isomorphisms.
1. Yes 3. No 5. Yes 7. Yes 9. Yes 11. Yes 13. Yes
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2.5 Symmetric Groups.
1.(2,5)(1,3,4) = (2,5)(1,4)(1,3) 3. (1,5,2) = (1,2)(1,5)
5.(2,5,6,4) = (2,4)(2,6)(2,5)  7.(1,6,3,4)(2,5) = (1,4)(1,3)(1,6)(2,5)

9.(1,2)(3,4) 1.3 13.4 157 17.0c=(1,2,4,53) 19. o = (1,3,4,2)

2.6 Normal Subgroups and Factor Groups
1. No 3. Yes

2.7 Direct Products.
.36 3.36  5.36

7. Order 1: (0,0), order2: (1,0), order3: (0,1), (0,2), order4: (1,1), (1,2)
9. The element (0, 0, e) has order 1. The remaining seven elements have order 2.
11. {0,0}, {(0,0),(0,1), (0,2)}

13. Here are the proper subgroups of Z, x Z, x S, , where S, = {e,c} withc = ( 12 j :

21

1(0,0,¢)}, {(0,0,¢),(1,0,¢e)}, {(0,0,¢),(0,1,€)}, {(0,0,e),(0,0,0)}
{(0,0,e),(1,1,e)}, {(0,0,e),(0,1,0)}, {(0,0,e),(1,0,5)},{(0,0,¢),(1,1,05)}
{(0,0,¢),(0,1,e),(1,0,5),(1,1,5)}, {(0,0,¢),(1,0,e),(0,1,0),(1,1,0)}
{(0,0,¢),(0,0,5),(1,1,e),(1,1,0)}

15. Zy x Zy x Zyx Zy 172y % 2y xZsxZ3x 25 19,10
ZyxZyx Z4 Zyx ZsxZyxZy
ZyxZyx Z, Zyx Ly x Zsx Z
Zyx Zg ZyxZLsxZy
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Part 3
From Rings to Fields
3.1 Definitions and Examples.
1.Yes 3. No 5. Yes 7.Yes 9. Yes 11. No 13. No 15. Yes
17.No  19.Yes  21.-1,1 23.1,2,3,4  25.(1,1), (=1, 1),(1,-1), (~1,-1)

27. (1,1),(1,2),(1,4),(1,5)(1,7),(1,8),(5,1),(5,2),(5,4), (5,5)(5,7), (5, 8)

3.2 Homomorphisms and Quotient Rings.
1.Yes 3. No 5. No 7. No 9. Yes

19. ¢(n) = (n, n) is the only homomorphism from Zto Zx Z.

3.3 Integral Domains and Fields.

1. None 3.(0,2),(0,3) 5. None 7.0 9.6 11. 10



A

Abelian Group, 43

Addition Modulo 7, 42

Alternating Group, 88

Alternate Principle of Induction, 17
Automorphism, 76

B

Bijection, 4

C

Cardinality, 31
Cancellation Law 55
Cartesian Product, 2, 103
Cayley’s Theorem, 78
Center Subgroup, 96
Characteristic, 131
Commutative Ring, 111
Commutator Subgroup, 96
Composition, 3
Congruence Modulo n, 33
Cycle, 84
Decomposition, 84

Cyclic Group, 48
Generator, 48

D

Direct Product, 103
External, 103
Internal, 105

Division Algorithm, 21
Divisibility, 15
Domain, 2

E

Equivalence Class, 31
Equivalence Relation, 29
Even Integer, 15

Even Permutation, 88

F
Factor Group, 95
Field, 128

of Quotients, 133

Index I-1

Function, 2
Bijection, 4
Domain, 2
Composition, 3
Inverse, 5
One-to-One, 4
Onto, 4
Range, 2

Fundamental Theorem of

Finitely Generated Abelian Groups, 107

Fundamental Counting Principle, 107

G

Generator, 48
Generated Subgroup, 65
Greatest Common Divisor, 22
Group, 41
Abelian, 43
Alternating, 88
Cyclic, 48
Generator, 48
Factor, 95
Klein, 43
Order, 43
Symmetric, 84
Table, 43

