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PREFACE 

This text is specifically designed to be used in a one-semester undergraduate abstract
algebra course. It consists of three parts:

PART 1 (25% of text). Lays a foundation for the algebraic construction
that follows. 

PART 2 (50% of text). Focuses exclusively on the primary abstract algebra
object: the GROUP.

PART 3 (25% of text): Introduces additional algebra objects, including
Rings and Fields. 

For our part, we have made every effort to assist you in the journey you are about to
take. We did our very best to write a readable book, without compromising mathematical
integrity. Along the way, you will encounter numerous Check Your Understanding boxes
designed to challenge your understanding of each newly-introduced concept. Detailed
solutions to each of the Check Your Understanding problems appear in Appendix A, but
you should only turn to that appendix after making a valiant effort to solve the given prob-
lem on your own, or with others. In the words of Desecrates:

We never understand a thing so well, and make it our own, when we
learn it from another, as when we have discovered it for ourselves.

I wish to thank my colleague, Professor Maxim Goldberg-Rugalev, for his invaluable
input throughout the development of this text.
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 1

Part 1 
Preliminaries

 

We begin by recalling a bit of set notation and some definitions
involving sets: 

While on the topic of notation we call your attention to the following
globally understood mathematical symbols:

For example:
 

The symbol “ ” is read “is con-
tained in or is an element of.” In
particular;

translates to:
If x is in A, then x is in B



x A x B

A

B

A B

A B

A B x x A  and x B =

A B

A B x x A  or x B =

A
B

A B =

U

A

Ac

§1. FUNCTIONS

DEFINITION 1.1
SET EQUALITY

SUBSET

PROPER SUBSET

INTERSECTION

UNION

DISJOINT SETS

COMPLEMENT

Two sets A and B are equal, written  if:

The set A is said to be a subset of the set B,
written , if every element in A is also
an element in B, i.e: .
A is said to be a proper subset of B, written

, if A is a subset of B and . 

The intersection of A and B, written , is
the set consisting of the elements common to
both A and B. That is:

The union of A and B, written , is the
set consisting of the elements that are in A or
in B (see margin). That is:

Two sets A and B are disjoint if 

Let A be a subset of the universal set U. The
complement of A in U, written , is the set of
elements in U that are not contained in A:

(More simply: , if U is understood)

A B=
x A x B   and   x B x A

or: x A x B 

A B
x A x B

A B A B

A B

A B x x A and  x B =
read such that

A B

A B x x A or  x B =

A B =
 the empty set

Ac

A
c

x  x U and x A =

x x A 

 : read “for every” : read “there exists”  read “such that”

x y x y 0+

is read: for every x there exists y such that x+y is greater than 0
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You’ve dealt with functions in one form or another before, but have
you ever been exposed to a definition? If so, it probably started off with
something like:

A function is a rule...........
or, if you prefer, a rule is a function.......

You are now too sophisticated to accept this sort of “circular defini-
tion.” Alright then, have it your way:

Consider the schematic representation of the functions  and
 in Figure 1.1, along with a third function .

Figure 1.1
As is suggested in the above figure, the function  is given by:

All “objects” in mathematics
are sets, and functions are no
exceptions. The function f

given by , is the

subset   
of the plane. Pictorially: 

A function such as
 

is often simply denoted by
. Still, in spite of

their dominance throughout
mathematics and the sciences,
functions that can be described
in terms of algebraic expres-
sions are truly exceptional.
Scribble a curve in the plane
for which no vertical line cuts
the curve in more than one
point and you have yourself a
function. But what is the “rule”
for the set g below? 

Note that the set S below, is not
a function:

Why not?

f x  x2=

f x x2  x  =

f x x2  x  =

f x  x2=

g

g x 

x
.

.
                                 

S

x

...

DEFINITION 1.2
CARTESIAN

 PRODUCt

For given sets X and Y, we define the Carte-
sian Product of X with Y, denoted by ,
to be the set of ordered pairs:

DEFINITION 1.3
FUNCTION

OPERATOR

DOMAIN

RANGE

IMAGE OF 

INVERSE IMAGE OF 

A function f from a set X to a set Y is a subset
 such that for every  there

exists a unique .
A function f from a set X to itself is said to be
an operator on X.
The symbol  is used to indicate that f
is a function from the set X to the set Y, and

 denotes that .

The set X is said to be the domain of f, and 

is said to be the range of f.
While the domain of f is all of X, 
the range of f need not be all of Y.

Moreover, for  and :

 is called the image of

A under f, and 
is called the inverse image of B.

COMPOSITION OF FUNCTIONS

X Y

X Y x y  x X and y Y =

A X

B Y

f X Y x X
y Y

f: X Y

y f x = x y  f

y Y x y  f for some x X 

A X B Y
f A  f a  a A =

f 1– B  x X f x  B =

f: X Y
g: Y Z gf: X T

x
. . .f x  g f x  

f g

X                        Y                             Z          
gf

gf: X Z
gf  x  g f x  =

first apply f
and then apply g
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Formally:

SOLUTION: 
(a) 

(b) 

SOLUTION: 

(a) 

(b) 

DEFINITION 1.4
COMPOSITION

Let  and  be such that
the range of f  is contained in the domain of
g. The composite function  is
given by: 

f: X Y g: Y Z

gf: X Z

gf  x  g f x  =

Throughout the text the sym-
bol  will be used to denote
the set of real numbers.


EXAMPLE 1.1 Let  and  be given by

 and . Find:

    (a)    (b)  

f:   g:  
f x  x2 1+= g x  2x 5–=

gf  3  fg  x 

(the set of two-by-two matrices)

(The set of two-tuples)

In general: 

(The set of n-tuples)

M2 2
a b

c d
a b c d   

 
 
 

=

2 a b  a b  =

n x1 x2  xn    =

EXAMPLE 1.2 let  and  (see mar-

gin) be given by  and

. Find:

 (a)    (b)   

gf  3  g f 3   g 32 1+  g 10  2 10 5– 15= = = = =

f g  x  f g x   f 2x 5–  2x 5– 2 1+ 4x2 20x– 26+= = = =

f: M2 2 2 g: 2 

f a b

c d 
 
 

ab cd =

g a b  a b–=

gf  1 3

2 4 
 
 

gf  a b

c d 
 
 

gf  1 3

2 4 
 
 

g f 1 3

2 4 
 
 

g 1 3 2 4 = =

g 3 8  3 8– 5–= = =

gf  a b

c d 
 
 

g f a b

c d 
 
 

g ab cd  ab cd–= = =

Answer: (a) 
(b) 

10 25 
2a 2d+ a2 2ad d2+ + 

CHECK YOUR UNDERSTANDING 1.1

Let  be given by  and 

be given by . Determine:

        (a)                (b) 

f: M2 2  f a b

c d 
 
 

a d+= g:  R2

g x  2x x2 =

gf  1 3

2 4 
 
 

gf  a b

c d 
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SOLUTION: To show that f is one to one, we start with

                                    

and go on to show that :

To show that f is onto, we take an arbitrary element 

and set our sights on finding  such that

:

The above argument shows that f will map the element

 to . Let’s check it out:

BIJECTIONS AND THEIR INVERSES

DEFINITION 1.5
ONE-TO-ONE

ONTO

BIJECTION 

A function  is:

One-to-one if 

Onto if for every  there exists 
such that .

A bijection if it is both one-to-one and onto.

EXAMPLE 1.3 Let  be given by:

Show that f is a bijection

f: X Y
f a  f b  a b= =

y Y x X
f x  y=

f: 4 M2 2

f x y z w    y– 2x

3w z
=

f x y z w    f x y z w   =

x y z w    x y z w   =

f x y z w    f x y z w   = y– 2x

3w c

y– 2x

3w c

y– y–=

2x 2x=

3w 3w=

z z= 





 y y=

x x=

w w=

z z= 







 =

x y z w    x y z w   =

a b

c d
M2 2

x y z w    R4

f x y z w    a b

c d
=

f x y z w    a b

c d

y– 2x

3w z

a b

c d

y– a=

2x b=

3w c=

z d= 





 y a–=

x b 2=

w c 3=

z d= 







 ==

b
2
--- a– d

c
3
---   

  R4 a b

c d
M2 2

f
b
2
--- a– d

c
3
---   

 
a– – 2

b
2
--- 
 

3
c
3
--- 
  d

a b

c d
= =



                                                                                                                                  1.1   Functions     5
Consider the bijection  depicted in Fig-

ure 1.2(a) and the function  in Figure

1.2(b). The function , called the inverse of the function f, was
obtained from f by “reversing” the direction of the arrows in Figure
1.2(a).

 
Figure 1.2

In general:

Returning to Figure 1.2, we observe that the inverse of the bijection f
is also a bijection. We also note that if we apply f and then  we will
end up where we started, and ditto if we first apply  and then f (see
margin). In general:

Answer: See page A-1.

CHECK YOUR UNDERSTANDING 1.2

(a) Show that the function  given by

 is one-to-one and onto.

(b) Show that the function  given by

 is neither one-to-one nor onto.

DEFINITION 1.6
INVERSE FUNCTION

The inverse of a bijection , is the
function  given by: 

More formally: 

f: M2 2 R4

f a b

c d 
 
 

d c 3a b– =

f: M2 2 M2 2

f a b

c d 
 
  b a

c d+ 2b
=

f: 0 1 2 3    a b c d   

f 1– : a b c d    0 1 2 3   

f 1–

.
. .
.01
2

3 .
.
..

a
b

c
d

. .
.01
2

3 .
.
..

a
b

c
d

.

f f 1–

(a)                                                      (b)

X                    Y                              X                      Y

f: X Y
f 1– : Y X

f 1– y  x where f x  y= =

f 1– y x  x y  f =

0
1

2
3

a
b

c
d. .

f

f 1–

THEOREM 1.1 Let  be a bijection. Then:

(a)  is also a bijection. 

(b)  and 

f 1–

f 1–

f: X Y

f 1– : Y X

f 1– f x   x x X=

f f 1– y   y y Y=
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PROOF: (a)  is one-to-one: If , then: 

 is onto: Let . Since f is onto, there exists 

such that . Then: .

(b) Let . Since , , which is to say:

      . As for the other direction: 

SOLUTION: (a) For given  we determine  such that

:

                           Conclusion: 

Recall that to say that
 is to say that
. (see Defini-

tion 1.3).

f x  y=
x y  f

f 1– f 1– y1  f 1– y2  x= =

y1 x  f 1–  and y2 x  f 1–

x y1  f and x y2  f

y1 y2  (since f is a function)=

f 1– x X y Y

x y  f y x  f 1– f 1– y  x=

Answer: See page A-2.

CHECK YOUR UNDERSTANDING 1.3

Verify that for any bijection :

 

EXAMPLE 1.4 (a)  Find the inverse of the binary function

 given by:

(see Example 1.3)

(b) Show, directly, that

 

x X x f x   f f x  x  f 1–

x f 1– f x  =

f: X Y

f f 1– y   y y Y=

f: 4 M2 2

f x y z w    y– 2x

3w z
=

f f
1– a b

c d 
 
  a b

c d
=

a b

c d
x y z w   

f x y z w    a b

c d
=

f x y z w    a b

c d
= y– 2x

3w z
 a b

c d

y– a=

2x b=

3w c=

z d= 





 y a–=

x b 2=

w c 3=

z d= 







 =

f 1– a b

c d 
 
  b

2
--- a– d

c
3
---   

 =
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   (b) 

                           

As it turns out, one-to-one and onto properties are preserved under
composition:

PROOF: (a) Assume that both f and g are one-to-one, and that:

Note: In Example 1.3 we showed that for :

That being the case:  .

f x y z w    y– 2x

3w z
=

f
b
2
--- a– d

c
3
---   

  a b

c d
=

f
1– a b

c d 
 
  b

2
--- a– d

c
3
---   

 =

f f
1– a b

c d 
 
 

f
b
2
--- a– d

c
3
---   

 
a– – 2

b
2
--- 
 

3
c
3
--- 
  d

a b

c d
= = =

since f x y z w    y– 2x

3w z
=

Answer:

 

For the rest: See page A-2.

f
1–

x y z w    z 3 w

y– x
=

CHECK YOUR UNDERSTANDING 1.4

Find the inverse of the bijection  given by

 and verify, directly, that: 

 and that .

THEOREM 1.2 Let  and  be functions with
the range of f contained in the domain of g.
Then:

(a) If f and g are one-to-one, so is .

(b) If f and g are onto, so is .

(c) If f and g are bijections, so is .

f: M2 2 R4

f a b

c d 
 
 

d c 3a b– =

f f
1–

x y z w     x y z w   = f
1–

f a b

c d

a b

c d
=

f: X Y g: Y Z

gf

gf

gf

gf  x1  gf  x2 =

g f x1   g f x2  =

f x1  f x2 =

x1 x2=

Which is to say:

Since g is one-to-one:

Since f is one-to-one:
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(b) Assume that both f and g are onto, and let . We are to find

 such that . Let’s do it:

Since g is onto, there exists  such that .

Since f is onto, there exists  such that .

It follows that .

(c) If f and g are both bijections then, by (a) and (b), so is .

Theorem 1.2(c) asserts that the composition  of two bijections is

again a bijection. As such, it has an inverse, and here is how it is related
to the inverses of its components:

PROOF: For given , let  be such that ;

which is to say, that . We complete the proof by

showing that  is also equal to x:

 

z Z
x X gf  x  z=

y Y g y  z=

x X f x  y=

gf  x  g f x   g y  z= = =

gf

This is an example of a so-
called “shoe-sock theorem.”
Why the funny name?

One puts on socks then shoes
In the reverse process:

The shoes come off and then the socks

THEOREM 1.3 If  and  are bijections,
then: 

gf

f: X Y g: Y Z

gf  1– f 1– g 1–=

z Z x X gf  x  z=

gf  1– z  x=

f 1– g 1–  z 

gf  1– z  x=

z gf  x =

z g f x  =

g 1– z  f x =

f 1– g 1– z   x=

f 1– g 1–  z  x=

Answer: See page A-2.

CHECK YOUR UNDERSTANDING 1.5

The function  given by  has

inverse  (see Example 1.4), and the func-

tion  has inverse .

Determine the function  and its inverse; and then show,

directly, that .

f: 4 M2 2 f x y z w    y– 2x

3w z
=

f 1– a b

c d 
 
  b

2
--- a– d

c
3
---   

 =

g a b

c d 
 
 

d c 3a b– = g 1– x y z w    z 3 w

y– x
=

gf: 4 4

gf  1– f 1– g 1–=
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Ex cerises 1-19. Let                   , 

                                                     , 

                                       . Determine: 

20. Establish the following set identities (all capital letters represent subsets of a universal set U):

Exercises 21-23. Prove that:

Exercises 24-26. Give a counterexample to show that each of the following statements is False.

Exercises 27-30. Is  (a) One-to-one? (b) Onto? 

Exercises 31-33. Is  (a) One-to-one? (b) Onto?

Exercises 34-36. Is  (a) One-to-one? (b) Onto?

EXERCISES

1. 2. 3. 4.

5. 6. 7. 8.

9. 10. 11. 12.

13. 14. 15. 16.

17. 18. 19.

                                                                   (a) DeMorgan’s Theorems:

(i)                                                                  (ii) 

(b) Associative Theorems:

(i)                                         (ii)

                                                     (c) Distributive Theorems:

(i)                      (ii) 

21. 22. 23.

24. 25. 26.

27. 28. 29. 30.

31. 32. 33.

34. 35. 36.

U 1 2 3    = O 1 3 5    = E 2 4 6    =

A 5n n U = B 3n n U = C 1 2 3  15    =

D 2 4 6 10   = F 11 12 13 14   =

O E O E A B A B

B C B C C D C D

Oc Ec Oc A C O O A c

C D  F C D F  C F  D C Fc  F

Bc C  D O  O E c A B  c O E c O A  c

A B c Ac Bc= A B c Ac Bc=

A B C  A B  C= A B C  A B  C=

A B C  A B  A C = A B C  A B  A C =

Ac B c A Bc= A Bc c B Ac B= A B  A Bc  A=

A B c Ac Bc= A B c Ac Bc= A B c Cc Ac B C c=

f:  

f x  3x 7–
x 2+
---------------= f x  x2 3–= f x  x2 1+

x4 1+
--------------= f x  x3 x– 2+=

f:  2
f x  x x = f x  x 1 = f x  x2 2x+ x 5+ =

f: 2 2
f x y  y x– = f x y  x x y+ = f x y  2x x y+ =
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Exercises 37-38. Is  (a) One-to-one? (b) Onto?

Exercises 39-40. Is  (a) One-to-one? (b) Onto?

Exercises 41-49. Show that the given function  is a bijection. Determine 
and show, directly, that   and that  .

37. 38.

39. 40.

41. , and .

42. , and .

43. , and .

44. , and .

45. , and .

46. , and .

47. , and .

48. , and .

49. , and .

50. Prove that a function  is one-to-one if and only if the function  given by 

 is one-to-one. 

51.  Prove that for any given : . 

f: M2 2 4

f a b

c d 
 
 

a 2b– c c d–   = f a b

c d 
 
 

a b– c d b a–   =

f: 4 M2 2

f a b c d    ab   b a+

c b+ a2b2
= f a b c d    a   b a+

c b+   d a+
=

f: X Y f 1– : Y X
f 1–

f  x  x= x X ff 1–  y  y= y Y

X  Y = = f x  3x 2–=

X – 0  0   Y – 1  1  = = f x  x 1+
x

------------=

X – 1–  1–   Y – 2  2  = = f x  2x
x 1+
------------=

X Y 2= = f a b  b– a =

X Y 2= = f a b  5a b 3+ =

X Y M2 2= = f a b

c d 
 
  b c

d a
=

X Y M2 2= = f a b

c d 
 
  c 2d

a b–
=

X 4 Y M2 2= = f a b c d    2b c 1+

d a–
=

X M3 1= Y 3= f
a

b

c 
 
 
 
 

2a a b– b c+ =

f:   g:  
g x  f x –=

f: X Y g: Y S  and  h: S T h gf  hg f=
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Exercise. 55-60. (Algebra of Functions) For any set X, and functions  and , 

we define  as follows:

52. Let  be given, with h a bijection. 

(a) Prove that if , then . 

(b) Show, by means of an example, that (a) need not hold when h is not a bijection.

53. Let , , and  be given. Prove that there exists a function  such 

that  for every . (That is, a function g which “extends” f to all of X.)

54. Let , , and  be given. Prove that there exists a function  such 

that  for every . (That is, a function g which is the “restriction” of f to the 
subset S.)

 if 

55. Prove that for any  and :  and .

56. Exhibit , , such that .

57. Exhibit one-to-one functions , , such that  is not one-to-one.

58. Exhibit onto functions , , such that  is not onto.

59. Exhibit one-to-one functions , , such that  is not one-to-one.

60. Exhibit onto functions , , such that  is not onto.

PROVE OR GIVE A COUNTEREXAMPLE

61. If  and , then .

62. If  or , then .

63. If  and , then .

64. If , then .

65. If , then .

66. If , then either  or .

67. If  and , then .

f: X Y g: X Y  and  h: Y W
hf hg= f g=

S X Y  f: S Y g: X Y
f x  g x = x S

S X Y  f: X Y g: S Y
f x  g x = x S

f: X  g: X 

f g: X  f g: X  f g: X  and 
f
g
---: X –+

f g+  x  f x  g x += f g–  x  f x  g x –=

f g  x  f x  f x = f
g
--- 
  x  f x 

g x 
----------= g x  0

f: X  g: X  f g+ g f+= f g g f=

f:   g:   f g– g f–

f:   g:   f g+

f:   g:   f g+

f:   g:   f g

f:   g:   f g+

A B  B C  A C 

A B = B C = A C =

A B C  C B A  A C=

A B A C= A C=

A B A C= A C=

A B A B= A = B =

A B C  B C D  A C  B D 
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68. .

69. If no element of a set A is contained in a set B, then A cannot be a subset of B.

70. Two sets A and B are equal if and only if the set of all subsets of A is equal to the set of all 
subsets of B.

71.  .

A B  A C  A B C =

  =
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This section introduces a most powerful mathematical tool, the Prin-
ciple of Mathematical Induction (PMI). Here is how it works:

Step II of the induction procedure may strike you as being a bit
strange. After all, if one can assume that the proposition is valid at

, why not just assume that it is valid at  and save a
step! Well, you can assume whatever you want in Step II, but if the
proposition is not valid for all n you simply are not going to be able to
demonstrate, in Step III, that the proposition holds at the next value of
n. Just imagine that the propositions

  
are lined up, as if they were an infinite set of dominoes:

If you knock over the first domino (Step I), and if when a domino falls
(Step II) it knocks down the next one (Step III), then all of the domi-

noes will surely fall. But if the falling  domino fails to knock over
the next one, then all the dominoes need not fall.

 To illustrate how the process works, we ask you to consider the sum
of the first n odd integers, for  through :

Figure 1.3

§2. Principle of Mathematical Induction

A form of the Principle of
Mathematical Induction is actu-
ally one of Peano’s axioms,
which serve to define the posi-
tive integers.
[Giuseppe Peano (1858-1932).] 

PMI
Let  denote a proposition that is either true or false, depend-
ing on the value of the integer n. 

If: I.  is True.

And if, from the assumption that: II.   is True

one can show that: III.  is also True.

then the proposition  is valid for all integers 

P n 

P 1 

P k 

P k 1+ 

P n  n 1

n k= n k 1+=

P 1  P 2  P 3   P k  P k 1+   

P(1) P(2) P(3) P(4) P(5) P(6)    P(7)    P(8)   P(9)   P(10) .......

The Principle of Mathemati-
cal Induction might have been
better labeled the Principle of
Mathematical Deduction, for
inductive reasoning is used to
formulate a hypothesis or con-
jecture, while deductive rea-
soning is used to rigorously
establish whether or not the
conjecture is valid. 

kth

n 1= n 5=

  Sum of the first n odd integers  Sum
1 1

1 + 3 4
9

16
25

1 + 3 + 5
1 + 3 + 5 + 7

1 + 3 + 5 + 7 + 9

n
      

Sum
1        1
2        4
3        9
4      16
5      25
6      ?
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Looking at the pattern of the table on the right in Figure 1.3, you can
probably anticipate that the sum of the first 6 odd integers will turn out

to be , which is indeed the case. Indeed, the pattern suggests

that:              

Using the Principle of Mathematical Induction, we now establish the
validity of the above conjecture: 

 Let  be the proposition that the sum of the first n odd integers
equals .

I. Since the sum of the first 1 odd integers is ,  is true.

II. Assume  is true; that is:

 

III. We show that  is true, thereby completing the proof:  

SOLUTION: Let  be the proposition:

I.  is true: 

II. Assume  is true: 

III. We are to show that  is true; which is to say, that (*)

holds when :

Let’s do it:  

62 36=

The sum of the first n odd integers is n2

The sum of the first 3 odd
integers is:

The sum of the first 4 odd
integers is:

Suggesting that the sum of
the first k odd integers is:   

     (see Exercise 1).

1 3 5+ + 2 3 1–

1 3 5 7+ + + 2 4 1–

1 3  2k 1– + + +

EXAMPLE 1.5 Use the Principle of Mathematical Induction to
establish the following formula for the sum of
the first n integers:

P n 
n2

12 P 1 
P k 

1 3 5  2k 1– + + + + k2=
see margin

P k 1+ 

1 3 5  2k 1– + + + +  2k 1+ + k2 2k 1+ + k 1+ 2= =

  
the sum of the first k 1 odd integers+

induction hypothesis: Step II

1 2 3  n+ + + + n n 1+ 
2

--------------------=

P n 

1 2 3  n+ + + + n n 1+ 
2

--------------------= (*)

P 1  1 1 1 1+ 
2

--------------------= Check!

P k  1 2 3  k+ + + + k k 1+ 
2

--------------------=

P k 1+ 
n k 1+=

1 2 3  k k 1+ + + + + + k 1+  k 1+  1+ 
2

------------------------------------------------ k 1+  k 2+ 
2

----------------------------------= =

1 2 3  k k 1+ + + + + + 1 2 3  k+ + + +  k 1+ +=

k k 1+ 
2

-------------------- k 1+ +=

k k 1+  2 k 1+ +
2

----------------------------------------------- k 1+  k 2+ 
2

----------------------------------= =

induction hypothesis:
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We pause momentarily to recall three number theory definitions. In
the present discussion,  denotes the set of integers.

PROOF: (a) If , then, by Definition 1.7:

.
Consequently:

 (where ).
It follow, from Definition 1.7, that .

(b) If , then  and  for some h and k. 
Consequently:

 (where ).
It follows that .

(c) If , then  for some k. Consequently, for any c:
 (where ). 

It follows that .

Answer: See page A-3.

CHECK YOUR UNDERSTANDING 1.6

(a) Use the formula for the sum of the first n odd integers, along with
that for the sum of the first n integers, to derive a formula for the
sum of the first n even integers. 

(b)Use the Principle of Mathematical Induction directly to establish
the formula you obtained in (a). 

DEFINITION 1.7
EVEN AND ODD

DIVISIBILITY

 is even if .

  is odd if .

A nonzero integer a divides , written
, if  for some .

Z

n Z k Z n 2k=

n Z k Z n 2k 1+=

b Z
a b b ak= k Z

Answer: See page A-3.

THEOREM 1.4 Let b and c be nonzero integers. Then:

(a) If , then .

(b) If , then .

(c) If , then  for every c.

Note how Definition 1.7 is used in both directions in the above proof.

CHECK YOUR UNDERSTANDING 1.7

Prove or give a counterexample.

(a) If , then  or .

(b) If  and , then .

a b  and  b c a c

a b  and  a c a b c+ 

a b a bc

a b  and  b c

b ak and c bh  for some h and k= =

c bh ak h a kh  at= = = = t kh=
a c

a b  and  a c b ah= c ak=

b c+ ah ak+ a h k+  at= = = t h k+=
a b c+ 

a b b ak=
bc ak c a kc  at= = = t kc=

a bc

a b c+  a b a c

a b a b c+  a c
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The “domino effect” of the Principle of Mathematical Induction need
not start by knocking down the first domino . Consider the fol-
lowing example where domino  is the first to fall.

SOLUTION: Let  be the proposition .

I.  is true: , since .

II. Assume  is true: .

III. We show  is true; namely, that :

The desired conclusion now follows from Theorem 1.4:

 

We complete this section by introducing two equivalent forms of the
Principle of Mathematical Induction — equivalent in that any one of
them can be used to establish the remaining two.

One version, which we will call the Alternate Principle of Induction
(API), is displayed in Figure 1.3(b). As you can see, the only difference
between PMI and API surfaces in (*) and (**). Specifically, the propo-
sition “  True” in (a) is replaced, in (b), with the proposition “
True for all integers m up to and including k”.

Figure 1.4

EXAMPLE 1.6 Use the Principle of Mathematical Induction to

show that  for all integers .

P 1 
P 0 

4 5n 1–  n 0

What motivated us to
write  in the form

? Necessity did:

We had to do something
to get “ ” into the
picture (see II).

Clever, to be sure; but such
a clever move stems from
stubbornly focusing on
what is given and on what
needs to be established.

1–
5– 4+

5k 1–

P n  4 5n 1– 

P 0  4 50 1–  50 1– 1 1– 0= =

P k  4 5k 1– 

P k 1+  4 5k 1+ 1– 

5k 1+ 1– 5 5k  1– 5 5k  5– 4  (see margin)+= =

5 5k 1–  4+=

4 5k 1–  4 5 5k 1–  and then:

4 5 5k 1–  and  4 4 4 5 5k 1–  4+ 

Theorem 1.4 (c):

Theorem 1.4(b):

Answer: See page A-4.

CHECK YOUR UNDERSTANDING 1.8

(a) Use the Principle of Mathematical Induction to show that

 for all integers .

(b) Use the Principle of Mathematical Induction to show that

 for all integers .

ALTERNATE FORMS OF MATHEMATICAL INDUCTION

n! n2 n 4

6 n3 5n+  n 1

API is often called the
Strong Principle of Induc-
tion. A bit of a misnomer,
since it is, in fact, equiva-
lent to PMI.

P k  P m 

Let  denote a proposition that is either true or false, depending on the value of the integer n. 

PMI API

If  is True, and if:

(*)  True  True

then  is True for all integers 
(a)

If  is True, and if

(**):  True for   True

then  is True for all integers 
(b)

P n 

P 1 
P k  P k 1+ 

P n  n 1

P 1 
P m  1 m k  P k 1+ 

P n  n 1
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We establish the equivalence of PMI and API by showing that (*)
holds if and only (**) holds. Clearly, if (*) holds then (**) must also
hold. As for the other way around:

Assume that (**) holds and that (*) does not.
(we will arrive at a contradiction)

If (*) does not hold, then there must exist some  for which

 is True and  is False. Since  is False,

and since (**) holds, we know that  is False for some
. But we are assuming that  is True. Hence

 is False for some .

Repeating the above procedure with  playing the role of  we

arrive at  is False for some .

Continuing in this fashion we shall, after at most  steps, be

forced to conclude that  is False — contradicting the assump-
tion that  is True.

SOLUTION: 

I. Claim holds for : 

II. Assume claim holds for all m such that .

III. To show that the claim holds for  we first show,

directly, that it does indeed hold if  or if

:

Now consider any .
If , then . Appealing to the
induction hypothesis, we choose  such that: 

It follows that , and the proof is complete.

EXAMPLE 1.7 Use API to show that for any given integer
 there exist integers  such that

.

k0

P k0  P k0 1+  P k0 1+ 
P k1 

1 k1 k0  P k0 
P k1  1 k1 k0

k1 k0

P k2  1 k2 k1

k0 1–

P 1 
P 1 

n 12 a 0 b 0
n 3a 7b+=

n 12= 12 3 4 7 0+=

12 m k 
n k 1+=

k 1+ 13=

k 1+ 14=

13 3 2 7 1  and  14+ 3 0 7 2+= =

k 1 15+
k 1 15+ 12 k 1+  3 k–

a 0 b 0
k 1+  3– 3a 7b+=

k 1+ 3 a 1+  7b+=
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Here is another important property which turns out to be equivalent to
the Principle of Mathematical Induction: 

We show that the Alternate Principle of Mathematical Induction
implies the Well-Ordering Principle:

Let S be a NONEMPTY subset of . 
If , then it is certainly the smallest element in S, and we are done.

Assume , and suppose that S does not have a smallest element 
(we will arrive at a contradiction): 

Let  be the proposition that  for . Since, ,
 is True. Suppose that  is True for all , can

 be False? No: 

To say that  is False is to say that . But that

would make  the smallest element in S, since none of its
predecessors are in S. This cannot be, since S was assumed not
to have a smallest element.

Since  is True ( ) and since the validity of  for

all  implies the validity of ,  must be

True for all ; which is the same as saying that no ele-

ment of  is in S — contradicting the assumption that S is
NONEMPTY.

 denotes the set of
positive integers.

Note that subsets of Z need not
have first elements. A case in
point

Note also that the bounded set

does not contain a smallest
element (5 is not in the set).

Z
+

 4 2 0 2 4    –– 

x  5 x 9  

THE WELL-ORDERING PRINCIPLE FOR 

Every nonempty subset of  has a smallest (or least, or first) element.

Z+

Z+

Z+

1 S
1 S

P n  n S n Z+ 1 S
P 1  P m  1 m k 
P k 1+ 

P k 1+  k 1 S+

k 1+

P 1  1 S P m 
1 m k  P k 1+  P n 

n Z+
Z+

Answer: See page A-4.

CHECK YOUR UNDERSTANDING 1.9

Show that the Well-Ordering Principle implies the Principle of Math-
ematical Induction.
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Exercises 1-29. Establish the validity of the given statement.

EXERCISES

1. For every integer ,  is the  odd integer.

2. For every integer , .

3. For every integer , .

4. For every integer , .

5. For every integer , .

6. For every integer , .

7. For every integer , .

8. For every integer  and any real number , .

9.  For every integer , and any real number , .

10. For every integer : .

11. For every integer :  .

12. For every integer : .

13. For every integer ,  is divisible by 8.

14. For every integer ,  is divisible by 5.

15. For every integer ,  is divisible by 21.

16. For every integer ,  is divisible by 64.

17. For every integer , .

n 1 2n 1– nth

n 1 1 4 7  3n 2– + + + + 3n2 n–
2

-----------------=

n 1 12 32 52  2n 1– 2+ + + + n 2n 1–  2n 1+ 
3

--------------------------------------------=

n 1 12 22 32  n2+ + + + n n 1+  2n 1+ 
6

-----------------------------------------=

n 1 4 42 43  4n+ + + + 4 4n 1– 
3

----------------------=

n 1 1
2
--- 1

4
--- 1

8
---  1

2n
-----+ + + + 1 1

2n
-----–=

n 1 1 1
1
---+ 

  1 1
2
---+ 

  1 1
3
---+ 

  1 1
n
---+ 

  n 1+=

n 1 x 1 x0 x1 x2  xn+ + + + 1 xn 1+–
1 x–

---------------------=

n 1 r 1 ari

i 0=

n

 a 1 rn 1+– 
1 r–

-----------------------------=

n 0 5 24n 2+ 1+ 

n 1 9 43n 1– 

n 1 3 5n 2n– 

n 1 52n 7+

n 1 33n 1+ 2n 1++

n 1 4n 1+ 52n 1–+

n 1 32n 2+ 8n– 9–

n 0 2n n
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30. Let  be any nonnegative integer. Use the Well-Ordering Principle to show that every non-

empty subset of the set  contains a smallest element.

31. Use the Principle of Mathematical Induction to show that there are  different ways of 

ordering n objects, where . 

32. What is wrong with the following “Proof” that any two positive integers are equal:

18. For every integer , . 

19. For every integer , .

20. For every integer , .

21. For every integer ,  is an odd integer.

22. For every integer , .

23. (Calculus Dependent) Show that the sum of n differentiable functions is again differentiable.

24. (Calculus Dependent) Show that for every integer , . 

Suggestion: Use the product Theorem: If f and g are differentiable functions, then so is 

differentiable, and .

25. Let  and . Show that .

26. Let  and . Show that .

27. For every integer , .

28. For any positive number x,  for every .

29. For every integer , there exist integers  such that .

Let  be the proposition: If a and b are any two positive integers such

that , then .

I.  is true: If , then both a and b must equal 1.

II. Assume  is true: If , then .

III. We show  is true: 

         If  then .

         By II, .

n 5 2n 4 n–

n 5 2n n2

n 4 3n 2n 10+

n 1 2n !
2nn!
-------------

n 4 2n n!

n 1
xd

d xn nxn 1–=

f g

xd
d f x g x   f x 

xd
d g x  g x 

xd
d f x +=

a1 1= an 1+ 3 1
an
-----–= an 1+ an

a1 2= an 1+
1

3 an–
--------------= an 1+ an

n 1 1 1

2
------- 1

3
-------  1

n
------- 2 n 1+ 1– + + + +

1 x+ n 1 nx+ n 1

n 8 a 0 b 0 n 3a 5b+=

m

n Z n m– 

n!

n! 1 2 3  n   =

P n 
max a b  n= a b=

P 1  max a b  1=

P k  max a b  k= a b=

P k 1+ 
max a b  k 1+= max a 1– b 1–  k=

a 1– b 1 a– b·= =
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In elementary school you learned how to divide one integer into
another to arrive at a quotient and a remainder, and could then check
your answer (see margin). That checking process reveals an important
result:

PROOF: We begin by establishing the existence of q and r such that:

Consider the set: 

We first show that S is not empty:

If , then , and therefore .
                                                      [0 is playing the role of n in (*)] 

If , then , and therefore .
        [a is playing the role of n in (*) and remember that ] 

Since S is a nonempty subset of , it has a least element
(Exercise 30, page 20); let’s call it r. Since r is in S, there exists 
such that:

 To complete the existence part of the proof, we show that .
Assume, to the contrary, that . From:

we see that  is of the form  (with ).
Moreover, our assumption that  implies that . It
follows that , contradicting the minimality of r.

To establish uniqueness, assume that:

               [We will show that  and  (see margin)]

Since  and  (or ): .

Since  and  (or ): 

                     Thus: , or 

From  we have: 

But if  and if  is a multiple of d, then  (or

). Returning to  we now have:

§3. The Division Algorithm and Beyond
ALL LETTERS IN THIS SECTION WILL BE UNDERSTOOD TO REPRESENT INTEGERS.

Here is a “convincing argu-
ment” for your consideration: 
Mark off multiples of d on the
number line:

Case 1. If , then let
. 

Case 2. If a is not a multiple
of d, then let  be such that

. We then
have , where: 

In either case .

3   17
      15

2

5

d

q

r

a

Check: 17 3 5 2+=

a dq r+=

-2d     -d       0       d       2d
|        |        |       |        |

a dq=
r 0=

dq
dq a d 1+ q 

a dq r+=

dq dq d+
.
a

r
d

0 r d

THEOREM 1.5
THE DIVISION 
ALGORITHM

For any given  and , there exist

unique integers q and r, with , such that: 

a Z d Z+
0 r d

a dq r+=

a dq r   with   0 r d+=

S a dn n Z  and  a dn 0–– = (*)

a 0 a a d 0 0–= a S

a 0 a da 0– a da S–
d Z+

0  Z+
q Z

r a dq–= (**)
r d

r d
r d– a dq–  d– a d q 1+ –= =

                (**)

r d– a dn– n q 1+=
r d r d 0–

r d S–

This is a common mathe-
matical theme:
To establish that some-
thing is unique, consider
two such “somethings”
and then go on to show
that the two “some-
things” are, in fact, one
and the same.

a dq r  with   0 r d  and  a dq r  with  0 r d+=+=
q q= r r=

r 0 r d r– d– r r 0 r 0 d––– d–=

r d r 0 r 0– r r d r d 0––– d=

d r r d–– r r– d

dq r+ dq r+= r r– d q q– =
(a multiple of d)

r r– d r r– r r– 0=

r r= dq r+ dq r+=

dq r+ dq r+= dq dq d q q– = 0 q q= =
d 0
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.

SOLUTION: There are, at times, more than one way to stroke a cat:

EXAMPLE 1.8 Show that for any odd integer n, .8 n2 1– 

Using Induction
We show that the proposition:

holds for all  (thereby covering all
odd integers n).

I. Valid at : .

II. Assume valid at ; that is:

    or
   for some integer t. 
III. We are to establish validity at

; that is, that:
  

for some integer s. Let’s do it:

Using the Division Algorithm
We know that for any n there exists q such that: 

While (*) and (**) may not lead us to a fruitful conclu-
sion, the bottom line does. Specifically:

For any n:

If n is odd, then there are but the two possibilities:

We now show that, in either case . 
If , then:

 

If , then:

8 2m 1+ 2 1– 
m 0

m 0= 2 0 1+ 2 1– 0=

m k=

2k 1+ 2 1– 8t= 4k2 4k+ 8t=

m k 1+=
2 k 1+  1+ 2 1– 8s=

2 k 1+  1+ 2 1–

2k 3+ 2 1–=

4k2 12k 8+ +=

4k2 4k+  8k 8+ +=

8t 8 k 1+ + 8 t k 1+ +  8s= = =

II

n 2q or n 2q 1+= =

n 3q or n 3q 1 or n+ 3q 2+= = =

n 4q or n 4q 1 or n+ 4q 2 or n+ 4q 3+= = = =

(*)

(**)

n 4q or n 4q 1 or n+ 4q 2 or n+ 4q 3+= = = =

n 4q 1 or n+ 4q 3+= =
8 n2 1– 

n 4q 1+=

n2 1– 4q 1+ 2 1– 16q2 8q 1 1–+ + 8k  = = =

with k 2q2 q+= 
n 4q 3+=

n2 1– 4q 3+ 2 1– 16q2 24q 9 1–+ + 8h  = = =

with h 2q2 3q 1+ += 

Answer: See page A-5

CHECK YOUR UNDERSTANDING 1.10

Prove that for any integer n,  or  for some integer q.

