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PREFACE
Acknowledgements typically appear at the end of a preface. In this case, however, my
indebtedness to Professor Marion Berger for her invaluable input throughout the develop-
ment of this text is such that I am compelled to express my gratitude for her contributions
at the beginning: Thank you, dear colleague and friend.

That said:
Our text consists of two volumes. Volume I addresses those topics typically covered in
standard Calculus I and Calculus II courses; which is to say, the Single Variable Calculus.
Multivariable Calculus is covered in Volume II. 

Our primary goal all along has been to write a readable text, without compromising math-
ematical integrity. Along the way you will encounter numerous Check Your Understand-
ing boxes designed to challenge your understanding of each newly-introduced concept.
Complete solutions to the problems in those boxes appear in Appendix A, but please don’t
be in too much of a hurry to look at those solutions. You should TRY to solve the problems
on your own, for it is only through ATTEMPTING to solve a problem that one grows math-
ematically. In the words of Descartes:

WE NEVER UNDERSTAND A THING SO WELL, AND MAKE IT

OUR OWN, WHEN WE LEARN IT FROM ANOTHER, AS WHEN

WE HAVE DISCOVERED IT FOR OURSELVES.

You will encounter a few graphing calculator glimpses in the text. In the final analysis,
however, one can not escape the fact that: 

MATHEMATICS DOES NOT RUN ON BATTERIES
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CHAPTER 1
PRELIMINARIES

A set may be defined by listing its elements inside braces, as in:  

A set may also be specified by means of some property or condition,
as with:

which represents the set of real numbers, x, that are greater than 1 and
less than 5.

For a given set X, the expression  is used to indicate that  is an
element of, or is contained, in X. For example:

The following table illustrates some notation that can be used to
denote the interval subsets of the number line:

§1.  SETS AND FUNCTIONS

3 7 14–  

x 1 x 5  
read: such that

x X x

3 3 7 14–     while   9 x 1 x 5  

Interval Notation Geometrical Representation
All real numbers strictly 
between 1 and 5 (not including 
1 or 5).

All real numbers between 1 
and 5, including both 1 and 5.

All real numbers between 1 
and 5, including 1 but not 5.

All real numbers between 1 
and 5, including 5 but not 1.

All real numbers greater than 1.

All real numbers  greater than 
or equal to 1.

All real numbers less than 5.

All real numbers less than or 
equal to 5.

The set of all real numbers.

1 5  x 1 x 5  =

excluding 1 and 5

   |         |         |          |         |          |          |         |         |          |         

0     1     2     3      4     5      6     -3    -2    -1
(                       )

1 5  x 1 x 5  =

including 1 and 5

   |         |         |          |         |          |          |         |         |          |         

0     1     2     3      4     5      6     -3    -2    -1
[                   ]

1 5  x 1 x 5 =

including 1 and excluding 5

   |         |         |          |         |          |          |         |         |          |         

0     1     2     3      4     5      6     -3    -2    -1
[                   )

1 5  x 1 x 5 =

excluding 1 and including 5
   |         |         |          |         |          |          |         |         |          |         

0     1     2     3      4     5      6     -3    -2    -1
(                   ]

1   x x 1 =

the infinity symbol

   |         |         |          |         |          |          |         |         |          |         

0     1     2     3      4     5      6     -3    -2    -1
(                  

1  x x 1 =
   |         |         |          |         |          |          |         |         |          |         

0     1     2     3      4     5      6     -3    -2    -1
[                  

 5 – x x 5 =
   |         |         |          |         |          |          |         |         |          |         

0     1     2     3      4     5      6     -3    -2    -1

                    )  

 5 – x x 5 =
   |         |         |          |         |          |          |         |         |          |         

0     1     2     3      4     5      6     -3    -2    -1
                    ]  

 – x  x  – =
   |         |         |          |         |          |          |         |         |          |         

0     1     2     3      4     5      6     -3    -2    -1
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For any two sets A and B, the union of A and B is defined to be that
set, denoted by , which consists of all elements that are either in
A or in B, including the elements in both A and B. That is:

The intersection of A and B, written , is the set consisting of
the elements common to both A and B. That is:

For example:

We will be concerned with functions, f, which assign a real number
 to a given real number x. Such functions can often be described by

mathematical expressions; as with: 

Note that the variable x is a placeholder; a “box” that can hold any
meaningful expression. For example: 

A        B

A B

A        B

A B

FUNCTIONS

A B

A B x x A OR x B =

A B

A B x x x A AND x B  =

2 0–  1– 2  3 5  
2– 2  3 5 = 0     1     2     3      4     5      6     -3    -2    -1

                    ]  ( ) [

2– 2  0 5  0 2 =    |         |          |         |          |          |         |         |          |          |       

0     1     2     3      4     5      6     -3    -2   -1

])(

f x 

f x  2x 5+=

Answers: 
(a)             (b) 

(c)      (d) 

11– 3t 2–

6x– 2–
6– 5x–

x
-------------------

CHECK YOUR UNDERSTANDING 1.1

For , determine:

(a)              (b)           (c)           (d)  

EXAMPLE 1.1 For  and , deter-

mine  .

f x  2x 5+=

= 2 + 5f

f 3  2 3 5+ 11= =

f c  2 c 5+ 2c 5+= =

f 3t  2 3t 5+ 6t 5+= =

f x2 3+  2 x2 3+  5+ 2x2 11+= =

f x  3x 5–=

f 2–  f t 1+  f 2x– 1+  f
2–
x

------ 
 

f x  3x2– 6x 1–+= h 0
f x h+  f x –

h
----------------------------------
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SOLUTION: 

The domain of a function f is the set, , on which f “acts,” and its

range is the set  of the function values (see margin).

When not specified, the domain of a function defined by an expres-
sion is understood to be the set of all numbers for which the given
expression is defined. For example:

Since  is defined for all numbers, the domain of  is

the set of all numbers: . Since the function can not

assume negative values, and assumes every nonnegative value:
.

Since one can not take the square root of a negative number (in

the real number system), the domain of the function  is
the set of all numbers greater than or equal to 0: , with

  (the function can only assume nonnegative values).

Since division by zero is not defined, the domain of the function

 is the set  . 

Answer: 

 
1

x h 1+ +  x 1+ 
-------------------------------------------

CHECK YOUR UNDERSTANDING 1.2

For   and , simplify  .

THE DOMAIN AND RANGE OF A FUNCTION

f x h+  f x –
h

----------------------------------- 3 x h+ 2– 6 x h+  1–+  3x2– 6x 1–+ –
h

--------------------------------------------------------------------------------------------------------------------=

3 x2 2xh h2+ + – 6x 6h 1–+ +  3x2 6x– 1+ +
h

---------------------------------------------------------------------------------------------------------------------------=

3x2– 6xh– 3h2– 6x 6h 1– 3x2 6x– 1+ + + +
h

--------------------------------------------------------------------------------------------------------------------=

6xh– 3h2– 6h+
h

------------------------------------------ h 6x– 3h– 6+ 
h

---------------------------------------- 6x– 3h– 6+= = =

{ {
f x  x

x 1+
------------= h 0 f x h+  f x –

h
----------------------------------

Domain        Range

x f x 

Df
Rf

f Df

Rf

x2 f x  x2=

Df –  =

Rf 0 =

The range of h is not so
easy to determine at this
point.   You will be able to
do so once you know how
to graph such a function. 

Answers:
(a) 

(b) 

Df 3– ; Rf 0 = =

Dg – 1–  1 2– =

2  

CHECK YOUR UNDERSTANDING 1.3

(a) Determine the domain and range of . 