H

Homomorphism (Group), 72
Image, 75
Kernel, 75

Homomorphism (Ring), 121

I

Ideal, 123
Maximal, 132
Prime, 132
Image, 75
Index of a subgroup, 93
Induction, 13
Integral Domain, 128
Inverse Function, 5
Isomorphism (Group), 75
Theorems, 98
First, 98
Second, 99
Third, 99
Isomorphism (Ring), 116
Theorems, 124
First, 124
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Second, 125
Third, 125
Inverse Function, 5

K

Kernel, 74
Klein Group, 43

L

Lagrange’s Theorem, 65
Least Common Multiple, 104

M

Mathematical Induction 13, 16
Maximal Ideal, 132

N

Normal Subgroup, 93

O

Odd Integer, 15

Odd permutation, 88
One-to-One, 4

Onto, 4

Order of an Element, 58
Order of a Group, 43
Order of a Permutation, 86

P

Partition, 32

Permutation, 46
Even, 88
Odd, 88

Prime number, 24

Prime Ideal, 132

Principle of Mathematical Induction, 13,16

Q

Quotient Group, 95
Quotient Field, 133

Quotient Ring, 123

R

Range, 2

Relation, 29
Equivalence, 29

Reflexive, 29

Symmetric, 29
Relatively Prime, 23
Ring, 111

characteristic, 131

Commutative, 113
With Unity, 113

S

Set, 1
Complement, 1
Disjoint, 1
Equality, 1
Intersection, 1
Subset, 1
Proper, 1
Union, 1
Subgroup, 62
Center, 96
Commutator, 96
Generated by a, 63
Generated by subsets, 65
Normal, 93

Subring, 116
Symmetric Group, 46, 84

T

Transposition, 85

U

Unit, 114
Unity, 113

W

Well Ordering Principle, 18
Z

Zero Divisor, 128
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	11. Let G be a group. Show that if, for any , there exist three consecutive integers i such that then G is abelian.
	12. Let * be an associative operator on a set S. Assume that for any there exists such that , and an element such that . Show that is a group.
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	14. Let G be a group and . Use the Principle of Mathematical Induction to show that for any positive integer n: .
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	16. Let G be a cyclic group of order n. Show that if m is a positive integer, then G has an element of order m if and only if m divides n.
	17. Let G be a group. Show that for every element and for any : .
	18. Let G be a finite group, and . Prove that the elements have the same order.
	19. List the order of each element in the Symmetric group of Figure 2.6, page 47.
	20. Let be of order n. Prove that if and only if n divides .
	21. Prove that if for every element a in a group G, then G is abelian.
	22. Let * be an associative operator on a finite set S. Show that if both the left and right cancellation laws of Theorem 2.8 hold under *, then is a group.
	23. If are elements of a group such that , then .
	24. In any group G there exists exactly one element a such that .
	25. In any group G, .
	26. Let G be a group. If then .
	27. Let G be a group. If then .
	28. Let G be a group. If then .
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	36. Find all subgroups of .
	37. Prove that if and G are the only subgroups of a group G, then G is cyclic of order p, for p prime.
	38. Show that a nonempty subset S of a group G is a subgroup of G if and only if
	39. Show that for any , is a subgroup of Z.
	40. Show that for any group G the set is a subgroup of G.
	41. Let G be an abelian group. Show that for any integer n, is a subgroup of G.
	42. Prove that the subset of elements of finite order in an abelian group G is a subgroup of G (called the torsion subgroup of G).
	43. Let G be a cyclic group of order n. Show that if m is a positive integer, then G has an element of order m if and only if m divides n.
	44. Let a be an element of a group G. The set of all elements of G which commute with a:
	45. Let H be a subgroup of a group G. The centralizer of H is the set of all elements of G that commute with every element of H: . Prove that is a subgroup of G.
	46. The center of a group G is the set of all elements in G that commute with ever element of G: .
	47. Show that Table C in Figure 2.4, page 45, can be derived from Table B by appropriately relabeling the letters e, a, b, c in B.
	48. Let H and K be subgroups of an abelian group G. Verify that is a subgroup of G.
	49. Let H and K be subgroups of a group G such that for every . Show that is a subgroup of G.
	50. Prove that H is a subgroup of a group G if and only if .
	51. Let H and K be subgroups of an abelian group G of orders n and m respectively. Show that if , then is a subgroup of G of order nm.
	52. (a) Prove that the group contains an infinite number of subgroups.
	53. Let S be a finite subset of a group G. Prove that S is a subgroup of G if and only if for every .
	54. (a) be subgroups of a group G. Show that is also a subgroup of G.
	55. If H and K are subgroups of a group G, then is also a subgroup of G.
	56. It is possible for a group G to be the union of two disjoint subgroups of G.
	57. In any group G, is a subgroup of G.
	58. In any abelian group G, is a subgroup of G.
	59. Let G be a group with . If and , then .
	60. If a group G has only a finite number of subgroups, the G must be finite.
	61. If H and K are subgroups of a group G, then is also a subgroup of G.
	62. In any group G, is a subgroup of G.
	63. No nontrivial group can be expressed as the union of two disjoint subgroups.
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	28. Let denote the group of all real numbers under addition, and the group of all positive real numbers under multiplication. Show that the map given by is an isomorphism.
	29. Let be a homomorphism and let . Prove that for every .
	30. Let be a homomorphism and let . Show that the map given by is a homomorphism.
	31. Let be a homomorphism with finite. Show that is a divisor of .
	32. Let be a homomorphism. Prove that for all :
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	62. For the group of continuous real valued functions under addition the function given by is a homomorphism.
	63. If , and are not isomorphic.