DEFINITION 1.8
GREATEST COMMON 

DIVISOR

For given a and b not both zero, the greatest
common divisor of a and b, denoted by
gcd(a,b), is the largest positive integer that
divides both a and b. 

THEOREM 1.6 If a and b are not both 0, then there exist s and t
such that:

n2 3q= n2 3q 1+=

gcd a b  sa tb+=
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PROOF: Let

Assume, without loss of generality that . Since both a and  are
of the form :  while ; and
since either a or  is positive: . That being the case, the Well
Ordering Principle (page 18) assures us that G has a smallest element

. We show that  by showing that (1): g
divides both a and b, and that (2): every divisor of a and b also divides g. 

(1) Applying the Division Algorithm we have:
 with . 

Substituting  in (*) brings us to:

Since r is of the form  with , it cannot be in G, and
must therefore be 0 [see (**)]. Consequently , and .
The same argument can be used to show that . 

(2) If , then, by Theorem 1.4(b) and (c), page 15: .

For example:
Since , 15 and 8 are relatively prime. 

Since , 15 and 9 are not relatively prime. 

PROOF: To say that a and b are relatively prime is to say that
. The existence of integers s and t such that

 follows from Theorem 1.6.

For the converse, assume that there exist integers s and t such that
. Since  divides both a and b, it divides 1

[Theorem 1.4(b) and (c), page 15]; and, being positive, must equal 1.

G x 0 x ma nb for some m and n+= =

a 0 a–
ma nb+ a 1a 0b+= a– 1– a 0b+=

a– G 

g sa tb+= g gcd a b =

a qg r+=
(*)

0 r g
(**)

g sa tb+=

a q sa tb+  r+=

r 1 qs– a tb–=

ma nb+ r g
a qg= g a
g b

d a and d b d g

Answer: See page A-5

CHECK YOUR UNDERSTANDING 1.11

Show that for any a and b not both zero:
 .

DEFINITION 1.9
RELATIVELY PRIME

Two integers a and b, not both zero, are rela-
tively prime if: 

THEOREM 1.7 Two integers, a and b, are relatively prime if
and only if there exist  such that

gcd a b  gcd a b =

gcd a b  1=

gcd 15 8  1=

gcd 15 9  3 1=

s t Z
1 sa tb+=

gcd a b  1=
1 sa tb+=

1 sa tb+= gcd a b 
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PROOF: Let s and t be such that:

Multiplying both sides of the above equation by c:

Clearly . Moreover, since : . The result now follows
from Theorem 1.4(b), page 15.

Chances are that you are already familiar with the important concept
of a prime number; but just in case:

 For example: 2, 5, 7, and 11 are all prime, while 9 and 25 are not.
Moreover, since any even number is divisible by 2, no even number
greater than 2 is prime.

PROOF: If , we are done. We complete the proof by showing that

if , then :

Since the greatest common divisor of p and a divides p, it is
either 1 or p. As it must also divide a, and since we are
assuming , it must be that . The result
now follows from Theorem 1.8.

The following result is important enough to be called the Fundamen-
tal Theorem of Arithmetic.

THEOREM 1.8 Let . If , and if ,

then . 

a b c Z  a bc gcd a b  1=

a c

1 sa tb+=

c sac tbc+=

Answer: See page A-5.

CHECK YOUR UNDERSTANDING 1.12

Let . Show that if  and , then a and c can not be
relatively prime.

PRIME NUMBERS

DEFINITION 1.10
PRIME

An integer  is prime if 1 and p are its
only divisors. 

a sac a bc a tbc

a b c Z  a bc a b

p 1

So, 2 is the oddest prime (sorry).

THEOREM 1.9 If p is prime and if , then  or .p ab p a p b

p a

p a p b

p a gcd p a  1=

Answer: See page A-5.

CHECK YOUR UNDERSTANDING 1.13

Let p be prime. Use the Principle of Mathematical Induction to show

that if , then  for some .

THEOREM 1.10 Every integer n greater than 1 can be
expressed uniquely (up to order) as a product
of primes.

p a1a2
an p ai 1 i n 
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PROOF: We use API of page 16 (starting at ) to establish the
existence part of the theorem:

I. Being prime, 2 itself is already expressed as a product of primes.

II. Suppose a prime factorization exists for all m with .

III.We complete the proof by showing that  can be expressed
as a product of primes:

If  is prime, then we are done.

If  is not prime, then , with . By
our induction hypothesis, both a and b can be expressed as a
product of primes. But then, so can .

For uniqueness, consider the set: 

Assume that  (we will arrive at a contradiction). 

The Well-Ordering Principle of page 17 assures us that S has a
smallest element, let’s call it m. Being in S, m has two dis-
tinct prime factorizations, say:

Since  and since  we

have . By CYU 1.13,  for some . 

Without loss of generality, let us assume that . Since 

is prime, its only divisors are 1 and itself. It follows, since
, that . Consequently:

PROOF: Assume that there are but a finite number of primes, say
, and consider the number:

THEOREM 1.11 There are infinitely many primes.

n 2=

2 m k 
k 1+

k 1+

k 1+ k 1+ ab= 2 a b k 

k 1+ ab=

S n Z+ n has two different prime decompositions =

S 

m p1p2ps q1q2qt= =

p1 p1p2ps p1p2ps q1q2qt=

p1 q1q2qt p1 qj 1 j t 

p1 q1 q1

p1 1 p1 q1=

p1p2ps q1q2qt p1p2ps p1q2qt==

p1p2ps p1q2qt– 0=

p1 p2ps q2qt–  0=

p2ps q2qt– 0=

p2ps q2qt=

p1 0:

two distinct prime decompositions for
an integer smaller than m — contradicting the minimality on m in S

S p1 p2  pn   =

m p1p2pn 1+=
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Since , it is not prime. By Theorem 1.10, some prime must
divide m. Let us assume, without loss of generality, that . Since

 divides both m and :  [Theorem

1.4(b), page 15]. A contradiction, since .

Answer: See page A-5.

CHECK YOUR UNDERSTANDING 1.14

Let a and b be relatively prime. Prove that if  and , then .

m S
p1 m

p1 p1p2pn p1 m p1p2pn – 

m p1p2pn – 1=

a n b n ab n



     1.3   The Division Algorithm and Beyond     27
Exercises 1-3. For given a and d, determine integers q and r, with , such that .

Exercises 4-6. Find the greatest common divisor of a and b.

Exercises 7-10. The least common multiple of nonzero integers , written

, is the smallest positive integer that is a multiple of each ; i.e. is divisible by

each . Find:  

EXERCISES

1. 2. 3.

4. 5. 6.

7. 8. 9. 10.

11. Let  and , where the s are distinct primes and where 

 and  for all i. Let  (the smaller of the two numbers), and 

 (the larger of the two numbers). Prove that:

(a)             (b)  (see Exercise 7-10)

12. Prove that if 3 does not divide n, then  or  for some .

13. Let n be such that . Show that .

14. Show that if n is not divisible by 3, then  for some integer m.

15. Show that an odd prime p divides  if and only if p divides n.

16. Prove that if  for some n, then  for some m.

17. Show that  if and only if .

18. Prove that any two consecutive odd positive integers are relatively prime.

19. Let a and b not both be zero. Prove that there exist integers s and t such that  if
and only if  is a multiple of .

20.  Prove that the only three consecutive odd numbers that are prime are 3, 5, and 7. 

21. Show that a prime p divides  if and only if p divides n.

22. Prove that every odd prime p is of the form  or of the form  for some n.

23. Prove that every prime  is of the form  or of the form  for some n.

0 r d a dq r+=

a 0 d 1= = a 5– d 133= = a 134– d 5= =

a 120 b 880= = a 10– b 55= = a 134– b 5= =

a1 a2  an  
lcm a1 a2  an    ai

ai

lcm 12 20  lcm 3 5 9   lcm 2 3 9 15    lcm 3– 2 4 21   

a p1
e1 p2

e2pn
en= a p1

f1 p2
f2pn

fn= pi

ei 0 fi 0 mi min ei f1 =

Mi max ei f1 =

gcd a b  p1
m1 p2

m2pn
mn= lcd a b  p1

M1 p2
M2pn

Mn=

n 3k 1+= n 3k 2+= k Z

3 n2 1–  3 n

n2 3m 1+=

2n

a 6n 5+= a 3m 2+=

2 n4 3–  4 n2 3+ 

n sa tb+=
n gcd a b 

n2

4n 1+ 4n 3+

p 3 6n 1+ 6n 5+
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31. There exists an integer n such that  for some m.

32. If  for some m, then  for some n.

33. If m and n are odd integers, then either  or  is divisible by 4.
34. For any a, and b not both 0, there exist a unique pair of integers s and t such that

.

35. For every n, . 

36. For every , . 

24. Prove that every prime  is of the form , , , or  for some n.

25. Prove that a prime p divides  if and only if  or . 

26. Prove that every prime of the form  is also of the form . 

27. Prove that if n is a positive integer of the form , then n has a prime factor of this form 
as well. 

28. Prove that and  are relatively prime if and only if no prime in the prime decompo-
sition of a appears in the prime decomposition of b. 

29. Prove that if the integer  satisfies the property that if , then  or  for every 
pair of integers a and b, then n is prime.

30. Prove that  is prime if and only if n is not divisible by any prime p with .

PROVE OR GIVE A COUNTEREXAMPLE

p 5 10n 1+ 10n 3+ 10n 7+ 10n 9+

n2 1– p n 1–  p n 1+ 

3n 1+ 6k 1+

3k 2+

a 1 b 1

n 1 n ab n a n b

n 1 p n

n2 3m 1–=

a 3m 2+= a 6n 5+=

m n+ m n–

gcd a b  s a t b+=

3 4n 1– 

n Z+ 3 4n 1+ 
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 1

In Section 2 we defined a function from a set X to a set Y to be a sub-
set  such that:

For every  there exists a unique  with .

Removing all restrictions, we arrive at a far more general concept than
that of a function:

Each and every subset of , including the chaotic one in the
margin, is a relation on , suggesting that Definition 1.11 is a tad too
general. Some restrictions are in order:

The notation  is often used to indicate that x is related to y with
respect to some understood relation E. Utilizing that option, we can
rephrase Definition 1.12 as follows: 

An   equivalence relation ~ on a set X is a relation which is
Reflexive: if  for every .

Symmetric: if , then .

and Transitive: if  and , then .

Recall that , called
the Cartesian Product
of X with Y, is the set of
all ordered pairs ,
with  and .

X Y

x y 
x X y Y

§4. EQUIVALENCE RELATIONS

DEFINITION 1.11
RELATION

A relation E from a set X to a set Y is any
subset . 
A relation from a set X to X is said to be a
relation on X.

f X Y
x X y Y x y  f

E X Y

 


DEFINITION 1.12

REFLEXIVE

SYMMETRIC

  
TRANSITIVE

EQUIVALENCE

RELATION

A relation E on a set X is a subset  and
is said to be:

Reflexive:  for every .
(Every element of X is related to itself)

Symmetric: If  then . 
(If x is related to y, then y is related to x)

Transitive: If  and  then

.
(If x is related to y, and y is related to z, then x is related to z)

An equivalence relation on a set X is a relation
that is reflexive, symmetric and transitive.

E X X

x x  E x X

x y  E y x  E

x y  E y z  E
x z  E

EXAMPLE 1.9 Show that the relation  if  is an

equivalence relation on the set of rational
numbers. 

x~y

x~x x X

x~y y~x

x~y y~z x~z

a
b
---~

c
d
--- ad bc=
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SOLUTION: 

Reflexive:  since .

Symmetric: .

Transitive: 

We establish the fact that  by showing that :

 

SOLUTION: The relation  if  is:

Reflexive. , since:  

Symmetric. Assume that , which is to say, that:

 (*)

We are to show that , which is to say, that:

Lets do it. From (*) .

Hence: 

TRANSITIVE: Assume that  and ; which is to say, that:

(1)  and (2)  for 

We are to show that ; which is to say, that: .

Let’s do it. From (2): .

Hence: 

 

As you know, when it
comes to rational num-
bers, one simply writes

 rather than .2
3
--- 4

6
---=

2
3
---~

4
6
---

a
b
---~

a
b
--- ab ba=

a
b
---~

c
d
--- ad bc cb da

c
d
---~

a
b
---= =

a
b
---~

c
d
---  and  

c
d
---~

e
f
-- ad bc  and  cf de= =

(*)                          (**)

a
b
---~

e
f
-- af be=

af
bc
d
------ f bc

d
------ de

c
------ be= = =

see (*)           see (**)

Recall that  means
that a divides b (see Defi-
nition 1.7, page 15).

a b EXAMPLE 1.10 Show that the relation  if  is
an equivalence relation on Z.

a~b 2 3a b– 

a~b 2 3a b– 

An expression of the form

 is unaccept-

able in the solution pro-
cess, since we are involved
with the set Z of integers
and not “fractions.” 

a 2h b+
3

---------------=

a~a 3a a– 2a=
here, a is playing the role of b

a~b

3a b– 2h for some h Z=

b~a

3b a– 2n for some n Z=

b 3a 2h–=

3b a– 3 3a 2h–  a– 2 4a 3h–  2n= = =

a~b b c
3a b– 2h= 3b c– 2k= h k Z

a~c 3a c– 2n=

c 3b 2k–=

3a c– 3a 3b 2k– –=

2h b 3b 2k– –+ 2 h k b–+  2n= = =From (1):

Answer: See page A-6

CHECK YOUR UNDERSTANDING 1.15

Two sets A and B are said to have the same cardinality, written
, if there exists a bijection . 

Show that the relation  if  is an equiva-
lence relation on any collection S of sets.
Note: In a sense, the term “same cardinality” can be interpreted to mean “same
number of elements.” The classier terminology is used since the expression “same
number of elements” suggests that we have associated a number to each set, even
those that are infinite. A further discussion on cardinality if offered in the exercises.

Card A  Card B = f: A B
A~B Card A  Card B =
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In words: The equivalence class of  consists of all elements
of X that are related to . We now show that any element in

 will generate the same equivalence class:

PROOF: Assume that . We show that  (a similar 

argument can be used to show that  and that therefore 

):
 

Conversely, if , then, since : .
  

SOLUTION: Let’s start off with . By definition:

   

Since 1 is not in [0],  will differ from  (Theorem 1.12).
Specifically:

In the above example the give equivalence relation decomposed Z
into disjoint equivalence classes; namely:

   

To put it another way: the equivalence classes in Example 1.11
effected a partition of Z, where: 

DEFINITION 1.13

EQUIVALENCE 
CLASS

Let ~ be an equivalence relation on X. For
each , the equivalence class of ,

denoted by , is the set:

THEOREM 1.12 Let ~ be an equivalence relation on X. For any
:

EXAMPLE 1.11 Determine the set  of equivalence

classes corresponding to the equivalence rela-
tion  if  of Example 1.10.

x0 X x0

x0 

x0  x X x~x0 =

x0
x0

x0 

x1 x2 X
x1 x2 x1  x2 =

x1 x2 x1  x2 
x2  x1 

x1  x2 =
x x1  x x1

By transitivity, since x1~x2: x x2 x x2 

x1  x2 = x1 x2  x1 x2

n  n Z

a~b 2 3a b– 

a 0=

0  b Z  2 b–   2n n Z   the even integers = =

1  0 

1  b Z  2 1 b–   2n 1+ n Z   (the odd integers)= =

Z 0  1  even integers  odd integers = =
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Figure 1.5(a) displays a 5-subset partition  of the

indicated set. An infinite partition of  is represented in Figure

1.5(b): 

Figure 1.5

There is an important connection between the equivalence relations
on a set X and the partitions of X, and here it is:

To put it roughly:
A partition of a set S chops
S up into disjoint pieces.

DEFINITION 1.14
PARTITION

A set of nonempty subsets  of a

set X is said to be a partition of X if:

(i)  

(ii) If  then 

In the above,   is being indexed by the set A, as is the case with the union

.  In particular: If , then:

And, if , then:

S  A

X S
 A
=

S S  S S=

S  A
S

 A
 A 1 2 =

S  A S  1 2  S1 S2   and  S
 A
 S

 1 2 
 S1 S2= = = =

A Z+ 1 2 3    = =

S  A Si 
i Z+

Si 
i 1=


  and  S
i Z+
 Si

i 1=



= = =

S1 S2 S3 S4 S5    
0 

n n 1+  n 0=


[     )[     )[     )[     )[     )[     )[

(a)                                                          (b)

S1

S2

S3
S4

S5

0       1       2       3       4       5       6



(a): No      (b): Yes

CHECK YOUR UNDERSTANDING 1.16

Determine if the given collection of subsets of  is a partition of ?

    (a) 

(b) 

THEOREM 1.13 (a) If ~ is an equivalence relation on X, then the
set of its equivalence classes, , is
a partition of X.

(b) If  is a partition of X, then the rela-

tion  if 

is an equivalence relation on X.

 

n n 1+  n Z

n  n Z  i i 1+  i 0=


 i– 1– i–  i 0=


x  x X

S  A
x1~x2 x1 x2 S for some  A
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PROOF: (a) We Show that:

           (i)     

and    (ii) If , then .

(i): Since  is an equivalence relation,  for every

. It follows that  for every , and that

therefore . 

(ii): If , then there exists . 

Since  and :  and . 

By symmetry and transitivity: 

By Theorem 1.12: 

(b) Let  be a partition of X. We show that the relation:

 if there exists  such that   is an equiv-

alence relation on X:
Reflexive: To say that , is to say that x belongs to the
same  as itself, and it certainly does.

Symmetric: 

Transitive: Assume  and . We show that :

Since :  for some .

Since :  for some .

Since  (y is contained in both sets): .

It follows that both x and z are in  (or in  if you prefer),

and that, consequently: .

Here is a particularly important equivalence relation of the set of inte-
gers:

PROOF: Reflexive:  since .

Symmetric: .

CONGRUENCE MODULO n

THEOREM 1.14 Let . The relation  if  is
an equivalence relation on Z.

X x 
x X
=

x1  x2   x1  x2 =

 x~x

x X x x  x X
X x 

x X
=

x1  x2   x0 x1  x2 

x0 x1  x0 x2  x0~x1 x0~x2

x1~x2

x1  x2 =

S  A

x1~x2  A x1 x2 S

x~x
S

x~y  A x y S y x S y~x

x~y y~z x~z

x~y x y S  A

z~y y z S  A

S S  S S=

S S
x~z

n Z+ a~b n a b– 

a~a n a a– 

a~b n a b–  n b a–  b~a
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Transitive:

 

PROOF: (a) If  and , then: 

(a) If  and , then:

 and  for 

 We are to show that ; which is to say that 

 Lets do it: 

Theorem 1.13 assures is that the equivalent classes associated with
the equivalence relation of Theorem 1.15 partition the set of integers.
Focusing on , we see that the equivalence class containing 0
consists of all multiples of 5, as the remainder of any multiple of 5
when divided by 5, is the same as that obtained by dividing 0 by 5 (see
CYU 1.17). Specifically:

Note that the above equivalence class has many “names”. It can also,
be called the equivalent class containing 235, among infinitely many
other choices:

In the event that , we say that:
     a is congruent to b modulo n and write 

THEOREM 1.15 Let . If  and ,
then:

(a) 

(b) 

a~b  and  b~c n a b–   and  n b c– 

n a b–  b c– + 

n a c–  a c

Theorem 1.4(b), page 15:

n a b– 
a b mod n

n Z+ a a mod n b b mod n

a b+ a b mod n+

ab ab mod n

n a a–  n b b– 

n a a–  b b– +  n a b+  a b+ – 

n a a–  n b b– 

(1) a a– hn= (2) b b– kn= h k Z

n ab ab–  ab ab– ns=

ab ab– ab ab–  ab ab– +=

a a– b a b b– +=

hnb akn+ n hb ak+  ns= = =

Answer: See page A-6

CHECK YOUR UNDERSTANDING 1.17

Let . Let  and  with  and

 (see Theorem 1.5, page 21). Prove that:

  if and only if 
(same remainder when dividing by n)

n Z+ a dan r+= a b dbn r+= b 0 ra n

0 rb n

a b mod n ra rb=

n 5=

0 5  20 15 10 5 0 5 10 15 20      –––– =
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The same can be said about the four remaining equivalence classes:

 

Note that .
Can we define a sum on the above five equivalence classes? Yes:

The above sum is well defined, in that it is independent of the chosen
representatives in the two equivalence classes. Indeed:

PROOF: (a) We show that if  and , then

 (i.e the sum is independent of the chosen repre-

sentatives for the equivalence classes  and ):

     , for 

and:   , for .

Since : 

(b) 

THEOREM 1.16 For given , let  denote the set of
equivalence classes associated with the equiv-
alence relation  if ; i.e:

Then:

(a) For any , the operation

is well defined.

(b) For any :

(associative property)

0 5 125 5 15– 5
= = =

1 5  14 9–– 4 1 6 11 16     –  =

2 5  13 8–– 3 2 7 12 17     –  =

3 5  12 7–– 2 3 8 12 18     –  =

4 5  11 6–– 1 4 9 13 19     –  =

5  0 =

a 5 +  b 5 a b+ 5=

n Z+ Z n

a~b n a b– 

Z n 0 n 1 n  n 1– n   =

a n b n Z n

a n +  b n a b+ n=

a n b n c n Z n

a n +  b n  +  c n a n +  b n +  c n =

a n a n= b n b n=

a b+ n a b+ n=

a n b n
a n a n n a a–  a a– hn= = h Z

b n b n n b b–  b b– kn= = k Z

a b+  a b+ – a a–  b b– – h k– n= =

a b+ n a b+ n=

a n +  b n  +  c n a b+ n +  c n a b+  c+ n= =

a b c+ + n=

a n +  b n +  c n =
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CHECK YOUR UNDERSTANDING 1.18

(a) Verify that the product  in  is well

defined. That is: if  and , then:

.

(b) Prove that 

(c) Prove that .

a n b n ab n= Zn

a n a n= b n b n=

ab n ab n=

a n b n c n  a n b n  c n=

a n b n +  c n  a n bn  +  a n c n=
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Exercises 1-3. Show that the given relation is an equivalence relation on Z. 

Exercises 4-7. Show that the given relation is an equivalence relation on Q, the set of rational num-
bers.

Exercises 8-13. Show that the given relation is an equivalence relation on .

Exercises 14-17. Show that the given relation is an equivalence relation on .

Exercises 18-21. Show that the given relation is not an equivalence relation on . 

Exercises 22-30. Determine whether or not the given relation is an equivalence relation on .

EXERCISES

1.  if . 2.  if . 3.  if .

4.  if . 5.  if .

6.  if . 7.  if .

8.  if . 9.  if . 10.  if .

11.  if . 12.  if . 13.   if .

14.  if . 15.  if .

16.  if . 17.  if .

18.  if . 19.  if .

20.  if . 21.  if  and .

22.  if .

23.  if .

24.  if .

25.   if .

26.  if .

27.   if .

28.  if .

29.   if .

30.  if .

a~b a b= a~b 2 a 3b–  a~b 5 a b– 

a
b
---~

c
d
--- a

b
---

c
d
--- Z–

a
b
---~

c
d
--- 2 b d+ 

a
b
---~

c
d
--- ad bc–  b2 d2+  0=

a
b
---~

c
d
--- ad 2 bc 2– 0=


x~y x2 y2= x~y x y= x~y x 1+ y 1+=

x~y x y– Z x~y xsin y 2+ sin= x~y x2 y2– 0=

2

x0 y0 ~ x1 y1  x0 y0+ x1 y1+= x0 y0 ~ x1 y1  x0y0 x1y1=

x0 y0 ~ x1 y1  x0
2 y0

2+ x1
2 y1

2+= x0 y0 ~ x1 y1  x0 x1=

2

x0 y0 ~ x1 y1  x0 y1= x0 y0 ~ x1 y1  x0 y1– y0 x1–=

x0 y0 ~ x1 y1  x0x1 y0y1= x0 y0 ~ x1 y1  x0x1 0 y0y1 0

3

x0 y0 z0  ~ x1 y1 z1   y0 y1=

x0 y0 z0  ~ x1 y1 z1   x0 y0 z0+ + x1 y1 z1+ +=

x0 y0 z0  ~ x1 y1 z1   x0 y1 z1+=

x0 y0 z0  ~ x1 y1 z1   x0z0 2y0+ x1z1 2y1+

x0 y0 z0  ~ x1 y1 z1   x0 2y0 3z0–+ x1 2y1 3z1–+=

x0 y0 z0  ~ x1 y1 z1   x0 y0 z0+ + 2 x1 y1 z1+ + 2=

x0 y0 z0  ~ x1 y1 z1   x0
2

y0
2

z0
2

+ + x1
2

y1
2

z1
2

+ +=

x0 y0 z0  ~ x1 y1 z1   x0 y0 z0 x1 y1 z1+ + + + + 0

x0 y0 z0  ~ x1 y1 z1   y0z0 y1z1=

.
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Exercises 31-34. Determine whether or not the given relation is an equivalence relation on .

Exercises 35-41. Show that the given relation is an equivalence relation on 
(the set of functions from Z to Z).

Exercises 42-47. Describe the set of equivalence classes for the equivalence relation of:

Exercises 48-52. Show that the given collection S of subsets of the set X is a partition of X. 

Exercises 53-54. (Congruences) Let . Use the Principle of Mathematical Induction to show
that:

31.  if .

32.  if .

33.  if .

34.  if .

35.  if . 36.  if  for every .

37.  if  for every . 38.  if  for every .

39.  if  for every .

40.  if  for every .

41.  if  for every .

42. Exercise 1 43. Exercise 3 44. Exercise 5

45. Exercise 9 46. Exercise 15 47. Exercise 17

48. , .

49. , .

50. ,  where .

51. ,  where . 

52. , .

53. ,  where . 

54. If  for , then .

55. If  for , then .

M2 2

a b

c d
~ a b

c d
a d=

a b

c d
~ a b

c d
abc abc=

a b

c d
~ a b

c d
ad bc– ad bc–=

a b

c d
~ a b

c d
ad bc– ad bc–=

F Z  f: Z Z =

f ~ g f 1  g 1 = f ~ g f n  g n = n Z

f ~ g f n  g n = n Z f ~ g 2 f n  g n +  n Z

f ~ g f n m+  g n m+ = n m Z
f ~ g 3 2f n  g n +  n Z

f ~ g 3 2 gf  n  f n +  n Z

X = S – 0  0  0    =

X Z= S 3n n Z  3n 1+ n Z  3n 2+ n Z   =

X Z
+

Z
+= S Sn 

n Z+
= Sn a b  gcd a b  n= =

X  = S Sb b = Sb x y  y x b+= =

X  = S x y  x2 y2+ r
2

= r =

X  = S Sr r = Sr x y  x2 y2+ r2= =

n Z+

ai ai mod n 1 i m  a1 a2
 am a1 a2

 am mod n+ + ++ + +

ai ai mod n 1 i m  a1a2am a1a2
am mod n
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56. Show that the relation  if  is an equivalence relation on  for 
any set X. Suggestion: Consider Theorem 1.1, page 5. 

PROVE OR GIVE A COUNTEREXAMPLE

57. The union of any two equivalence relations on any given nonempty set X is again an equiv-
alence relation on X.

58. The intersection of any two equivalence relations on any given nonempty set X is again an 
equivalence relation on X.

59. For , let  and  denote the set of equivalence classes associated with the 

equivalence relations  if  and  if , respectively. If , then 
.

60. If , then every integer is congruent modulo n to exactly one of the integers .

61. If ,  if  is an equivalence relation on .

62. There exists an equivalence relation on the set  for which each equivalence 
class contains an even number of elements.

A~B Card A  Card B = P X 

a b n m  Z+ Sn Sm

a~b n a b–  a~b m a b–  n m
Sn Sm

n 2 0 m n

C X A~B A C B C= P X 

1 2 3 4 5    
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 2Defloration - a professional takes Mirella's virginity

Part 2 
Groups
 

The following properties reside in the familiar set Z of integers:

                               

A generalization of the above properties bring us to the definition
of a group — an abstract structure upon which rests a rich theory,
with numerous applications throughout mathematics, the sciences,
architecture, music, the visual arts, and elsewhere: 

In particular,  is a group; with “+, 0, and ” playing the role of
“*, e, and ” in the above definition. 

Is the set of integers under multiplication a group? No:

While “regular” multiplications is an associative
binary operator on Z, with 1 as identity, no integer
other than  has a multiplicative inverse in Z.

Bottom line: The set of integers under multiplication is not a group.

§1. DEFINITIONS AND EXAMPLES

Property Example:

Closure   

Associative 1.  

Identity 2.  

Inverse 3.  

a b+ Z a b Z 5 7+ Z

a b c+ + a b+  c+= a b Z 5 4 1+ + 5 4+  1+=

a 0+ a= a Z 4 0+ 4=

a a– + 0= a Z 5 5– + 0=

A binary operator on a set X
is a function that assigns to
any two elements in X an ele-
ment in X. Since the function
value resides back in X, one
says that the operator is
closed.

Evariste Galois defined
the concept of a group in
1831 at the age of 20. He
was killed in a duel one
year later, while attempt-
ing to defend the honor of
a prostitute.

We show, in the next section,
that both the identity element
e and the inverse element 
of Axioms 2 and 3 are, in fact,
both unique and “ambidex-
trous:”

a

a*e e*a a= =

a*a a*a e= =

DEFINITION 2.1
GROUP

Associative Axiom:

Identity Axiom:

Inverse Axiom:

A group , or simply G, is a nonempty
set G together with a binary operator, *, (see
margin) such that:

1.  for every .

2. There exists an element in G, which we will
label e, such that  for every .

3. For every  there exists an element,
 such that . 

Yes, there is a number whose prod-
uct with 2 is 1:

 , but .

G * 

a* b*c  a*b *c= a b c G

a*e a= a G
a G

a G a*a e=

Z +  a–
a

1

2
1
2
--- 1=

1
2
--- Z
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We now move Theorem 1.16 of page 35 up a notch:

PROOF: We already know that  is a well defined associative oper-
ator. The identity and inverse axioms of Definition 2.1 are also met:

Identity: For any : .

Inverses: For any : 

Molding Theorem 2.1 into a more compact form by replacing each
equivalent class  with the smallest nonnegative integer in that class,
we come to:

For example, if  then , and:

(a), (b), and (d) are groups.
            (c) is not a group.

CHECK YOUR UNDERSTANDING 2.1

Determine if the given set is a group under the given operation. If
not, specify which of the axioms of Definition 2.1 do not hold.

(a) The set  of rational numbers under addition.

(b)The set  of real numbers under addition.

(c)The set  of real numbers under multiplication.

(d)The set  of positive real numbers under
multiplication.

THEOREM 2.1 For given , let  denote the set of
equivalence classes associated with the equiva-
lence relation  if ; i.e:

Then:  with 

is a group

Q





+ r  r 0 =

n Z+ Z n

a~b n a b– 

Z n 0 n 1 n  n 1– n   =

Z n +   a n +  b n a b+ n=

+ 

a n Z n a n +  0 n a 0+ n a n= =

a n Z n a n +  a– n a a– n 0 n= =

You are invited to for-
mally establish this result
in Exercise 51.

THEOREM 2.2 For given , let ,

and let , where .

Then  is a group.

The above sum is called addition modulo n.
Note that  for every , and that

for any : 

a n

n Z+ Zn 0 1 2  n 1–    =

a +n b r= a b+ dn r+=

Zn +n 

a+n 0 a= a Zn
a Zn a n a– + 0=

n 5= Z5 0 1 2 3 4    =

1+5 2 3  4+5 4 3  and  3+5 2   = 0= =

3 4 4+  mod 5
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Groups containing infinitely many elements, like  and ,
are said to be infinite groups. Those containing finite may elements,
like  which contains n elements, are said to be finite groups.

The group , with table depicted in Figure 2.1(a), has order 4. Another

group of order 4, the so-called Klein 4-group, appears in Figure 2.1(b).

Figure 2.1

Is K really a group? Well, the above table leaves no doubt that the
closure and identity axioms are satisfied (e is the identity element).
Moreover, each element has an inverse, namely itself:

. Finally, though a bit tedious,
you can check directly that the associative property holds [for example:

 and ]. You can also see that K is
an abelian group; where:  

Answer: See page A-7.

CHECK YOUR UNDERSTANDING 2.2

Complete the following (self-explanatory) group table for . 

DEFINITION 2.2
ORDER OF A GROUP

Let G be a finite group. The number of ele-
ments in G is called the order of G, and is
denoted by .

GROUP TABLES AND BEYOND

Z4 +4 

+4   0   1   2  3

0  3

1     2   

2 1

3    0 2

since 0+43 3=

since 2+43 1=

since 3+43 2=

since 1+41 2= since 3+41 0=

Z +   + 

Zn +n 

G

Z4

  * e a b c

e e a b c

a a e c b

b b c e a

c c b a e

  + 0 1 2 3

0 0 1 2 3

1 1 2 3 0

2 2 3 0 1

3 3 0 1 2

4Z4: K:

(a)                                                    (b)

 Abelian groups are also said
to be commutative groups.

DEFINITION 2.3
ABELIAN GROUP

A group  is abelian if

ee e aa e bb e  and cc e= = = =

ab a ca b= = a ba  ac b= =

G * 
a*b b*a  for every a b G=
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We will soon show that  and K are the only groups of order 4, but
first: 

PROOF: Let . By construction, the  row

of G’s group table is precisely . The fact

that every element of G appears exactly one time in that row is a con-
sequence of Exercise 50, which asserts that the function 

given by  is a bijection. As for the columns: 

We now show that the two groups in Figure 2.1 represent all groups
of order four. To begin with, we note that any group table featuring the
four elements  must “start off” as in T in Figure 2.2, for e
represents the identity element.                           

Figure 2.2
Since no element of a group can occur more than once in any row or

column of the table, the -box in T can only be inhabited by e, b or c,
with each of those possibilities displayed as E, B, and C in Figure 2.2.
Repeatedly reemploying Theorem 2.2, we observe that while E leads to
two possible group tables, both B and C can only be completed in one
way (see Figure 2.3)

THEOREM 2.3 Every element of a finite group G must
appear once and only once in each row and
each column of its group table.

Z4

Answer: See page A-8.

An alternative proof is
offered in Appendix B,
page B-1.

CHECK YOUR UNDERSTANDING 2.3

Complete the proof of Theorem 2.3.

G e a1 a2  an 1–    = ith

aie aia1 aia2  aian 1–   

fai
: G G

fai
g  aig=

e a b c   

  * e a b c

e e a b c

a a c

b b

c c

T:

E:                                 B:                                 C:

  * e a b c

e e a b c

a a b

b b

c c

  * e a b c

e e a b c

a a e

b b

c c

  * e a b c

e e a b c

a a

b b

c c
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.

Figure 2.3

At this point we know that there can be at most four groups of order
4, and their corresponding group tables appear in Figure 2.4. The group
tables for  and K of Figure 2.1 are also displayed at the bottom Fig-
ure 2.4.

Figure 2.4 

While table  and the Klein group table K are identical, those of the

remaining four tables in Figure 2.4 look different.

But looks can be deceiving:

  * e a b c

e e a b c

a a e

b b

c c

  * e a b c

e e a b c

a a e c b

b b

c c

  * e a b c

e e a b c

a a e c b

b b c

c c b
  * e a b c

e e a b c

a a e c b

b b c e a

c c b a e

  * e a b c

e e a b c

a a e c b

b b c a e

c c b e a

only option                only option

tw
o options

E:

E1

E2

  * e a b c

e e a b c

a a b

b b

c c

  * e a b c

e e a b c

a a b c e

b b

c c

  * e a b c

e e a b c

a a b c e

b b c e a

c c e a b

B:

only option                      only option                        only option

B

e
a

b
c

e   a     b    c

e   a     b    c
a    b     c     e
b    c
c     e

  * e a b c

e e a b c

a a c

b b

c c

  * e a b c

e e a b c

a a c e b

b b

c c

  * e a b c

e e a b c

a a c e b

b b e

c c b

  * e a b c

e e a b c

a a c e b

b b e c a

c c b a e

C:

only option only option only option

C

Z4

  * e a b c

e e a b c

a a e c b

b b c e a

c c b a e

E2:  * e a b c

e e a b c

a a b c e

b b c e a

c c e a b

B:   * e a b c

e e a b c

a a c e b

b b e c a

c c b a e

C:

  * e a b c

e e a b c

a a e c b

b b c e a

c c b a e

K:  + 0 1 2 3

0 0 1 2 3

1 1 2 3 0

2 2 3 0 1

3 3 0 1 2

4Z4:

  * e a b c

e e a b c

a a e c b

b b c a e

c c b e a

E1:

E2



46   Part 2   Groups                                                                                         
To show, for example, that  and  only differ superficially, we

begin by reordering the elements in the first row and first column of 
in Figure 2.5(a) from “0, 1, 2, 3” to “0, 2, 1, 3” [see Figure 2.5 (b)]. We
then transform Figure 2.5(b) to  in (c) by replacing the symbols “0,
2, 1, 3” with the symbols “e, a, b, c,” respectively, and the operator
symbol “ ” with “*”.  

Figure 2.5
So, appearances aside, the group structure of  coincides with that

of . In a similar fashion you can verify that tables B and C of Figure

2.4 only differ from table  syntactically. 

For any non-empty set X, let . We
then have:

PROOF: Turning to Definition 2.1:

Operator. :    [Theorem 1.2(c), page 7].

Associative. :  [Exercise 51, page 10].

Identity. : , where  is the iden-

tity function:  for every .

Inverse. :  [Theorem 1.1(b), page 5].

IN PARTICULAR:

Let’s get our feet wet by considering the symmetric croup , the set

of permutations on . Since there are  ways of ordering
n objects (Exercise 31, page 20), the group  consists of

 elements:

This “appearances aside”
concept is formalized in
Section 4. 

PERMUTATIONS AND SYMMETRIC GROUPS

Z4 E1

Z4

E1

+4

  + 0 1 2 3

0 0 1 2 3

1 1 2 3 0

2 2 3 0 1

3 3 0 1 2

4Z4:

(a)                                                      (b)

  + 0 2 1 3

0 0 2 1 3

2 2 0 3 1

1 1 3 2 0

3 3 1 0 2

4   * e a b c

e e a b c

a a e c b

b b c a e

c c b e a

(c)

E1:

E1

Z4

Z4

The composition operator
“ ” is defined on page 3.  THEOREM 2.4 For any non-empty set X,  is a group. 

The elements (functions) in  are said to be permutations (on X),

and  is said to be the symmetric group on X.

For ,  is called the symmetric

group of degree n, and will be denoted by .

SX f: X X f is a bijection =

SX  

f g SX gf SX

f g h SX h gf  hg f=

f SX fIX IXf f= = IX: X X
IX x  x= x X

f SX ff 1– IX=

SX

SX  

X 1 2  n   = SX  
Sn

S3

X 1 2 3  = n!
S3

3! 1 2 3  6= =
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In a more compact (and more standard) form (see margin), we write:

Note that  is the identity function e: 

The symmetric group 
Figure 2.6

Generalizing the above observation we have:

   SOLUTION: (a) To find  we first perform  and then apply 

to the resulting function values:

 (b) Using the standard form we show that :

(c) Tor arrive at the inverse of the permutation ,

simply reverse its action:

e 1

1 1
2 2
3 3

        

1 2
2 3
3 1

2 3

1 3
2 1
3 2

        

1 1
2 3
3 2

4 5

1 3
2 2
3 1

        

1 2
2 1
3 3

Directly below each ele-
ments of the first row
appears its image under the
permutations. The fact that
3 lies below 1 in , for
example, simply indicates
that the permutation 
maps 1 to 3: .

4

4

1 3

e
1   2   3
1   2   3 
  ,  1

1   2   3
2   3   1 
  ,  2

1   2   3
3   1   2 
 ===

3
1   2   3
1   3   2 
  ,  4

1   2   3
3   2   1 
  ,  5

1   2   3
2   1   3 
 ===

0 0 1  1= 0 2  2=  and 0 3  3=

S3

Juxtaposition may also be
used to denote the compo-
sition operation in . For
example, for :

 represents 
  and   

Sn

  Sn
 
4 =

THEOREM 2.5 The symmetric group  of degree n contains

 elements.

EXAMPLE 2.1 Referring to the group  featured in Figure 2.6,
Determine:
(a)            (b)           (c) 

Sn

n!

S3

24 42
see margin

2  1–

From Figure 2.6:

2

1 3
2 1
3 2

4

1 3
2 2
3 1

24 4 2

1 3 2 
2 2 1 
3 1 3 

4   2

24
1 2
2 1
3 3

5= =

42 3=

1    2     3

3    1     2

1    3     2 
 
 
  first 2: 

1    2     3

3    1     2 
 

42
1   2   3
1   3   2 
  3= =

then 4: 
1    2     3

3    2     1 
 

2
1   2   3
3   1   2 
 =

2
1– 1   2   3

3   1   2 
  1– 3   1   2

1   2   3 
  1   2   3

2   3   1 
  1= = = =
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Adhering to convention, we will start using  (rather than ) to
denote the binary operation in a generic group. Under this notation, the
symbol  (rather than ) is used to denote the inverse of a, while e
continues to represent the identity element. In a generic abelian group,
however, the symbol “+” is typically used to represent the binary oper-
ator, with 0 denoting the identity element, and  denoting the inverse
of a. To summarize:
                              In Summery:

SOME ADDITIONAL NOTATION: 

Utilizing the above notation:

Answer: 

: 
1   2   3   4   5

5   4   3   2   1 
 

: 
1   2   3   4   5

4   3   2   5   1 
 

CHECK YOUR UNDERSTANDING 2.4

With reference to the symmetric group , determine  and ,
where:

 and 

S5  


1   2   3   4   5

1   5   2   3   4 
 = 

1   2   3   4   5

5   3   2   1   4 
 =

ab a*b

a 1– a

a–

Original Form Product Form Sum Form
(Reserved only for abelian groups)

1.   1.  1.  

2.  2.  2.  

3.  3.  3.  

4. 4. 4.

a*b G a b G ab G a b G+

a* b*c  a*b * c= a bc  ab c= a b c+ + a b+ = c+

 a*e a= ae a= a 0+ a=

a*a e= aa 1– e= a a– + 0=

Referring to the product form,
do not express  in the form

 (there is no “division” in

the group). 

From its very definition we
find that the following expo-
nent rules hold in any group G: 

For any :

In the sum form, it is accept-
able utilize the notation .
By definition:

 .

a n–

1
an
-----

n m Z
anam an m+=

an m anm=

a b–

a b– a b– +=

For any positive integer n:

    represents 

    and  

We also define  to be e.

For any positive integer n:

 represents 

and 

We also define 0a to be 0.

DEFINITION 2.4
CYCLIC GROUP

GENERATOR

(Product form) A group G is cyclic if there

exists  such that .

(Sum form) An abelian group G is cyclic if

there exists  such that . 

In either case we say that the element a is a gen-
erator of G, and write .

EXAMPLE 2.2 Show that:
     (a)  is cyclic         (b)  is not cyclic.

an aaaa
n  a’s

a n– a 1– n=
a0

na a a a  a+ + + +
n  a’s

n– a n a– =

a G G a
n

n Z =

a G G na n Z =

G a =

Z6 S3
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SOLUTION: (a) Clearly . In fact, as we now show, 5 is also a
generator of  (don’t forget that we are summing modulo 6):

Since every element of  is a multiple of 5, we
conclude that .

(b) We could use a brute-force method to verify, directly, that no element
of  generates all of . Instead, we appeal to the following theorem
[and Example 2.2(b)] to draw the desired conclusion.

PROOF: Let . For any two elements  and 
in G (not necessarily distinct) we have:

At this point we have two groups of order 6 at our disposal:

 and  

Do these groups differ only superficially, or are they
really different in some algebraic sense? They do differ
algebraically in that one is cyclic while the other is not,
and also in that one is abelian while the other is not.

THEOREM 2.6 Every cyclic group is abelian.

Z6 1 =
Z6

1 5  5=

2 5  5+65 4= =

3 5  5+65+65 3= =

4 5  5+65+65+65 2= =

5 5  5+65+65+65+65 1= =

6 5  5+65+65+65+65 5+ 6 0= =

5 0 5 5+=

10 1 6 4+=

15 2 6 3+=

20 3 6 2+=

25 4 6 1+=

30 5 6 0+=

Note that:

Z6 0 1 2 3 4 5     =
Z6 5 =

S3 S3

Answer: See page A-8.

CHECK YOUR UNDERSTANDING 2.5

(a) Show that 1 and 5 are the only generators of .

(b) Show that  is cyclic.

(c) Show that  is not cyclic for any .

G a  an n Z = = as at

asat as t+ at s+ atas= = =

Z6

S2

Sn n 2

Z6 +n  S3
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Exercise 1-11. Determine if the given set is a group under the given operator. If not, specify why
not. If it is, indicate whether or not the group is abelian, and whether or not it is cyclic. If it is
cyclic, find a generator for the group.

Exercise 12-23. Referring to the group :

                  

determine:   

EXERCISES

1. The set  of even integers under addition.

2. The set  of odd integers under addition.

3. The set of integers Z, with , where c is the smaller of the two integers a and b (the 

common value if ).

4. The set  of positive rational numbers, with .

5. The set , with .

6. The set  under the operation of addition modulo 10.

7. The set  under multiplication modulo 4. (For example: , since 

; and , since .)

8. The set  under multiplication modulo 5. (See Exercise 7.)

9. The set  under addition.

10. The set  under the usual multiplica-
tion of real numbers.

11. The set , with .

12.  and 13.  and 14.  for .

15.  for . 16.  and 17.  for .

18.  for . 19.  and 20.  for .

21.  for . 22.  and 23.  for .

2n n Z 

2n 1+ n Z 

a*b c=

a b=

Q+ a*b ab
2

------=

x  x 0  a*b a2

b
-----=

0 2 4 6 8    

0 1 2 3    2*3 2=

2 3 6 1 4 2+= = 3*3 1= 3 3 9 2 4 1+= =

0 1 2 3 4    

a b 2+ a b Z 

a b 2+ a b Q with not both a and b equal to 0 

Z Z a b  a b Z = a b  c d + a c+ b d+ =

S3

e
1   2   3
1   2   3 
  ,  1

1   2   3
2   3   1 
  ,  2

1   2   3
3   1   2 
 === 3

1   2   3
1   3   2 
  ,  4

1   2   3
3   2   1 
  ,  5

1   2   3
2   1   3 
 ===

24 42 3
2 3

3 3
n

n Z+

1
n

n Z+ 3
2– 3

3– 3
n–

n Z+

3
n–

n Z+ 2
2 2

3 2
n

n Z+

2
n

n Z+ 2
2– 2

3– 2
n–

n Z+
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Exercise 24-33. For

                                 

Determine:

24.  25.  26.  27.  28. 

29.  30.  31.  32.  33. 

34. Let . Show that  with  is a group. Is the group abelian? Cyclic?

35. Is  with  a group? If so, is it abelian? Cyclic?

36.  Is  with  a group? If so, is it abelian? Cyclic?

37. Is  with  a group? If so, is it abelian? Cyclic?

38. Let  along with the binary operator: . Is  a group?

39. Let  along with the binary operator: . Is  a group?

40. Let . Show that  with  is 

a group. Is the group abelian? Cyclic?

41. For , let  denote the set of polynomials of degree less than or equal to n.   Show that 

 with  is a group. Is the group abelian?

42. Let . Show that  with  is a 

group. Is the group abelian?

43. Let  denote the set of rational numbers. Show that  with  is not a 

group.

 1 2 3 4 5 6

2 3 4 5 6 1 
 
 

=  1 2 3 4 5 6

2 1 4 3 6 5 
 
 

=  1 2 3 4 5 6

6 5 4 3 2 1 
 
 

=

    

5 100 101 100 101

S 1 = S *  1*1 1=

M2 2 +  a b

c d

a b

c d
+ a a+ b b+

c c+ d d+
=

M2 2 *  a b

c d
*

a b

c d

aa bb

cc dd
=

M2 2 *  a b

c d
*

a b

c d

aa bc+ ab bd+

ca dc+ cb dd+
=

S a b c  =

* a b c

a a b c

b b b c

c c c c

S * 

S 0 1 2  =

* 2 0 1

2 2 0 1

0 0 1 2

1 1 2 0

S * 

S x y  x y  = S *  x y * x y  x x 1–+ y y 1+ + =

n 0 Pn

Pn *  aix
i

i 0=

n


 
 
 
 
 

* bix
i

i 0=

n


 
 
 
 

ai bi+ xi

i 0=

n

=

S x y  x y  = S *  x y * x y  x x 2+ + y y+ =

Q Q *  a*b a b ab+ +=
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44. Let . Show that  with  is a group. Is the 

group abelian?

45. Let . Show that the function  given by  is 

a bijection

46. (a) Give an example of a group G in which the exponent law  does not hold in 

a group G, for 

(b) Prove that the exponential law  does hold if the group G is abelian.

(c) Express the property  in sum-notation form.

47. Let G be a group and . Show that if , then .

48. Let a be an element in a group G. Show that if , then  for ever .

49. Let p and q be distinct primes numbers. Find the number of generators of .

50. (a) Show that the group  of Theorem 2.1 is cyclic for any .

(b) Prove that  is a generator of  if and only if m and n are relatively prime.

         Suggestion: Consider Theorem 1.7, page 23.

51. Let  denote the set of all real-valued functions. For f and g in , let  be given 

by . Show that  is a group. Is the group abelian?

52. Prove Theorem 2.2.

53. Let G and  be groups. Let  with:

 

(a) Show that  is a group.

 (b) Prove that  is abelian if and only both G and H are abelian.

54. Let X be a set and let  be the set of all subsets of X. Is  a group if:

                  (a)                               (b) 

Q a Q a 1– = Q *  a*b a b ab+ +=

G e a1 a2  an 1–    = fai
: G G fai

g  gai=

ab n anbn=

n Z""

ab n anbn=

ab n anbn=

a b c G  ba ca= b c=

a  2= ab ba= b G

Zpq

Zn n Z+

m Zn Zn

F   F   f g+

f g+  x  f x  g x += F   + 

H G H g h  g G h H =

g h * g h  gg hh =

G H * 

G H * 

P X  P X  * 

A*B A B= A*B A B=
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PROVE OR GIVE A COUNTEREXAMPLE

55. The set  of real numbers under multiplication is a group

56. The set  of positive real numbers under multiplication.

57. Let G be a group and . If , then .

58. The group  contains four elements  such that  and three elements  such that 

.

59. The group  is abelian.

60. Let G be a group and . If , then  for every .

61. Let G be a group and . If , then  for every .

62. The cyclic group  has exactly two distinct generators.



+ r  r 0 =

a b c G  b c ba ca

S3  2 e= 

3 e=

S  

a b G ab b= ac c= c G

a b G ab ba= ac ca= c G

Z + 
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 2

 

We begin by recalling the group axioms, featuring both the product
and sum notations:

Actually, as we show below, both the identity element of Axiom 2 and
the inverse elements of Axiom 3 work on both sides; but first:

PROOF: 

PROOF: 

(a) 

         We now know that . 

Applying Lemma 2. we then have: .

(b) 

Axioms 2 and 3 stipulate the existence of an identity and of inverses
in a group. Are they necessarily unique? Yes:

§2. ELEMENTARY PROPERTIES OF GROUPS

For aesthetic reasons, a set of
axioms should be indepen-
dent, in that no axiom or part of
an axiom is a consequence of
the rest. One should not, for
example, replace Axiom 2 in
Definition 2.1, page 41: 

with:
e G ae a a G=

e G ae ea= a a G=

Product Form Sum Form
(Typically reserved for abelian groups)

Closure   

 Axiom 1.  1.  

Identity Axiom 2.  2.  

Inverse Axiom 3. 3.

LEMMA 2.1 Let G be a group. If  is such that ,

then .

ab G a b G+

a bc  ab c= a b c+ + a b+ = c+

ae a= a 0+ a=

aa 1– e= a a– + 0=

a G a2 a=

a e=

aa a= aa a 1– aa 1– a aa 1–  e ae e a=== e=
              Axiom 1                     Axiom 3         Axiom 2

In sum form:
a a– + 0 a–  a+ 0= =

a 0+ a 0 a+ a= =

THEOREM 2.7 Let G be a group. For :

(a) 

(b) 

THEOREM 2.8 (a) There is but one identity in a group G.

(b) Every element in G has a unique inverse.

a G

aa 1– e a 1– a e==

ae a ea a==

a 1– a  a 1– a  a 1– aa 1–  a a 1– e a a 1– a= = =

Axiom 2Axiom 1 Axiom 3

a 1– a  a 1– a  a 1– a=

a 1– a e=

ea aa 1– a a a 1– a  ae a= = = =

Axiom 3Axiom 3 Axiom 1 part (a)
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PROOF: (a) We assume that  and  are identities, and go on to show
that :

(b) We assume that  and  are inverses of , and show that
:

Since  and  are both equal to the identity they must be
equal to each other:

 Both the left and right cancellation laws hold in groups:

PROOF: 

e e
e e=

e ee e= =

Since e is an identity

Since e is an identity

a 1– a 1– a G
a 1– a 1–=

Answer: See page A-9.

CHECK YOUR UNDERSTANDING 2.6

Show that if  are elements of a group such that , then

.

aa 1– aa 1–

aa 1– aa 1–=

a 1– aa 1–  a 1– aa 1– =

a 1– a a 1– a 1– a a 1–=

ea 1– ea 1–=

a 1– a 1–=

Multiply both sides by a 1– :

Associativity:

a b c  abc e=

bca e=

Sum form:
a b+ c b+= a c=

b a+ b c a+ c= =

THEOREM 2.9 In any group G:

(a) If , then .

(b) If , then 

ab cb= a c=

ba bc= a c=

Just in case you are ask-
ing yourself:

What if b is 0 and
has no inverse?

Tisk, every element in a
group has an inverse. 

(a) (b) ab cb=

ab b 1– cb b 1–=

a bb 1–  c bb 1– =

ae ce=

a c=

ba bc=

b 1– ba  b 1– bc =

b 1– b a b 1– b c=

ea ec=

a c=

Answer: See page A-9.

CHECK YOUR UNDERSTANDING 2.7

PROVE OR GIVE A COUNTEREXAMPLE:

(a) In any group G, if  then .

(b) In any abelian group G, if  then .

ab bc= a c=

a b+ b c+= a c=
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In the real number system, do linear equations  have unique
solutions for every ? No: the equation  has no solu-
tion, while the equation  has infinitely many solutions. This
observation assures us once more that the reals is not a group under
multiplication, since:

PROOF: Existence:

Uniqueness: We assume (as usual) that there are two solutions, and
then proceed to show that they are equal:

(a)                 

(b) 

              

The inverse of a product is the product of the inverses, but in
reverse order: 

PROOF: To show that  is the inverse of  is to show that
. No problem:

THEOREM 2.10 Let G be a group. For any , the linear

equations  and  have unique
solutions in G.

(a) (b) 

ax b=
a b  0x 5=

0x 0=

a b G
ax b= ya b=

ax b=

a 1– ax  a 1– b=

a 1– a x a 1– b=

ex a 1– b=

x a 1– b=

ya b=

ya a 1– ba 1–=

y aa 1–  ba 1–=

ye ba 1–=

y ba 1–=

ax1 b and ax2 b= = ax1 ax2 x1 x2= =

Theorem 2.9(b)

y1a b and y2a b= = y1a y2a y1 y2= =

Theorem 2.9(a)

Answer: See page A-9.

CHECK YOUR UNDERSTANDING 2.8

Since the set of real numbers under addition is a group, 2.9 applies.
Show, directly, that any linear equation in  has a unique solu-
tion.

 + 

This is another shoe-sock
theorem (see page 8).

THEOREM 2.11 For every  in a group G:

 

a b

ab  1– b 1– a 1–=

b 1– a 1– ab
b 1– a 1–  ab  e=

b 1– a 1–  ab  b 1– a 1– a b b 1– eb b 1– b e= = = =
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The axiom of a group G assures us that an expression such as ,

sans parentheses, is unambiguous [since  and  yield the
same result]. It is plausible to expect that this nicety extends to any

product  of elements of G. Plausible, to be sure; but more

importantly, True: 

PROOF: [By induction (page 13)]:

I. The claim holds for  (the axiom).

II. Assume the claim holds for , with .

III. (Now for the fun part) We show the claim holds for : 

Let x denote the product    under a certain pair-

ing of its elements, and y the product under another pairing
of its elements. We are to show that . Let’s do it:

Assume that one starts the two multiplication processes with
the following pairing for x and y:

Case 1. : By the induction hypothesis (II), no matter
how the products in A and C are performed, A will equal C.
The same can be said concerning B and D. Consequently

.

Case 2. Assume, without loss of generality, that . Break-
ing the “longer” product B into two pieces M and D we have:

By the induction hypothesis, A, M, and D are well defined
(independent of the pairing of its elements in their products).
Bringing us to:

Answer: See page A-9.

CHECK YOUR UNDERSTANDING 2.9

Give an example of a group G for which  does not

hold for every .

THEOREM 2.12 Let . The product expression

 is unambiguous in that its value is

independent of the order in which adjacent
factors are multiplied. 

ab  1– a 1– b 1–=

a b G

abc

ab c a bc 

a1a2an

a1a2an G

a1a2an

n 3=

n k= k 3

n k 1+=

a1a2ak 1+

x y=

x a1a2ai  ai 1+ ak 1+   and  y a1a2aj  aj 1+ ak 1+ = =
A                   B                                       C                 D

i j=

x AB CD y= = =

i j

x a1a2ai  ai 1+ aj  aj 1+ ak 1+ =
A                                    M                D               

x AB A MD  AM D CD y= = = = =

I: Claim holds for n 3=



58   Part 2   Groups                                                                                         
 

PROOF: Let G be of order n. Surely not all of the  elements
 can be distinct. Choose  such that

. Since :

, for . 

SOLUTION: (a) Since:

 

   The element 4 has order 3 in .

(b) Since:

     The element  has order 3 in .

Answer: See page A-9.

CHECK YOUR UNDERSTANDING 2.10

Use the Principle of Mathematical Induction, to show that for any
:

 

THEOREM 2.13 For any given element a of a finite group G:

 for some .

a1a2an G

ana2a1  1– a1
1– a2

1– an
1–=

am e= m Z+

In the additive notation,
 translates to
; which is to say:

am e=

na 0=
a a  a+ + + 0=

 
sum of n as 

DEFINITION 2.5

ORDER OF AN 
ELEMENT OF G

Let G be a group, and let  be such that
 for . The smallest such m is

called the order of a and is denoted by
. If no such m exists, then a is said to

have infinite order.

EXAMPLE 2.3 (a) Determine the order of the element 4 in the 
group .

(b) Determine the order of the element

 

in the symmetric group .

n 1+
a a2 a3  an 1+    1 s t n 1+
at as= ata s– at s– e= =

am e= m t s–=

a G
am e= m Z+

o a 

Z6 +6 


1   2   3   4   5

3   2   4   1   5 
 =

S5

1 4  4=

2 4  4+64 2  = =

3 4  4+64+64 2+64 0= = =

Z6

1   2   3   4   5

3   2   4   1   5

4   2   1   3   5

1   2   3   4   5 
 
 
 
 
 


2

3

e


1   2   3   4   5

3   2   4   1   5 
 = S5
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Answer: (a) 4       (b) 6
                  (c) See page A-10.

CHECK YOUR UNDERSTANDING 2.11

(a) Determine the order of the element  in .

(b) Determine the order of the element 4 in .

(c) Let . Prove that  

Note: There is no “subtraction” in a group . For
convenience, however, for given , we define
the symbol  as follows:

(add the additive inverse of b to a)

There is no “division” in a group . In this setting,
however, one does not ever substitute the symbol  for

. Why not? Convention.


1   2   3   4   

2   3   4   1    
 = S4

Z24

a Zn o m  n
gcd a n 
-----------------------=

See Definition 1.8, page 22

G + 
a b G

a b–
a b– a b– +=

G . 
a
b
---

ab 1–
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EXERCISES

1. Let G be a group and . Solve for x, if:

     (a)          (b)          (c)          (d) 

2. Let G be a group. Prove that  for every .

3. Prove that for any element a in a group G the functions  given by  and

the function  given by  are bijections.

4. Let a be an element of a group G. Show that 

5. Let G be a group and let . Show that if there exists one element  for which , 

then . 

6. Let a be an element of a group G for which there exists  such that . Prove that 

.

7. Prove that a group G is abelian if and only if  for every .

8. Let G be group for which  for every . Prove that G is abelian.

9. Let G be group for which  for every . Prove that G is abelian.

10. Let G be a finite group consisting of an even number of elements. Show that there exists , 

, such that .

11. Let G be a group. Show that if, for any , there exist three consecutive integers i such 

that  then G is abelian.

12. Let * be an associative operator on a set S. Assume that for any  there exists  such 

that , and an element  such that . Show that  is a group.

13. Let G be a group and . Define a new operation * on G by  for all . 

show that  is a group.

14. Let G be a group and . Use the Principle of Mathematical Induction to show that for 

any positive integer n: .

15. Let a and b be elements of a group G. Show that if ab has finite order n, then ba also has 
order n.

a b c  G

axa 1– e= axa 1– a= axb c= ba 1– xab 1– ba=

a 1–  1– a= a G

fa: G G fa b  ab=

ga: G G ga b  ba=

G ab b G =

a G x G ax x=

a e=

b G ab b=

a e=

ab  1– a 1– b 1–= a b G

a 1– a= a G

ab 2 a2b2= a b G

a G
a e a2 e=

a b G
ab i aibi=

a b S c S
a*c b= d S d*a b= S * 

a G b*c ba 1– c= b c G

G * 

a b G

a 1– ba n a 1– bna=
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16. Let G be a cyclic group of order n. Show that if m is a positive integer, then G has an element 
of order m if and only if m divides n.

17. Let G be a group. Show that for every element  and for any : .

18. Let G be a finite group, and . Prove that the elements  have the
same order.

19. List the order of each element in the Symmetric group  of Figure 2.6, page 47.

20. Let  be of order n. Prove that  if and only if n divides .

21. Prove that if  for every element a in a group G, then G is abelian.

22. Let * be an associative operator on a finite set S. Show that if both the left and right cancel-

lation laws of Theorem 2.8 hold under *, then  is a group. 

PROVE OR GIVE A COUNTEREXAMPLE

23. If  are elements of a group such that , then . 

24. In any group G there exists exactly one element a such that .

25. In any group G, .

26. Let G be a group. If  then .

27. Let G be a group. If  then .

28. Let G be a group. If  then .

a G n Z a n– a 1– n=

a b G a a 1–  and bab 1–

S3

a G as at= s t–

a2 e=

S * 

a b c  abc e= cba e=

a2 a=

ab  2– b 2– a 2–=

abc bac= ab ba=

abcd bacd= ab ba=

abc  1– a 1– b 1– c 1–= a c=
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As it turns out, apart from closure, to determine whether or not a non-
empty subset of a group is a subgroup you need but challenge Axiom3: 

PROOF: If S is a subgroup, then (i) and (ii) must certainly be satisfied. 

Conversely, if (i) and (ii) hold in S, then Axioms 1 and 2 also hold: 

Axiom 1: Since  holds for every ,
that associative property must surely hold for every

.

Axiom 2: Since  for every , then surely 

for every . It remains to be shown that .
Lets do it:

Choose any . By (ii): . 

                                     By (i): .      

                                             

SOLUTION: Since , .

(i)  is closed under addition:

(ii) For any :

       Conclusion:  is a subgroup of Z (Theorem 2.14).

§3. SUBGROUPS

DEFINITION 2.6
SUBGROUP

A subgroup of a group G is a nonempty
subset H of G which is itself a group under
the imposed binary operation of G.

GROUP AXIOMS
Closure:   
Axiom 1. 
Axiom 2. 
Axiom 3. 

ab G
a bc  ab c=
ae a=
aa 1– e=

THEOREM 2.14 A nonempty subset S of a group G is a subgroup
of G if and only if:

(i) S is closed with respect to the operation in G.

(ii)  implies that .

When challenging if  is a subgroup, we suggest that you first
determine if it contains the identity element. For if not, then S is not a
subgroup, period. If it does, then  and you can then proceed to
challenge (i) and (ii) of Theorem 2.14.

s S s 1– S

a bc  ab c= a b c G 

a b c S 

ae a= a G se s=

s S e S

s S s 1– S
ss 1– e S=

S G

S 

For example: 

5Z  10– 5– 0 5 10       =

EXAMPLE 2.4 Show that for any fixed  the subset

               

is a subgroup of .

n Z
nZ nm m Z =

Z + 

We remind you that, under
addition,  rather than

 is used to denote the
inverse of a.

a–
a 1–

0 n0 nZ= nZ 

nZ

nm1 nm2+ n m1 m2+  nZ=

nm nZ
nm – n m–  nZ=

nZ
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You are invited to show in the exercises that the following result holds
for any collection of subgroups of a given group:

PROOF: Since H and K are subgroups, each contains the identity ele-
ment. It follows that  and that therefore . We
now verify that conditions (i) and (ii) of Theorem 2.13 are satisfied:

 (i) (Closure) If , then  and . Since H

and K are subgroups,  and . It follows that

.

(ii) (Inverses) If , then  and . Since H and K

are subgroups,  and . consequently,

.

We recall the definition of a cyclic group appearing on page 48:

Answer: See page A-10.

CHECK YOUR UNDERSTANDING 2.12

The previous example assures us that  is a subgroup of . As

such, it is itself a group. Show that  is a subgroup .

THEOREM 2.15 If H and K are subgroups of a group G, then
 is also a subgroup of G.

3Z Z + 
6Z 3Z

H K

e H K H K 

a b H K a b H a b K
ab H ab K

ab H K

Answer: See page A-10.

CHECK YOUR UNDERSTANDING 2.13

Let H and K be subgroups of a G for which . Prove:

 , 

a H K a H a K
a 1– H a 1– K

a 1– H K

H K e =

h1k1 h2k2 h1 h2 and k1 k2= = =

Answer: 
              

3  Z8=

4  0 4 =

A group G is cyclic if there exists

 such that .

DEFINITION 2.7 Let G be a group, and . The cyclic

group  is called the
cyclic subgroup of G generated by a.

    (In sum form: )

CHECK YOUR UNDERSTANDING 2.14

For , determine . (Use sum notation.)

a G G a
n

n Z =

a G
a  an n Z =

a  na n Z =

G Z8= 3   and 4 
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PROOF: Let H be a subgroup of . If , then ,
which i s cyclic. If  then let  be the smallest positive integer
such that . We show  by showing that every

 is a power of :
Employing the Division Algorithm of page 21, we chose
integers q and r, with , such that: .
And so we have:

            or: 

Since  and  are both in H, and since H is a group:

. Consequently, from (**): .

Since  and since m is the smallest positive integer
such that : . Consequently, from (*):

  — a power of .

We have seen that any element a in a group G can be used to gener-
ate a subgroup of G — namely the cyclic group generated by a:

    Generalizing the above concept, we start off with a nonempty sub-
set A of G, and consider the set  of all elements of G consisting
of finite products of elements of , wherein repetitions of its ele-
ments may occur. For example, if , then:

, , , and  are all in .

 Note that, by its very definition,  is a subgroup of G:

 is certainly not empty and closed under multiplication. 

Moreover, the inverse of any element in  is again of the

form which positions it in . For example:

 
(see CYU 2.10, page 58)

THEOREM 2.16 Every subgroup of a cyclic group is cyclic.

G a = a e= H e =
a e m

am H H am =
an H am

0 r m n mq r+=

an amq r+ am qar= = (*) ar am  q– an= (**)

Answer: See page A-11.

CHECK YOUR UNDERSTANDING 2.15

Let  with . Let  with . Prove that: 

SUBGROUPS GENERATED BY SUBSETS OF A GROUP

an am

am  q– an H ar H
0 r m

am H r 0=

an am qa0 am q= = am

G a = G n= b G b as=

o b  n
gcd n s 
----------------------=

a  an n Z =

In the event that G is
abelian, the elements of

 can be expressed
in a non-repetition form,
as with:

A 

ab2c 3– a3c2a a5b2c 1–=

A 
A 
A a b c  =

a3 c 2– b3 aa 1– e= ab2c 3– a3c2a A 

A 
A 

A 
A 

ab2c 3– a3c2a  1– a 1– c 2– a 3– c3b 2– a 1–=
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Bringing us to:

In particular, here is the subgroup of  generated by :

PROOF: : Since subgroups are closed under multiplication,
any subgroup of G that contains A, including the subgroup

 has to contain . It follows that  is the intersec-
tion of all subgroups of G that contain A.

 Your turn:

Here is a particularly important result: 

A proof of Lagrange’s Theorem is offered at the end of the section. At
this point, we turn to a few of its consequences, beginning with:

PROOF: Let , where p is prime. Since , we can choose
an element  distinct from . By Lagrange’s theorem, the order of

the cyclic group  must divide p. But only 1 and p

Note that commutativity
enables us to gather all of
the  and  together.2s 3s

DEFINITION 2.8
GENERATED
SUBGROUP

Let A be a nonempty subset of a group G.
The subgroup of G generated by A,
denoted by , consisting of all finite

products of elements of 

THEOREM 2.17 Let A be a nonempty subset of a group G.
The following are equivalent:
(i)
(ii) S is the intersection of all subgroups

of G containing A.

A 
A 

Z +  2 12 

2 12  2n12m n m Z  2n3m n m Z = =
since 12 22 3=

S A =

i  ii 

A  A  A 

Answer: See page A-11.

CHECK YOUR UNDERSTANDING 2.16

Verify that .

ii  i 

ii  i 

Joseph-Louis Lagrange
(1736-1813).

We will eventually show that
the converse of Lagrange’s
Theorem holds for abelian
groups. It does not, however,
hold in general (Exercise 28,
page 102).

THEOREM 2.18
      (Lagrange)

If G is a finite group and H is a subgroup of
G, then the order of H divides the order of G:

       
(see Definition 2.2, page 43)

To illustrate: If a group G contains 35 elements, it cannot
contain a subgroup of 8 elements, as 8 does not divide 35. 

THEOREM 2.19 Any group G of prime order is cyclic.

H  G

G p= p 2
a G e

a  an n Z =
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divide p, and since  contains more than one element, it must con-
tain p elements, and is therefore all of G.

PROOF: We know that  and the Klein group are the only groups of

order 4, and that each is abelian. The trivial group  of order 1 is
clearly abelian. Any group or order 2 or 3, being of prime order, must
be cyclic (Theorem 2.19), and therefore abelian (Theorem 2.6, page 49).

                           

PROOF: If , then  is a

subgroup of G consisting of m elements. Consequently: .

PROOF: Let , with . Since m divides n (Lagrange’s

Theorem),  for some . Thus:

We begin by recalling some material from Chapter 1:
An   equivalence relation ~ on a set X is a relation which is

Reflexive:  for every ,

            Symmetric: If , then ,

Transitive: If  and , then .

For  the equivalence class of  is the set:

.

a 

The symmetric group 
is an example of a non-
abelian group of order 6.

S3 THEOREM 2.20 Every group of order less than 6 is abelian.

Z4

e 

We remind you that 
denotes the order of a
 (Definition 2.5, page 58).

o a  THEOREM 2.21 For any element a in a finite group G:

 

THEOREM 2.22 If G is a finite group of order n, then

 for every .

(Sum notation:  for every )

o a  G

o a  m= a  a a2  am 1– am e=    =

o a  G

an e= a G
na 0= a G

a G o a  m=

n tm= t Z+

Answer: S3

CHECK YOUR UNDERSTANDING 2.17

Determine the subgroup of the symmetric group :

 

generated by the set .

PROOF OF LAGRANGE’S THEOREM 

an atm am t et e= = = =

S3

e
1   2   3
1   2   3 
  ,  1

1   2   3
2   3   1 
  ,  2

1   2   3
3   1   2 
 ===

3

1   2   3
1   3   2 
  ,  4

1   2   3
3   2   1 
  ,  5

1   2   3
2   1   3 
 ===

2 3 

See Definition 1.11 page 29.

x~x x X

See Definition 1.13 page 31.

x~y y~x

x~y y~z x~z

x0 X x0

x0  x X x~x0 =
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PROOF: 
~ is reflexive:  since .

~ is symmetric:.

~ is transitive: If , then:

  

Having established the equivalence part of the theorem, we now ver-
ify that :

We are now in a position to offer a proof of Lagrange’s Theorem: 
If H is a subgroup of a finite group G, then .

PROOF: Theorem 1.13(a), page 32, and Lemma 2.2, tell us that the
right cosets of H, , partition G. Since G is finite, we can

choose  such that  with 

if . 

LEMMA 2.2 Let H be a subgroup of a group G. The relation  if

 is an equivalence relation on G. Moreover,

the equivalence class containing  is the set: 

NOTE: The above set  will be denoted by ,
and is said to be a right coset of H:

a~b

ab 1– H
a G

a  ha h H =

x~x xx 1– e H=

a~b ab 1– h  for some h H=

ab 1–  1– h 1–=

b 1–  1– a 1– h 1–=

ba 1– h 1–= b~a since h 1– H

Theorem 2.11, page 56:

Exercise 2, page 60:

H
 is a group

a~b  and  b~c

ab 1– H  and  bc 1– H

 ab 1–  bc 1–  H

a b 1– b c 1– H

aec 1– H

ac 1– H a~c

a  ha h H =

b a  b~a ba 1– h  for some  h H=

b ha  for some  h H=

ha h H  Ha

Ha ha h H =

H  G

Ha a G 

a1 a2  ak   G Hai
i 1=

k

= Hai Haj =

i j
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We now show that each  has the same number of elements as H,

by verifying that the function  given by  is a

bijection:

 is one-to-one:

        
 is onto: 

        For any given , .

Since G is the disjoint union of the k sets , and

since each of those sets contains  elements: , and there-

fore: .

Hai

fi: H Hai fi h  hai=

fi

fi h1  fi h2 = h1a h2a=

h1a a 1– h2a a 1–=

h1 aa 1–  h2 aa 1–  h1 h2= =

fi

hai Hai fi h  hai=

Ha1 Ha2  Hak  

H G k H=

H  G
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Exercise 1-5. Determine if the given subset S is a subgroup of .

Exercise 6-8. Determine if the given subset S is a subgroup of  (see Theorem 2.1, page 42).

Exercise 9-12. Determine if the given subset S is a subgroup of .

Exercise 13-18.  Determine if the given subset S is a subgroup of  where:

                          

Exercise 19-21. Determine if the given subset S is a subgroup of .

Exercise 23-26. Determine if the given subset S is a subgroup of .

Exercise 27-30. Determine if the given subset S is a subgroup of  (see Exercise 49, page 52).

Exercise 31-34. Determine if the given subset S is a subgroup of  (see Theorem 2.4, page 46).

EXERCISES

1. 2. 3.

4. 5.

6. 7. 8.

9. 10.

11. 12.

13. 14. 15.

16. 17. 18.

19. 20.

21. 22.

23. 24.

25. 26.

27. 28.

29. 30.

31. 32.

33. 34.

Z + 
S n n is even = S n n 1 = S n n is odd =

S n n is divisible by 2 and 3 = S n n is divisible by 2 or 3 =

Z8 +n 

S 0 2 4 6   = S 0 3 6  = S 0 2 3 4   =

 + 
S x x 7y for y = = S x x 7y for y 0= =

S x x 7 y for y += = S x x 7 y for y 0+= =

S3  

0
1   2   3
1   2   3 
  ,  1

1   2   3
2   3   1 
  ,  2

1   2   3
3   1   2 
 === 3

1   2   3
1   3   2 
  ,  4

1   2   3
3   2   1 
  ,  5

1   2   3
2   1   3 
 ===

S 0 1 = S 0 2 = S 0 3 =

S 0 1 2  = S 0 3 5  = S 1 2 3 4 5    =

R3 + 
S a b 0   a b  = S a b 1   a b  =

S a b c   c a b+= = S a b c   c ab= =

M2 2 + 

S a   b

a b+   0
a b 

 
 
 

= S a   b

a b+   1
a b 

 
 
 

=

S a   b

a b+   ab
a b 

 
 
 

= S a   b

c   2a c+
a b c 

 
 
 

=

F   + 
S f f is continuous = S f f is differentiable =

S f f 1  1= = S f f 1  0= =

S  

S f f is continuous = S f f is differentiable =

S f f 1  1= = S f f 1  0= =
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35. Prove that all subgroups of Z are of the form .

36. Find all subgroups of .

37. Prove that if  and G are the only subgroups of a group G, then G is cyclic of order p, 
for p prime.

38. Show that a nonempty subset S of a group G is a subgroup of G if and only if 

 

39. Show that for any ,  is a subgroup of Z.

40. Show that for any group G the set  is a subgroup of G.

41. Let G be an abelian group. Show that for any integer n,  is a subgroup of 
G.

42. Prove that the subset of elements of finite order in an abelian group G is a subgroup of G 
(called the torsion subgroup of G).

43. Let G be a cyclic group of order n. Show that if m is a positive integer, then G has an ele-
ment of order m if and only if m divides n.

44. Let a be an element of a group G. The set of all elements of G which commute with a:
 

is called the centralizer of a in G. Prove that  is a subgroup of G.

45. Let H be a subgroup of a group G. The centralizer  of H is the set of all elements of
G that commute with every element of H: . Prove
that  is a subgroup of G.

46. The center  of a group G is the set of all elements in G that commute with ever ele-
ment of G: . 

(a) Prove that  is a subgroup of G.

(b) Prove that  if and only if  (see Exercise 43.)

(c) Prove that . 

47. Show that Table C in Figure 2.4, page 45, can be derived from Table B by appropriately
relabeling the letters e, a, b, c in B.

48. Let H and K be subgroups of an abelian group G. Verify that 
is a subgroup of G.

49. Let H and K be subgroups of a group G such that  for every . Show that
 is a subgroup of G.

50. Prove that H is a subgroup of a group G if and only if .

51. Let H and K be subgroups of an abelian group G of orders n and m respectively. Show that
if , then  is a subgroup of G of order nm.

nZ

Z6 +n 

e 

a b S ab 1– S

a b Z+ S na mb+ n m Z =

Z G  a G ag ga g G= =

a G an e= 

C a  b G ab ba= =

C a 

C H 
C H  a G ah ha for all h H= =

C H 

Z G 
Z G  a G ab ba for all b G= =

Z G 
a Z G  C a  G=

Z G  C a 
a G
=

HK hk h H and k K =

k 1– Hk H k K
HK hk h H and k K =

HH 1– ab 1– a b H  H=

H K e = HK hk h H and k K =
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52. (a) Prove that the group  contains an infinite number of subgroups.
(b) Prove that any infinite group contains an infinite number of subgroups.

53. Let S be a finite subset of a group G. Prove that S is a subgroup of G if and only if 
for every .

54. (a)  be subgroups of a group G. Show that  is also a subgroup of G.

(b) Let  be a collection of subgroups of a group G. Show that  is also a

subgroup of G.

(c) Let  be a collection of subgroups of a group G. Show that  is also a

subgroup of G.