	THEOREM 2.29

	EXAMPLE 2.9
	Figure 2.8
	THEOREM 2.30
	THEOREM 2.31
	THEOREM 2.32
	THEOREM 2.33
	THEOREM 2.34

	DEFINITION 2.12
	DEFINITION 2.13 Alternating Group
	THEOREM 2.35
	1.
	2.
	3.
	4.
	5.
	6.
	7.
	8.
	9.
	10. 1
	11. 3
	12. 4
	13. 5
	14. 7
	15. 8
	16. 9
	17.
	18.
	19.
	20.
	21. Let a be an element of a group G. Show that the map given by is a permutation on the set G.
	22. Referring to Exercise 21, show that is a subgroup of (the group of all permutations on G).
	23. Prove that if are disjoint cycles in , then .
	24. Prove that there is no permutation such that .
	25. Prove that for any permutation and any transposition : is a transposition.
	26. Prove that if is a k-cycle, then is also a k-cycle for any permutation .
	27. Prove that there is a permutation such that .
	28. Prove that every k-cycle in has order k.
	29. Use induction to show that any cycle in can be expressed as a product of transpositions as follows:
	30. Show that if is a cycle of odd length, then is a cycle.
	31. List all the elements in the alternating group of degree 4: .
	32. Let H be a subgroup of . Prove that either all of the elements of H are even, or that exactly one-half the elements in H are even.
	33. Express the k-cycle as a product of transpositions.
	34. Let be transpositions with . Show that:
	35. Show that every even permutation , with , is a product of 3-cycles. Suggestion: consider Exercise 34.
	36. Let be a k-cycle. Show that if and only if for every transposition .
	37. The permutation equation has a solution.
	38. The transposition in can be expressed as a product of 3-cycles.
	39. The identity in cannot be expressed as a product of three transpositions.