PROVE OR GIVE A COUNTEREXAMPLE

55. If H and K are subgroups of a group G, then  is also a subgroup of G. 

56. It is possible for a group G to be the union of two disjoint subgroups of G. 

57. In any group G,  is a subgroup of G. 

58. In any abelian group G,  is a subgroup of G. 

59. Let G be a group with . If  and , then .

60. If a group G has only a finite number of subgroups, the G must be finite.

61. If H and K are subgroups of a group G, then  is also a subgroup 
of G.

62. In any group G,  is a subgroup of G.

63. No nontrivial group can be expressed as the union of two disjoint subgroups.

Z + 

ab S
a b S

Hi i 1=
n

Hi

i 1=

n



Hi i 1=


Hi

i 1=





H  A H
 A


H K

a G an e for some n Z= 

a G an e for some n Z+= 

a b G o a  n= o b  m= ab nm e=

HK hk h H and k K =

a G a3 e= 
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 2

 

Up until now we have focused our attention exclusively on the inter-
nal nature of a group G. The time has come to consider links between
them:

Let’s focus a bit on the equation:  

The operation, ab, on the left side of equation (*) is taking place in the
group G while that on the right, , occurs in the group .
What (*) is saying is that you can perform the product in G and then
carry the result over to  (via ), or you can first carry a and b over to

 and then perform the product in that group. Those groups and prod-
ucts, however, need not resemble each other. Consider the following
examples:    

SOLUTION: We consider three cases:

Case 1. (Both integers are even). If  and , then:

 (since  is even)

And also: .

Case 2. (Both are odd). If  and , then:

 
And also: 

 .

Case 3. (Even and odd). If  and , then:

 

And also: .

§4. HOMOMORPHISMS AND ISOMORPHISMS

The word homomorphism
comes from the Greek
homo meaning “same” and
morph meaning “shape.”

DEFINITION 2.9
HOMOMORPHISM

A function  from a group G to a
group  is said to be a homomorphism if

 for every .

: G G
G

 ab   a  b = a b G

 ab   a  b = (*)

You can easily verify that
, under stan-

dard multiplication 

is a group.

G 1 1– =

* 1 1–

1 1 1–

1– 1– 1

EXAMPLE 2.5 Let , and let  under
standard integer multiplication (see margin).
Show that  given by:

is a homomorphism.

 a  b  G

G 
G

G Z + = G 1 1– =

f: G G

 n  1 if n is even

1– if n is odd



=

a 2n= b 2m=

 a b+   2n 2m+  1= = 2n 2m+

 a  b   2n  2m  1 1 1= = =

Since  is abelian, we
need not consider 
and ,

Z + 
a 2n 1+=

b 2m=

a 2n 1+= b 2m 1+=

 a b+   2n 1+  2m 1+ +   2n 2m 2+ +  1= = =

 a  b   2n 1+  2m 1+  1–  1–  1= = =

a 2n= b 2m 1+=

 a b+   2n  2m 1+ +   2 n m+  1+  1–= = =

 a  b   2n  2m 1+  1  1–  1–= = =

See page 42 for a discussion
of the group .Zn +n 

EXAMPLE 2.6 Show that the function 

given by  where  with
 is a homomorphism.

: Z +  Zn +n 

 m  r= m nq r+=
0 r n
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SOLUTION: Let ,  with  and
, and let  with , then:

SOLUTION:  is one-to-one:

To show that  is a homomorphism we need to show that
, which is to say, that the function  is

equal to the function . Let’s do it:

For any :                    

                       and 

By associativity, , and we are done.

Homomorphisms preserve identities, inverses, and subgroups:   

See page 46 for a discussion on
the symmetric group .SG  

EXAMPLE 2.7 For any fixed element a in a group G, let
 be given by . Show

that the function  given by

 is a one-to-one homomorphism. 

a nq1 r1+= b nq2 r2+= 0 r1 n
0 r2 n r1 r2+ nq3 r3+= 0 r3 n

 a b+   nq1 r1+  nq2 r2+ + =

 n q1 q2+  r1 r2+ + =

 n q1 q2+  nq3 r3+ +  with 0 r3 n=

 n q1 q2 q3+ +  r3+  r3 (since 0 r3 n)= =

And:  a +n  b   nq1 r1+ +n nq2 r2+ =
r1+n r2 r3 (since r1 r2+ nq3 r3 with  0 r3 n)+= = =

sam
e

fa: G G fa g  ag=

: G SG  
 a  fa=



 a   b = fa fb= fa e  fb e = ae be a b= =

in particular


 ab   a  b = fab: G G

fafb: G G
x G fab x  ab x=

fafb  x  fa fb x   fa bx  a bx = = =

Answer: See page A-11.

CHECK YOUR UNDERSTANDING 2.18

Show that for any two groups  and  the function 
given by  for every  is a homomorphism (called the
trivial homomorphism from  to ).

THEOREM 2.23 Let  be a homomorphism. Then:

(a)           

(b) 

(c) If H is a subgroup of G, then:

 is a subgroup of .
(d) If  is a subgroup of , then:

 

is a subgroup of .

ab x a bx =

G G : G G
 a  e= a G

G G

: G G
 e  e=

 a 1–   a   1–=

 H   h  h H =
G

H G
 1– H  g G  g  H =

G
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PROOF:
(a) Since  is a homomorphism: . 

Multiplying both sides by  yields the desired result:

(b) Since :

 .

(c)  We use Theorem 2.14, page 62, to show that the nonempty set 

is a subspace of :

Since :  is closed with respect to the

operation in .

Since, for any , :

  for every .

(d) We use Theorem 2.14 to show that the nonempty set  is a

subspace of :

Let . To say that  is to say that

, and it is:

Since , and since , being a subgroup of

, is closed with respect to the operations in : .

Let . To say that  is to say that

, and it is:

Since , and since  contains the

inverse of each of its elements: .

  e   ee   e   e  = =
 e   1–

 e   1–  e   e   1–  e  e  =

e  e   1–  e    e =

e e e   e = =

Answer: See page A-11.

CHECK YOUR UNDERSTANDING 2.19

Let  and  be homomorphisms. Prove that the
composite function  is also a homomorphism. 

 a 1–  a   a 1– a   e  e= = =
(a)

 a 1–   a   1–=

 H 
G

 a  b   ab =  H 
G

a G  a 1–   a   1–=

 a   1–  H   a   H 

 1– H 
G

a b  1– H  ab  1– H 
 ab  H

 ab   a  b = H
G G  ab  H

a  1– H  a 1–  1– H 
 a 1–  H

 a 1–  a  1–= H
 a 1–  H

: G G : G G
: G G
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For any given homomorphism , we define the kernel of 

to be the set of elements in G which map to the identity  [see

Figure 2.7(a)]. We define the set of all elements in  which are “hit”

by some  to be the image of  [see Figure 2.7(b)].

Figure 2.7
More formally:

Both the kernel and image of a homomorphism turn out to be sub-
groups of their respective groups:

PROOF: (a) A consequence of Theorem 2.23(d) and the fact that
 is a subgroup of 

(b)  A consequence of Theorem 2.3(c).

 

IMAGE AND KERNEL 
: G G 

e G
G

 a  

.
(a)                                                             (b)

G                          G G                          G

Kernel of  Image of 

e




Utilizing the notation of
Definition 1.3, page 2:

Ker    1– e  =
Im    G =

DEFINITION 2.10
KERNEL

IMAGE

Let  be a homomorphism.

The kernel of , denoted by , is
given by:

The image of , denoted by , is
given by: 

THEOREM 2.24 Let  be a homomorphism. Then:

(a)  is a subgroup of G.

(b)  is a subgroup of .

: G G

 Ker  

Ker   a G  a  e= =

 Im  

Im    a  a G =

: G G

Ker  

Im   G

e  G

Answer: See page A-11.

CHECK YOUR UNDERSTANDING 2.20

Show that the function  given by  is a
homomorphism. Determine the kernel and image of .

: 2Z 4Z  2n  8n=
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Definition 2.10 tells us that a homomorphism  is onto if 

and only if . The following result is a bit more interesting, 
in that it asserts that in order for a homomorphism to be one-to-one, it 
need only behave “one-to-one-ish” at e (see margin):

PROOF: Suppose  is one-to-one. If , then both
 and  [Theorem 2.22(a)]. Consequently 

(since  is assumed to be one-to-one). Hence: .

Conversely, assume that . We need to show that if
, then . Let’s do it:

 

As previously noted, a homomorphism  preserves the
algebraic structure in that . An isomorphism also
preserves set structures, in that it pairs of the elements of the set G with
those of the set . More formally: 

A homomorphism 
must map e to . What this
theorem is saying is that if e is
the only element that goes to

, then no element of  is
going to be hit by more that one
element of G. This is certainly
not true for arbitrary functions: 

: G G
e

e G

x

y

f x  x=

THEOREM 2.25 A homomorphism  is one-to-one

if and only if .

: G G
Im   G=

: G G
Ker   e =

 a Ker  
 a  e=  e  e= a e=

 Ker   e =

Ker   e =
 a   b  = a b=

 a   b   =

 a   b   1– e=

 a  b 1–  e=

 ab 1–  e=

ab 1– e=

ab 1– b eb=

a b=

Theorem 2.22(b):

 is a homomorphism:

Ker   e :=

Answer: See page A-11.

CHECK YOUR UNDERSTANDING 2.21

Let  be a homomorphism. Show that if there exists an

element  (not necessarily the identity e) such that if

 then , then  is one-to-one.
In other words: for a homomorphism  to be one-to-one, it
need only behave “one-to-one-ish” at any one-point in G.”

: G G
c G

 c   a = c a= 
: G G

The word isomorphism
comes from the Greek iso
meaning “equal” and
morph meaning “shape.”

ISOMORPHISMS 

DEFINITION 2.11

ISOMORPHISM

AUTOMORPHISM

ISOMORPHIC

A homomorphism  which is
also a bijection is said to be an isomor-
phism from the group G to the group .

An isomorphism  is said to be
an automorphism on G.
Two groups G and  are isomorphic,
written , if there exists an isomor-
phism from one of the groups to the other.

: G G
 ab   a  b =

G

: G G

G
: G G

G
G G
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SOLUTION: We show that the function  given by
 is an isomorphism:

Homomorphism: 

One-to-one: (See Theorem 2.24)

Onto: For , we have: .

Algebraically speaking, there is but one cyclic group of order n, and
but one infinite cyclic group:

PROOF: (a) We show that the function:

given by  is an isomorphism from  to :

One-to-one. For :

 

Onto. For , 

Homomorphism: 

(b) Your turn: 

 

EXAMPLE 2.8 Show that the group  of real numbers
under addition is isomorphic to the group

 of positive real numbers under multi-
plication.

 + 

+ . 

In this discussion we are not
using e to denote the identity
element in  (which is
1). Here, e is the transcen-
dental number . 

+ . 

e 2.718

:  +  + . 
 a  ea=

 a b+  ea b+ eaeb  a  b = = =

 a  1 ea 1 a 0= = =

The identity in   + The identity in  + . 

a + .   aln  e aln a= =

Answer: See page A-12.

CHECK YOUR UNDERSTANDING 2.22

(a) Prove that  is an equivalence relation on any set of groups (see
Definition 1.12, page 29).

(b) Prove that  for any .

(c) Let . Prove that the map  given by 

is an automorphism (called an inner automorphism.) 

THEOREM 2.26 (a) If the cyclic group  is of order
n, the .

(b) If  is infinite, the .



nZ mZ n m Z+
g G ig: G G

ig x  gxg 1–  x G=

G a =
G Zn +n 

G a = G Z + 

: 0 1 2  n 1–     a0 a1 a2  an 1–    
e

 i  ai= Zn +n  G a =

0 i j n 

 i   j = ai aj= ai j– a0 i j– 0 i j= = =

ai a0 a1 a2  an 1–      i  ai=

 i j+  ai j+ aiaj  i  j = = =

Answer: See page A-12.

CHECK YOUR UNDERSTANDING 2.23

Show that every infinite cyclic group is isomorphic to .Z + 
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Let  be an isomorphism. Being a bijection it links every

element in G with a unique element in  (every element in G has its

own  counterpart, and vice versa). Moreover, if you know how to
function algebraically in G, then you can also figure out how to func-
tion algebraically in  (and vice versa). Suppose, for example, that

you forgot how to multiply in the group , but remember how to mul-

tiply in G. To figure out  in  you can take the “ -bridge”

back to G to find the elements a and b for which  and

, perform the product  in G, and then take the “ -bridge”

back to to determine the product : .

Basically, if a group G is isomorphic to , then the two groups can
only differ in appearance, but not algebraically. Consider, for example,
the two groups which previously appeared in Figure 2.1, page 43:

Both contain four elements ({0,1,2,3} and {e,a,b,c}); so, as far as sets
are concerned, they “are one and the same” (different element-names,
that’s all). But as far as groups go, they are not the same (not isomor-
phic). Here are two algebraic differences (either one of which would
serve to prove that the two groups are not isomorphic):

1.  is cyclic while the Klein 4-group, K, is not.

2. There exist three elements in K of order 2 (see Definition
2.5, page 58), while  contains but one (the element 2).

To better substantiate the above claims: 

A ROSE BY ANY OTHER NAME

a

b

ab

a

b

ab

 1–

 1–



G                         G

THEOREM 2.27 If , then:

(a) G is cyclic if and only if  is cyclic.

(b)For any given integer n, there exists an
element  such that  if and
only if there exists an element 
such that .

: G G
G

G

G
G

ab G  1–

 a  a=

 b  b= ab 
G ab  ab 

G

  * e a b c

e e a b c

a a e c b

b b c e a

c c b a e

  + 0 1 2 3

0 0 1 2 3

1 1 2 3 0

2 2 3 0 1

3 3 0 1 2

4Z4: K:

(a)                                                    (b)

Z4

Z4

G G

G

a G an e=
a G

a n e=
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PROOF: Let  be an isomorphism.

(a) Suppose G is cyclic, with . We show  by

showing that for any , there exists  such that

:

Let  be such that . Since , there

exists  such that . Then:

The “only-if” part follows from the fact that if G is isomorphic
to , then  is isomorphic to G [see CYU 2.23(a)].

 (b)Let  be such that . Then:

 

The “only-if” part follows from CYU 2.22(a). 

The following results underlines the importance of symmetric groups
(see discussion on page 46). 

PROOF: The function  given by

was shown to be a one-too-one homomorphism in Example 2.7.
Since it is onto the subspace  of :

  is an isomorphism.

: G G

G a = G  a  =

b G n Z
b  a  n=

b G  b  b= G a =

n Z b an=

b  b   an   a  n= = =
Exercise 16

G G

a G an e=

 a  n  an   e  e= = =

Answer: See page A-12.

CHECK YOUR UNDERSTANDING 2.24

Prove that if , then G is abelian if and only if  is abelian.

A property of a group G that is shared by all groups isomor-
phic to G is said to be a group invariant property. For exam-
ple, abelian and cyclic are group invariant properties. Other
group invariant properties are cited in the exercises. 
In general, one can show that two groups are not isomorphic

by exhibiting a group invariant property that holds in one of
the groups but not in the other. For example, the permutation
group  is not isomorphic to  as one is abelian

while the other is not.

G G G

S3 Z6 +6 

Arthur Cayley (1821-1885) THEOREM 2.28
(Cayley)

Every group is isomorphic to a subgroup of
a symmetric group.

: G SG

 g  fg: G G where fg x  gx  ( x G = =

  G  SG

: G  G 
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Exercise 1-10. Show that the given function  from the group G to the group  is a
homomorphism.

Exercise 11-15. Show that the given function  from the group G to the group  is not
a homomorphism.

Exercise 16-27. Find the kernel and image of the homomorphism of:

EXERCISES

1.  and .

2.  and  for .

3.  and .

4.  and  where  with .

5.  and  if n is even and  if n is odd.

6. ,  and  where  with .

7.  and .

8.  ,  and ,

9.  with G abelian, and  for .

10.  with G abelian, , and  for .

11.  and .

12. ,  and  where  with .

13.  and .

14.  and .

15.  and  for .

16. Exercise 1. 17. Exercise 2. 18. Exercise 3.

19. Exercise 4. 20. Exercise 5. 21. Exercise 6.

: G G G

G G Z + = =  n  2n=

G G  + = = r x  rx= r 

G Z +  G  + = =  n  n=

G Z +  G Z3= =  n  r= n 3m r+= 0 r 3

G Z +  G 1 1–  . = =  n  1= f n  1–=

G Z6= G Z2=  n  r= n 2d r+= 0 r 2

G G M2 2 + = =  a b

c d 
 
  a b+   d

c–   0
=

G S3= G S4=     i   i  if i 4
4 if i 4=




=

G G=  a  a 1–= a G

G G= n Z +  a  an= a G

: G G G

G G Z + = =  n  n 1+=

G Z5= G Z2=  n  r= n 2d r+= 0 r 2

G G M2 2 + = =  a b

c d 
 
  a b+   d

c–   1
=

G M2 2 +  G = =  a b

c d 
 
 

ad bc–=

G G S3= =  a  a 1–= a G
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22. Exercise 7. 23. Exercise 8. 24. Exercise 9.

25. Exercise10. 26. Exercise 11. 27. Exercise 12.

28. Let  denote the group of all real numbers under addition, and  the group of 
all positive real numbers under multiplication. Show that the map  given by 

 is an isomorphism.

29. Let  be a homomorphism and let . Prove that  for every 
.

30. Let  be a homomorphism and let . Show that the map  given by 
 is a homomorphism.

31. Let  be a homomorphism with  finite. Show that  is  a divisor of .

32. Let  be a homomorphism. Prove that for all :

33. Let  be a homomorphism, Show that:

(a) If  is onto and if G is abelian, then  is abelian.

(a) If  is one-to-one and if  is abelian, then G is abelian.

34. Prove that a group G is abelian if and only if the function  given by  is
a homomorphism.

35. Let  be cyclic and let  be any group. Let  be a homomorphism. 
Prove that  is cyclic.

36. Let  be a homomorphism. Show that if , then  for 
every .

37. Let  be groups. Show that if  and  are homomor-
phisms, then so is .

38. Let be a homomorphism. Show that  is abelian if and only if for all 
: .

39. Let be a homomorphism. Prove that, for any given : 

40. Let  be cyclic and let  be any group. Prove that for any chosen  there 
exists a unique homomorphism  such that .

       So, a homomorphism on a cyclic group  is completely determined by its action on a.

41. Let  be a homomorphism. Prove that, for any given : 

42. Let A, B, C, and D be groups. Show that if  and , then  (see 
Exercise 52, page 52). 

 +  + . 
: + 

 x  xln=

: G G a G  an   a  n=
n Z

: G G a G : Z G
 n  an=

: G G G  G  G

: G G a b G
 ab 1–   a  b  1–  and  a 1– b   a  1–  b = =

: G G
 G

 G

f: G G f g  g 1–=

G a = G : G G
Im  

: G G k Ker   gkg 1– Ker  
g G

G G  and G : G G : G G
: G G

: G G  G 
a b G aba 1– b 1– Ker  

: G G x G
g G  g   x =  xk k Ker   =

G a = H h H
: G H  a  h=

G a =

: G G x G
g G  g   x =  xk k Ker   =

A B C D A C B D
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43. Let G and  be groups. Show that  (see Exercise 52, page 52). 

44. (a) Show that the set , with  is a 
group.

(b)Verify that the functions  and  given by  and

, respectively, are homomorphisms.

(c) Show that the function  given by  is a

homomorphism.

(d)Show that the function  given by  is an

isomorphism.

45. For , , let  be given by .

 (a) Show that  is a one-to-one homomorphism. 

(b) Show that  is an isomorphism if and only if .

46. Let  denote the additive group of real valued function (see Exercise 49, page 52), and 
let  denote the additive group of real numbers. Prove that for any  the function 

 given by  for  is a homomorphism (called an evalu-
ation homomorphism.)

47. Let  denote the set of differentiable functions from  to .

(a) Show that  is a group.

(b) Show that for any  the function  given by  is a

homomorphism.

(c) Is  one-to-one for any c?

(d) Is  onto for any c?

48. Let  denote the set of continuous real valued functions. 

(a) Show that  is a group.

(b) Show that for any closed interval  in  the function  given by

 is a homomorphism.

(c) Show that the function  given by  is a

homomorphism.

49. Show that for any , the function  given by  is a homomor-

phism. Is it necessarily an isomorphism?

50. Let G be a group. Prove that  is a 

group. 

G G G G G

Z Z a b  a b Z = a b * c d  a c+ b d+ =

1: Z Z Z 2: Z Z Z 1 a b  a=

2 a b  b=

: Z Z Z  a b  21 a b  32 a b +=

: Z Z Z Z  a b  2 a b  1 a b  =

m Z m 0 m: Z Z m n  mn=

m

m m 1=

F  
 c 

c: F    c f  f c = f F  

D    
D   + 

c  c: D    c f  f c =

c

c

C  
C   + 

a b   : C   

 f  f x  xd
a

b

=

: C     f  f x  xd
0

1

 2 f x  xd
2

3

+=

 S3 : S3 S3    =

Aut G   : G G is an automorphism   =
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Exercise 34-40. Show that the give property on a G is an invariant. 

51.  — the order of a finite group G.

52. G contains a nontrivial cyclic subgroup.

53. G contains an element of order n for given .

54. G contains m elements of order n for given .

55. G contains a subgroup of order of order n for given .

56. The number of elements in  (see Definition 2.5, page 58).

57. The number of elements in  — the center of a finite group G. (See Exercise 45, page 
70.)

PROVE OR GIVE A COUNTEREXAMPLE

58. The additive group  is isomorphic to the additive group Q of rational numbers)

59. The additive group Z is isomorphic to the additive group Q of rational numbers)

60. If  is a homomorphism from a group G to a cyclic group , then  is a
cyclic subgroup of G. 

61. If  is an isomorphism from a group G to a cyclic group , then  is a
cyclic subgroup of G. 

62. For  the group of continuous real valued functions under addition the function

 given by  is a homomorphism.

63. If ,  and  are not isomorphic.

G

n 1

n 1

n 1

Tn g G o g  n= =

Z G 



 G a = Ker  

 G a = Ker  

C  

: C     f  f x  xd
0

1

 
  f x  xd

2

3

 
 =

n m Sn Sm
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 2

Cayle’s Theorem asserts that every group is isomorphic to a subgroup
of a symmetric group. It follows that if one knew everything about
symmetric groups, then one would know everything about groups in
general. Alas, however, symmetric groups  are not “easy to
own,” especially if X is an infinite set. 

In this section we focus our attention on finite symmetric groups, spe-
cifically on the groups  of section 2.1 (see page 46). 

Consider the permutation:

  

To get a sense of its action, let’s use the symbol  to indicate that
 maps 1 to 3. We then have:

         ; or, better yet: 

Adhering to convention we let the symbol (1,3,4,7) represent the per-
mutation in  that acts like  on the integers 1, 3, 4, and 7, and leaves
2, 5, and 6 fixed:

(said to be a 4-cycle of the permutation )
Proceeding as above, but starting with 2 (or 5) we arrive at the 2-

cycle:

All that remains is 6. But 6 is stationary under , so;

At this point we can express  as a product of cycles; specifically:

Since  does not move 2 or 5, and since (2,5) does not effect
1, 3, 4, or 7, the two cycles are said to be disjoint and must commute
(see Exercise 21):

 

§5. SYMMETRIC GROUPS

CYCLE DECOMPOSITION 

SX  

Sn

 1 2 3 4 5 6 7

3 5 4 7 2 6 1 
 
 

=

1 3


1 3 4 7 1   
.

..

.
1

3

4

7

In general, a cycle of the form
 

is said to be a k-cycle,
n1 n2  nk   

S7 

1 3 4 7    1 2 3 4 5 6 7

3 2 4 7 5 6 1 
 
 

=



2 5  1 2 3 4 5 6 7

1 5 3 4 2 6 7 
 
 

=

In writing a permutation
 as a product of

cycles, we generally don’t
include cycles of length 1,
as any such cycle is the
identity in . In particular,
it is understood that the per-
mutation

leaves 6 fixed.

 Sn

Sn

 1 3 4 7    2 5  S7=



6  1 2 3 4 5 6 7

1 2 3 4 5 6 7 
 
 

the identity permutation=


 1 3 4 7    2 5   i.e:=

1 2 3 4 5 6 7

3 5 4 7 2 6 1 
 
  1 2 3 4 5 6 7

3 2 4 7 5 6 1 
 
  1 2 3 4 5 6 7

1 5 3 4 2 6 7 
 
 

=

1 3 4 7   

1 3 4 7    2 5  2 5  1 3 4 7   =
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In general:

PROOF: [By (APM) induction on n—see page 16]
Let  be the proposition that every permutation in  can be
expressed as a product of disjoint cycles.

I.  is true: .

II. Assume  is true for 

III. We show that  is true, thereby completing the proof:
Let . Since  is a finite group,  has finite

order, say . 
If , then  —
a cycle.
If , then consider the set

(called the orbit of 1 under )

Pulling the above orbit out from :

we arrive at a permutation  on a set of 

elements, with . By II,  can be written as a

product of disjoint cycles . It follows that:

(note that the orbit  is disjoint from all of the )

In the next example we again focus on the cycle-decomposition-pro-
cedure, but in reverse. 

SOLUTION: Any such permutation must leave 
element fixed. We decide to go with the element 3 [see Figure 2.8(a)].

Figure 2.8

Just as any integer can be
expressed as a product of
primes, so then can permuta-
tions be expressed as prod-
ucts of cycles.

THEOREM 2.29 Every permutation in  can be expressed as
a product of disjoint cycles.

Sn

P n  Sn

P 1  S1
1

1 
  1 = =

P m  1 m k 
P k 1+ 

Note that  cycles
back to 1.

m 1 

EXAMPLE 2.9 Construct a permutation  that can be
expressed as a product of a 2-cycle, a 3-cycle,
and a 4-cycle.

 Sk 1+ Sk 1+ 
o   i=

i k 1+=  1  1  2 1   i 1– 1    =

i k 1+
O 1  1  1  2 1   i 1– 1    =



1 2  k 1+   
1 2  k 1+    O 1 –

s s k 1+  i–=

1 s k  s

c1 c2  ct  

 c1 c2 ct O 1 =

O 1  cis

 S10

10 2 3 4+ + – 1=

1 2 3 4 5 6 7 8 9 10

3 
 
 

                   1 2 3 4 5 6 7 8 9 10

3 9 7 
 
 

     

1 2 3 4 5 6 7 8 9 10

2 4 3 1 9 7 
 
 

                    1 2 3 4 5 6 7 8 9 10

2 4 3 1 10 5 9 6 7 8 
 
 

tu

(a)                                                          (b)

(c)                                                             (d)



86   Part 2   Groups                                       
We then choose 7, along with 9, to generate the 2-cycle  [see
Figure 2.8(b)]. Of the remaining 7 elements we decide to go with 1, 2,
and 4 to create the 3-cycle  [Figure 2.8(c)]. All that’s left are
the elements 5, 6, 8, 10, and decide to mold them into the cycle

 — bringing us to the completed permutation  in

Figure 2.8(d) with cycle decomposition:

We already know that the symmetric group  has order . We now
turn our attention to the task of determining the order of permutations
in . Let’s start off by considering the 4-cycle:

Focusing on the element 2 we have:

 

So, the smallest power s of  such that  is , and the
same can be said for the elements 6, 3, and 5. It follows, since all of the
remaining elements in  are held fixed by , that

. Indeed, as you are invited to establish in the exercises:

Moving things along we reconsider the permutation

that surfaced in Example 2.9. We know, from Theorem 2.30, that: 

It follows that  for any s that is divisible by 2, 3, and 4. In par-

ticular,  will work. Moreover, since the three

cycles are disjoint, no positive integer smaller that  will do
the trick, bringing us to:

Answer:
(a) 
(b) See page A-13.

1 3 4   2 9 8 7   

CHECK YOUR UNDERSTANDING 2.25

(a) Express  as a product of cycles.

(b) Construct a permutation  that can be expressed as a
product of two 2-cycles and a 5-cycle.

ORDER OF PERMUTATIONS

THEOREM 2.30 Every k-cycle in  has order k.

7 9 

1 2 4  

8 6 5 10     S10

 7 9  1 2 4   8 6 5 10   =

 1 2 3 4 5 6 7 8 9 10

3 9 4 1 5 6 2 7 8 10 
 
 

=

 S10

Sn n!

Sn

 2 6 3 5    Sn  for n 6=

 2  6  2 2  3  3 2  5  4 2  2=  ===

 s 2  2= s 4=

1 2  n    
o   4=

Sn

 1 2 3 4 5 6 7 8 9 10

2 4 3 1 10 5 9 6 7 8 
 
 

7 9  1 2 4   8 6 5 10   = =

o 7 9   2  o 1 2 4    3, and o 8 6 5 10     4= = =

s e=

s lcm 2 3 4   12= =

lcm 2 3 4  
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A cycle in  is, in a sense, a primitive object in that it cannot be

decomposed into a product of smaller disjoint cycles. It can, however,
always be decomposed into a product of 2-cycles, called transposi-
tions. Consider, for example the cycle :

While the above 4-cycle could reside in any  with , all
elements other that 1, 2, 3, and 5 are immune to its action. That
being the case, we might as well embed it in . We then have:

Generalizing the above pattern, we have (Exercise 29):

Merging the above result with Theorem 2.29 we come to 

Note the “disjoint cycles”
condition in the theorem. 

A case in point:
The 2-cycles 
are not disjoint, and their
product is not of order 2:

Answer: 6

1 2  1 3 

o 1 2  1 3  
o 1 3 2   3= =

THEOREM 2.31 If  has a cycle decomposition of dis-
joint cycles of order (length) ,
then:

CHECK YOUR UNDERSTANDING 2.26

Determine the order of the permutation:

 Sn
k1 k2  ks  

o   lcm k1 k2  ks   =

 1 2 3 4 5 6 7 8

3 8 6 7 4 1 5 2 
 
 

=

Sn

 3 2 5 1   =

Note that the decomposition
of a cycle as a product of
transposition is not unique.
A case in point:

3 2 5 1    3 1  3 5  3 2 =

3 1  3 5  3 2  1 2  1 2 =

THEOREM 2.32 Any cycle can be expressed as a product of
transpositions.

Sn n 5

S5

1 2 3 4 5

1 3 2 4 5

1 5 2 4 3

3 5 2 4 1 
 
 
 
 
 

3 2 

3 5 

3 1 

 3 1  3 5  3 2 =
Note the pattern:

first switch 3 with 2
then switch 3 with 5
finally switch 3 with 1

Answers: 
(a) 
(b) 
(c) Se page A-13.

3 7  3 4  3 6  3 1 
1 4  1 2  5 6  5 8  5 10  7 9 

THEOREM 2.33 Every permutation can be expressed as a
product of transpositions. Specifically:

CHECK YOUR UNDERSTANDING 2.27

(a) Express th cycle  as a product of transpositions.

(b) Express the permutation  as a prod-

uct of transpositions.

(c) Show that for any transpositions : .

a1a2
am  a1am  a1am 1–  a1a2 =

3 1 6 4 7    

1 2 3 4 5 6 7 8 9 10

2 4 3 1 10 5 9 6 7 8 
 
 

  1– =
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As previously noted, the decomposition of a permutation as a product
of transposition is not unique. However:

PROOF: Chances are that you are familiar with the matrix space
, along with the determinant function . You

may also recall that:

(A brief development of the above result appears in Appendix B.)

At this point, rather then focusing on a permutation  on the set

 of integer, we turn our attention to a permutation  on

the n rows  of the identity matrix  (see mar-
gin). In this new environment, a transposition is the switching of two
rows. Let    be achieve by permuting the rows of I. Can that
be done by both an even number and an odd number of transposi-
tions? No, for by (*),  would have to equal both 1 and :

(Note: )

At this point we know that any symmetric group  can be partitioned

into the set of even permutations and the set of odd permutations. Since
the set of odd permutations does not contain the identity element [CYU
2.28(a)], it cannot be a subgroup of . On the other hand:

Lest there be any doubt:

THEOREM 2.34 No permutation can be expressed as both a
product of an even number of transpositions
and as a product of an odd number of trans-
positions.

Here is the identity matrix
in : 

And here is the transposi-
tion :

M4

I

1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1

   

I1

I2

I3

I4

=

I1 I3 

0 0 1 0

0 1 0 0

1 0 0 0

0 0 0 1

   

switched
first and

 
third row
of I. 

Mn n det: Mn n 

(*) 
If two rows of A Mn n  are interchanged, then, then

the determinant of the resulting matrix is det A .–



i

1 2  n    I

I1 I2  In    I Mn n

A Mn n

det A  1–
det A  1– 2kdet I  1  while  det A  1– 2k 1+ det I = 1–= = =

det I  1=

Answers: (a) See page A-13.
(b) Even.

DEFINITION 2.12
Even and Odd 
Permutations

A permutation is even, or odd, if it can be
expressed as the product of an even, or odd,
number of transpositions, respectively

CHECK YOUR UNDERSTANDING 2.28

(a) Show that the identity permutation  is even.

(b) Is the permutation  even or odd?

DEFINITION 2.13
Alternating Group

The alternating group of degree n is the
subgroup  of even permutations of the

symmetric group .

e Sn

1 2 3 4 5 6 7 8 9 10

2 4 3 1 10 5 9 6 7 8 
 
 

Sn

Sn

An

Sn
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PROOF: Since the identity permutation is even, .

Closure: If  and  are even permutations, then each can be
expressed as a product of an even number of transpositions, say:

It follows that  can be expressed as a product of  transpo-

sitions; namely: 

Inverse: If , then  can also be expressed as a prod-

uct of 2k transpositions; namely:

Conclusion:  is a subgroup of  (Theorem 2.14, page 62).

Verifying that :

Let  denote the set of odd permutations in . We show that the

function  given by  is a bijection.

One-to-one:

 

Onto: For ,  and:

 

We now know that  and  have the same number of elements.

The fact that  and that  with 

assures us that .

THEOREM 2.35 For , the set  of even permutations is

a subgroup of   of order .

n 2 An

Sn
n!
2
-----

An 

 

 12
2k   and    122h==

 2 k h+ 

 122k122h=

 12
2k=  1–

 1– 2k
1– 2

1– 1
1– 2k

21= =

CYU 2.10, page 58                 C YU 2.27(c).     

An Sn

An
n!
2
-----=

Bn Sn

f: An Bn f   1 2 =

f   f   1 2  1 2 = =

1 2  1 2  1 2  1 2   = =

 Bn 1 2  An

f 1 2   1 2  1 2  = =

An Bn

An Bn = An Bn Sn= Sn n!=

An
n!
2
-----=

Answer:
A3 e 1 2    =

CHECK YOUR UNDERSTANDING 2.29

Determine  utilizing the notation:A3

S3

e
1   2   3
1   2   3 
  ,  1

1   2   3
2   3   1 
  ,  2

1   2   3
3   1   2 
 ===

3
1   2   3
1   3   2 
  ,  4

1   2   3
3   2   1 
  ,  5

1   2   3
2   1   3 
 === 

 
 
 
 

=
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Exercise 1-9. Express the given permutation as a product of disjoint cycles and also as a product
of transpositions.

Exercise 10-16. Find the order of the permutation in Exercise:

Exercise 17-20. Solve for  in the symmetric space .

21. Let a be an element of a group G. Show that the map  given by  is a 
permutation on the set G.

22. Referring to Exercise 21, show that  is a subgroup of  (the group of all 

permutations on G).

23. Prove that if  are disjoint cycles in , then .

24. Prove that there is no permutation  such that .

25. Prove that for any permutation  and any transposition :  is a transposition.

26. Prove that if  is a k-cycle, then  is also a k-cycle for any permutation .

27. Prove that there is a permutation  such that .

28. Prove that every k-cycle in  has order k.

29. Use induction to show that any cycle  in  can be expressed as a product of 
transpositions as follows:

EXERCISES

1. 2. 3.

4. 5. 6.

7. 8. 9.

10.   1 11.   3 12.   4 13.   5 14.   7 15.   8 16.   9

17. 18.

19. 20.

1 2 3 4 5

3 5 4 1 2 
 
  1 2 3 4 5

5 2 4 1 3 
 
  1 2 3 4 5

2 5 4 3 1 
 
  2

1 2 3 4 5 6

6 5 4 1 2 3 
 
  1 2 3 4 5 6

1 5 3 2 6 4 
 
  1 2 3 4 5 6

5 4 3 1 2 6 
 
  2

1 2 3 4 5 6 7

6 5 4 1 2 3 7 
 
  1 2 3 4 5 6 7

5 7 4 1 2 3 6 
 
  1 2 3 4 5 6 7

3 4 2 1 5 7 6 
 
  2

 S5

1 3 5   2 4 1  = 1 3 5   2 4 1   4 5 =

2 4 1   4 5  1 3 5  = 1 3 5  2 2 4 1  3=

a: G G ag ag=

H a a G = SG

  Sn  =

  1 2  1– 1 2 3  =

   1–

  1– 

  1 2 3   1– 4 5 6  =

Sn

a1 a2  as    Sn

a1 a2  as    a1 as  a1 as 1–  a1a2 =
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30. Show that if  is a cycle of odd length, then  is a cycle.

31. List all the elements in the alternating group of degree 4: .

32. Let H be a subgroup of . Prove that either all of the elements of H are even, or that exactly 
one-half the elements in H are even.

33. Express the k-cycle  as a product of  transpositions.

34. Let  be transpositions with . Show that:

(a) If  and  are disjoint, then  can be expressed as the product of two 3-cycles.

(b) If  and  are not disjoint, then  can be expressed as a product of 3-cycles.

35. Show that every even permutation , with , is a product of 3-cycles. Suggestion: 

consider Exercise 34.

36. Let  be a k-cycle. Show that  if and only if  for every transposition .

PROVE OR GIVE A COUNTEREXAMPLE

37. The permutation equation  has a solution.

38. The transposition  in  can be expressed as a product of 3-cycles.

39. The identity in  cannot be expressed as a product of three transpositions.

 2

A4

Sn

a1 a2  ak    k 1+

1 2 1 2

1 2 21

1 2 21

 An n 3

  An  1– An 

 1 2 3   1– 1 2 4   5 6 7  =

1 2  S3

Sn
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 2

An important recollection from page 67:

If H is a subgroup of a group G, then  if 
is an equivalence relation on G. Moreover, the equiva-
lence class  is the set:

  — a right coset of H.

Let’s switch from right to left, and replay the above development:

PROOF: ~ is reflexive:  since .

~ is symmetric: 

~ is transitive: If , then:

 
Having established the equivalence part of the theorem, we now ver-
ify that :

As for the rest of the proof:

If H is a subgroup of an abelian group G then for any :

(every left coset is also a right coset)
This need not be so if G is not abelian. A case in point:

§6. NORMAL SUBGROUPS AND FACTOR GROUPS

a~b ab 1– H

a 
Ha ha h H =

This proof mimics that of
Lemma 2.2, page 67.

THEOREM 2.36 If H is a subgroup of a group G, then  if
 is an equivalence relation on G.

Moreover, the equivalence class  is the set:
  — a left coset of H.

If G is finite:
The number of elements in each  equals .

a~b
a 1– b H

a 
aH ah h H =

aH H

x~x x 1– x e H=

a~b a 1– b h  for some h H=

a 1– b  1– h 1–=

b 1– a h 1–= b~a since h 1– H

a~b  and  b~c

a 1– b H  and  b 1– c H ab 1–  bc 1–  H

aec 1– H ac 1– H a~c

a  ah h H =

b a  b~a a b a 1– b h for some h H=

b ah b aH=

Answer: See page B-14.

CHECK YOUR UNDERSTANDING 2.30

Let H be a subgroup of a finite group G. Show that each left coset
 contains  elements. 

Suggestion: Consider the function .

aH H

f: H aH

a G
aH ah h H  ha h H  Ha= = =
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SOLUTION: Since  and , each partition is composed

of 3 subsets, one of which is the subgroup H itself ( ).

                   As for the rest of the story: 

The above example illustrates the fact that a left cosets  of a sub-

group H of G need not equal the right coset . Of particular impor-
tance are those subgroups for which left and right cosets are one and
the same:   

e
1   2   3
1   2   3 
  1

1   2   3
2   3   1 
 = =

2
1   2   3
3   1   2 
  3

1   2   3
1   3   2 
 = =

4
1   2   3
3   2   1 
  5

1   2   3
2   1   3 
 = =

EXAMPLE 2.10 Find the partition of  (margin) into both the
left and right cosets of the subgroup

.

S3

H e 3 =

S3 6= H 2=

eH He H= =

Left Cosets:

Left-Cosets Partition

Right Cosets:

Right-Cosets Partition

eH H e 3 = =

1H 1 a13  1 5 = =

2H 2 23  2 4 = =

1 2 3

1 3 2

2 1 3

3
1

5=

1 5

e 3

2 4

S3

1H 5H=

eH 3H=

2H 4H=

He H e 3 = =

H1 1 31  1 4 = =

H2 2 32  2 5 = =

1 2 3

2 3 1

3 2 1

1
3

4=

S3

H1 H4=

He H3=

H2 H5=

1 4

e 3

2 5

Clearly both G and 
are normal subgroups of
any group G.

e 
DEFINITION 2.14
  NORMAL SUBGROUP

Index of N in G

A subgroup N of a group G is said to be
normal in G if for every :

(The symbol   is read: N is normal in G)

If G is finite, then the number of cosets of
N in G, namely , is called the
index of H in G.  

THEOREM 2.37 Let H be a subgroup of a group G. The follow-
ing are equivalent:

(i)  for every .
     (i.e: H is normal in G)

(ii)  for every .

(iii)  for every  and .

aH

Ha

a G
aN Na=



N G

G H

aH Ha= a G

aH Ha a G

aha 1– H h H a G
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PROOF: : Clear.        

: Let  and  be given. 

Since ,  for some . Consequently:

: We show that . A similar argument can

be used to show that :

         

 We showed, in Theorem 2.23, page 71, that homeomorphisms pre-
serves subgroups. They fair nearly as well when it comes to normal
subgroups. Specifically: 

PROOF: (a) Assume that  is onto and that N is normal in G. 

We are to show that for any  and any ,
. Let’s do it:

Choose  such that . Then:

Note: If  then every element of  almost commutes with
every element of  in that:

 for  (and not just )

 Note: One way or showing that a subgroup H of G is normal in G:

THEOREM 2.38 Let  be a homomorphism.
(a) If N is normal in G, and if  is onto, then

 is normal in .

(b) If  is normal in , then  is nor-
mal in G.

i  ii 

ii  iii  h H a G

aH Ha ah ha= h H

aha 1– h H=

iii  i  aH Ha
Ha aH

g aH g ah for h H=

ga 1– aha 1–=

ga 1– h for h H=

g ha g Ha=

by (iii):



N G n N
g G

ng gn= n N ng gn=

aha 1–

grab any element from H

and any element of G

If aha 1– H
then H is normal

. ..H
G

: G G


 N  G

N G  1– N 


 n   N  a G

a n a 1–  N 

a G  a  a=

a n a 1–  a  n   a   1–=

 a  n  a 1– =

 ana 1–   N =

Theorem 2.23(b), page 73:

 is a homomorphism:

N is normal in G
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(b) Let  be normal in . We show that the subgroup

 is normal in G

          by showing that for  and , :

 

Let’s reconsider the left-coset partition of the subgroup
 of Example 2.10. That partition, appearing

on the right, broke the group  into three disjoint pieces;
each of which has “two names:”

, , and 

Can we impose a group structure on that partition? Here is a noble
attempt:

 

Yes, the above product certainly yields another left coset, but there is
a fatal flaw — the “product” is simply not defined: 

The above fatal flaw is averted whenever the coset-partition of a
group G stems from a normal subgroup of G.

PROOF: We first show that the operation  is well
defined:

For  and  we need to establish the set

equality . We show that  and

leave it for you to verify that :

Answer: See page A-14.

CHECK YOUR UNDERSTANDING 2.31

Give an example illustrating that a homomorphism  that is
not onto need not carry normal subgroups of G to normal subgroups
of . (Suggestion: Consider Example 2.10.) 

N G

 1– N  n G  n  N =

a G n  1– N  ana 1–  1– N 

 ana 1–   a  n  a 1–  N=

N is normal in G

: G G

G

From Example 2-10:

while:

1 2 3

3 1 2

1 2 3

2
1

e=12:  

1 2 3

3 2 1

3 1 2

4
5

2=54:  

1 5

e 3

2 4

H e 3 =

S3

1H 5H= eH 3H= 2H 4H=

iH  jH  ij H=

1H 5H=

2H 4H=






 BUT: 

12 H eH H= =

while

54 H 2H=

  (see margin)

THEOREM 2.39 If  and

then  is a group under the operation

 is said to be the factor group of G by N, 
read:        G modulo H or G mod H
Factor groups are also said to be quotient groups. 



N G
G N aN a G =

G N
aN  bN  ab N=

G N

aN  bN  ab N=

aN aN= bN bN=

ab N ab N= ab N ab N
ab N ab N
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Having legitimatized the operation , we now
verify that, under that operation, the nonempty set  is a group
(see Definition 2.1, page 41):

Closure: For every , .

Associative: 

Identity: For every , .

Inverses: For every , .

PROOF: For : .

Moreover: 

 

When confronted with the factor group  it is important that you
keep in mind that you are dealing with a set of sets!

In particular, the identity element in  is the set N itself,
which may have many names:

Similarly, the inverse of the element (set)  is the element
, which may also have many names:

(after all, the set  equals the set N for any )

THEOREM 2.40 Let N be normal in G. The natural projection
map  given by  is a
homomorphism, and .

g ab N g abn for some n N=

g an1bn2n for some n1 n2 N=

g a n1b n3  where n3 n2n= =

g a bn4 n3 for some n4 N=

g ab n4n3  ab N=

Since N is normal in G:

Since a aN and b bN:

aN  bN  ab N=
G N

aN bN G N aN  bN  ab N G N=

aNbN  cN  ab N cN =

ab c N a bc  N= =

aN bc N aN bNcN = =

aN G N aNeN aN=

aN G N aNa 1– N aa 1– N eN  (=N)= =

G N

G N

N eN aN  for any a N= =

aN
a 1– N

a 1– N a 1– b N  for any b N=
bN b N

: G G N  g  gN=
Ker   N=

g g G  gg  ggN gNgN  g  g = = =

g Ker    g  gN N g N= =

Recall that N is the identity in G N

Answer: See page A-14.

CHECK YOUR UNDERSTANDING 2.32

(a) Show that if G is a finite group and if , then:

(b) Let N be a normal subgroup of a cyclic group G. Prove that 
is also cyclic.



N G

G N G
N

-------=

G N
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Every group G contains two particularly important normal subgroups,
the center of G and the commutator subgroup of G, where:

As advertised:

PROOF: Turning to the center of G. Since , .

Closure: For , and any : 

Inverses: For  and for any  (same as “for any )”:

         
Replacing a with  in the above argument we conclude
that  commutes with every element of G.

Normal: Employing Theorem 2.37(ii) we show that for every 

 :

Now for . We already know that  is a subgroup of G (see
Definition 2.8, page 65). As for the rest of the story:

Normal: For  and any , let  and
. We then have:

So: 
Turning to Theorem 2.37(iii), and the Principle of Mathematical
Induction, we now verify that  is normal in G.

THE CENTER AND COMMUTATOR SUBGROUPS

DEFINITION 2.15

CENTER OF G

COMMUTATOR 
SUBGROUP OF G

The center of G, denoted by , is the set
of elements of G that commute with every
element of G:

The commutator subgroup of G, which we
denote by , is the generated group:

THEOREM 2.41 Both  and  are normal subgroups
of the group G.

Z G 

Z G  a G ag ga g G= =

C G 
C G  aba 1– b 1– a b G =

Z G  C G 

e Z G  Z G  
a b Z G  g G

ab g a bg  a gb  ag b ga b g ab = = = = =

b Z G  b Z G 

g Z G  a G a 1– G

ag ga= ag  1– ga  1– g 1– a 1– a 1– g 1–= =

Using Theorem 2.37(iii):
For  and : z Z G  a G

aza 1– aa 1– z z Z G = =

a 1–

g 1–

a G
aZ G  Z G a

x aZ G  x ag with g Z G =

x ga x Z G a=

C G  C G 

x aba 1– b 1–= c G x cab=
y a 1– b 1– c 1–=

xyx 1– y 1– cab  a 1– b 1– c 1–  b 1– a 1– c 1–  cba =

cab  a 1– b 1– c 1–  c aba 1– b 1– c 1–= =
c aba 1– b 1– c 1– xyx 1– y 1– C G =

C G 
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I. If , then, for any :    .

II. Assume that for  and any :

III.Then:

By II: . By I: 
Consequently: 

PROOF:  is abelian if and only if for any :

 

PROOF: We utilize Theorem 2.37(iii) to establish the normality of K.
For  and  we show that ; which is to say,

that :

x a1b1a1
1– b1

1– = c G cxc 1– C G 

n k= c G
x a1b1a1

1– b1
1–  a2b2a2

1– b2
1–  akbkak

1– bk
1–  cxc 1– C G =

c a1b1a1
1– b1

1–  a2b2a2
1– b2

1–  akbkak
1– bk

1–  ak 1+ bk 1+ ak 1+
1– bk 1+

1–  c 1–

c a1b1a1
1– b1

1–  a2b2a2
1– b2

1–  akbkak
1– bk

1– c 1– c ak 1+ bk 1+ ak 1+
1– bk 1+

1–  c 1–=

c a1b1a1
1– b1

1–  a2b2a2
1– b2

1–  akbkak
1– bk

1– c 1–  c ak 1+ bk 1+ ak 1+
1– bk 1+

1– c 1– =

(*)                                                                                (**)

THEOREM 2.42 For N normal in G, the factor group  is
abelian if and only if .

(*) C G  (**) C G 

x a1b1a1
1– b1

1–  ak 1+ bk 1+ ak 1+
1– bk 1+

1–  cxc 1– C G =

G N
C G  N

Answer: See page A-14.

CHECK YOUR UNDERSTANDING 2.33

Let G be an abelian group. Show that  and that

.

ISOMORPHISM THEOREMS

THEOREM 2.43
FIRST 

ISOMORPHISM 
THEOREM    

If  is a homomorphism, then
 is normal in G and:

             

G N a b G
aNbN bNaN abN baN ba  1– ab  N= =

a 1– b 1– ab N C G  N

Z G  G=

C G  e =

: G G
K Ker  =

G K  G 

k K g G gkg 1– K
 gkg 1–  e=

the identity in G

 gkg 1–   g  k  g 1– =

 g e  g   1–  g   g   1– e= = =Theorem 2.23(b), page 73:
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We complete the proof by showing that the function 
 given by 

is an isomorphism. To begin with, we need to verify  is well defined:

 is One-to-one: We are to show that:

               

     Which is to say: . Let’s do it:

 is Onto: For given , .

 is a homomorphism: 

SOLUTION: In Example 2.6, page 72, we showed that the function
 given by  where  with

 is a homomorphism. 

While  is not necessarily one-to-one it is certainly onto, as, for any
 . Applying Theorem 2.43, we then have: 

 where .

Noting that:

 

we conclude that:               

EXAMPLE 2.11 Show that:
 

: G K  G   gK   g =



aK bK ab 1– K  ab 1–  e= =
 a  b 1–  e=

 a   b   aK   bK ==


 aK   bK  aK bK= =

 aK   bK  ab 1– K=

 aK   bK =  a   b   a   b   1– e= =
 a  b 1–  e= 

 ab 1–  e ab 1– K=

  g   G   gK   g =

  aKbK   ab K =

 ab   a  b = =

 aK  bK =

Zn +n  Z nZ 

: Z +  Zn +n   m  r= m nq r+=

0 r n


s Zn  s  s=

Zn Z K K Ker  =

Ker   m  m  0=  kn k Z  nZ= = =

Example 2.4, page 62

Zn Z nZ 

Answer: G Sn An

CHECK YOUR UNDERSTANDING 2.34

Represent the group  (under standard integer multipli-
cation) as a factor group of the symmetric group .

G 1 1– =
Sn
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Here are a couple more isomorphism theorems for your consider-
ation:

PROOF: See Exercise 29.

PROOF: See Exercise 30.

THEOREM 2.44
SECOND 

ISOMORPHISM 
THEOREM    

Let H be a subgroup of a group G, and N a normal
subgroup of G. Then:

is a subgroup of G,  is normal in G, and:

THEOREM 2.45
THIRD 

ISOMORPHISM 
THEOREM    

Let  be an onto homomorphism with
kernel K. If  is normal in , then:

is normal in G and:

HN hn h H n N =

H N
H H N  HN  N

: G G
N G

N  1– N  a G  a  N = =

G N G N

Answer: See page A14.

CHECK YOUR UNDERSTANDING 2.35

Use Theorem 2.42 to verify that the isomorphism  in
Theorem 2.44 can also be expressed in the form:

(“cancel” the K in the numerator and denominator)

G N G N

G N G K  N K 
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 1-4. Determine if the give subgroup H is normal in the symmetric group .

5. (a) Show that  is an infinite cyclic group.

 (b) Show that  is not a cyclic group

6. Show that if  and  are normal subgroups of G, then  is also normal in G.

7. Let N be a normal subgroup of G and let H be any subgroup of G. Show that 
 is a subgroup of G.

8. Let G be abelian and let H be a subgroup of G. Show that  is abelian.

9. Let G be cyclic and let H be a subgroup of G. Show that  is cyclic.

10. Let  be a collection of normal subgroup of G. Prove that  is normal in G.

11. Show that if there are exactly 2 left (or right) cosets of a subgroup H of a group G, then 
.

12. Show that if a finite group G has exactly one subgroup H of a given order, then .

13. Show that if H is a finite subgroup of G and if H is the only subgroup of G with order , 
then .

14. Let n be the index of the normal subgroup N in G. Show that  for every .

15. Let G be a group containing at least one subgroup of order n. Show that the intersection of all 
subgroups of order n in G is normal in G. Hint: first show that if a group H if of order n, then 

show that  is also a subgroup of order n for all .

16. Show that the set of inner automorphisms of a group G is a normal subgroup of the group of 
all automorphisms of G. [see CYU 2.22(c), page 77]

17. Let G be a group. Show that the set   is a normal subgroup 
of G.

18. Let N be a normal subgroup of G, and let  be such that  and 
. Show that .

19. Let G be a finite group of even order with n elements, and let H be a subgroup with  ele-
ments. Prove that H must be normal. Suggestion: Consider the map .

20. Let H and K be normal subgroups of G with . Show that  for all 
 and .

EXERCISES

1. 2. 3. 4.

S3

H 1 2  = H 1 2 3   = H 1 3 2   = H A3=

Z Z 1 1  
Z Z 2 2  

N1 N2 N1 N2

NH nh n N and h H =

G H

G H

N  A N
 A




H G



H G

H

H G

an N a G

gHg 1– g G

S g G gxg 1– x x G= =

a b c d G   aN cN=
bN dN= abN cdN=

n 2
: G 1 1  .·

– 

H K e = hk kh=
h H k K
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21. Let N be a normal subgroup of G such that  is cyclic. Show that G is cyclic. 

22. Let G be a group. Show that any subgroup of  is a normal subgroup of G.

23. Let G be a group. show that  is a subgroup of G (called the cen-
tralizer of a).

24. Prove that the center of a group G is the intersection of all the centralizers in G; that is:

 (See Exercise 22).

25. Show that  if and only if . (See Exercise 22).

26. Find both the center and the commutator subgroup of .

27. Let  be an onto homomorphism with kernel K. Prove and if  is a subgroup of 
, and if , then .

28. Verify that there is no subgroup of order 6 in the alternating group . (Note that ).

29. Sow that if N is not a normal subgroup of G, then the coset operation  is 
not well defined.

30. Prove Theorem 2.44.

31.  Prove Theorem 2.45.

PROVE OR GIVE A COUNTEREXAMPLE

32. If  and if H is a subgroup of G, then .

33. If  and , then .

34. If  then either H or N must be normal in G.

35. Le  be a homomorphism. If , then .

36. Le  be a homomorphism. If , then .

37. Le  be an onto homomorphism. If , then .

G N

Z G 

C a  g G ag ga= =

Z G  C a 
a G
=

a Z G  C a  G=

S3

: G G H
G H  1– H = H K H

A4 A4 12=

aN  bN  ab N=



N G H N     G 


H G



K H



K G

H N     G 

: G G 

N G

 N     G

: G G



N     G  1– N     G

: G G



N     G  1– N     G
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 2

We begin by extending the Cartesian product definition of page 2:

In particular:  is the familiar Cartesian plane while

 is the Euclidean three-dimensional space.

Imposing a group structures we arrive at:

 

§7. DIRECT PRODUCTS

DEFINITION 2.16
CARTESIAN

 PRODUCt

The Cartesian Product of n nonempty sets:

 
is denoted by:

 

and consists of all n-tuples:

 where  for  

DEFINITION 2.17
DIRECT PRODUCT

(EXTERNAL)

The (external) Direct Product of the n
groups    is denoted by: 

  or by 

consists of all ordered n-tuples 

 where  for  

and where their multiplication is defined
component-wise; that is:

X1 X2  Xn  

X1 X2
 Xn or: Xi

i 1=

n


 
 
 
 

x1 x2  xn    xi Xi 1 i n 

 
  

G1 G2  Gn  

G1 G2
 Gn Gi

i 1=

n



a1 a2  an    ai Gi 1 i n 

a1 a2  an    b1 b2  bn    a1b1 a2b2  anbn   =

Answer: See page A-15.

CHECK YOUR UNDERSTANDING 2.36

(a) Verify that  is a group.

(b) Prove that the group  is abelian if and only if

each  is abelian.

EXAMPLE 2.12 (a) Verify that  is cyclic.

(b) Verify that  is not cyclic.

G1 G2
 Gn

G1 G2
 Gn

Gi

Z2 Z3

Z2 Z3 Z4
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SOLUTION: (a) We know that . Using the sum
notation in the abelian group, we simply observe that the element

 has order 6:

(b) We show that the group , which is of order 24, con-
tains no element of order greater than 12:

Let . Since:

 in the groups ,

respectively: .

In the above argument, 12 is the smallest positive integer that is divis-
ible by 2, 3, and 4. In general: 

PROOF: Let . Since each :

Moreover, for any positive integer :

Why is that so? Because since M is the smallest positive integer divis-

ible by each , some . 

SOLUTION: Let  denote the order of 1 in , the order of 5

in , and the order of 4 in , respectively. 
 Employing CYU 2.11(c), page 59 (margin) we find that: 

DEFINITION 2.18
LEAST COMMON

MULTIPLE

The least common multiple of nonzero inte-
gers , written
is the smallest positive integer that is a multiple
of each ; i.e. is divisible by each .

THEOREM 2.46
Let . If the order of 

in  is , then the order of  in

 is . 

Z2 Z3 2 3 6= =

1 1 
2 1 1  0 2 =

3 1 1  1 1  2 1 1 + 1 1  0 2 + 1 0 = = =

4 1 1  1 1  3 1 1 + 1 1  1 0 + 0 1 = = =

5 1 1  1 1  4 1 1 + 1 1  0 1 + 1 2 = = =

6 1 1  1 1  5 1 1 + 1 1  1 2 + 0 0   Ah!= = =

Z2 Z3 Z4

a b c   Z2 Z3 Z4

12a 0 12b 0 12c 0= = = Z2 Z3 Z4 
12 a b c   0 0 0  =

a1 a2  an   lcm a1 a2  an   

ai ai

a1 a2  an    Gi

i 1=

n

 ai

Gi ri a1 a2  an   

G1 G2
 Gn lcm r1 r2  rn   

M lcm r1 r2  rn   = ri M

a1 a2  an   M e1 e2  en   =

0 m M 

a1 a2  an   m a1
m

a2
m  an

m    e1 e2  en   =

ri ai
m

ei

 For :m Zn

o m  n
gcd m n 
------------------------=

EXAMPLE 2.13 Find the order of  in .1 5 4   Z2 Z6 Z30

r1 r2 r3  Z2

Z6 Z30

r1 2  r2 6  r3 15= = =
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All that remains is to calculate the least common multiple of the
above orders:

 

PROOF: Assume that n and m are relatively prime. Theorem 2.42 tels
us that ; which is to say: 

Since :

                     [see Theorem 2.26(a), page 77]

As for the converse, assume that . Noting that

 is divisible by both n and m, we find that, for any

: . Since no element of 

has order greater than ,  is not cyclic. 

On the surface, the following definition appears to be far removed
from Definition 2.17: 

o 1 5 r   lcm 2 6 15   30= =

2     2 3     3 5:  need one 2, one 3, and one 5:  2 3 5 

Answer: 4

CHECK YOUR UNDERSTANDING 2.37

Determine the order of  in .

THEOREM 2.47 The group  is cyclic and isomorphic

to  if and only if n and m are relatively
prime.

3 3 4   Z6 Z4 Z16

Zn Zm
Znm

o 1 1  nm=
Zn Zm 1 1  =

Zn Zm nm=

Zn Zm Znm +n 

Answer: See page A-15.

CHECK YOUR UNDERSTANDING 2.38

Prove: The group  is cyclic and isomorphic to

 if and only all pair of the numbers  are

relatively prime.

INTERNAL DIRECT PRODUCT

DEFINITION 2.19
DIRECT PRODUCT

(INTERNAL)

A group G is said to be the (internal) direct
product of n normal subgroups

   

if every  has a unique representation
of the form 

where each  for .

gcd n m  d 1=
nm
d

-------

a b  Zn Zm nm
d

------- a b  0 0 = Zn Zm

nm
d

------- Zn Zm

Zn1
Zn2

  Zns


Zn1n2
ns

n1 n2  ns  

N1 N2  Nn  
g G

g a1a2an=

ai Ni 1 i n 
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Appearances aside, the internal and external direct product concepts
are “algebraically equivalent,” in that every internal product space is
isomorphic to an external product space, and every external product
space is isomorphic to an internal product space. 

Taking the easy way out, we will content ourselves by establishing the
above claim in the special case when the group G is the internal direct
product of just two normal subgroups:

PROOF: (a) We first show that for all  and 

 (*):
Since  and : . So: .

Since : . So: .

  Since, by CYU 2.39, : .

Turning to the external product  of the two groups H and K, we
now show that the function  given by 
is an isomorphism:

 One to one: 

Onto: Clear.

Homomorphism: For :

             
(b) Let . It is easy to see that:

are normal subgroups of G with ,
and that . That being the case, the identity map itself

is an isomorphism from the external direct product 
to the internal direct product .

Answer: See page A-16.

CHECK YOUR UNDERSTANDING 2.39

Show that if G is the internal direct product of two normal subgroups
H and K, then .

THEOREM 2.48 (a) If G is the internal direct product of the
normal subgroups H and K, then:

(b) If , then there exist normal

subgroups  and  in G such that:

H K e =

HK H K
G G1 G2=

N1 N2

G1 G2 N1N2

h H k K
hk kh=

h 1– H 

H G kh 1– k 1– H h kh 1– k 1–  H



K G hkh 1– K hkh 1– k 1– K
hkh 1– k 1– H K e = hk kh=

H K
: H K HK  h k  hk=

 h1 k1   h2 k2  h1k1 h2k2= =  

h1 h2 and k1 k2= =

h1 k1  h2 k2 =

h1 k1  h2 k2  H K

 h1 k1  h2 k2    h1h2 k1k2  h1h2k1k2= =

h1k1h2k2=

 h1 k1  h2 k2 =

By (*):

G G1 G2=

N1 e1 g  g G  and N2 g e2  g G = =

N1 N2 e = e1 e2 

G N1N2=

G G1 G2=
G N1N2=
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And here it be, presented without proof:

For example:
 (*)

is a finitely generated abelian group, and here is a particularly nice
choice for its generators:

SOLUTION: Any finite abelian group G is surely finitely generated
(the elements of G itself generate G). 
Employing Theorem 2.45 to:

we arrive at the following six possibilities (see margin):

It can be shown that none of the above groups is isomorphic to any of
the rest. For example, since  contains an element of order 4 while

 does not:  (see Exercise 36, page 82).

THE FUNDAMENTAL THEOREM OF FINITELY 
GENERATED ABELIAN GROUPS

THEOREM 2.49 Every finitely generated abelian group is isomor-
phic to a direct product of cyclic groups of the
form:

where the  are primes, not necessarily distinct,

and where the  and m are positive integers.
Moreover, the direct product is unique, up to order.

Zp1
r1 Zp2

r2  Zpn
rn Z

m

pi

ri

While an abelian group gener-
ated by an element of order 2,
one of order 8, another of
order 9, and a couple of gen-
erators of infinite order need
not consist of 5-tuples, it is
nonetheless isomorphic to (*).

G Z2 Z8 Z9 Z Z=

1 0 0 0 0     0 1 0 0 0     0 0 1 0 0     0 0 0 1 0     0 0 0 0 1       

could have chosen any 1 i 7  could have chosen any non-zrto integer

could also have chosen 2, 4, 5, 7, or 8

FUNDAMENTAL COUNTING
PRINCIPLE:

If each of n choices is fol-
lowed by m choices, then the
total number of choices is
given by .

There are three choices
for the number of 2’s in
the direct product, a
choice of one for the
number of 3’s, and a
choice of two for the
number of 5’s.

Total number of 
choices: 

n m

3 1 2  6=

EXAMPLE 2.14 Find all abelian groups of order 600 (up to iso-
morphism).

600 23 3 52 =

G1 Z2 Z2 Z2 Z3 Z5 Z5=

G2 Z2 Z2 Z2 Z3 Z25=

G3 Z4 Z2 Z3 Z5 Z5=

G4 Z8 Z3 Z5 Z5=

G5 Z4 Z2 Z3 Z25=

G6 Z8 Z3 Z25=

G3

G1 G1 G3

Answer: See page A-15.

CHECK YOUR UNDERSTANDING 2.40

Referring to the above example, show that .G3 G6
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Lagrange’s Theorem assures us that the order of any subgroup H of a
finite group G must divide the order of G. In the event that G is abelian,
the converse also holds:

PROOF: Theorem 2.45 enables us to express G in the form: 

Since m divides the order of G:

, where .

By CYU 2.15, page 64: 

It follows that: 

is a subgroup of G of order m.

The alternating group , of
order 12, has no subgroup of
order 6. Yes, but  is not an
abelian group.

A4

A4

THEOREM 2.50 If m divides the order of an abelian group G,
then G has a subgroup of order m.

Zp1
r1 Zp2

r2  Zpn
rn

m p1
s1p2

s2pn
sn= 0 si ri 

o pi
ri si– 

pi
ri

gcd pi
ri pi

ri si– 
------------------------------------- pi

ri ri si– – psi= = =

p1
r1 s1–  p2

r2 s2–   pn
rn sn– 
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Exercise 1-6. Find the order of the given element if the give group.             

Exercise 7-10. Find the order of each element if the given group.

Exercise 11-14. Find all proper subgroups of the given group.

Exercise 15-18. Find all abelian groups G of the give order (up to isomorphism).

EXERCISES

1. 2.

3. 4.

5. 6.

7. 8. 9. 10.

11. 12. 13. 14.

15. 16. 17. 18.

19. Determine the number of elements of order 6 in . 

20. Determine the number of elements of order 7 in . 

21. Show that the Klein 4-group V (Figure 2.1, page 43) is isomorphic to .

22. Show that .

23. Show that .

24. Use the Principle of Mathematica Induction to show that for finite groups :

 

25. Let  and  be groups. Show that .

26. Let  and  be groups. Show that  (see Definition 2.15, 
page 96).

27. Let  and  be groups. Show that  and that:

 

28. Let  and . Show that  and that:

 

2 3  in Z4 Z9 2 3  in Z5 Z12

2 2 8   in Z4 Z3 Z12 2 2 8   in Z4 Z6 Z11

2 1 2 3

2 1 3 
 
 


 
 
 

 in Z4 S3 3 1 2 3

2 3 1 
 
 


 
 
 

 in Z4 S3

Z2 Z3 Z2 Z4 Z2 Z2 S2 Z3 S2

Z2 Z3 Z2 Z4 Z2 Z2 S2 Z3 S2

o G  36= o G  100= o G  180= o G  243=

Z6 Z9

Z49 Z7

Z2 Z2

Z Z  1 1   Z

Z Z Z  1 1 1    Z Z

G1 G2  Gn  

G1 G2  Gn G1 G2  Gn=

G1 G2 G1 G2 G2 G1

G1 G2 Z G1 G2  Z G1  Z G2 

G1 G2 e1  G2       G1 G2



G1 G2  e1  G2  G2



H G1



K G2 H K       G1 G2



G1 G2  H K  G1 H G2 K
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29. Let  and  be groups. Show that the order of  is the leas common 

multiple of  and .

30. Prove that the order of an element in a direct product of a finite number of finite groups 

 is the least common multiple of the orders of its components:

31. Let G be a group and . Prove that

              (a)                             (b)  if and only if G is abelian.

32. Let  be a direct product of groups. Show that the projection map 

 given by  is a homomorphism

PROVE OR GIVE A COUNTEREXAMPLE

33. The groups  and  are isomorphic.

34. The groups  and  are isomorphic.

35. The groups  and  are isomorphic.

36. Let G, H, K denote groups. If , then .

G1 G2 a b  G1 G2
o g  o h 

Gi i 1=
n

o g1 g2  gn    lcm o g1  o g2   o gn    =

K g g  g G   G G=

K G



K G G

G G1 G2
 Gn=

i: G Gi i g1 g2  gi  gn      gi=

Z2 Z12 Z4 Z6

Z2 Z4 Z8 Z8 Z8

Z2 Z3 Z8 Z3 Z4 Z4

G K H H G H
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 3

Part 3 
From Rings To Fields
 

The familiar set of integers can boast or two operators: addition and
multiplication. Though The integers under addition turns out to be an
abelian group, the multiplication operator does not fair as well: (5, for
example, has no multiplicative inverse). 

Multiplication is, however, an associative operator:
 

and it plays well with addition:

Just as the integers under addition directed us, in part, to the defini-
tion of a group (“in part,” as a group need not be abelian), so then do
the integers under addition and multiplication direct us, in part, to the
definition of a ring (“in part,” as a ring need not have a multiplicative
identity). Specifically:

The set Z of integers under standard addition and multiplication is a
ring. The same can be said for the set Q or rational numbers, and the set

 of reals.

§1. DEFINITIONS AND EXAMPLES

a bc  ab c a b c Z   =

a b c+  ab ac a b c Z +=

From an axiomatic point of
view, multiplication takes
a back seat to addition. Its
only obligation, apart from
closure and the associative
axiom, is to cooperate with
addition via the left and
right distributive property
of Axiom 3.

DEFINITION 3.1
RING

Group Axiom:

Associativity Axiom: 
 (multiplicative)

Distributive Axioms:

A ring  (or simply R) is a set R
together with two binary operators, called
addition and multiplication; for which:

1.  is an abelian group.

2. For all :  

3. For all :

 

R +,    .

R + 

a b c R  a b c  a b  c=

a b c R 
a b c+  a b a c+=

a b+  c a c b c+=

Answer: (a) No
                       (b) See page A-16.

CHECK YOUR UNDERSTANDING 3.1

(a) Does there exist an operator “*” on the permutation group

 for which  is a ring?

(b) Let  be an abelian group. Show that there exists an opera-
tor  “*” on G for which  is a ring.



S3 S3  = S3  *  

G + 
G + *  
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SOLUTION: Appealing directly to Definition 2.1, page 41, we first
show that  is an abelian group:

Associative: 
For any :

Identity: For any given :

 

Inverses: For any given :

Noting that for any :

 

we conclude that  is an abelian group.

Moving on to the multiplicative axioms of Definition 3.1:
Associative: For any 

 

Distributive: For any 

In a similar fashion once can show that:

 

Noe that addition and mul-
tiplication in  are
both being defined in
terms of their correspond-
ing established operations
in  and . 

R1 R2

R1 R2

EXAMPLE 3.1 Let  and  be rings. Prove that the group

 where 

is a ring.

R1 R2

R1 R2 + .  

a b  c d + a c+ b d+ =

a b  c d  ac bd =

R1 R2 + 

a1 b1  a2 b2  a3 b3   R1 R2
a1 b1  a2 b2  a3 b3 + + a1 b1  a2 a3+ b2 b3+ +=

a1 a2 a3+  b1 b2 b3+ ++ =

a 1 a2  a3+ b 1 b2  b3+++  a1 b1  a2 b2   a3 b3 ++= =

a b  R1 R2

a b  0 0 + a 0 b 0++  a b = =

a b  R1 R2

a b  a– b– + a a b b––  0 0 = =

a1 b1  a2 b2  R1 R2
a1 b1  a2 b2 + a1 a2+ b1 b2+  a2 a1+ b2 b1+  a2 b2  a1 b1 += = =

R1 R2 + 

a1 b1  a2 b2  a3 b3   R1 R2
a1 b1  a2 b2  a3 b3   a1 b1  a2a3 b2b3 =

a1 a2a3  b1 b2b3  =

a1a2 a3 b1b2 b3  a1 b1  a2 b2   a3 b3 = =

a1 b1  a2 b2  a3 b3   R1 R2

a1 b1  a2 b2  a3 b3 +  a1 b1  a2 a3 b2 b3+ + =

a1 a2 a3+  b1 b2 b3+  =

a1a2 a1a3 b1b2 bb3++ =

a1a2 b1b2  a1a3 b1b3 + a1 b1  a2 b2  a1 b1  a3 b3 += =

Answer: See page A-16

CHECK YOUR UNDERSTANDING 3.2

Sow that , under standard addition and multiplication, is a ring.

a1 b1  a2 b2 +  a3 b3  a1 b1  a3 b3  a2 b2  a3 b3 +=

nZ
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PROOF: (a) 

(b) Since : .

Since : .

Since  and : .

(c)  (see margin). 

As for (d):

While Definition 3.1 stipulates that addition is a commutative operator
tin a ring , no such attribute is imposed on the product operator.
Moreover, while every ring contains the additive identity “0”, a ring
need not contain a multiplication identity “1” (see margin).

Bringing us to: 

For any , the commutative ring  of CYU 3.2 is an example of
a ring that does not have a unity. Here is an example of a ring that is not
commutative:

There is only one product tak-
ing place in ; namely the

. The n is not involved in a
product— it represents a sum.
For example:

 

n ab 
ab

3 ab  ab ab ab+ +=

THEOREM 3.1 Let a and b be elements of a ring R. Then:

(a) 

(b) 

(c) 

(d)  for any integer n.
                                (see margin)

a0 0a 0= =

a b–  a– b ab–= =

a–  b–  ab=

n ab  na b a nb = =

a0 a 0 0+  a0 a0+= =

a0 a0– a0=

0 a0=

Given your arithmetic evolu-
tion, you may be thinking
along these lines:

Tisk. For one thing, the ring R
need not even have a unity.
That , for example, is the
additive inverse of a. That
being the case: 

Answer: See page A-16

a–  b–  1a–  1b–  ab= =

a–

a– – a=

CHECK YOUR UNDERSTANDING 3.3

Let a and b be elements of a ring R. Show that for every :

 

a b–  ab+ a b– b+  a0 0= = = a b–  ab–=

a– b ab+ a– a+ b 0b 0= = = a– b ab–=

a b–  ab–= a– b ab–= a b–  a– b=

a–  b–  a– – b ab= =
by (b)

n Z
n ab  na b a nb = =

An element  distinct
from 0 is a multiplicative
identity (or unity) if for
every : .

a R

b R ab ba b= =

DEFINITION 3.2
Commutative Ring

Ring with Unity

A ring  is said to be commutative

if  for every .

A ring with a multiplicative identity (or
unity) is said to be a ring with unity. 

R +,    .

R +,    .

ab ba= a b R

n 1 nZ
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SOLUTION: In CYU 3.4 below you are invited to show that

 is a ring.

Is it a commutative ring? No:

                       

                                  

SOLUTION: (a)  is the unity in :

 

Chances are that you are
already familiar with the
matrix space  which
possesses both an additive
and multiplicative structure.
If so, then you already know
that, for any ,  is a
non-commutative ring.

Mn n

n 2 Mn n

EXAMPLE 3.2 Show that the set of two-by-two matrices:

        

with addition and multiplication given by:

          

and   

is a non-commutative ring.

M2 2
a b

c d
a b c d   

 
 
 

=

a b

c d

a b

c d
+ a a+ b b+

c c+ d d+
=

a b

c d

a b

c d

aa bc+   ab bd+

ca dc+   cb dd+
=

M2 2 M2 2 +,    = .

1 0

0 0

0 1

0 0

0 1

0 0
 while 0 1

0 0

1 0

0 0

0 0

0 0
= =

Answer: See page A-17.

CHECK YOUR UNDERSTANDING 3.4

(a) Verify that  is a ring with unity.

(b) Prove that if a ring contains a unity, then that unity is unique.

M2 2 M2 2 +,   = .

You need to distinguish
between “unity” and “unit.” 
unity: Multiplicative identity.
unit: An element that has a
multiplicative inverse.

DEFINITION 3.3
Unit

Let R be a ring with unity 1. An element
 is a unit if there exists  such

that .
The element b is called the inverse of a and is denoted by .

EXAMPLE 3.3 (a) Show that the ring  of Example 3.2
has a unity.

(b) Show that  is a unit, and that

 is not a unit in . 

a R b R
ab ba 1= =

a 1–

M2 2

5– 2

9 4–

2 3

4– 6–
M2 2

1 0

0 1
M2 2

1 0

0 1

a b

c d

a b

c d

1 0

0 1

a b

c d
= =
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(b) Does there exist a matrix  for which:

?

Let’s see:

 
If you take the time to solve the above system of equations you will
find that: ; leading us to:

Also, as you can easily check: .

As for :
 

PROOF: (a) 

               (b)  and 

A linear algebra approach:

Since ,

  is invertible.

det 5– 2

9 4–
0

5– 2

9 4–

a b

c d

5– 2

9 4–

a b

c d

a b

c d

5– 2

9 4–

1 0

0 1
= =

5– 2

9 4–

a b

c d

1 0

0 1

2a 3c    + 2b 3d+

4a– 6c     – 4b– 6d–

1 0

0 1
==

2a 3c+ 1=

2b 3d+ 0=

4a– 6c– 0=

ab– 6d– 1= 









a 2  b 3  c 4  and d– 6–= = = =

5– 2

9 4–

2 3

4– 6–

1 0

0 1
=

2 3

4– 6–

5– 2

9 4–

1 0

0 1
=

2 3

4– 6–

Answer: See page A-18.

CHECK YOUR UNDERSTANDING 3.5

Verify that  is not a unit in .

THEOREM 3.2 Let R be a ring with unity 1. Then:

(a) 

(b) For any : 

2 3

4– 6–
M2 2

1–  1–  1=

a R 1– a a 1–  a–= =

1–  1–  1  1  1= =

Theorem 3.1(c)

1– a 1 a–  a–= =

Theorem 3.1(b)

a 1–  a 1  – a–= =

Theorem 3.1(b)
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You are invited to establish the following result in the exercises: 

As might be anticipated:

As was the case with groups, the above subring definition can be
recast in a more compact form:.

PROOF: If S is a subring of R then (i) and (ii) clearly hold. Con-
versely, if (i) and (ii) hold then, since  along with

 and  hold for all elements

, they must surely hold for all elements .
   

For example, in
:

while

Z6 0 1 2 3 4 5     =

1+6 3 4 and 2+6 5 1= =

1.
n 3 3 and 2.

n 5 4= =

THEOREM 3.3 For any integer , , under addi-

tion and multiplication modulo n; which is to
say, for :

and (see margin)

 is a ring. 

n 1 Zn +n
.n  

a b Zn

a +n b r  where: a b+ qn r 0 r n+= =

a .
n b r  where: ab qn r 0 r n+= =

Answer: (a) 1, 5
      (b) See page A-18.