	THEOREM 2.36

	EXAMPLE 2.10
	DEFINITION 2.14
	THEOREM 2.37
	THEOREM 2.38
	THEOREM 2.39
	THEOREM 2.40

	DEFINITION 2.15
	THEOREM 2.41
	THEOREM 2.42
	THEOREM 2.43

	EXAMPLE 2.11
	THEOREM 2.44
	THEOREM 2.45
	1.
	2.
	3.
	4.
	5. (a) Show that is an infinite cyclic group.
	6. Show that if and are normal subgroups of G, then is also normal in G.
	7. Let N be a normal subgroup of G and let H be any subgroup of G. Show that is a subgroup of G.
	8. Let G be abelian and let H be a subgroup of G. Show that is abelian.
	9. Let G be cyclic and let H be a subgroup of G. Show that is cyclic.
	10. Let be a collection of normal subgroup of G. Prove that is normal in G.
	11. Show that if there are exactly 2 left (or right) cosets of a subgroup H of a group G, then .
	12. Show that if a finite group G has exactly one subgroup H of a given order, then .
	13. Show that if H is a finite subgroup of G and if H is the only subgroup of G with order , then .
	14. Let n be the index of the normal subgroup N in G. Show that for every .
	15. Let G be a group containing at least one subgroup of order n. Show that the intersection of all subgroups of order n in G is normal in G. Hint: first show that if a group H if of order n, then show that is also a subgroup of order n for all .
	16. Show that the set of inner automorphisms of a group G is a normal subgroup of the group of all automorphisms of G. [see CYU 2.22(c), page 77]
	17. Let G be a group. Show that the set is a normal subgroup of G.
	18. Let N be a normal subgroup of G, and let be such that and . Show that .
	19. Let G be a finite group of even order with n elements, and let H be a subgroup with elements. Prove that H must be normal. Suggestion: Consider the map .
	20. Let H and K be normal subgroups of G with . Show that for all and .
	21. Let N be a normal subgroup of G such that is cyclic. Show that G is cyclic.
	22. Let G be a group. Show that any subgroup of is a normal subgroup of G.
	23. Let G be a group. show that is a subgroup of G (called the centralizer of a).
	24. Prove that the center of a group G is the intersection of all the centralizers in G; that is: (See Exercise 22).
	25. Show that if and only if . (See Exercise 22).
	26. Find both the center and the commutator subgroup of .
	27. Let be an onto homomorphism with kernel K. Prove and if is a subgroup of , and if , then .
	28. Verify that there is no subgroup of order 6 in the alternating group . (Note that ).
	29. Sow that if N is not a normal subgroup of G, then the coset operation is not well defined.
	30. Prove Theorem 2.44.
	31. Prove Theorem 2.45.
	32. If and if H is a subgroup of G, then .
	33. If and , then .
	34. If then either H or N must be normal in G.
	35. Le be a homomorphism. If , then .
	36. Le be a homomorphism. If , then .
	37. Le be an onto homomorphism. If , then .


	DEFINITION 2.16
	DEFINITION 2.17
	EXAMPLE 2.12
	DEFINITION 2.18
	THEOREM 2.46

	EXAMPLE 2.13
	THEOREM 2.47

	DEFINITION 2.19
	THEOREM 2.48
	THEOREM 2.49

	EXAMPLE 2.14
	THEOREM 2.50
	1.
	2.
	3.
	4.
	5.
	6.
	7.
	8.
	9.
	10.
	11.
	12.
	13.
	14.
	15.
	16.
	17.
	18.
	19. Determine the number of elements of order 6 in .
	20. Determine the number of elements of order 7 in .
	21. Show that the Klein 4-group V (Figure 2.1, page 43) is isomorphic to .
	22. Show that .
	23. Show that .
	24. Use the Principle of Mathematica Induction to show that for finite groups :
	25. Let and be groups. Show that .
	26. Let and be groups. Show that (see Definition 2.15, page 96).
	27. Let and be groups. Show that and that:
	28. Let and . Show that and that:
	29. Let and be groups. Show that the order of is the leas common multiple of and .
	30. Prove that the order of an element in a direct product of a finite number of finite groups is the least common multiple of the orders of its components:
	31. Let G be a group and . Prove that
	32. Let be a direct product of groups. Show that the projection map given by is a homomorphism
	33. The groups and are isomorphic.
	34. The groups and are isomorphic.
	35. The groups and are isomorphic.
	36. Let G, H, K denote groups. If , then .