CHECK YOUR UNDERSTANDING 3.6

(a) Determine the units in the ring 

(b) Show that  is a unit if and only if m and n are relatively
prime.

DEFINITION 3.4 A subring of a ring R is a nonempty subset
S of R which is itself a ring under the
imposed binary operations of R.

THEOREM 3.4 Let  be a ring. A subset S of R is a
subring of R if and only if:

(i)  is a subgroup of . 

(ii) S is closed under multiplication, i.e:

Z6

m Zn

R +,    .

S, +   R, +  

s s S ss S

a bc  ab c=

a b c+  ab ac+= a b+ c ac bc+=

a b c R  a b c S 

Answer: See page A-18

CHECK YOUR UNDERSTANDING 3.7

Let  be a ring. A subset S of R is a subring of R if and only
if for every :

(i)  and (ii) 
Suggestion: Consider Exercise 38, page 70

R +,    .
s s S

s s S– ss S
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(a) For any :

 , and .

(b)  No.  is not closed under addition:

         but .

EXAMPLE 3.4 (a) Show that, for any , the additive 

group  under standard multiplication is a 
subring of Z.

(b) Is  a 

subring of ?

n Z+
nZ

U2 2 A A is a unit in M2 2 =

M2 2

Incidentally  is
a group (under multipli-
cation) (Exercise 40)

U2 2
. 

a b Z
na nb– n a b–  nZ= na  nb  n nab  nZ=

U2 2

1 0

0 1

1– 0

0 1–
U2 2 1 0

0 1

1– 0

0 1–
+ 0 0

0 0
U2 2=

Answer: See page A-18.

CHECK YOUR UNDERSTANDING 3.8

(a) Show that  is a subring of .

(b) Let a be and element of a ring R. Show that

  
is a subring of R. 

H 0 0

a b
a b 

 
 
 

= M2 2

Sa x R ax 0= =
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Exercise 1-12. Determine if the given set it a ring under the give addition and multiplication oper-
ations. If it is a ring, indicated whether or not it is commutative, and whether or not it has a unity.

Exercise 13-20. Determine if the given subset S of the giver ring R is a subring of R.

EXERCISES

1. The set   under standard addition and multiplication.

2. The set  of positive even integers under standard addition and multiplication.

3. The set  of nonnegative even integers under standard addition and multiplica-
tion.

4. The set  under standard addition and multiplication.

5. The set  under standard addition and multiplication.

6. The set  under standard addition and multiplication.

7. The set  under component addition and multiplication.

8. The set  under component standard addition and multiplication.

9. The set  under matrix addition and multiplication. (See Example 3.2.)

10. The set  under matrix addition and multiplication. (See Example 3.2.)

11. The set  under matrix addition and multiplication. (See Example 3.2)

12. The set of polynomials, , with real coefficients, of degree less than or equal to 5, under 
standard polynomial addition and multiplications. 

13. , and . 14.  and .

15.  and . 16. , and .

17.  and . 18.  and .

19.  and . 20.  and .

nZ

2n n Z
+ 

2n n 0  

a b 2+ a b  

a b 2+ a b Q 

0 1 

2Z Q

2Z 0 1 

a b

0 0
a b c  

 
 
 

a b

c 0
a b c  

 
 
 

a b

0 c
a b c  

 
 
 

p x 

R Q= S Q+= R Q= S Z=

R Z Z= S n n  = R Q= S q2 q Q =

R Z Z= S n n  n 0 = R Z Z= S n 2n  =

R M2 2= S a a

0 0 
 
 

= R M2 2= a a b–

a b– b 
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Exercise 21-27. Find the units in the give ring.

28. Show that any abelian group  can be turned into a ring by defining  for every 

. 

29. Verify that for any  (see Example 3.2):

        (a)            (b)          (c) 

30. Let  and  be rings. Prove that  is a ring.

31. Let  be a collection of rings. Prove that  is a ring. 

32. Let  be a collection of rings. Prove that  is a ring.

33. Let a and b be element in a ring R. Show that  for any integer n and m.

34. Describe all of the subrings of the ring of integer.

35. Let the ring R be cyclic under addition. Prove that R is commutative. 

36. Let  denote the set of all real-valued functions. For f and g in , let  be given 

by  and . Show that under these operation 

 is a ring with unity.

37. The center of a ring R is the set . Sow that the center of R is a sub-
ring of R.

38. For a and element of a ring R, let . Show that  is a subring of 
R containing a.

39. Show that the center of a ring R is equal to . (See Exercises 36 and 37.) 

40. Prove that  is a unit in  if and only if .

41. Prove that if  is a unit, then it has a unique inverse.

42. Prove that the set  is a group under multiplication.

43. Let R be a ring, and let . Show that the set  is a subring of R.

44. Show that the multiplicative inveres of any unit in a ring with unity is unique. 

45. Let R be a commutative ring with unity, and let  denote the set of units in R. Prove that 
 is a group under the multiplication of R. 

46. Show that if there exists an integer n greater than 1 for which  for every element x in a 
ring R, then .

47. Let k be the least common multiple of the positive integers m and n. Show that 
.

21. 22. 23. 24. 25. 26. 27.Z 5Z Z5 Z15 Z Z Z Q Z6 Z9

G +  ab 0=

a b G
A B C M2 2 

AB C A BC = A B C+  AB AC+= A B+ C AC BC+=

R1 R2 R1 R2

Ri i 1=
n Ri

i 1=

n



R  A
R

 A


nm ab  na  mb =

F   F   f g+

f g+  x  f x  g x += fg  x  f x g x =

F  
x R ax xa a R= 

C a  x R xa ax= = C a 

C a 
a R


a b

c d
M2 2 ad bc 0–

a R

U2 2 A A is a unit in M2 2 =

a R Sa axa x R =

U R 
U R 

xn x=
ab 0 ba 0= =

mZ nZ kZ=
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48. Let R be a commutative ring. Prove that .

49. An element a of a ring R is idempotent if . Show that the set of all idempotent ele-
ments of a commutative ring is closed under multiplication. 

50. An element a of a ring R is nilpotent if  for some . Show that if a and b are 
nilpotent elements of a commutative ring R, then  is also nilpotent. 

51. A ring R is said to be a Boolean ring if  for every . Prove that every Boolean 
ring is commutative.

52. Give an example of finite Boolean ring, and an example of an infinite Boolean ring (see Exer-
cise 50).

53. Prove Theorem 3.3.

54. Prove that m is a unit in  if and only if .

55. Let  be rings. Show that:

(a)  with operations

  

is a ring.

(b)  is commutative if and only if  is commutative for .

(c)   has a unity if and only if  has a unity for .

.

56. If  and  are rings, then  is a ring.

57. In any ring R, .

58. If  for all elements x in a ring R, then  for all .

59. In any ring R: .

60. If  and  are Boolean ring, then  is a Boolean ring. (See Exercise 50).

61. If  and  are Boolean ring, then  is a Boolean ring. (See Exercise 50).

62. The set of all idempotent elements in a ring R is a subring of R. (See Exercise 48).

PROVE OR GIVE A COUNTEREXAMPLE

a2 b2– a b+  a b– =

a2 a=

an 0= n Z+
a b+

a2 a= a R

Zn gcd n m  1=

R1 R2  Rn  

R1 R2  Rn

a1 a2  an    b1 b2  bn   + a1 b1+ a2 b2+  an bn+   =

a1 a2  an    b1 b2  bn    a1b1 a2b2  anbn   =

R1 R2  Rn Ri 1 i n 

R1 R2  Rn Ri 1 i n 

R1 R2 R1 R2

ab 0 ba 0= =

x3 x= 6x 0= x R

a2 b2– a b+  a b– =

R1 R2 R1 R2

R1 R2 R1 R2



                                                                                                                                3.2   Homomorphisms and Quotient Rings     121
 3 

 

         Moving the group-homomorphism concept of page 72 up a notch we
come to::

Condition (1) above assures us that a ring homomorphism is also a
group homomorphism . That being the case, pre-
viously encountered group-homomorphic results remain in effect in the
current setting. In particular, Theorem 2.25, page 76, tells us that: 

SOLUTION: A consequence of CYU 1.18, page 36, and the fact that:
 and 

As it is with group homomorphisms, we have: 

PROOF: We establish (a) and invite you to verify (b) in CYU 3.9.
Appealing to CYU 3.7, page 116, we show that the nonempty
set  is closed under subtraction and multiplication:

                  

§2. HOMOMORPHISMS AND QUOTIENT RINGS

So, a ring homomorphism
preserves both the sum and
product operations:
You can perform sums and
products in R and then
carry the results over to the
ring  (via ), or you can
first carry a and b over to

 and then perform the
operations in that ring. 

R 

R

DEFINITION 3.5
RING

 HOMOMOrphism

ISOMORPHISM

ISOMORPHIC

The function  is a
homomorphism if, for every :

A homomorphism  which is also
a bijection is said to be an isomorphism
from the ring R to the ring .

Two rings R and  are isomorphic, written
, if there exists an isomorphism from

one of the rings to the other.

: R +,     R +,    .                      .
a b R

(1)   a b+   a   b +=

and  (2)   ab   a  b =

: R R

R
R

R R

Why  rather
than ?
Because we are dealing
with abelian groups

  and 
that’s why.

Ker   0 =
Ker   e =

R, +  R, + 

A ring homomorphism 
is one-to-one if and only if .

EXAMPLE 3.5 Let  be given by ,

where , with . Show

that  is a ring homomorphism.

THEOREM 3.5 Let  be a ring homomorphism. 

(a) If H is a subring of R, then  is a sub-
ring of .

(b) If  is a subring of , then  is a
subring of .

: R, +  R, + 

: R +,   .  R +,   . 
Ker   0 =

: Z Zn  a  ra=

a qan ra+= 0 ra n


 a b+   a   b +  mod n  ab   a  b  mod n

: R R

 H 
R

H R  1– H 
R

 H 
 h1   h2 –  h1 h2–   H =

   h1  h2   h1h2   H =
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Every ring  is, in part, an abelian group: . Choosing to
use the sum notation in Theorem 2.39 (page 95) we have: 

Fine, but will that factor group  evolve into a ring under the
“natural” product operation ? Not neces-
sarily. Indeed, that coset “product” need not be defined. A case in point:

SOLUTION: To be well define, the set products must yield the same
result, independently of the chosen representative for the two given
cosets. However, while:

 and :

 is not equal to .

Why not? Because: , 

                          and 

The above example illustrates the fact that for a given subring H of a
ring R, one can not expect that the factor group  of Theorem 2.39,
page 95, will become a ring under the (attempted) product

. Of particular importance are those subring
for which that expectation will be realized:

Answer: See page A-19.

CHECK YOUR UNDERSTANDING 3.9

(a) Let  be a homomorphism. Prove that if  is a sub-
ring of , then  is a subring of .

(b) Show that the rings  and  are not isomorphic. 
                    (Compare with CYU 2.22(b), page 77)

For any subring H of the ring , the factor group
 is a group under the coset operation:

 

EXAMPLE 3.6
Consider the subring  of

CYU 3.8(a), page 117. Show that

  

is not a well defined operation.

: R R H
R  1– H  R

3Z 5Z

R +,    . R + 

R +,    .
G H a H+ a G=

a H+  b H+ + a b+  H+=

G N
a H+  b H+  ab  H+=

H 0 0

a b
a b 

 
 
 

=

1 0

a b
H+

 
 
  0 1

a b
H+

 
 
  1 0

a b

0 1

a b 
 
 

H+=

 1 0

0 0

1 0

0 1
– 0 0

0 1
H= 1 0

0 0
H+ 1 0

0 1
H+=

 
margin

0 1

0 0
H+ 0 1

0 1
H+=

1 0

0 0

0 1

0 0
H+ 1 0

0 1

0 1

0 1
H+

1 0

0 0

0 1

0 0
0 1

0 0
= 0 1

0 0

0 1

0 1
0 2

0 0
=

0 1

0 0

0 2

0 0
– 0 1–

0 0
H=

Note that the factor group
 exists, as every sub-

group of an abelian group
is normal. 

R H

R H

a H+  b H+  ab H+=
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Justifying our expectation:

PROOF: The first order of business is to show that the above coset
product operation is well defined; which is to say that:

If  and  then: .

Lets do it:

     
Since both  and  are in I: 

Thus 
(as I, being a subgroup of an abelian group, is normal.

As for the ring part of the proof, we need only establish the associative
and distributive axioms of Definition 3.1 (page 111), as we already
know that  is an abelian group. Not a serious challenge, now that
we know that the coset multiplications is well defined: 

Associative: 

Distributive:

In the same fashion, one can show that:

DEFINITION 3.6
IDEAL

A subring I or a ring R is a (two-sided) ideal
if for any  and every :

THEOREM 3.6 If I is an ideal in R then the (additive) factor
group  turns into a ring under the imposed

multiplication .

 is said to be the quotient ring of R by N. 
Quotient rings are also said to be factor rings. 

a I r R
ra I and  ar I

R I
a I+  b I+  ab  I+=

R I

a I+ a I+= b I+ b I+= ab I+ ab I+=

a I+ a I a a I a a– b I ab ab I––+=

b I+ b I b b I a b b–  I ab ab I––+=

since I is an ideal

ab ab– ab ab–

ab ab–  ab ab– + ab ab I–=

ab I+ ab I+=

R I

a I+  b I+  c I+   a I+  bc  I+ =

a bc  I+ ab c I+= =

a I+  b I+   c I+ =

a I+  b I+  c I+ +  a I+  b c+ I =

a b c+   I+=

ab ac+  I+=

ab I+  ac I+ +=

a I+  b I+  a I+  c I+ +=

b I+  c I+ +  a I+  b I+  a I+  c I+  a I+ +=
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Roughly speaking:

A case in point (compare with Theorem 2.43, page 98):

PROOF: We already know that  is an additive 
subgroup of R. It is, in fact, an ideal since, for any  and every

, both ra and ar are in K:

The proof of Theorem 2.43 serves to show that the function 
 given by 

is a group isomorphism. Indeed, it a ring isomorphism:

In CYU 3.10(a) you were invited to show that, under standard addi-
tion and multiplication,  is an ideal of Z. More can be said:

SOLUTION: In Example 2.6, page 72, we showed that the function
 given by  where  with  is

a group homomorphism. You are invited to show, in CYU 3.12, that
the function also preservers products; in other words, that it is a ring
homomorphism from the ring Z to the ring .

Answer: See page A-19.

CHECK YOUR UNDERSTANDING 3.10

(a) Show that I is an ideal in Z if and only if .

(b) Let  be an onto ring homomorphism. Show that if  is
an ideal in R then  is an ideal in 

NORMAL SUBGROUPS ARE TO GROUPS
AS

IDEALS ARE TO RINGS

THEOREM 3.7
FIRST 

ISOMORPHISM 
THEOREM    

If  is a ring homomorphism, then
 is an ideal of R and:

             

I nZ=

: R R I
 I  R

: R R
K Ker  =

R K  R 

K Ker    1– 0 = =
a K

r R
 ra   r  a   r  0  0 and  ar  0= = = =

: R K  R   r K+   r =

 r1 K+  r2 K+    r1r2  K+ =

 r1r2   r1  r2 = =

 r1 K+   r2 K+  =

Answer: See page A-19.

CHECK YOUR UNDERSTANDING 3.11

Let  be an onto ring homomorphism with kernel K. If 
is an ideal of , then  is an ideal in R containing K and:

 

EXAMPLE 3.7 Show that for any positive integer n:
                      

: R R I
R I  1– I =

I K I

nZ

Zn Z nZ 

: Z Zn  m  r= m nq r+= 0 r n

Zn
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While  is not one-to-one, it is certainly onto. As such we know, by
Theorem 3.7, that: 

 where .
Noting that:

 

we conclude that: .

You are invited to establish the next two isomorphism theorems in the
exercises.

(Compare with Theorem 2.44, page 99.)

(Compare with Theorem 2.45, page 99.)



Zn Z K K Ker  =

Ker   m  m  0=  kn k Z  nZ= = =

Example 2.4, page 62

Answer: See page A-19.

CHECK YOUR UNDERSTANDING 3.12

Let  be given by  where  with

. Show that for any : .

THEOREM 3.8
SECOND 

ISOMORPHISM 
THEOREM    

Let H be a subring of a ring R, and I an ideal
of R. Then:

is a subring of R,  is an ideal of , and:

THEOREM 3.9
THIRD 

ISOMORPHISM 
THEOREM    

Let  be an onto homomorphism
with kernel K. If  is an ideal of , then:

is ideal of R and:

Zn Z nZ 

: Z Zn  m  r= m nq r+=

0 r n a b Z  ab   a  b =

H I+ h i h H i I+ =

I H I+

H I+  I H H I 

: R R
I R

I  1– I  a R  a  I = =

R I R I 
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Exercise 1-6. Determine if the given map  is a ring homomorphism.

Exercise 7-10. Determine if the given subset S of the ring R is an ideal of R.

11. Let  be a homomorphism from R onto . Show that:

(a)  for all  and .

(b) If R possesses a unity then so does the ring .

(c) If a is a unit of R, then  is a unit of .

12. Let  and  be ring homomorphisms. Prove that the composite function 
 is also a homeomorphism.

13. Let S be a subset of a ring R. Show that S is an ideal of R if and only if the following two con-
ditions hold:

(i) S is an additive subgroup of R.

(ii) For every  and  we have  and .

14. Let  denote the ring of all real-valued functions of Exercise 36, page 119, and let 

. Show that the map  given by  is a homomorphism.

15. Let I be an ideal is commutative ring R with unity 1. Show that  is a commutative ring 
with unity.

16. Let R be a ring with unity. Show that if I is an idea of R that contains a unit, then .

17. Let I be an ideal in a ring R. Show that there exist an onto ring homomorphism  
with .

18. Let I be an ideal in a ring R. Show that if K is an ideal in I, then  is an 
ideal in .

EXERCISES

1. , and . 2. ,  and .

3.  and . 4.  and .

5. ,  and . 6.  ,  and .

7. , . 8. , .

9. , . 10. , .

: R R

R R Z= =  n  3n= R Z= R 3Z=  n  3n=

R R M2 2= =  a b

c d

d– b

d c
= R R M2 2= =  a b

c d

ab 0

0 cd
=

R M2 2= R =  a b

c d
a= R M2 2= R =  a b

c d
ad bc–=

R M2 2= S a 0

0 d
a d 

 
 
 

= R M2 2= S a 1

0 d
a d 

 
 
 

=

R Z Z= S a a–  a Z = R Z Z= S 2a a  a Z =

: R R R
 an   a  n= a R n 0

 R 

 a   R 

: R R : R R
: R R

s S r R rs S sr S

F  
a  a: F    a f  f a =

R I

I R=

: R R I
Ker   I=

K a I a K+ =
R I
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19. Let I be an ideal in a ring R. Show that if  is an ideal in , then there exists an ideal K in 

R with  such that .

20. Describe all ring homomorphisms from Z to Z.

21. Describe all ring homomorphisms from Z to .

22. Show that if , then the rings  and  are not isomorphic.

23. Prove that  (isomorphic) is an equivalence relation on any set of rings (see Definition 1.12, 
page 29).

24. Show that the function  given by  where  with  

preservers products: .

25. Find a subring of  that is not an ideal of .

26. Prove that I is an ideal of a ring R if and only if:

(i)

(ii) If . then 

(iii) If  and , then 

27. An element a of a ring R is nilpotent if  for some . Show the collection of nil-
potent elements of commutative ring R is an ideal of R. 

28. Let R be a commutative ring and . Show that  is an ideal of R. 

29. Prove that if  and  are ideals of R, then  is an ideal of R.

30. Let  and  be ideals of R, and let I be the set of all elements of the form  with  

and . Prove that I is an ideal of R.

31. Let H be a subring or R that is not an ideal of R. Verify that the operation 
 is not well defined..

32. Prove Theorem 3.8.

33. Prove Theorem 3.9.

34. If  and  are ideals of R, then  is an ideal of R.

35. If  is an ideal of R and if H is a subring of R, then  is an ideal of R.

36. For every element a of a ring R, the set  is an ideal of R. 

37. Let  be a homomorphism from R onto . Show that if R possesses a unity then so 
does .

38. The collection of nilpotent elements n a ring R is an ideal of R. (See Exercise 27).

PROVE OR GIVE A COUNTEREXAMPLE

K R I
I K K K I a I a K+ = =

Z Z

n m nZ mZ



: Z Zn  m  r= m nq r+= 0 r n
 st   s  t  s t Z=

Z Z Z Z

0 I

a b I a b I–

a I r R ra R

an 0= n Z+

a R x R xa 0= 

I1 I2 I1 I2

A B ab a A
b B

a H+  b H+  ab H+=

I1 I2 I1 I2

I I H

x R xa 0= 

: R R R
R
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 3

 

The set Z of integers under addition led to the definition of a group on
page 41. Tossing multiplication into the mix brought us to the defini-
tion of a ring on page 111. How about “division”? Can one perform
(grade school) division in the ring Z, or Q, or ? Absolutely not in Z,

where you can only divide by 1 or . Q and  fair much better in that

one can divide by any number other then 0. As it turns out, Q and 
are examples of fields:

As is depicted below, fields are at the top of our algebraic pecking
order, and groups are at the bottom: 

§3. INTEGRAL DOMAINS AND FIELDS

Note that Every field is
an integral domain. 

Answer: (a) Field. 
(b) Commutative ring

with unity.

DEFINITION 3.7
ZERO DIVISOR

INTEGRAL DOMAIN

FIELD

A zero-divisor in a commutative ring R is a
nonzero element a for which there exits a
nonzero element  with .

An integral domain is a commutative ring R
with unity that contains no zero-divisors.

A field is a commutative ring with unity in
which every nonzero element is a unit.

CHECK YOUR UNDERSTANDING 3.13

Assign to the given group its highest algebraic rank (Field at the top,
and Group at the bottom).
               (a)                                            (b) 


1– 



b R ab 0=

Fields: Q 

 

Integral Domains: Q Z  

Commutative Rings with unity: Q Z Z6 

not a field: 2 has no multiplicative inverse

not an integral domain:  2 6 0=

Rings: Q Z Z6 2Z M 2 2  

no unity   not commutative

Groups: Q Z Z6 2Z M 2 2 S3   

not a ring, see CYU 3.1(a), page 111

Z5 Z15



                                                                                                                              3.3   Integral Domains and Fields     129
The familiar high school cancellation law (margin) holds in any inte-
gral domain:

PROOF: . Since D is an

integral domain, and since : .

PROOF: Let R be a field and let I be an ideal in R with . Chose
, . Since R is a field and I is an ideal, we then have:

. Since I is an ideal: . Thus:
.

To establish the converse, we show that if  and R are the only
ideals in R, then every nonzero element in R is a unit:

Let  be an element of R. Consider the ideal .
Since , . We then have . It follows
that  for some , and that  is the inverse if a.

PROOF: Let D be a finite integral domain, and let  be an ele-

ment in D. CYU 3.14(b) assures us that the function 

given by  is one-to-one. It follows, since D is finite, that

the function is also onto. In particular, there must exist some 

such that , and a is seen to be a unit. Since a was an arbitrary
nonzero element in D, D is a field.

ab
ac
------

b
c
--- (if a 0)=

THEOREM 3.10 Let D be an integral domain, and . 

If  and , then 

a b c D 
ab ac= a 0 b c=

Answer: See page A-20.

CHECK YOUR UNDERSTANDING 3.14

(a) Prove that a commutative ring with unity is an integral domain if
and only if the cancellation property of Theorem 3.10 holds.

(b) Let D be an integral domain, and let  be an element in D.
Show that the function  given by  is one-
to-one. 

THEOREM 3.11 A commutative ring with unity R is a field if
and only if  and R are the only ideals in R. 

THEOREM 3.12 Any finite Integral domain is a field.

ab ac ab ac– 0 a b c–  0= = =

a 0 b c– 0=

a 0
fa: D D fa x  ax=

0 

I 0 
a I a 0
a 1– a 1 I= r 1 r R  R I=
I R=

0 

a 0 I a =
I 0  I R= 1 I a =

an 1= n Z an 1–

Answer: See page A-20.

CHECK YOUR UNDERSTANDING 3.15

Prove that for every prime p,  is a field.

a 0
fa: D D

fa x  ax=

b D
ab 1=

Zp
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We focus briefly, and somewhat loosely, on the set  of polyno-

mials with integer coefficients, as well as the sets  of polynomi-

als with coefficients taken from the rings .

All turn out to be commutative rings (with unity) under the following
standard sum and product operations:

Note that while the coefficients of a polynomial  in  are

elements of the ring , the degree of such a
polynomial can be any nonnegative integer. In particular, while

 might very well be a polynomial in  (of

degree 9), it can not be a polynomial in  ( ). 

Consider the polynomial . Since the distributive property

holds in both  and in  we can express the polynomial in

factored form in either ring:

 
But while the equation:

has but two solutions in  (  and ), the same equation turns out

to have four solutions in . The reason, you see, is that while the

ring Z is an integral domain (no zero divisors), the same cannot be said
for . Indeed there are several pairs on nonzero elements in 

with product equal to zero:

Your turn:

PZ x 

PZn
x 

Zn 0 1 2  n 1–    =

In In PZ x  PZ6
x 

3x2 4x 5+ +  x2 4x 1+ + + 4x2 8x 6+ +=

2x2 4x–  5x 2–  2x2 5x 2–  4x 5x 2– –=

10x3 4x2– 20x2– 8x+=

10x3 24x2– 8x+=

3x2 4x 5+ +  x2 4x 1+ + + 4x2 2x+=

2x2 4x–  5x 2–  2x2 5x 2–  4x 5x 2– –=

4x3 4x2– 2x2– 2x+=

4x3 2x+=

p x  PZn
x 

Zn 0 1 2  n 1–    =

3x9 5x2– x 1–+ PZ6
x 

PZ5
x  5 Z5

x2 x– 6–

PZ x  PZ12
x 

x2 x– 6– x 3–  x 2+ =

x2 x– 6– x 3–  x 2+  0= =

PZ x  3 2–

PZ12
x 

Z12 Z12

2 6 0,  3 4 0  8 3 0  9 4 0  10 6 0= = = = =

24 0 mod 12

Answer: (a) 3, 6, 7, 10
              (b) 3, 6

CHECK YOUR UNDERSTANDING 3.16

Solve the equation  in:

                  (a)                                   (b) 

x2 x– 6– 0=

Z12 Z8
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The ring Z has characteristic 0, and the cyclic ring  has characteris-

tic n. Clearly no finite ring is of characteristic 0. Must every infinite
ring have characteristic 0? No:

To determine the characteristic of a ring with unity, one need look no
further than its unity: 

PROOF: If  for all  then surely there cannot exist
 such that  for every , and R has characteristic 0.

On the other hand, if  for some positive integer n, then, for

any :

The smallest such n is then the characteristic of R.

PROOF: Assume that D has positive characteristic n, and that n is not
prime. Then n can be written as  with  and .
We then have:

Since D has no zero divisors, either  or . But this can-
not occur, since n is the least positive integer such that .
Conclusion: n must be prime.

 nx x x  x+ + +=

n of them

DEFINITION 3.8
CHARACTERISTIC

The characteristic of a ring R is the least
positive integer n such that  for

every . If no such integer exists, then
R is said to have characteristic 0.

nx 0=

x R

Answer: See page A-21.

CHECK YOUR UNDERSTANDING 3.17

Prove that the infinite ring  has characteristic n. 

THEOREM 3.13 Let R be a ring with unity. If  for all
, then R has characteristic 0. If
 for some , then the smallest

such n is the characteristic of R.

THEOREM 3.14 The characteristic of an integral domain D is
either 0 or prime.

Zn

PZn
x 

n1 0
n Z+
n1 0= n Z+

n1 0 n Z+
n Z+ nx 0= x R

n1 0=

x R

nx nx x x  x+ + + 1 1  1+ + + x n1 x 0x 0= = = = = =
n of them 

n st= 1 s n  1 t n 

0 n1 st 1 st 12 s1  t1 = = = =
s1 0= t1 0=

n1 0=

Answer: See page A-21.

CHECK YOUR UNDERSTANDING 3.18

Let D be an integral domain of characteristic 3. Show that for every
: .

In the exercises you invited to show that for any prime p, if D has characteristic p then:

 .

a b D a b+ 3 a3 b3+=

a b+ p ap p+=
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SOLUTION: (a) Let p be prime. If  then, by Theorem 1.9,
page 24,  or ; which is to say, that  or .

Conversely, assume that  where  is not prime. Let
 for some positive integers a and b. Then  with neither

a nor b in I (neither is a multiple of n).

(b) If I is an ideal properly containing , then there must exists 
with , i.e. 5 does not divide a. It follows, since 5 is prime, that

. Employing Theorem 1.7, page 23, we have:

for integers s and t. Since 5s and at are both in I: . It follows, since
I is an ideal in Z, that .

PROOF: (a) We need to show that  has no zero divisors; which
is to say that if , then either  or ;
which is to say that if  then either  or . And this is
so, as I is a prime ideal.

(b) Invoking Theorem 3.11, we show that the only ideals of  are
 and :

Let I  be a maximal ideal in R, and let  be an ideal in .
Exercise 18, page 126, assures us that there exists an ideal  in R
with  such that . Since I is a maximal ideal,
either , in which case , or , in which case

.

PRIME AND MAXIMAL IDEALS 

Note: A proper ideal of R
is, by definition, an ideal in
R that is distinct for R itself.

DEFINITION 3.9
PRIME IDEAL

MAXIMAL IDEAL

Let R be a commutative ring. 
A prime ideal of R is a proper ideal I of R
for which: 

A proper ideal I of R is a maximal ideal if R
is the only ideal containing I.

EXAMPLE 3.8 (a) Show that an ideal I in Z is prime if and
only if , where p is a prime.

(b) Show that  is a maximal ideal in Z.

ab I a I or b I

I pZ=

5Z

ab pZ
p a p b a pZ b pZ

I nZ= n 1
n ab= ab I

5Z a I
a 5Z

gcd 5 a  1=
1 5s at+=

Answer: See page A-21.

CHECK YOUR UNDERSTANDING 3.19

(a) Show that  is a maximal ideal for any prime p. 

(b) Prove that I is a maximal ideal in Z if and only if it is prime.

1 I
I Z=

pZ

The converse of both (a)
and (b) also hold. See Exer-
cise 25 and Exercise 26.

We already know that
 is a commutative

ring with unity (see The-
orem 3.6, page 123). 

R I

THEOREM 3.15 Let I be an ideal in a commutative ring R
with unity.
(a) If I is a prime ideal then  is an integral

domain.
(b) If I is a maximal ideal then  is a field.

R I

R I

R I
ab I+ I= a I+ I= b I+ I=

ab I a I b I

R I
0  R I

K R I
K

I K R  K K I=
K I= K 0 = K R=

K R I=
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Let’s mimic the development in which the integers Z blossom into the
field of rational numbers Q, to one that nurtures a general integral
domain D into its field of quotients F: 

FIELDS OF QUOTIENTS 

From Z to Q From D to the field of quotients F

Let .

In Example 1.9, page 29, we demonstrated that

the relation  if  is an equivalence

relation on .

Let Q denote the set of equivalent
classes associated with the above equiv-
alence relation on .

Define addition and multiplication in Q as fol-
lows:

 and 

You are invited to show in the exercises that the
above operations are well defined; which is to say:

If  and , then:

 and 

You are also invited to show in the exercises that:

 is a field, with zero  and unity . 

Let .

Following the procedure of  Example 1.9, page
29, one can show that the relation 

if  is an equivalence relation on .

Let F denote the set of equivalent
classes associated with the above equiv-
alence relation on .

Define addition and multiplication in F as fol-
lows:

 and 

You are invited to show in the exercises that the
above operations are well defined; which is to say:
If  and , then:

 

and 

You are also invited to show in the exercises that:

 is a field, with zero  

and unity , for any .

As is the case with the rational numbers, where the equivalence class  is simply denoted by the “fraction” , so

then one generally represents an element  in the field of quotients F by the two-tuple .

SZ
a
b
--- a b Z, with b 0 

 
 
 

=

a
b
--- c

d
--- ad bc=

SZ

SZ

a
b
--- c

d
---+

a c+
bd

------------=
a
b
--- c

d
--- ac

bd
------=

a
b
--- a

b
---- c

d
--- c

d
----

a c+
bd

------------ a c+
bd

--------------- ac
bd
------ ac

bd
----------

Q + .   0
1
--- 1

1
---

SD a b  a b D, with b 0  =

a b  c d 
ad bc= SD

SD

a b   c d  + ad cb bd+  =

a b   c d   ac bd  =

a b  a b  c d  c d 

ad cb bd+  ad cb bd+ 

ac bd  ac bd 

F + .   0 a  
a a   a 0

a
b
--- a

b
---

a b   a b 
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Exercise 1-6. Find the zero-divisors of the given ring.

Exercise 7-12. Determine the characteristic of the given ring.

Exercise 13-15. Solve the equation  in:

Exercise 16-18. Solve the equation  in:

19. Show that  has no zero divisors for any prime p.

20. Show that the zero divisors of   are the nonzero elements that are not relatively prime to n.

21. Show that every nonzero element in  is a unit or a zero-divisor.

22. Let R be a finite commutative ring with unity. Prove that every nonzero element in  is a unit 
or a zero-divisor.

23. Give an example of a ring R that contains a nonzero element that is neither a zero-divisor nor 
a unit.

24. Show that any nonzero element a in a commutative ring R is a zero-divisor if and only if 
 for some .

25. Let R and S be nonzero rings. Can  be an integral domain?

26. Give an example of a commutative ring R without zero-divisors that is not an integral domain.

27. A nonempty subset S of an integral domain D is called a subdomain of D if it is an integral 
domain under the operations of D. Prove that a nonempty subset of D is a subdomain of D if 
and only if S is a subring of D that contains the unity of D.

28. Prove that the intersection of two subdomains of an integral domain D is also a subdomain of 
D. (See Exercise 18.)

29. Find all subdomains of Z. (See Exercise 27.)

EXERCISES

1. 2. 3.

4. 5.  6.

7. 8. 9.

10. 11. 12.

13. 14. 15.

16. 17. 18.

3Z Z4 Z3 Z6

Z Z5 Z2 Z5 Z4 Z8

3Z Z4 Z3 Z6

Z Z5 Z2 Z5 Z4 Z8

x2 5x– 6+ 0=

Z2 Z5 Z12

x3 3x– 4– 0=

Z2 Z5 Z12

Zp

Zn

Zn

Zn

a2b 0= b 0

R S
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30. Show that the only subdomain of , for p prime, is . (See Exercise 18.)

31. Let D be an integral domain of prime characteristic p. Show that for every :

 

32. Prove that every maximal ideal in a commutative ring with identity is a prime ideal.

33. Let I be an ideal in a commutative ring R with unity. Prove that I is a prime ideal of R if and 
only if  is an integral domain. [See Theorem 3.15(a).]

34. Let I be an ideal in a commutative ring R with unity. Prove that I is maximal in R if and only if 
 is afield. [See Theorem 3.15(b).]

35. Prove that every proper ideal on a ring with unity is contained in a maximal ideal.

36. Let R be a commutative ring. Prove that if P is a prime ideal of R that contains no zero-divi-
sors, then R is an integral domain.

37. Let R be a commutative ring. Let I and J be ideals of R. Show that if P is a prime ideal of R 
that contains , then either I or J is contained in P.

38. Show that the subset  is an ideal in . Show that while S is not an integral 

domain,  is a field.

39. Show that any ring homomorphism  from a field F to a ring  is one-to-one.

40. Let R be a commutative ring. Prove that R is a field if and only if  is a maximal ideal.

41. Referring to the “From D to the field of quotients F” development on page 133,verify that the 
operations: 

 and  
are well defined.

42. Referring to the “From Z to Q” development on page 133,verify that the operations:

 and 

are well defined.

43. Referring to the “From Z to Q” development on page 133,verify that  is a field, with 

zero  and unity . 

44. Referring to the “From D to the field of quotients F” development on page 133,verify that 
 is a field, with zero  and unity , for any .

45. Establish Fermat’s Little Theorem: If  and if p is a prime not dividing p, then: 

Zp Zp

a b D

a b+ p ap bp+=

R I

R I

I J

S 0 3 = Z6

Z6 S

: F R R 0 

0 

a b   c d  + ad cb bd+  = a b   c d   ac bd  =

a
b
--- c

d
---+

a c+
bd

------------=
a
b
--- c

d
--- ac

bd
------=

Q + .  
0
1
--- 1

1
---

F + .   0 a   a a   a 0

a Z
ap 1– 1 (mod p 
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46. Show that for any prime p and any : 

47. The intersection of subdomains of an integral domain D is a subdomain of D. (See Exercise 
18.)

48. If  is a homomorphism from the integral domain D to a ring R, then  is a n 
integral domain.

49. Let R be a commutative ring with unity. If P is a prime ideal of R and if J is a subring of R, 
then  is a prime ideal of R.

50. Let R be a commutative ring with unity. If P is a prime ideal of R and if I is an ideal of R, then 
 is a prime ideal of R.

PROVE OR GIVE A COUNTEREXAMPLE

a Z ap a (mod p 

: D R  D 

P J

P J
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APPENDIX A
CHECK YOUR UNDERSTANDING SOLUTIONS

PART 1
PRELIMINARIES

1.1 Functions

CYU 1.1 For , given by , and  given by

, we have:

   (a)               

(b) 

CYU 1.2 (a) Let  be given by 

One-to-one: 

Onto: For given , we find  such that :

Hence: .

f: M2 2  f a b

c d 
 
 

a d+= g:  R2

g x  2x x2 =

gf  1 3

2 4 
 
 

g f 1 3

2 4 
 
 

g 1 4+  g 5  2 5 52  10 25 = = = = =

gf  a b

c d 
 
 

g f a b

c d 
 
 

g a d+  2 a d+  a d+ 2 = = =

2a 2d a2 2ad b2+ ++ =

f: M2 2 R4 f a b

c d 
 
 

d c 3a b– =

f a b

c d 
 
 

f a b

c d 
 
 

d c 3a b–  d c 3a b– = =

d d=

c– c–=

3a 3a=

b b= 





 d d=

c c=

a a=

b b= 







a b

c d
   a b

c d
=

x y z w    a b

c d
f a b

c d 
 
 

x y z w   =

f a b

c d 
 
 

x y z w    d c– 3a b   x y z w   

d x=

c– y=

3a z=

b w= 





 d x=

c y–=

a z 3=

b w= 







 = =

f z 3 w

y– x 
 
 

x y z w   =
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        (b)  is not one-to one: .

          f is not onto, since no element  is mapped to : .

CYU 1.3  Let . Since , , which is to say: .