	Part 3
	From Rings To Fields
	DEFINITION 3.1
	EXAMPLE 3.1
	THEOREM 3.1

	DEFINITION 3.2
	EXAMPLE 3.2
	DEFINITION 3.3
	EXAMPLE 3.3
	THEOREM 3.2
	THEOREM 3.3

	DEFINITION 3.4
	THEOREM 3.4

	EXAMPLE 3.4
	1. The set under standard addition and multiplication.
	2. The set of positive even integers under standard addition and multiplication.
	3. The set of nonnegative even integers under standard addition and multiplication.
	4. The set under standard addition and multiplication.
	5. The set under standard addition and multiplication.
	6. The set under standard addition and multiplication.
	7. The set under component addition and multiplication.
	8. The set under component standard addition and multiplication.
	9. The set under matrix addition and multiplication. (See Example 3.2.)
	10. The set under matrix addition and multiplication. (See Example 3.2.)
	11. The set under matrix addition and multiplication. (See Example 3.2)
	12. The set of polynomials, , with real coefficients, of degree less than or equal to 5, under standard polynomial addition and multiplications.
	13. , and .
	14. and .
	15. and .
	16. , and .
	17. and .
	18. and .
	19. and .
	20. and .
	21.
	22.
	23.
	24.
	25.
	26.
	27.
	28. Show that any abelian group can be turned into a ring by defining for every .
	29. Verify that for any (see Example 3.2):
	30. Let and be rings. Prove that is a ring.
	31. Let be a collection of rings. Prove that is a ring.
	32. Let be a collection of rings. Prove that is a ring.
	33. Let a and b be element in a ring R. Show that for any integer n and m.
	34. Describe all of the subrings of the ring of integer.
	35. Let the ring R be cyclic under addition. Prove that R is commutative.
	36. Let denote the set of all real-valued functions. For f and g in , let be given by and . Show that under these operation is a ring with unity.
	37. The center of a ring R is the set . Sow that the center of R is a subring of R.
	38. For a and element of a ring R, let . Show that is a subring of R containing a.
	39. Show that the center of a ring R is equal to . (See Exercises 36 and 37.)
	40. Prove that is a unit in if and only if .
	41. Prove that if is a unit, then it has a unique inverse.
	42. Prove that the set is a group under multiplication.
	43. Let R be a ring, and let . Show that the set is a subring of R.
	44. Show that the multiplicative inveres of any unit in a ring with unity is unique.
	45. Let R be a commutative ring with unity, and let denote the set of units in R. Prove that is a group under the multiplication of R.
	46. Show that if there exists an integer n greater than 1 for which for every element x in a ring R, then.
	47. Let k be the least common multiple of the positive integers m and n. Show that .
	48. Let R be a commutative ring. Prove that .
	49. An element a of a ring R is idempotent if . Show that the set of all idempotent elements of a commutative ring is closed under multiplication.
	50. An element a of a ring R is nilpotent if for some . Show that if a and b are nilpotent elements of a commutative ring R, then is also nilpotent.
	51. A ring R is said to be a Boolean ring if for every . Prove that every Boolean ring is commutative.
	52. Give an example of finite Boolean ring, and an example of an infinite Boolean ring (see Exercise 50).
	53. Prove Theorem 3.3.
	54. Prove that m is a unit in if and only if .
	55. Let be rings. Show that:
	56. If and are rings, then is a ring.
	57. In any ring R, .
	58. If for all elements x in a ring R, then for all .
	59. In any ring R: .
	60. If and are Boolean ring, then is a Boolean ring. (See Exercise 50).
	61. If and are Boolean ring, then is a Boolean ring. (See Exercise 50).
	62. The set of all idempotent elements in a ring R is a subring of R. (See Exercise 48).

	DEFINITION 3.5
	EXAMPLE 3.5
	THEOREM 3.5

	EXAMPLE 3.6
	DEFINITION 3.6
	THEOREM 3.6
	THEOREM 3.7

	EXAMPLE 3.7
	THEOREM 3.8
	THEOREM 3.9
	1. , and .
	2. , and .
	3. and .
	4. and .
	5. , and .
	6. , and .
	7. , .
	8. , .
	9. , .
	10. , .
	11. Let be a homomorphism from R onto . Show that:
	12. Let and be ring homomorphisms. Prove that the composite function is also a homeomorphism.
	13. Let S be a subset of a ring R. Show that S is an ideal of R if and only if the following two conditions hold:
	14. Let denote the ring of all real-valued functions of Exercise 36, page 119, and let . Show that the map given by is a homomorphism.
	15. Let I be an ideal is commutative ring R with unity 1. Show that is a commutative ring with unity.
	16. Let R be a ring with unity. Show that if I is an idea of R that contains a unit, then .
	17. Let I be an ideal in a ring R. Show that there exist an onto ring homomorphism with .
	18. Let I be an ideal in a ring R. Show that if K is an ideal in I, then is an ideal in .
	19. Let I be an ideal in a ring R. Show that if is an ideal in , then there exists an ideal K in R with such that .
	20. Describe all ring homomorphisms from Z to Z.
	21. Describe all ring homomorphisms from Z to .
	22. Show that if , then the rings and are not isomorphic.
	23. Prove that (isomorphic) is an equivalence relation on any set of rings (see Definition 1.12, page 29).
	24. Show that the function given by where with preservers products: .
	25. Find a subring of that is not an ideal of .
	26. Prove that I is an ideal of a ring R if and only if:
	27. An element a of a ring R is nilpotent if for some . Show the collection of nilpotent elements of commutative ring R is an ideal of R.
	28. Let R be a commutative ring and . Show that is an ideal of R.
	29. Prove that if and are ideals of R, then is an ideal of R.
	30. Let and be ideals of R, and let I be the set of all elements of the form with and . Prove that I is an ideal of R.
	31. Let H be a subring or R that is not an ideal of R. Verify that the operation is not well defined. .
	32. Prove Theorem 3.8.
	33. Prove Theorem 3.9.
	34. If and are ideals of R, then is an ideal of R.
	35. If is an ideal of R and if H is a subring of R, then is an ideal of R.
	36. For every element a of a ring R, the set is an ideal of R.
	37. Let be a homomorphism from R onto . Show that if R possesses a unity then so does .
	38. The collection of nilpotent elements n a ring R is an ideal of R. (See Exercise 27).


	The set Z of integers under addition led to the definition of a group on page 41. Tossing multiplication into the mix brought us to the definition of a ring on page 111. How about “division”? Can one perform (grade school) division in the ring Z,...
	DEFINITION 3.7
	As is depicted below, fields are at the top of our algebraic pecking order, and groups are at the bottom:
	The familiar high school cancellation law (margin) holds in any integral domain:
	THEOREM 3.10

	Proof: . Since D is an integral domain, and since : .
	THEOREM 3.11

	Proof: Let R be a field and let I be an ideal in R with . Chose , . Since R is a field and I is an ideal, we then have: . Since I is an ideal: . Thus: .
	To establish the converse, we show that if and R are the only ideals in R, then every nonzero element in R is a unit:
	Let be an element of R. Consider the ideal . Since , . We then have . It follows that for some , and that is the inverse if a.
	THEOREM 3.12

	Proof: Let D be a finite integral domain, and let be an element in D. CYU 3.14(b) assures us that the function given by is one-to-one. It follows, since D is finite, that the function is also onto. In particular, there must exist some such that , and...
	We focus briefly, and somewhat loosely, on the set of polynomials with integer coefficients, as well as the sets of polynomials with coefficients taken from the rings . All turn out to be commutative rings (with unity) under the following standard su...
	Note that while the coefficients of a polynomial in are elements of the ring , the degree of such a polynomial can be any nonnegative integer. In particular, while might very well be a polynomial in (of degree 9), it can not be a polynomial in ().
	Consider the polynomial . Since the distributive property holds in both and in we can express the polynomial in factored form in either ring:
	But while the equation:
	has but two solutions in ( and ), the same equation turns out to have four solutions in . The reason, you see, is that while the ring Z is an integral domain (no zero divisors), the same cannot be said for . Indeed there are several pairs on nonzero ...
	with product equal to zero:
	Your turn:
	DEFINITION 3.8
	The ring Z has characteristic 0, and the cyclic ring has characteristic n. Clearly no finite ring is of characteristic 0. Must every infinite ring have characteristic 0? No:
	To determine the characteristic of a ring with unity, one need look no further than its unity:
	THEOREM 3.13

	Proof: If for all then surely there cannot exist such that for every , and R has characteristic 0.
	On the other hand, if for some positive integer n, then, for any :
	The smallest such n is then the characteristic of R.
	THEOREM 3.14

	Proof: Assume that D has positive characteristic n, and that n is not prime. Then n can be written as with and . We then have:
	Since D has no zero divisors, either or . But this cannot occur, since n is the least positive integer such that .
	Conclusion: n must be prime.
	DEFINITION 3.9
	EXAMPLE 3.8
	THEOREM 3.15