CYU 1.4 The function  given by  is a bijection [see

CYU 1.2(a)]. To find its inverse we determine  for which :

Conclusion: 

Moreover: 

and: 

CYU 1.5 From  and  we have:

To find its inverse of  we start with  on the right side of

 and find  (on the left side) for which 

(we will then turn things around to arrive at ). Let’s do it:

f a b

c d 
 
  b a

c d+ 2b
= f 0 0

0 0 
 
 

f 0 0

1 0 
 
  0 0

0 0
= =

a b

c d

1 0

0 3
f a b

c d 
 
  b a

c d+ 2b

1 0

0 3
=

y Y y f 1– y   f 1– f 1– y  y  f f f 1– y   y=

f: M2 2 R4 f a b

c d 
 
 

d c 3a b– =

a b

c d
f a b

c d 
 
 

x y z w   =

f a b

c d 
 
 

x y z w    d c 3a b–  x y z w   

d x=

c– y=

3a z=

b w= 





 a z 3=

b w=

c y–=

d x= 







 = =

f 1– x y z w    z 3 w

y– x
=

f f
1–

x y z w     f z 3 w

y– x 
 
 

x y– – 3
z
3
--- 
  

·
w

 
 
 

x y z w   = = =

f 1– f a b

c d 
 
 

f 1– d c 3a b–  3 a 3  b

c– – d

a b

c d
= = =

f x y z w    y– 2x

3w z
= g a b

c d 
 
 

d c 3a b– =

gf  x y z w    g f x y z w     g y– 2x

3w z 
 
 

z 3w 3y 2x–– = = =

gf: 4 4 x y z w    4
gf: 4 4 a b c d    gf  a b c d    x y z w   =

gf  1–
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At this point we have ; and, consequently:

We now verify that  also equals , where

    and :

1.2 Principle of Mathematical Induction
CYU 1.6 (a) The equation  illustrate that the sum of the first 

two even integers can be expressed as the sum of the first four integers minus the 
sum of the first two odd integer. Generalizing, we anticipate that the sum of the 
first n even integers is the sum of the first 2n integers minus the sum of the first n 
odd integers; leading us to the conjecture that the sum of the first n even integers 

equals :

 

(b) Let  be the proposition that the sum of the first n even integers equals .

I. Since the sum of the first 1 even integers is 2,  is true.

II. Assume  is true; that is: .

III. We complete the proof by verifying that  is true; which is to say,

that :

gf  a b c d    x y z w    g f a b c d     x y z w   = =

g b– 2a

3d c 
 
 

 x y z w    c 3d 3– b 2a–  x y z w   = =

c x=

3d– y=

3– b z=

2a w= 





 a w 2=

b z– 3=

c x=

d y– 3= 







 

gf  w
2
---- z

3
---– x y

3
---–   

  x y z w   =

gf  1–
x y z w    w

2
---- z

3
---– x y

3
---–   

 =

f
1–
g 1–  x y z w    w

2
---- z

3
---– x y

3
---–  

g 1– x y z w    z 3 w

y– x
= f 1– a b

c d 
 
  b

2
--- a– d

c
3
---   

 =

f
1–
g 1–  x y z w    f 1– g 1– x y z w     f 1– z 3 w

y– x 
 
  w

2
---- z

3
---– x y

3
---–   

 = = =

2 4+ 1 2 3 4 1 3+ –+ + +=

n2 n+

2n 2n 1+ 
2

--------------------------- n2– 2n2 n n2–+ n2 n+= =
sum or first 2n integers sum of first n odd integers

(Eample 1.16)          (page 34)

P n  n2 n+

P 1  12 1+ 2= =

P k  2 4 6  2k+ + + + k2 k+=

P k 1+ 

2 4 6  2k 2 k 1+ + + + + + k 1+ 2 k 1+ +=

2 4 6  2k 2 k 1+ + + + + + k2 k 2 k 1+ + +=

k2 2k 1+ +  k 1+ + k 1+ 2 k 1+ += =

by II
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CYU 1.7 (a) False — a counterexample: , and 4 divides neither 3 nor 1.

(b) True: Since , there exists  such that: (1) .

Since , there exists k such that: (2) .

From (2): . From (1): .

          Since  (where ): .

CYU 1.8 (a) Let  be the proposition :

I.  is true: .

II. Assume  is true:  (for )

III. We show  is true; namely, that :

Now what? Well, if we can show that , then we will be done. Let’s do it:

Since , , and therefore .

Multiplying both sides by the positive number : .

(b) Let  be the proposition that  for all integers .

I. True at : .

II. Assume  is true; that is: .

III. To establish that , we begin by noting that

 and then set our sights on showing

that  (for clearly ).

Wanting to get II into play we rewrite  in the form

. Our induction hypothesis allows us to assume

that . If we can show that , then we will be
done, by virtue of Theorem 1.6(b), page 28. Let’s do it:

Since , and since either k or  is even:

6 is a factor of .

CYU 1.9 Let  be a proposition for which  is True and for which the validity at k

implies the validity at . We are to show, using the Well-Ordering Principle, that

 is True for all n. Suppose not (we will arrive at a contradiction): 

Let . Since  is True, . The Well-Ordering 
Principle tells us that  contains a least element, . But since the validity at  

implies the validity at ,  must be in S — contradicting the minimality of . 

4 3 1+ 

a b h b ah=

a b c+  b c+ ak=

c ak b–= c ak ah– a k h– = =

c at= t k h–= a c

P n  n! n2

P 4  4! 1 2 3 4   24 42= =

P k  k! k2 k 4
P k 1+  k 1+ ! k 1+ 2

k 1+ ! k! k 1+  k2 k 1+ =

II

k2 k 1+  k 1+ 2

k 4 k 2 k2 k k 2k k 1+=

k 1+  k2 k 1+  k 1+ 2

P n  6 n3 5n+  n 1

n 1= 6 13 5 1+ 

P k  6 k3 5k+ 

6 k 1+ 3 5 k 1+ + 

k 1+ 3 5 k 1+ + k3 3k2 8k+ +  6+=

6 k3 3k2 8k+ +  6 6

k3 3k2 8k+ +

k3 5k+  3k2 3k+ +

6 k3 5k+  6 3k2 3k+ 

3k2 3k+ 3k k 1+ = k 1+

3x2 3k+

P n  P 1 
k 1+

P n 

S n Z+ P n  is False = P 1  S 
S n0 n0 1–

n0 n0 1– n0



                                                                                                                                                   CYU SOLUTIONS    A-5
1.3 The Division Algorithm and Beyond

CYU 1.10 The division algorithm tells us that n must be of the form , or , or , 
for some integer m. We show that, in each case,  or  for some 
integer q:

If , then  with .

If , then .

If , then . 

CYU 1.11 We simply show that  divides  if and only if : 

     

CYU 1.12 Proof by contradiction: Assume that . From Theorem 1.9: if ,
and if , then  — contradicting the given condition that .

CYU 1.13 Let  be the proposition that if , then  for some .

I.  is trivially True.

II. Assume  is True: If , then  for some .

III. Suppose ; or, to write it another way: .

If  then we are done. If not, then by Theorem 1.8: .

Invoking II we conclude that  for some . 

CYU 1.14 Let  be the prime decompositions of a and b, with

distinct primes , and distinct primes . 

Since : . It follows that and each  must appear in

the prime decomposition of n, for  (with possibly additional ’s appearing

in the prime decomposition of k). Similarly, since , each  must appear in the

prime decomposition of n, for .

Since a and b are relatively prime, none of the  is equal to any of the . It fol-

lows that  appears in the prime decomposition of n, and

that therefore  divides n.

3m 3m 1+ 3m 2+
n2 3q= n2 3q 1+=

n 3m= n2 9m2 3q= = q 3m2=

n 3m 1+= n2 9m2 6m 1+ + 3 3m2 2m+  1+ 3q 1+= = =

n 3m 2+= n2 9m2 12m 4+ + 3 3m2 4m 1+ +  1+ 3q 1+= = =

c 0 n Z c n

c kn c kn c k n c h n   where h k= = = = =

since c 0

gcd a c  1= a bc
gcd a c  1= a b a b

P n  p a1a2
an p ai 1 i n 

P 1 

P k  p a1a2
ak p ai 1 i k 

p a1a2
akak 1+ p a1a2

ak ak 1+

p ak 1+ p a1a2
ak 

p ai 1 i k 

a p1
r1p2

r2ps
rs=  b q1

m1q2
m2qt

mt=

p1 p2  ps   q1 q2  qt  

a n n ak p1
r1p2

r2ps
rs k= = pi

ri

1 i s  pi

b n qi
mi

1 i t 
pis qis

p1
r1p2

r2ps
rsq1

m1q2
m2qt

mt

ab p1
r1p2

r2ps
rsq1

m1q2
m2qt

mt=
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1.4 Equivalence Relations
CYU 1.15 Reflexive: Let . Since , given by  is a bijection, .

Symmetric: If  for , then there exists a bijection . Theorem

1.1(a), page 5, tells us that  is a bijection. Hence, .

Transitive: If  and  with , then there exists bijections 
and . Theorem 1.2(c), page 7, tells us that  is a bijection. Hence,

.

CYU 1.16 (a) No: . 

(b) Yes: Every element of  is either an integer or is contained in some    for 
some integer  or in some  for some . Moreover the sets in 

 are mutually disjoint.

CYU 1.17 Let  and  with  and .

If , then . Since , .

Conversely, assume that , say: .Then:

         

Assume that . Since , n would have to divide

; which it cant, sine . It follows that .

CYU 1.18 (a)  and , for .

Then: 

Since , .

(b) 

  (c) 

                           

A S I: A A I a  a a A= A a

A~B A B S f: A B

f 1– : B A B A

A~B B~C A B C S f: A B
g: B C gf: A C

A~C

1 2  2 3  
 i i 1+ 

i 0 i– i– 1–  i 1

n  n Z  i i 1+  i 0=


 i– i– 1–  i 1=


a dan r+= a b dbn r+= b 0 ra n 0 rb n

ra rb= a b– dan dbn– n da db– = = n a b–  a b mod n

ra rb 0 rb ra n 

a b– dan ra+  dbn rb+ – da db– n ra rb– += =

n a b–  ra rb– a b–  da db– n–=

ra rb–  0 ra rb– n  ra rb a b mod n

a n a n a a–  hn= = b n b n b b–  kn= = h k Z

ab ab– hn a+ b a b kn– – hbn ab ab– kan+ + hb ka+ n= = =

n ab ab–  ab n ab n=

a n b n c n  a n bc n  a bc  n= =

ab c n ab n c n a n b n  c n= = =

a n b n c n+  a n b c+ n  a b c+  n= =

ab ac+ n ab n ac n+ a n b n a n c n+= = =
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PART 2
GROUPS

2.1 Definitions and Examples
CYU 2.1 (a) Closure: The sum of two n-tuples is again an n-tuple. 

Associative: 

Identity: 

Invere: 

(b) Closure: The sum of 2 two-by-two matrices is again a two-by-two matrix.  

Identity: 

Inverse: 

CYU 2.2 The values in column a follow from the observation that  for . 

As for column b, row 3: , since  

As for column c, rows 2 and 3:  and , since:

                  and .

As for column d, rows 1, 2, and 3: , ,

and ,  since:  ,

 , .

a1 a2  an    b1 b2  b   +  c1 c2  cn   + a1 b1+ a2 b2+  an bn+    c1 c2  cn   +=

a1 b1+ a2 b2+  an bn+    c1 c2  cn   +=

a1 b1+  c1+ a2 b2+  c2+  an bn+  cn+   =

a1 b1 c1+  a2 b2 c2+   an bn cn+ + ++ =

a1 a2  an    b1 b2  b    c1 c2  cn   + +=

a1 a2  an    0 0  0   + a1 0+ a2 0+  an 0+    a1 a2  an   = =

a1 a2  an    a– 1 a– 2  a– n   + a1 a1– + a2 a– +  an an– +   =

0 0  0   =

a1 b1

c1 d1

a2 b2

c2 d2

+

 
 
 
 
 

a3 b3

c3 d3

+
a1 a2+   b1 b2+

c1 c2+   d1 d2+

a3 b3

c3 d3

+
a1 a2+  a3+   b1 b2+  b3+

c1 c2+  c3+   d1 d2+  d3+
= =Associative:

a1 a2 a3+ +   b1 b2 b3+ +

c1 c c3+ +   d1 d2 d3+ +
=

a1 b1

c1 d1

a2 b2

c2 d2

a3 b3

c3 d3

+

 
 
 
 
 

+=

a b

c d

0 0

0 0
+ a 0+   b 0+

c 0+   d 0+

a b

c d
= =

a b

c d

a– b–

c– d–
+ a a– +   b b– +

c c– +   d d– +

0 0

0 0
= =

0+n n n= 0 n 3 

  a    b    c    d  

  0 1 2 3

  0  0 1 2 3

  1  1 2 3 0

2 2 3 0 1

3 3 0 1 2

+4

3+41 0= 3 1+ 4 1 4 0+= =

2+42 0= 3+42 1=

2 2+ 4 1 4 0+= = 3 2+ 5 1 4 1+= =

1+43 0= 2+43 1=

3+43 2= 1 3+ 4 1 4 0+= =

2 3+ 5 1 4 1+= = 3 3+ 6 1 4 2+= =
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CYU 2.3 Let . By construction, the  column of G’s group table is 

precisely . The fact that every element of G appears exactly one time in 

that row is a consequence of Exercise 37, which asserts that the function  given by 

 is a bijection.

CYU 2.4 From  and we have:

CYU 2.5 (a) We know that 1 and 5 are generators of  [Example 2.2(a)]. The remaining 4 ele-

ments in  are not:

(b)  is cyclic, with generator : . 

(c) For , consider the following bijections :

Since ,

 is not abelian, and therefore not cyclic.

G e a1 a2  an 1–    = ith

eai a1ai a2ai  an 1– ai   

kai
: G G

kai
g  gai=


1   2   3   4   5

1   5   2   3   4 
 = 

1   2   3   4   5

5   3   2   1   4 
 =

1   2   3   4   5

1   5  2   3   4

5   4   3   2   1 
 
 
 

: 
1   2   3   4   5

5   4   3   2   1 
 




1   2   3   4   5

5   3  2   1   4

4   2   5   1   3 
 
 
 

: 
1   2   3   4   5

4   2   5   1   3 
 




Z6

Z6

2+62 4=

2+62+62 0=

3+63 0= 4+64 2=

4+64+64 0=

0+60 0=

S2: 
1 1
2 2

  
1 2
2 1 

 
 
0         1

1 11
1 2 1 
2 1 2 

0= =

n 2   Sn

 1  2  2  1 and  i = i  for 3 i n = =

 2  3  3  2 and  i = i for i not equal to 2 or 3= =

  1    1    2  3     and      1    1    1  2= = == = =

Sn
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2.2 Elementary Properties of Groups

CYU 2.6 Since :  (Theorem 2.6).

CYU 2. 7 (a) False: For  given by ,  and  we have:

 (b) True: 

CYU 2.8 We show that the equation  has a unique solution in :

                Existence: 

Uniqueness: If  then: 

CYU 2.9 We know that we have to consider a non-abelian group, and turn to our friend . Spe-

cifically for  given by  and  we have: , 

, and , so that:

CYU 2.10 I.  clearly holds for .

II. Assume . Then:

III. 

bca  bca  bc  abc a bc e a  bca= = = bca e=

   S3 : 
1 2
2 3
3 1

: 
1 2
2 1
3 3

: 
1 3
2 2
3 1

: 
1 2 1 
2 3 3 
3 1 2 

and   : 
1 3 1 
2 2 3 
3 1 2 

  as well.

           

a b+ b c+= b a+ b c a+ c= =
commutativity                   Theorem 2.9

a x+ b=  + 

a x+ b= a– a x+  a b+–=+ a– a+  x+  a– b+=

0 x+ a– b x+ a– b+= =

x and x a x+ b and a x+ b== a x+ a x x+ x= =
Theorem 2.8

S3

  S3 : 
1 3
2 2
3 1


1 3
2 1
3 2

=  1–
1 3
2 2
3 1

=

 1–
1 2
2 3
3 1

= 
1 3 2 
2 2 1 
3 1 3 

1 2
2 1
3 3

= =

       

  1–
1 2
2 1
3 3

   while  1–  1–
1 3 1 
2 2 3 
3 1 2 

1 1
2 3
3 2

= = =

 1–     1–

ana2a1  1– a1
1– a2

1– an
1–= n 1=

ak
a2a1  1– a1

1– a2
1– ak

1–=

ak 1+ ak
a2a1  1– ak 1+ ak

a2a1   1–=

ak
a2a1  1– ak 1+

1–
a1

1– a2
1– ak

1– ak 1+
1–= =Theorem 2.12:

II
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CYU 2.11 (a) 

(c) Let . We show that d is the smallest positive integer m such that 
 for some :

Since :  and  are relatively prime. It follows, from (*), that . 

Turning to  we see that m will be smallest when k is smallest; which is to say, 

when . Hence, the smallest m turns out to be .

2.3 Subgroups
CYU 2.12 We already know that  is a subgroup of Z. To show that it is a subgroup of  we 

need but observe that :    

CYU 2.13

CYU 2.14 We show that  by demonstrating that every ele-

ment of  is a multiple of 3:

          

Claim: : . Fine, but can we pick up other ele-

ments of  by taking additional multiples of 4? No: 

The division algorithm assures us that  for any , with
. From the above we know that  and  are in , and

surely . The only possible loose end is . Let’s tie it up:
 

1   2   3   4   

2   3   4   1   

3   4   1   3   

4   1   2   3   

1   2   3   4    
 
 
 
 
 
 

2

3

4

e

 has order 4

1 4  4=

2 4  4+244 8  = =

3 4  8+244 12= =

4 4  12+244 16= =

5 4  16+244 20= =

6 4  20+244 0: 4 has order 6= =

(b)

gcd a n  d=
ma kn= k

ma kn m kn
a

------
k

n
d
--- 
 

a
d
---

-----------= = = (*)

gcd a n  d=
n
d
--- a

d
--- a

d
--- k

m kn
a
------=

k a
d
---= kn

a
------

a
d
--- n

a
---------- n

d
---= =

6Z 3Z

6Z 3Z n 6Z n 6m for m Z=

n 3 2m  n 3Z=

h1k1 h2k2= h2
1– h1 k2k1

1–
h2

1– h1 e h1 h2= =

k2k1
1– e k1 k2= =




=

both in H and K --so

3  Z8 0 1 2 3 4 5 6 7       = =

Z8

1 3 3  2 3 3 +83 6   3 3 3 +83 +83 1   4 3 3 +83 +83 +83 4= = = = = = =

5 3 3 +83 +83 +83 +83 7   6 3 2   7 3 5   8 3 0= = = = =

4  0 4 = 1 4 4   2 4 4 +84 0= = =

Z8

n q4 r+= n Z
0 r 4 1 4 2 4 0 4 

0 4 0 4  3 4
3 4 4 +84  +84 0 +84 4= = =
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CYU 2.15 A direct consequence of CYU 2.11(c), page 57. 

CYU 2.16 : Let S be the intersection of all subgroups of G that containing A. Since
 is a subgroup of G containing A that is contained in every subgroup of G that

contains A: . 

CYU 2.17  We show that  by observing that every element in

 can be expressed a a product of the permutations  (details omitted):

,   ,   ,   ,   ,   

2.4 Homomorphisms and Isomorphisms

CYU 2.18 Let  be given by . Since for every , 
,  is a homomorphism.

CYU 2.19 For  we have: 

CYU 2.20 Homomorphism:

 

.

CYU 2.21 We are to show that for any , . Let’s do it:

ii  i 
A 

S A =

2 3  S3=

S3 e
1   2   3
1   2   3 
  ,  1

1   2   3
2   3   1 
  ,  2

1   2   3
3   1   2 
  3

1   2   3
1   3   2 
  ,  4

1   2   3
3   2   1 
  ,  5

1   2   3
2   1   3 
 ======

 
 
 

=

2 3

e 3
2= 1 2

2= 2 2= 3 3= 4 23= 5 32=

: G G  a  e= a b G
 ab  e ee  a  b = = = 

a b G

  ab    ab     a  b     a    b  = = =

  a     b  =

 2n1 2n2+   2 n1 n2+   8 n1 n2+  8n1 8n2+  2n1   2n1 += = = =

Ker   2n  2n  0=  2n 8n 0=  0 = = =

Im    2n   8n  8Z= = =

a b G  a   b  a b= =

 a   b   ca   cb   c  a =  c  b = =

 c   c  b   a   1–=

 c   c  b  a 1– =

 c   cba 1–  c cba 1–= =

c 1– c c 1– cba 1–=

e ba 1– a b= =
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CYU 2.22 (a) We show that the relation  given by  if  is isomorphic to  is an
equivalence relation:

Reflexive  since the identity map  is clearly an isomorphism.

Symmetric : Let  be an isomorphism. Theorem 1.1(a),
page 5, assures us that the map  is a bijection. We show that it is also a
homomorphism:

For   since

let  be such that  and . Since :

.

Transitive : Follows from Theorem 1.2(c),

page 7, and CYU 2.19.

         (b) We show that the map  given by  is an isomorphism:

One-to one: 

Onto: For given : .
   Homomorphism:

 

(c) Let . The map  is a bijection: 

One-to one: 

Onto: For , 

   Homomorphism: 

CYU 2.23 We show that  given by  is an isomorphism:
One-to-one: 

Onto: For , .

Homomorphism: .

CYU 2.24 Let  be an isomorphism. For  let  be such that
 and . Then:

 

 G G G G

G G I g  g=

G G G G : G G
 1– : G G

a b G  1– ab   1– a   1– b  =

a b G  a  a=  b  b=  ab  ab=

 1– ab  ab  1– a   1– b  = =

G1 G2 and G2 G3 G1 G3

: nZ mZ  nz  mz=

 nz   nz = mz mz= z z=

mz mZ  nz  mz=

 nz nz+   n z z+   m z z+  mz mz+  nz   nz += = = =

g G ig: G G

ig a  ig b = gag 1– gbg 1–= g 1– gag 1– g g 1– gbg 1– g a b= =

a G ig g 1– ag  g g 1– ag g 1– a= =

ig ab  gabg 1– gag 1–  gbg 1–  ig a ig b = = =

: a  Z  an  n=
 an   am  n m an am= = =

n Z  an  n=

 anam   an m+  n m+  an   am += = =

: G G a b G a b G
 a  a=  b  b=

ab  a  b   ab   ba   b  a  ba= = = = =
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2.5 Symmetric Groups

CYU 2.25 (a) For  we have:

  is a cycle.
Picking the first element not moved by the above cycle; namely 2, we have:

 

Since the elements not contained in either of the above two cycles are stationary under :

(b) One possible answer: .
 

CYU 2.26 For  we have:

, , 

,  

CYU 2.27 (a) Following the construction above Theorem 2.32 we have:

 

(b) 

(c) Since , 

CYU 2.28 (a) Since  for every , e can be expressed as a product of 0 transposi-
tions, and 0 is certainly an even number.

 (In the event that , you also have: ) 

(b) Since , the 

transposition is even.

CYU 2.29 As you can easily check,  are even and the rest are odd. Consequently:

 1 2 3 4 5 6 7 8 9 10

3 9 4 1 5 6 2 7 8 10 
 
 

=

 1  3 2 1   3  4 3 1   4  1 1 3 4  = = = = =

 2  9 2 2   9  8 3 2   8  7 4 2   7  2 2 9 8 7   = = = = = = =
a cycle


 1 3 4   2 9 8 7   =

1 2  3 4  5 6 7 8 9    

 1 2 3 4 5 6 7 8

3 8 6 7 4 1 5 2 
 
 

=

2 1 2 3 4 5 6 7 8

6 2 1 5 7 3 4 8 
 
 

= 3 1 2 3 4 5 6 7 8

1 8 3 4 5 6 7 2 
 
 

= 4 1 2 3 4 5 6 7 8

3 2 6 7 4 1 5 8 
 
 

=

5 1 2 3 4 5 6 7 8

6 8 1 5 7 3 4 2 
 
 

= 6 1 2 3 4 5 6 7 8

1 2 3 4 5 6 7 8 
 
 

=
Since 6 is the smallest n for

which n e, o(  6= =

3 2 5 1    3 1  3 5  3 2 =

1 2 3 4 5 6 7 8 9 10

2 4 3 1 10 5 9 6 7 8 
 
 

1 2 4   5 10 8 6    7 9 =

1 4  1 2  5 6  5 8  5 10  7 9 =

i j  i j  i j = i j  1– i j =

e i  i= 1 i n 

n 1 e 1 2  1 2 =

1 2 3 4 5 6 7 8 9 10

2 4 3 1 10 5 9 6 7 8 
 
 

1 4  1 2  5 6  5 8  5 10  7 9 =

e 1 2 

A3 e 1 2    =
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2.6 Normal Subgroups and Factor Groups
CYU 2.30 We show that the function  given by  is a bijection:

One-to-one: . 

Onto: For , 

CYU 2.31 Consider the homomorphism  given by:

  and 

While  is normal in ,   fails to be a normal sub-

group of  (see Example 2.10).

CYU 2.32 (a) Follows from CYU 2.31.

(b) Let  and let  (actually every subgroup of G is normal). We show 
that :

Let . Since , there exists m such that , We then have:

The above argument shows that . Clearly: .

CYU 2.33 Since, for any ,  for every :

 

Since for any , :

CYU 2.34 We first show that the function  given by: 

 is a homomorphism by considering four cases:

If  and  are even, then so is , and we have: 

If  and  are odd, then  is even, and we have: 

If  is even and  is odd, then  is odd, and we have: 

If  is odd and  is even, then  is odd, and we have: 

Since 1 is the identity in the group , . Invoking the First Isomorphism 

Theorem, we have: .

CYU 2.35 Employing Theorem 2.42 to the homomorphism   we have: . 
Restricting  to the group N we arrive at a homomorphism . In this setting, 

Theorem 2.42 tels us that . Consequently: 

f: H aH f h  ah=

f h1  f h2  ah1 ah2 h1 h2= = =

Theorem 2.10, page 56

ah aH f h  ah=

: Z2 +2  S3

 0  1 2 3

1 2 3 
 
 

=  1  1 2 3

1 3 2 
 
 

=

Z2 Z2  Z2  1 2 3

1 2 3 
 
  1 2 3

1 3 2 
 
 


 
 
 

=

S3

G a = 

N G
G N aN =

gN G N g a  g am=

gN amN aNaNaN aN m gN aN = = =
m times

G N aN  aN  G N

a G ag ga= g G
Z G  a G ag ga g G=  G= =

a b G aba 1– b 1– aa 1– bb 1– e= =

C G  aba 1– b 1– a b G  e  e = = =

: Sn 1 1– 

  
1 if  is an even permutation

1 if  is an odd permutation–



=

      1 1 1     = = =

      1 1–  1–      = = =

      1– 1  1–      = = =

      1– 1–  1      = = =

1 1–  Ker   An=

G Sn An

: G G G G K
 N: N N

N N K G N G K  N K 
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2.7 Direct Products
CYU 2.36 (a) Associativity: 

For :

Identity: Letting  denote the identity in  we have:

Inverses: 

(b) If each  is abelian, then: 

Conversely, assume that not all of the  are abelian. For definiteness, assume that  is not

abelian, with . We then have:

CYU 2.37 Noting that 3 has order 2 in  and is of order 4 in , and that 4 has order 4 in , we 

conclude that  has order  in .

CYU 2.38 Using Induction on s we show that if  are relatively prime, then the group

 is cyclic and isomorphic to :

I. True if , by Theorem 2.44.

II. Assume True for ; i.e:  is cyclic and isomorphic to .

III. We establish validity for ; i.e, that

                     is cyclic and isomorphic to : 

  

In the event that  are not relatively prime,  is not iso-

morphic to  since no element in  has order .

a1 a2  an    b1 b2  bn    c1 c2  cn    G1 G2
 Gn 

a1 a2  an    b1 b2  bn     c1 c2  cn    a1b1 c1 a2b2 c2  anbn cn  =

a1 b1c1  a2 b2c2   an bncn   =

a1 a2  an    b1 b2  bn    c1 c2  cn    =

ei Gi

a1 a2  an    e1 e2  en    a1e1 a2e2  anen    a1 a2  an   =

a1 a2  an    a1
1– a2

1–  an
1–    e1 e2  en   =

Gi

a1 a2  an    b1 b2  bn    a1b1 a2b2  anbn   =

b1a1 b2a2  bnan    b1 b2  bn    a1 a2  an   = =

Gi G1

ab ba
a e2  en    b e2  en    ab e2  en   =

ba e2  en    b e2  en    a e2  en   =

Z6 Z4 16

3 3 4   lcm 2 4 4   4= Z30

n1 n2  ns  

Zn1
Zn2

  Zns
 Zn1n2

ns

s 2=

s k= Zn1
Zn2

  Znk
 Zn1n2

nk

s k 1+=

Zn1
Zn2

  Znk
 Znk 1+

 Zn1n2
nknk 1+

Zn1
Zn2

  Znk
 Znk 1+

 Zn1
Zn2

  Znk
  Znk 1+



by II: Zn1n2
nk

Znk 1+
 (with Zn1n2

nk
 cyclic)

by I: Z n1n2
nk nk 1+

Zn1n2
nknk 1+

 
note that the two number  n1n2

nk  and nk 1+  are relatively prime

n1 n2  ns   Zn1
Zn2

  Zns


Zn1n2
ns

Zn1
Zn2

  Zns
 n1n2ns
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CYU 2.39 We are given that  with every  having a unique representation of the

form . Suppose that , with . But  is also a representation

of a, where  and . It follows, from the unique representation condition,

that . Similarly, since : . Consequently: .

CYU 2.40   has an element of order 8 while  does not.

PART 3
From Rings To Fields

3.1 Definitions and Examples

CYU 3.1 (a) Since  is not an abelian group, it cannot be turned into a ring by
imposing any additional operator “*”.

(b) Let  be an abelian group. By defining  for every , we
arrive at a ring .

CYU 3.2 We already know that  is an abelian group (Example 2.4, page 62). In addition,

 is closed under multiplication: . Moreover, since the associa-
tive and distributive properties hold for all in integers, they will surely hold for the inte-
gers in .

CYU 3.3 Using induction we first show that  for :

I.  for .

II. Assume  for given 

III. We show  (A similar argument can be used to show that

                                                                                              ):

    In the event that  we have:

G HK= a G
hk a H K a hk= a ae=

a H e K
k e= a ea= h e= a e=

G3 G6

S3 S3  =

G +  a*b 0= a b G
G + *  

nZ + 
nZ na  nb  n anb =

nZ

n ab  na b a nb = = n 0

n ab  na b a nb = = n 0=

k ab  ka b a kb = = k 0

k 1+  ab  a k 1+ b =
k 1+ a b a k 1+ b =

k 1+  ab  k ab  ab+ a kb  ab+ a kb b+  a k 1+ b= = = =
by II

n 0
n ab  a nb  n ab  – a nb  – n ab –  a nb– = = =

by Theorem 3.1(b) n– 0
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CYU 3.4 (a) We first verify that the nonempty set  satisfies the three prop-
erties of Definition 2.1, page 41:

1. 

2.  For every :  

3.  For given : 

Moreover, the group  is abelian:

 

Properties 2 and 3 of Definition 3.1 are also satisfied:

2.

3.  

         In a similar fashion one can show that: 

M2 2 M2 2 + =

a1 b1

c1 d1

a2 b2

c2 d2

a3 b3

c3 d3

+
 
 
 
 

+
a1 b1

c1 d1

a2 a3+   b2 b3+

c2 c3+   d2 d3+
+

a1 a2 a3+ +   b1 b2 b3+ +

c1 c2 c3+ +   d1 d2 d3+ +
= =

a1 a2+  a3+   b1 b2+  b3+

c1 c2+  c3+   d1 d2+  d3+
=

a1 b1

c1 d1

a2 b2

c2 d2

+
 
 
 
  a3 b3

c3 d3

+=

a b

c d
M2 2 a b

c d

0 0

0 0
+ a 0+ b 0+

c 0+ d 0+

a b

c d
= =

a b

c d
M2 2 a b

c d

a– b–

c– d–
+ a a– b b–

c c– d d–

0 0

0 0
= =

M2 2 + 

a1 b1

c1 d1

a2 b2

c2 d2

+
a1 a2+   b1 b2+

c1 c2+   d1 d2+

a2 a1+   b2 b1+

c2 c1+   d2 d1+

a2 b2

c2 d2

a1 b1

c1 d1

+= = =

a1 b1

c1 d1

a2 b2

c2 d2

a3 b3

c3 d3 
 
 
  a1 b1

c1 d1

a2a3 b2c3+   a2b3 b2d3+

c2a3 d2c3+   c2b3 d2d3+ 
 
 
 

=

a1 a2a3 b2c3+  b1 c2a3 d2c3+ +     a1 a2b3 b2d3+  b1 c2b3 d2d3+ +

c1 a2a3 b2c3+  d1 c2a3 d2c3+ +     c1 a2b3 b2d3+  d1 c2b3 d2d3+ +
=

a1a2 b1c2+ a3 a1b2 b1d2+ c3+    a1a2 b1c2+ b3 a1b2 b1d2+ d3+

c1a2 d1c2+ a3 c1b2 d1d2+ c3+ c1a2 d1c2+ b3 c1b2 d1d2+ d3+
=

a1 b1

c1 d1

a2 b2

c2 d2 
 
 
  a3 b3

c3 d3

=

a1 b1

c1 d1

a2 b2

c2 d2

a3 b3

c3 d3

+
 
 
 
  a1 b1

c1 d1

a2 a3+   b2 b3+

c2 c3+   d2 d3+
=

a1 a2 a3+  b1 c2 c3+ +   a1 b2 b3+  b1 d2 d3+ +

c1 a2 a3+  d1 c2 c3+ +   c1 b2 b3+  d1 d2 d3+ +
=

a1a2 b1c2+  a1a3 b1c3+ +    a1b2 b1d2+  a1b3 b1d3+ +

c1a2 d1c
2

+  c1a3 d1c3+ +    c1b2 d1d2+  c1b3 d1d3+ +
=

a1 b1

c1 d1

a2 b2

c2 d2

a1 b1

c1 d1

a3 b3

c3 d3

+=

a1 b1

c1 d1

a2 b2

c2 d2

+
 
 
 
  a3 b3

c3 d3

a1 b1

c1 d1

a3 b3

c3 d3

a2 b2

c2 d2

a3 b3

c3 d3

+=
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It is easy to show that  is the unity in :

 

(b) If  and  are unities in a ring R, then: 

CYU 3.5 Does there exist  such that ? 

                     If so, then:  and , or:  and , or:

 !

CYU 3.6 (a) Challenging each element in  we find that, apart from 1,
only 5 has a multiplicative inverses:   

(b) If m and n are relatively prime then, by Theorem 1.7, page 23:  for
some integers s and t. It follows that  which says that sm is congruent
to 1 modulo n, and that m is a unit.

If . Then, by Theorem 1.6, page 22:  for some
integers s and t. It follows that  which shows that 1 is not congruent
to sm modulo n (it is congruent to d modulo n, with  ). It follows that m is
not a unit.

CYU 3.7 Expressing Exercise 38 (page 70) in additive form we have:

           A (nonempty) subset S of a group G is a subgroup of G if and only if .

                 It follows that property (i) of Theorem 3.2:  is a subgroup of 

                                                   can be replace d with: .

CYU 3.8 Employing CYU 3.7:

(a)  and .

(b) Let . Since : .

Since : 

multiplying
mod 6

2 3 4 5

2 4 0 2 4

3 5 3 0 3

4 2 0 4 2

5 4 3 2 1 Ah! 

1 0

0 1
M2 2

1 0

0 1

a b

c d

a b

c d

1 0

0 1

a b

c d
= =

1 1 1 1  1  1= =

a b

c d

a b

c d

2 3

4– 6–

2a 4b–   3a 6b–

2c 4d–   3c 6d–

1 0

0 1
= =

2a 4b– 1= 3a 6b– 0= a 1 4b+
2

---------------= a 2b=

1 4b+
2

--------------- 2b 1 4b+ 4b 1 0= = =

Z6 0 1 2 3 4 5     =

5 5 1=

1 sm tn+=
sm 1 tn–=

gcd m n  d 1= d sm tn+=
sm d tn–=

1 d n

s s S s s S–

S, +   R, +  

s s S ss 1– S

0 0

a b

0 0

c d
– 0 0

a c– b d–
H= 0 0

a b

0 0

c d

0 0

bc bd
H=

x y Sa a x y–  ax ay– 0 0– 0= = = x y Sa–

a xy  ax y 0y 0= = = xy Sa
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 3.2 Homomorphisms, and Quotient Rings
CYU 3.9 (a)  Let . To say that  and  are contained in  is to say

that  and  are contained in ; and they are:

 

(since  is a subring of )

(b) Assume there exists an isomorphism . If so, then:

  and 

This implies that  or that . Since 
can’t be zero (if it were, then  would map everything to zero),   must equal
3 — a contradiction since .

 
CYU 3.10 (a) We already know that  is a subring of Z [Example 3.4(a), page 117]. It is

an ideal since, for any  and : .
The converse follows from the fact that all subgroups of Z are of the form 
(Exercise 35, page 70).

(b) We already know that  is a subring of  [Theorem 3.4(a)]. It is an ideal:

For , choose  such that . Then, for any  we have:

      

CYU 3.11 Theorem 2.23(d), page 73, assures us that  is an additive subgroup of R.
As for the second part of Definition 3.6: 

Let  and . To show that  we need but verify that
. Easy enough. Since  and since  is an ideal in :

 
A similar argument can be used to show that .

As , . Noting that the function  given by  is an

onto homomorphism with kernel K, we have: .

CYU 3.12 For , let: 

(1) .  So: .                                               

(2) . So: .    

(3) . So .

                                        We compete the proof by showing that :

a b  1– H  a b– ab  1– H 
 a b–   ab   1– H 

 a b–   a   b  H  and   ab –  a  b  H= =

H G
: 3Z 5Z

 9   3 3   3  3 = =  9   3 3 3+ +  3 3 = =

 3  3  3 3 =  3  3–  3  0=  3 
  3 

3 5Z

I nZ=
m Z ns nZ m ns  n ms  nZ=

nZ

 I  R
x R x R  x  x=  a   I 
x a   x  a   xa   I  and  a x  a  x   ax   I = == =

since I is an ideal

I  1– I =

i I r R ri I
 ri  I  i  I I R

 ri   r  i  I=
ir I

0 I K I I: I I I i   i =

I K I

a b Z
a qan ra+=  or ra a qan  where 0 ra n–=  a  ra=

b qbn rb+=  or rb b qbn  where 0 rb n–=  b  rb=

ab qn r+=  or r ab qn  where 0 r n–=  ab  r=

r rarb– 0  mod n

r rarb– ab qn–  rarb– ab qn– a qan–  b qbn– –= =

ab qn– ab bqan– aqbn qanqbn+– –=

qn– bqan aqbn qanqbn–+ +=

q– bqa aqb qanqb+ + + n=

3                                      1 and 2
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3.3 Integral Domains and Fields
CYU 3.13 (a)   is a commutative with unity 1. It is easy to see that it has no

zero divisors and that every nonzero element has a multiplicative inverse:

 

Conclusion:  is a field.

(b)  is a commutative ring with unity1. It fails to be an inte-

gral domain as it has zero divisors ( ).

CYU 3.14 (a) Let R be a commutative ring with unity in which the cancellation property holds.
We show that R has no zero divisors (i.e, that R is an integral domain): 

Let . Since : . “Canceling the a,” we have .
On the other hand, if R is an integral domain then, by its very definition, it has no
zero divisors.

(b) .

CYU 3.15 By CYU 3.6(b), page 116, every nonzero element in  is a

unit. It follows that  is an integral domain, and therefore a field (Theorem 3.12).

CYU 3.16 (a) Consider the factored form . Clearly  is a
solution. Not quite as clear is that  is also a solution, as . From the
discussion preceding this CYU we know that there are five pairs of numbers in

 (not involving 0) whose product equals

0 (in )— specifically:  and . The plan, now,

is to find those elements x in  for which the product  turns out to
involve any or the above five pairs. A direct calculation shows that 6 and 7 are the
only winners:

Conclusion: 3, 10, 6, and 7 are the solutions of  in .

(b) In  the equation  is

seen to have solutions 3 and 6 (since ). Here are the only pairs (not
involving 0) with product equal to 0 (in ):  and . A direct calcula-

tion shows that for no x in  does the product  involve either

 or . For example, if , then  involves the pair
.

Conclusion: 3 and 6 are the solutions of  in .