	Proof: (a) We need to show that has no zero divisors; which is to say that if , then either or ; which is to say that if then either or . And this is so, as I is a prime ideal.
	(b) Invoking Theorem 3.11, we show that the only ideals of are and :
	Let I be a maximal ideal in R, and let be an ideal in . Exercise 18, page 126, assures us that there exists an ideal in R with such that . Since I is a maximal ideal, either , in which case , or , in which case .
	Let’s mimic the development in which the integers Z blossom into the field of rational numbers Q, to one that nurtures a general integral domain D into its field of quotients F:
	1.
	2.
	3.
	4.
	5.
	6.
	7.
	8.
	9.
	10.
	11.
	12.
	13.
	14.
	15.
	16.
	17.
	18.
	19. Show that has no zero divisors for any prime p.
	20. Show that the zero divisors of are the nonzero elements that are not relatively prime to n.
	21. Show that every nonzero element in is a unit or a zero-divisor.
	22. Let R be a finite commutative ring with unity. Prove that every nonzero element in is a unit or a zero-divisor.
	23. Give an example of a ring R that contains a nonzero element that is neither a zero-divisor nor a unit.
	24. Show that any nonzero element a in a commutative ring R is a zero-divisor if and only if for some .
	25. Let R and S be nonzero rings. Can be an integral domain?
	26. Give an example of a commutative ring R without zero-divisors that is not an integral domain.
	27. A nonempty subset S of an integral domain D is called a subdomain of D if it is an integral domain under the operations of D. Prove that a nonempty subset of D is a subdomain of D if and only if S is a subring of D that contains the unity of D.
	28. Prove that the intersection of two subdomains of an integral domain D is also a subdomain of D. (See Exercise 18.)
	29. Find all subdomains of Z. (See Exercise 27.)
	30. Show that the only subdomain of , for p prime, is . (See Exercise 18.)
	31. Let D be an integral domain of prime characteristic p. Show that for every :
	32. Prove that every maximal ideal in a commutative ring with identity is a prime ideal.
	33. Let I be an ideal in a commutative ring R with unity. Prove that I is a prime ideal of R if and only if is an integral domain. [See Theorem 3.15(a).]
	34. Let I be an ideal in a commutative ring R with unity. Prove that I is maximal in R if and only if is afield. [See Theorem 3.15(b).]
	35. Prove that every proper ideal on a ring with unity is contained in a maximal ideal.
	36. Let R be a commutative ring. Prove that if P is a prime ideal of R that contains no zero-divisors, then R is an integral domain.
	37. Let R be a commutative ring. Let I and J be ideals of R. Show that if P is a prime ideal of R that contains , then either I or J is contained in P.
	38. Show that the subset is an ideal in . Show that while S is not an integral domain, is a field.
	39. Show that any ring homomorphism from a field F to a ring is one-to-one.
	40. Let R be a commutative ring. Prove that R is a field if and only if is a maximal ideal.
	41. Referring to the “From D to the field of quotients F” development on page 133,verify that the operations:
	42. Referring to the “From Z to Q” development on page 133,verify that the operations:
	43. Referring to the “From Z to Q” development on page 133,verify that is a field, with zero and unity .
	44. Referring to the “From D to the field of quotients F” development on page 133,verify that is a field, with zero and unity , for any .
	45. Establish Fermat’s Little Theorem: If and if p is a prime not dividing p, then:
	46. Show that for any prime p and any :
	47. The intersection of subdomains of an integral domain D is a subdomain of D. (See Exercise 18.)
	48. If is a homomorphism from the integral domain D to a ring R, then is a n integral domain.
	49. Let R be a commutative ring with unity. If P is a prime ideal of R and if J is a subring of R, then is a prime ideal of R.
	50. Let R be a commutative ring with unity. If P is a prime ideal of R and if I is an ideal of R, then is a prime ideal of R.

	CYU 3.14 (a) Let R be a commutative ring with unity in which the cancellation property holds. We show that R has no zero divisors (i.e, that R is an integral domain):
	Let . Since : . “Canceling the a,” we have .
	On the other hand, if R is an integral domain then, by its very definition, it has no zero divisors.
	(b) .
	CYU 3.15 By CYU 3.6(b), page 116, every nonzero element in is a unit. It follows that is an integral domain, and therefore a field (Theorem 3.12).
	CYU 3.17 We first acknowledge the fact that the ring is infinite, for it contains the infinite set of polynomials . As the coefficients of any polynomial in are elements in , for every . Moreover, for no is it true that , where  is the constant polyn...
	CYU 3.18 Expanding we find that . Since the given domain D had characteristic 3, the terms and are zero. Consequently: .
	CYU 3.19 (a) If is not a maximal ideal, then for some [see CYU 3.10(a), page 124]. Consequently for some — contradicting the given condition that p is prime.
	(b) Assume that is a maximal ideal. If m is not prime, then with neither a nor b equal to 1. But then:
	Contradicting the given condition that is a maximal ideal in Z.
	So, every maximal ideal in Z is of the form for p prime. As such, it is a prime ideal, for:
	Conversely, assume that is a prime ideal in Z. If m is not prime, then with neither a nor b equal to 1. But then I is not a prime ideal, since with neither a nor b contained in . So:
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