Z5 0 1 2 3 4    =

1 1 1   2 3 3 2 1   4 4 1= = = =

Z5

Z15 0 1 2  14    =

3 5 0=

ab 0= a0 0= ab a0= b 0=

fa x  fa y = ax ay x y= =

Zp 0 1 2  p 1–    =

Zp

x2 x– 6– x 3–  x 2+  0= = x 3=
10 10 2+ 0=

Z12 0 1 2 3 4 5 6 7 8 9 10 11           =

Z12 2 6  3 4  8 3  9 4    10 6 
Z12 x 3–  x 2+ 

For x 6: x 3–  x 2+  6 3–  6 2+  3 8= = =

For x 7: x 3–  x 2+  7 3–  7 2+  4 9= = =

x2 x– 6– 0= Z12

Z8 0 1 2 3 4 5 6 7       = x2 x– 6– x 3–  x 2+  0= =

6 2+ 0=
Z8 2 4  4 6 

Z8 x 3–  x 2+ 
2 4  4 6  x 5= x 3–  x 2+ 
2 7 

x2 x– 6– 0= Z8



                                                                                                                                                   CYU SOLUTIONS    A-21
CYU 3.17 We first acknowledge the fact that the ring  is infinite, for it contains the infinite

set of polynomials . As the coefficients of any polynomial  in 

are elements in ,  for every . Moreover, for no 

is it true that , where  is the constant polynomial 1. It follows that
 has characteristic n.

CYU 3.18 Expanding  we find that  . Since the given
domain D had characteristic 3, the terms  and  are zero. Consequently:

.

CYU 3.19 (a) If  is not a maximal ideal, then  for some  [see CYU 3.10(a),
page 124]. Consequently  for some  — contradicting the given
condition that p is prime.

(b) Assume that   is a maximal ideal. If m is not prime, then  with
neither a nor b equal to 1. But then:

Contradicting the given condition that  is a maximal ideal in Z.

So, every maximal ideal in Z is of the form  for p
prime. As such, it is a prime ideal, for:
 

Conversely, assume that  is a prime ideal in Z. If m is not prime, then 
with neither a nor b equal to 1. But then I is not a prime ideal, since   with
neither a nor b contained in . So:

 

PZn
x 

xn n 1=
 p x  PZn

x 

Zn np x  0= p x  PZn
x  0 m n 

np x  0= p x 
PZn

x 

a b+ 3 a b+ 3 a3 3a2b 3ab2 b3+ + +=
3a2b 3ab2

a b+ 3 a3 b3+=

pZ pZ nZ n 1
p nm= m Z

I mZ= m ab=

mZ aZ Z
1 aZmk aZ k Z since mk a bk =

mZ

pZ

ab pZ p ab p a or b b a pZ or b pZ
Theorem 1.9, page 24

I mZ= m ab=
ab mZ

mZ

I mZ prime= m prime I mZ maximal=

(a)
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 1

APPENDIX B
We offer Professor Goldberg’s proof that the groups  and K appear-

ing in Figure 2.1, page 43, are the only groups of order 4.

PROPOSITION: Let S be a group of order 4, with identity e.
Then, for every , there exists a positive integer d so that:

• ;

• , for any positive integer k smaller than d; and

•
PROOF: Choose an arbitrary element a of S. Consider the fol-
lowing elements of S: . Since S has 4 elements, by
an elementary application of the pigeonhole principle, either:

case 1.   and/or

case 2. , some integers , .
In either case (using inverses for case 2), we obtain that

 for some integer : 

             for case 1, ; for case 2 .

Hence the set  is not empty. Let d be the
minimum of this set. From the above, .

To finish the proof of the Proposition, it remains to show that
d cannot be 3:

 If , the elements are distinct. Since S is
of order 4,  with . So,

. By closure, . But note that:

 , since , impossible;
 , since , impossible;
 , since , impossible;

, since  (using that ),
impossible.

Hence S contains at least 5 distinct elements, contradicting
that it has order 4. So d cannot be 3.                                                                                                                                                                

Using the above Proposition, it is easy to classify groups of order 4. By 
the Proposition, there are 2 cases:

case 1.  with , or

case 2. , .

In Case 1, we have  and   Up to “renaming”, 

S is . In Case 2, pick an element  with . Next, pick an ele-

ment  with . Since we are in Case 2, , and 

. Multiplying on the left by a and on the right by b 

we obtain . Hence,  (it is easy to see that ab 
does not equal e, a, or b), each element is of order 2, and S is commuta-
tive. 

Z4

a S
ad e=

ak e
d 1 2  or  4. =

e a a2 a3  

ai e  i 1 2 3 or 4  = =

ai aj= i j 1 j i 4

ak e= k 1 2 3 4   
k i= k i j–=

k Z+ ak e= 
1 d 4 

d 3= e a a2 
b S b e a a2  

e a a2 b    S= ab S
ab b ab b a e= =
ab a2 ab a2 b a= =
ab a ab a b e= =
ab e ab e a2 ab  a2= = a3 e=

a S a e a2 e a3 e  and a4 e
a S a2 e=

S e a a2 a3   = a4 e=

Z4 a S a e

b e b a a2 b2 e= =

e ab 2 abab= =

ab ba= S e a b ab   =
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DETERMINANTS
We define a function that assigns to each square matrix a (real) num-

ber:   

The above definition defines the determinant of a matrix by an expan-
sion process involving the first row of the given matrix. The following
theorem (proof omitted), known as the Laplace Expansion Theorem,
enables one to expand along any row or column of the matrix. 

        

PROOF: By induction on the dimension, n, of . 

I. Holds for : .

n n

jthcolumn

1
strow

out

ou
t

a

resulting in a
square matrix 
of dimension

n 1–

 DETERMINANT 
For :

For , with , let  denote the

 matrix obtained by deleting
the first row and  column of the matrix A (see
margin). Then:

 

A a b

c d
=

det a b

c d
ad bc–=

A Mn n n 2 A1j

n 1–  n 1– 
jth

det A  1– 1 j+

j 1=

n

 a1j det A1j =

Note that the sign of the

 has an alternat-
ing checkerboard pattern

1– i j+

+       +       +      +

+       +      +       +

+      +        +      +

+      +        +      +

_       _       _       _

_       _       _       _

_       _       _       _

_       _       _       _

_       _       _       _

_       _       _       _

_       _       _       _

_       _       _       _

+       +       +      +

+      +        +      +

+      +        +      +

+      +        +      +

THEOREM 1

EXPANDING ALONG 

THE  ROW

EXPANDING ALONG 

THE  COLUMN

For given ,  will denote the

 submatrix of A obtained
by deleting the  row and  column of A.
We then have:

and:

THEOREM 2 The determinant of the identity matrix
 is 1.

ith

jth

A Mn n Aij

n 1–  n 1– 
ith jth

det A  1– i j+

j 1=

n

 aij det Aij =

det A  1– i j+

i 1=

n

 aij det Aij =

In Mn n

Mn n

n 2= det 1 0

0 1
1=
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II. Assume claim holds for : 

III. We establish validity at : 

 Expanding across the first row of  (see margin) we have:

  

PROOF: By induction on the dimension of the matrix A. For : 

Assume the claim holds for matrices of dimension  (the induc-
tion hypothesis).
Let  be a matrix of dimension , and let 

denote the matrix obtained by interchanging rows p and q of A. Let i be
the index of a row other than p and q. Expanding about row i we have:

Since rows p and q were switched to go from A to B, row i of B still
equals that of A, and therefore: . Since  is the matrix 
with two of its rows interchanged, and since those matrices are of
dimension k, we have:  (the induction hypothesis). 

Consequently: 

1 0 0 0 0

0 1 0 0 0

0 0 1 0 0

0 0 0 1 0

0 0 0 0 1

Ik

Ik 1+

THEOREM 3 If two rows of  are interchanged,
then the determinant of the resulting matrix is

.

n k= det Ik  1=

n k 1+= det Ik 1+  1=

Ik 1+

det Ik 1+  det Ik  1= =

A Mn n

det A –

n 2=

det a b

c d
ad bc    and   det c d

a b
– cb da–= =

negative of each other

k 2

A aij = k 1+ B bij =

det A  1– i j+ aij

j 1=

k 1+

= det Aij      and  det B 1– i j+ bij

j 1=

k 1+

= det Bij 

bij aij= Bij Aij

detBij detAij–=

det B  1– i j+ bij

j 1=

k 1+

= det Bij  1– i j+ aij det Aij – 

j 1=

k 1+

=

1– i j+ aij

j 1=

k 1+

 det Aij – det A –= =
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Appendix C
Answers to Selected Exercises

Part 1
Preliminaries

1.1 Functions.
1. U         3.          5. B       7. D        9. U         11.          13. F         15. D

17.          19. E         27. One-to-one and onto     
29. Not one-to-one, not onto               31. One-to-one not onto          33. Not one-to-one, not onto
35. One-to-one and onto           37. Not one-to-one, not onto         39. Not one-to-one, not onto

41.          43.          45. 

47.          49. 

1.2 Principle of Mathematical Induction.
Each exercise calls for a verification or proof.

1.3 The Division Algorithm and Beyond.

1.                         3.                  5. 5                 7. 60                  9. 90

1.4 Equivalence Relations.

23. Yes         25. No         27. Yes         29. No          31. Yes          33. Yes

43.             45.              47.  

15n n U  
1 3 5 7 9 11 13 15       

f 1– y  y 2+
3

------------= f 1– y  y
2 y–
-----------= f 1– a b  a

5
--- b 3– 
 =

f 1– a b

c d

c d–

a
b
2
---

= f 1– a b c  

a
2
---

1
2
--- s 2b– 

1
2
--- a– 2b 2c–+ 

=

q r 0= = q 27 r– 1= =

n  n 5k k Z+ = x  x x– = x0 y0   x0 y  y   =
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Part 2
Groups

2.1 Definitions and Examples.
1. A cyclic group with generator 2.             2. Not a group. It does not contain an identity.

3. Not a group. It does not contain an identity.      5. Not a group. It does not contain an identity.

7. Not a group. 1 is the identity, but 2 has no inverse.        9. Abelian group. Not cyclic.    

11.  Abelian group. Not cyclic.   

13. ,          15.           17. 

19. ,        21.        23. 

25.      27.      29. 

31.              33. 

35. An abelian non-cyclic group.               37. Not a group           39. A cyclic abelian group

2.2 Elementary Properties of Groups.
1.(a)      (b) a     (c)       (d) 

2.3 Subgroups.
1. Yes      3.  No      5.  Yes      7. No        9. Yes         11. Yes         13. No          15. Yes        17. No

19. Yes        21. Yes        23. Yes         25. No         27. Yes         29. No         31. Yes         33. Yes

2.4 Homomorphisms and Isomorphisms.
1. Yes            3.  No             5.  Yes             7. Yes                9. Yes             11. Yes             13. Yes 

3
2

e= 3
3 3= 1

n
e if n 0 mod 3
1 if n 1 mod 3

2 if n 2 mod 3





= 3
n– e if n is even

3 if n is odd



=

2
2 1= 2

3
e= 2

n
e if n 0 mod 3
2 if n 1 mod 3

1 if n 2 mod 3





= 2
n–

e if n 0 mod 3
1 if n 1 mod 3

2 if n 2 mod 3





=

 1 2 3 4 5 6

1 4 3 6 5 2 
 
 

=  1 2 3 4 5 6

5 6 3 4 1 2 
 
 

= 5  1– 1 2 3 4 5 6

6 1 2 3 4 5 
 
 

= =

101 5  1– 1 2 3 4 5 6

6 1 2 3 4 5 
 
 

= = = 101 5  1– 1 2 3 4 5 6

2 1 4 3 6 5 
 
 

= = =

e a 1– cb 1– aba 1–
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2.5 Symmetric Groups.

1.              3.      

5.          7. 

9.       11. 3        13. 4          15. 7       17.         19. 

2.6 Normal Subgroups and Factor Groups
1. No       3.  Yes  

2.7 Direct Products.
1. 36       3. 36       5. 36   

7. Order 1: ,   order 2: ,   order 3: , ,   order 4: , 

9. The element  has order 1. The remaining seven elements have order 2.

11.          

13. Here are the proper subgroups of , where  with :

15.        17.        19. 10       

2 5  1 3 4   2 5  1 4  1 3 = 1 5 2   1 2  1 5 =

2 5 6 4    2 4  2 6  2 5 = 1 6 3 4    2 5  1 4  1 3  1 6  2 5 =

1 2  3 4   1 2 4 5 3    =  1 3 4 2   =

0 0  1 0  0 1  0 2  1 1  1 2 

0 0 e  

0 0   0 0  0 1   0 2   

Z2 Z2 S2 S2 e  =  1 2

2 1 
 
 

=

0 0 e     0 0 e   1 0 e     0 0 e   0 1 e     0 0 e   0 0      
 0 0 e   1 1 e     0 0 e   0 1      0 0 e   1 0     0 0 e   1 1     

0 0 e   0 1 e   1 0    1 1       0 0 e   1 0 e   0 1    1 1      
0 0 e   0 0    1 1 e   1 1      

Z2 Z2 Z3 Z3

Z4 Z2 Z3

Z2 Z2 Z9

Z4 Z9

Z2 Z2 Z5 Z3 Z3

Z4 Z5 Z3 Z3

Z2 Z2 Z5 Z9

Z4 Z5 Z9
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Part 3
From Rings to Fields

3.1 Definitions and Examples.

1. Yes      3.  No      5.  Yes      7. Yes         9. Yes         11.  No           13. No         15. Yes

17.  No        19. Yes         21.           23.         25.   

27.  

3.2 Homomorphisms and Quotient Rings.

1. Yes      3.  No      5.  No          7. No        9. Yes      

19.   is the only  homomorphism from Z to  .

3.3 Integral Domains and Fields.

1. None         3.          5. None         7. 0         9. 6         11. 10

1 1– 1 2 3 4   1 1  1 1–  1 1–  1 1––   

1 1  1 2  1 4  1 5  1 7  1 8  5 1  5 2  5 4  5 5  5 7  5 8       

 n  n n = Z Z

0 2  0 3 



Index  I-1
A
Abelian Group, 43
Addition Modulo n, 42
Alternating Group, 88
Alternate Principle of Induction, 17
Automorphism, 76

B
Bijection, 4

C
Cardinality, 31
Cancellation Law 55
Cartesian Product, 2, 103
Cayley’s Theorem, 78
Center Subgroup, 96
Characteristic, 131
Commutative Ring, 111
Commutator Subgroup, 96
Composition, 3
Congruence Modulo n, 33
Cycle, 84

Decomposition, 84
Cyclic Group, 48

Generator, 48

D
Direct Product, 103

External, 103
Internal, 105

Division Algorithm, 21
Divisibility, 15
Domain, 2

E
Equivalence Class, 31
Equivalence Relation, 29
Even Integer, 15
Even Permutation, 88

F
Factor Group, 95
Field, 128

of Quotients, 133

Function, 2
Bijection, 4
Domain, 2
Composition, 3
Inverse, 5
One-to-One, 4
Onto, 4
Range, 2

Fundamental Theorem of 
Finitely Generated Abelian Groups, 107

Fundamental Counting Principle, 107

G
Generator, 48
Generated Subgroup, 65
Greatest Common Divisor, 22
Group, 41

Abelian, 43
Alternating, 88
Cyclic, 48
    Generator, 48
Factor, 95
Klein, 43
Order, 43
Symmetric, 84
Table, 43

H
Homomorphism (Group), 72

Image, 75
Kernel, 75

Homomorphism (Ring), 121

I
Ideal, 123

Maximal, 132
Prime, 132

Image, 75
Index of a subgroup, 93
Induction, 13
Integral Domain, 128
Inverse Function, 5
Isomorphism (Group), 75

Theorems, 98
First, 98
Second, 99
Third, 99

Isomorphism (Ring), 116
Theorems, 124

First, 124
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Second, 125
Third, 125

Inverse Function, 5

K
Kernel, 74
Klein Group, 43

L
Lagrange’s Theorem, 65
Least Common Multiple, 104

M
Mathematical Induction 13, 16
Maximal Ideal, 132

N
Normal Subgroup, 93

O
Odd Integer, 15
Odd permutation, 88
One-to-One, 4
Onto, 4
Order of an Element, 58
Order of a Group, 43
Order of a Permutation, 86

P
Partition, 32
Permutation, 46

Even, 88
Odd, 88

Prime number, 24
Prime Ideal, 132
Principle of Mathematical Induction, 13,16

Q
Quotient Group, 95
Quotient Field, 133

Quotient Ring, 123

R
Range, 2
Relation, 29

Equivalence, 29
Reflexive, 29
Symmetric, 29

Relatively Prime, 23
Ring, 111

characteristic, 131
Commutative, 113
With Unity, 113

S
Set, 1 

Complement, 1
Disjoint, 1
Equality, 1
Intersection, 1
Subset, 1

               Proper, 1
Union, 1

Subgroup, 62
Center, 96
Commutator, 96
Generated by a, 63
Generated by subsets, 65
Normal, 93

Subring, 116
Symmetric Group, 46,  84

T
Transposition, 85

U
Unit, 114
Unity, 113

W
Well Ordering Principle, 18

Z
Zero Divisor, 128
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	31. Use the Principle of Mathematical Induction to show that there are different ways of ordering n objects, where .
	32. What is wrong with the following “Proof” that any two positive integers are equal:
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	8.
	9.
	10.
	11. Let and , where the s are distinct primes and where and for all i. Let (the smaller of the two numbers), and (the larger of the two numbers). Prove that:
	12. Prove that if 3 does not divide n, then or for some .
	13. Let n be such that . Show that .
	14. Show that if n is not divisible by 3, then for some integer m.
	15. Show that an odd prime p divides if and only if p divides n.
	16. Prove that if for some n, then for some m.
	17. Show that if and only if .
	18. Prove that any two consecutive odd positive integers are relatively prime.
	19. Let a and b not both be zero. Prove that there exist integers s and t such that if and only if is a multiple of .
	20. Prove that the only three consecutive odd numbers that are prime are 3, 5, and 7.
	21. Show that a prime p divides if and only if p divides n.
	22. Prove that every odd prime p is of the form or of the form for some n.
	23. Prove that every prime is of the form or of the form for some n.
	24. Prove that every prime is of the form , , , or for some n.
	25. Prove that a prime p divides if and only if or .
	26. Prove that every prime of the form is also of the form .
	27. Prove that if n is a positive integer of the form , then n has a prime factor of this form as well.
	28. Prove that and are relatively prime if and only if no prime in the prime decomposition of a appears in the prime decomposition of b.
	29. Prove that if the integer satisfies the property that if , then or for every pair of integers a and b, then n is prime.
	30. Prove that is prime if and only if n is not divisible by any prime p with .
	31. There exists an integer n such that for some m.
	32. If for some m, then for some n.
	33. If m and n are odd integers, then either or is divisible by 4.
	34. For any a, and b not both 0, there exist a unique pair of integers s and t such that .
	35. For every n, .
	36. For every , .
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	50. , where.
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	54. If for , then .
	55. If for , then .
	56. Show that the relation if is an equivalence relation on for any set X. Suggestion: Consider Theorem 1.1, page 5.
	57. The union of any two equivalence relations on any given nonempty set X is again an equivalence relation on X.
	58. The intersection of any two equivalence relations on any given nonempty set X is again an equivalence relation on X.
	59. For , let and denote the set of equivalence classes associated with the equivalence relations if and if , respectively. If , then .
	60. If , then every integer is congruent modulo n to exactly one of the integers .
	61. If , if is an equivalence relation on .
	62. There exists an equivalence relation on the set for which each equivalence class contains an even number of elements.
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	Groups
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	THEOREM 2.3
	Figure 2.2
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	Figure 2.4
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	THEOREM 2.4
	Figure 2.6

	THEOREM 2.5

	EXAMPLE 2.1
	DEFINITION 2.4
	EXAMPLE 2.2
	THEOREM 2.6
	1. The set of even integers under addition.
	2. The set of odd integers under addition.
	3. The set of integers Z, with , where c is the smaller of the two integers a and b (the common value if ).
	4. The set of positive rational numbers, with .
	5. The set , with .
	6. The set under the operation of addition modulo 10.
	7. The set under multiplication modulo 4. (For example: , since ; and , since .)
	8. The set under multiplication modulo 5. (See Exercise 7.)
	9. The set under addition.
	10. The set under the usual multiplication of real numbers.
	11. The set , with .
	12. and
	13. and
	14. for .
	15. for .
	16. and
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	21. for .
	22. and
	23. for .
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	26.
	27.
	28.
	29.
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	31.
	32.
	33.
	34. Let . Show that with is a group. Is the group abelian? Cyclic?
	35. Is with a group? If so, is it abelian? Cyclic?
	36. Is with a group? If so, is it abelian? Cyclic?
	37. Is with a group? If so, is it abelian? Cyclic?
	38. Let along with the binary operator: . Is a group?
	39. Let along with the binary operator: . Is a group?
	40. Let . Show that with is a group. Is the group abelian? Cyclic?
	41. For , let denote the set of polynomials of degree less than or equal to n. Show that with is a group. Is the group abelian?
	42. Let . Show that with is a group. Is the group abelian?
	43. Let denote the set of rational numbers. Show that with is not a group.
	44. Let . Show that with is a group. Is the group abelian?
	45. Let . Show that the function given by is a bijection
	46. (a) Give an example of a group G in which the exponent law does not hold in a group G, for
	47. Let G be a group and . Show that if , then .
	48. Let a be an element in a group G. Show that if , then for ever .
	49. Let p and q be distinct primes numbers. Find the number of generators of .
	50. (a) Show that the group of Theorem 2.1 is cyclic for any .
	51. Let denote the set of all real-valued functions. For f and g in , let be given by . Show that is a group. Is the group abelian?
	52. Prove Theorem 2.2.
	53. Let G and be groups. Let with:
	54. Let X be a set and let be the set of all subsets of X. Is a group if:
	55. The set of real numbers under multiplication is a group
	56. The set of positive real numbers under multiplication.
	57. Let G be a group and . If , then .
	58. The group contains four elements such that and three elements such that .
	59. The group is abelian.
	60. Let G be a group and . If , then for every .
	61. Let G be a group and . If , then for every .
	62. The cyclic group has exactly two distinct generators.


	THEOREM 2.12
	DEFINITION 2.5
	EXAMPLE 2.3
	1. Let G be a group and . Solve for x, if:
	2. Let G be a group. Prove that for every .
	3. Prove that for any element a in a group G the functions given by and the function given by are bijections.
	4. Let a be an element of a group G. Show that
	5. Let G be a group and let . Show that if there exists one element for which , then .
	6. Let a be an element of a group G for which there exists such that . Prove that .
	7. Prove that a group G is abelian if and only if for every .
	8. Let G be group for which for every . Prove that G is abelian.
	9. Let G be group for which for every . Prove that G is abelian.
	10. Let G be a finite group consisting of an even number of elements. Show that there exists , , such that .
	11. Let G be a group. Show that if, for any , there exist three consecutive integers i such that then G is abelian.
	12. Let * be an associative operator on a set S. Assume that for any there exists such that , and an element such that . Show that is a group.
	13. Let G be a group and . Define a new operation * on G by for all . show that is a group.
	14. Let G be a group and . Use the Principle of Mathematical Induction to show that for any positive integer n: .
	15. Let a and b be elements of a group G. Show that if ab has finite order n, then ba also has order n.
	16. Let G be a cyclic group of order n. Show that if m is a positive integer, then G has an element of order m if and only if m divides n.
	17. Let G be a group. Show that for every element and for any : .
	18. Let G be a finite group, and . Prove that the elements have the same order.
	19. List the order of each element in the Symmetric group of Figure 2.6, page 47.
	20. Let be of order n. Prove that if and only if n divides .
	21. Prove that if for every element a in a group G, then G is abelian.
	22. Let * be an associative operator on a finite set S. Show that if both the left and right cancellation laws of Theorem 2.8 hold under *, then is a group.
	23. If are elements of a group such that , then .
	24. In any group G there exists exactly one element a such that .
	25. In any group G, .
	26. Let G be a group. If then .
	27. Let G be a group. If then .
	28. Let G be a group. If then .

	DEFINITION 2.6
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	DEFINITION 2.8
	1.
	2.
	3.
	4.
	5.
	6.
	7.
	8.
	9.
	10.
	11.
	12.
	13.
	14.
	15.
	16.
	17.
	18.
	19.
	20.
	21.
	22.
	23.
	24.
	25.
	26.
	27.
	28.
	29.
	30.
	31.
	32.
	33.
	34.
	35. Prove that all subgroups of Z are of the form .
	36. Find all subgroups of .
	37. Prove that if and G are the only subgroups of a group G, then G is cyclic of order p, for p prime.
	38. Show that a nonempty subset S of a group G is a subgroup of G if and only if
	39. Show that for any , is a subgroup of Z.
	40. Show that for any group G the set is a subgroup of G.
	41. Let G be an abelian group. Show that for any integer n, is a subgroup of G.
	42. Prove that the subset of elements of finite order in an abelian group G is a subgroup of G (called the torsion subgroup of G).
	43. Let G be a cyclic group of order n. Show that if m is a positive integer, then G has an element of order m if and only if m divides n.
	44. Let a be an element of a group G. The set of all elements of G which commute with a:
	45. Let H be a subgroup of a group G. The centralizer of H is the set of all elements of G that commute with every element of H: . Prove that is a subgroup of G.
	46. The center of a group G is the set of all elements in G that commute with ever element of G: .
	47. Show that Table C in Figure 2.4, page 45, can be derived from Table B by appropriately relabeling the letters e, a, b, c in B.
	48. Let H and K be subgroups of an abelian group G. Verify that is a subgroup of G.
	49. Let H and K be subgroups of a group G such that for every . Show that is a subgroup of G.
	50. Prove that H is a subgroup of a group G if and only if .
	51. Let H and K be subgroups of an abelian group G of orders n and m respectively. Show that if , then is a subgroup of G of order nm.
	52. (a) Prove that the group contains an infinite number of subgroups.
	53. Let S be a finite subset of a group G. Prove that S is a subgroup of G if and only if for every .
	54. (a) be subgroups of a group G. Show that is also a subgroup of G.
	55. If H and K are subgroups of a group G, then is also a subgroup of G.
	56. It is possible for a group G to be the union of two disjoint subgroups of G.
	57. In any group G, is a subgroup of G.
	58. In any abelian group G, is a subgroup of G.
	59. Let G be a group with . If and , then .
	60. If a group G has only a finite number of subgroups, the G must be finite.
	61. If H and K are subgroups of a group G, then is also a subgroup of G.
	62. In any group G, is a subgroup of G.
	63. No nontrivial group can be expressed as the union of two disjoint subgroups.
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	DEFINITION 2.10
	THEOREM 2.24
	THEOREM 2.25

	DEFINITION 2.11
	EXAMPLE 2.8
	THEOREM 2.26
	A rose by any other name
	THEOREM 2.27
	THEOREM 2.28
	1. and .
	2. and for .
	3. and .
	4. and where with .
	5. and if n is even and if n is odd.
	6. , and where with .
	7. and .
	8. , and ,
	9. with G abelian, and for .
	10. with G abelian, , and for .
	11. and .
	12. , and where with .
	13. and .
	14. and .
	15. and for .
	16. Exercise 1.
	17. Exercise 2.
	18. Exercise 3.
	19. Exercise 4.
	20. Exercise 5.
	21. Exercise 6.
	22. Exercise 7.
	23. Exercise 8.
	24. Exercise 9.
	25. Exercise10.
	26. Exercise 11.
	27. Exercise 12.
	28. Let denote the group of all real numbers under addition, and the group of all positive real numbers under multiplication. Show that the map given by is an isomorphism.
	29. Let be a homomorphism and let . Prove that for every .
	30. Let be a homomorphism and let . Show that the map given by is a homomorphism.
	31. Let be a homomorphism with finite. Show that is a divisor of .
	32. Let be a homomorphism. Prove that for all :
	33. Let be a homomorphism, Show that:
	34. Prove that a group G is abelian if and only if the function given by is a homomorphism.
	35. Let be cyclic and let be any group. Let be a homomorphism. Prove that is cyclic.
	36. Let be a homomorphism. Show that if , then for every .
	37. Let be groups. Show that if and are homomorphisms, then so is .
	38. Let be a homomorphism. Show that is abelian if and only if for all : .
	39. Let be a homomorphism. Prove that, for any given :
	40. Let be cyclic and let be any group. Prove that for any chosen there exists a unique homomorphism such that .
	41. Let be a homomorphism. Prove that, for any given :
	42. Let A, B, C, and D be groups. Show that if and , then (see Exercise 52, page 52).
	43. Let G and be groups. Show that (see Exercise 52, page 52).
	44. (a) Show that the set , with is a group.
	45. For , , let be given by .
	46. Let denote the additive group of real valued function (see Exercise 49, page 52), and let denote the additive group of real numbers. Prove that for any the function given by for is a homomorphism (called an evaluation homomorphism.)
	47. Let denote the set of differentiable functions from to .
	48. Let denote the set of continuous real valued functions.
	49. Show that for any , the function given by is a homomorphism. Is it necessarily an isomorphism?
	50. Let G be a group. Prove that is a group.
	51. — the order of a finite group G.
	52. G contains a nontrivial cyclic subgroup.
	53. G contains an element of order n for given .
	54. G contains m elements of order n for given .
	55. G contains a subgroup of order of order n for given .
	56. The number of elements in (see Definition 2.5, page 58).
	57. The number of elements in — the center of a finite group G. (See Exercise 45, page 70.)
	58. The additive group is isomorphic to the additive group Q of rational numbers)
	59. The additive group Z is isomorphic to the additive group Q of rational numbers)
	60. If is a homomorphism from a group G to a cyclic group , then is a cyclic subgroup of G.
	61. If is an isomorphism from a group G to a cyclic group , then is a cyclic subgroup of G.
	62. For the group of continuous real valued functions under addition the function given by is a homomorphism.
	63. If , and are not isomorphic.
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	12. 4
	13. 5
	14. 7
	15. 8
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	17.
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	19.
	20.
	21. Let a be an element of a group G. Show that the map given by is a permutation on the set G.
	22. Referring to Exercise 21, show that is a subgroup of (the group of all permutations on G).
	23. Prove that if are disjoint cycles in , then .
	24. Prove that there is no permutation such that .
	25. Prove that for any permutation and any transposition : is a transposition.
	26. Prove that if is a k-cycle, then is also a k-cycle for any permutation .
	27. Prove that there is a permutation such that .
	28. Prove that every k-cycle in has order k.
	29. Use induction to show that any cycle in can be expressed as a product of transpositions as follows:
	30. Show that if is a cycle of odd length, then is a cycle.
	31. List all the elements in the alternating group of degree 4: .
	32. Let H be a subgroup of . Prove that either all of the elements of H are even, or that exactly one-half the elements in H are even.
	33. Express the k-cycle as a product of transpositions.
	34. Let be transpositions with . Show that:
	35. Show that every even permutation , with , is a product of 3-cycles. Suggestion: consider Exercise 34.
	36. Let be a k-cycle. Show that if and only if for every transposition .
	37. The permutation equation has a solution.
	38. The transposition in can be expressed as a product of 3-cycles.
	39. The identity in cannot be expressed as a product of three transpositions.

	THEOREM 2.36
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	THEOREM 2.37
	THEOREM 2.38
	THEOREM 2.39
	THEOREM 2.40

	DEFINITION 2.15
	THEOREM 2.41
	THEOREM 2.42
	THEOREM 2.43

	EXAMPLE 2.11
	THEOREM 2.44
	THEOREM 2.45
	1.
	2.
	3.
	4.
	5. (a) Show that is an infinite cyclic group.
	6. Show that if and are normal subgroups of G, then is also normal in G.
	7. Let N be a normal subgroup of G and let H be any subgroup of G. Show that is a subgroup of G.
	8. Let G be abelian and let H be a subgroup of G. Show that is abelian.
	9. Let G be cyclic and let H be a subgroup of G. Show that is cyclic.
	10. Let be a collection of normal subgroup of G. Prove that is normal in G.
	11. Show that if there are exactly 2 left (or right) cosets of a subgroup H of a group G, then .
	12. Show that if a finite group G has exactly one subgroup H of a given order, then .
	13. Show that if H is a finite subgroup of G and if H is the only subgroup of G with order , then .
	14. Let n be the index of the normal subgroup N in G. Show that for every .
	15. Let G be a group containing at least one subgroup of order n. Show that the intersection of all subgroups of order n in G is normal in G. Hint: first show that if a group H if of order n, then show that is also a subgroup of order n for all .
	16. Show that the set of inner automorphisms of a group G is a normal subgroup of the group of all automorphisms of G. [see CYU 2.22(c), page 77]
	17. Let G be a group. Show that the set is a normal subgroup of G.
	18. Let N be a normal subgroup of G, and let be such that and . Show that .
	19. Let G be a finite group of even order with n elements, and let H be a subgroup with elements. Prove that H must be normal. Suggestion: Consider the map .
	20. Let H and K be normal subgroups of G with . Show that for all and .
	21. Let N be a normal subgroup of G such that is cyclic. Show that G is cyclic.
	22. Let G be a group. Show that any subgroup of is a normal subgroup of G.
	23. Let G be a group. show that is a subgroup of G (called the centralizer of a).
	24. Prove that the center of a group G is the intersection of all the centralizers in G; that is: (See Exercise 22).
	25. Show that if and only if . (See Exercise 22).
	26. Find both the center and the commutator subgroup of .
	27. Let be an onto homomorphism with kernel K. Prove and if is a subgroup of , and if , then .
	28. Verify that there is no subgroup of order 6 in the alternating group . (Note that ).
	29. Sow that if N is not a normal subgroup of G, then the coset operation is not well defined.
	30. Prove Theorem 2.44.
	31. Prove Theorem 2.45.
	32. If and if H is a subgroup of G, then .
	33. If and , then .
	34. If then either H or N must be normal in G.
	35. Le be a homomorphism. If , then .
	36. Le be a homomorphism. If , then .
	37. Le be an onto homomorphism. If , then .
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	13.
	14.
	15.
	16.
	17.
	18.
	19. Determine the number of elements of order 6 in .
	20. Determine the number of elements of order 7 in .
	21. Show that the Klein 4-group V (Figure 2.1, page 43) is isomorphic to .
	22. Show that .
	23. Show that .
	24. Use the Principle of Mathematica Induction to show that for finite groups :
	25. Let and be groups. Show that .
	26. Let and be groups. Show that (see Definition 2.15, page 96).
	27. Let and be groups. Show that and that:
	28. Let and . Show that and that:
	29. Let and be groups. Show that the order of is the leas common multiple of and .
	30. Prove that the order of an element in a direct product of a finite number of finite groups is the least common multiple of the orders of its components:
	31. Let G be a group and . Prove that
	32. Let be a direct product of groups. Show that the projection map given by is a homomorphism
	33. The groups and are isomorphic.
	34. The groups and are isomorphic.
	35. The groups and are isomorphic.
	36. Let G, H, K denote groups. If , then .
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	From Rings To Fields
	DEFINITION 3.1
	EXAMPLE 3.1
	THEOREM 3.1

	DEFINITION 3.2
	EXAMPLE 3.2
	DEFINITION 3.3
	EXAMPLE 3.3
	THEOREM 3.2
	THEOREM 3.3

	DEFINITION 3.4
	THEOREM 3.4

	EXAMPLE 3.4
	1. The set under standard addition and multiplication.
	2. The set of positive even integers under standard addition and multiplication.
	3. The set of nonnegative even integers under standard addition and multiplication.
	4. The set under standard addition and multiplication.
	5. The set under standard addition and multiplication.
	6. The set under standard addition and multiplication.
	7. The set under component addition and multiplication.
	8. The set under component standard addition and multiplication.
	9. The set under matrix addition and multiplication. (See Example 3.2.)
	10. The set under matrix addition and multiplication. (See Example 3.2.)
	11. The set under matrix addition and multiplication. (See Example 3.2)
	12. The set of polynomials, , with real coefficients, of degree less than or equal to 5, under standard polynomial addition and multiplications.
	13. , and .
	14. and .
	15. and .
	16. , and .
	17. and .
	18. and .
	19. and .
	20. and .
	21.
	22.
	23.
	24.
	25.
	26.
	27.
	28. Show that any abelian group can be turned into a ring by defining for every .
	29. Verify that for any (see Example 3.2):
	30. Let and be rings. Prove that is a ring.
	31. Let be a collection of rings. Prove that is a ring.
	32. Let be a collection of rings. Prove that is a ring.
	33. Let a and b be element in a ring R. Show that for any integer n and m.
	34. Describe all of the subrings of the ring of integer.
	35. Let the ring R be cyclic under addition. Prove that R is commutative.
	36. Let denote the set of all real-valued functions. For f and g in , let be given by and . Show that under these operation is a ring with unity.
	37. The center of a ring R is the set . Sow that the center of R is a subring of R.
	38. For a and element of a ring R, let . Show that is a subring of R containing a.
	39. Show that the center of a ring R is equal to . (See Exercises 36 and 37.)
	40. Prove that is a unit in if and only if .
	41. Prove that if is a unit, then it has a unique inverse.
	42. Prove that the set is a group under multiplication.
	43. Let R be a ring, and let . Show that the set is a subring of R.
	44. Show that the multiplicative inveres of any unit in a ring with unity is unique.
	45. Let R be a commutative ring with unity, and let denote the set of units in R. Prove that is a group under the multiplication of R.
	46. Show that if there exists an integer n greater than 1 for which for every element x in a ring R, then.
	47. Let k be the least common multiple of the positive integers m and n. Show that .
	48. Let R be a commutative ring. Prove that .
	49. An element a of a ring R is idempotent if . Show that the set of all idempotent elements of a commutative ring is closed under multiplication.
	50. An element a of a ring R is nilpotent if for some . Show that if a and b are nilpotent elements of a commutative ring R, then is also nilpotent.
	51. A ring R is said to be a Boolean ring if for every . Prove that every Boolean ring is commutative.
	52. Give an example of finite Boolean ring, and an example of an infinite Boolean ring (see Exercise 50).
	53. Prove Theorem 3.3.
	54. Prove that m is a unit in if and only if .
	55. Let be rings. Show that:
	56. If and are rings, then is a ring.
	57. In any ring R, .
	58. If for all elements x in a ring R, then for all .
	59. In any ring R: .
	60. If and are Boolean ring, then is a Boolean ring. (See Exercise 50).
	61. If and are Boolean ring, then is a Boolean ring. (See Exercise 50).
	62. The set of all idempotent elements in a ring R is a subring of R. (See Exercise 48).
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	THEOREM 3.5
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	DEFINITION 3.6
	THEOREM 3.6
	THEOREM 3.7

	EXAMPLE 3.7
	THEOREM 3.8
	THEOREM 3.9
	1. , and .
	2. , and .
	3. and .
	4. and .
	5. , and .
	6. , and .
	7. , .
	8. , .
	9. , .
	10. , .
	11. Let be a homomorphism from R onto . Show that:
	12. Let and be ring homomorphisms. Prove that the composite function is also a homeomorphism.
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	40. Let R be a commutative ring. Prove that R is a field if and only if is a maximal ideal.
	41. Referring to the “From D to the field of quotients F” development on page 133,verify that the operations:
	42. Referring to the “From Z to Q” development on page 133,verify that the operations:
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	46. Show that for any prime p and any :
	47. The intersection of subdomains of an integral domain D is a subdomain of D. (See Exercise 18.)
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	49. Let R be a commutative ring with unity. If P is a prime ideal of R and if J is a subring of R, then is a prime ideal of R.
	50. Let R be a commutative ring with unity. If P is a prime ideal of R and if I is an ideal of R, then is a prime ideal of R.

	CYU 3.14 (a) Let R be a commutative ring with unity in which the cancellation property holds. We show that R has no zero divisors (i.e, that R is an integral domain):
	Let . Since : . “Canceling the a,” we have .
	On the other hand, if R is an integral domain then, by its very definition, it has no zero divisors.
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