 (b) Determine the domain of .

g x  x=
Dg 0 =

Rf 0 =

h x  1
x 1–
-----------= Dh  1–  1  =

f x  x 3+=

g x  1
x 1+  x 2– 

---------------------------------=



4     Chapter 1    Preliminaries
Functions such as  and  are described by a
single algebraic expression. For whatever reasons, one may wish to

consider a function which acts like  for  and like

 for . Such a function is said to be a piecewise-
defined function and is represented in the following manner:

Combining the “if” parts of the definition of h, we see that the
domain is . To evaluate h at a particular x you must first
determine which of the two rules applies. For example: 

SOLUTION: Since  is less than 0, it falls under the jurisdiction of
the formula  on the top line, and we have:

Both 0 and 3 are greater than or equal to 0, thus:

PIECEWISE-DEFINED FUNCTIONS

EXAMPLE 1.2 Evaluate the function:    

at  , at ,  and at .

f x  x2= g x  x 1+=

f x  x2= 2 x 0–

g x  x 1+= x 0

h x  x2   if 2 x 0–

x 1+   if x 0



=

Dh 2– =

h 1–  1– 2 1,   and   h 9  9 1+ 10= = = =

bottom rule since 9 0top rule since 2 1 0––

f x 
3x 5–   if x 0

1
x 1+
------------   if x 0







=

x 1–= x 0= x 3=

1–

f 1–  3 1–  5– 3– 5– 8–= = =

f 0  1
0 1+
------------ 1

1
--- 1   and  f 3  1

3 1+
------------ 1

4
---= = = = =

Answer:

No, 10 is not in the
domain of the function.

f 1–  5  f 1  1= =

f 5  25  f 7  14–= =

CHECK YOUR UNDERSTANDING 1.4
Evaluate the function: 

  

at:  , , , . Is  defined? If not, why

not?

f x 
4x– 1+   if x 0

x2   if 0 x 5 
2x–   if 5 x 10 






=

x 1–= x 1= x 5= x 7= f 10 
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A particularly important piecewise-defined function is the absolute
value function, , where: 

You are invited to establish the following results in the exercises:

You can, and should, interpret  as representing the distance (num-
ber of units) between the numbers a and 0 on the number line. For
example, both 5 and  are 5 units from the origin, and we have:

 and  

When you subtract one number from another the result is either plus
or minus the distance (number of units) between those numbers on the
number line. For example,  while . In either
case, the absolute value of the difference is 8, the distance between the
two numbers:

 and 

 In general:

In particular,  is the distance between

 and ,   is the distance between 

and 4, and  is the distance between 2 and 7:  

DEFINITION 1.1
ABSOLUTE VALUE

The absolute value of a number a is that
number  given by:

THEOREM 1.1 For any numbers a and b:

(a)  and, if , 

(b) (Triangle Inequality)  

DEFINITION 1.2
DISTANCE

The distance between a and b on the num-
ber line is given by

f x  x=

a

a
a     if    a 0
a–     if    a 0




=

ab a b= b 0 a
b
--- a

b
-----=

a b+ a b+

a

5–

5 5= 5– 5=

9 1– 8= 1 9– 8–=

9 1– 8 8= = 1 9– 8– 8= =

a b–

note the negative sign

8–  4– – 8– 4+ 4= =

8– 4– 3–  4 – 3– 4– 7= = 3–

2 7– 5=

|         |          |         |          |          |         |         |          |         |          |          |         |         |          |          |         |         |

0     1     2     3      4     5      6     7     8     9-8    -7     -6    -5    -4     -3    -2    -1

4 7
5

Answers:
(a) ; 4

(b) ; 10

(c) ; 10

(d) ; 4

3                      7

3–                       7

7– 3

7–                    -3

CHECK YOUR UNDERSTANDING 1.5
Plot the two numbers on the number line and determine the distance
between them; both visually and by using Definition 1.2.

(a) 3 and 7       (b)  and 7       (c) 3 and        (d)  and 3– 7– 3– 7–
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The following definition is the natural extension of addition, subtrac-
tion, multiplication, and division of numbers to functions:

Noting that the functions , , and  can be evaluated at x if
and only if both f and g can be evaluated at x, we see that the domains
of those three functions coincide with the intersection of the domain of
f with that of g:

In determining the domain of   one must also exclude those x’s

where :

Finally, the domain of the function cf is the same as that of f:

SOLUTION: Appealing to Definition 1.3, we have:

THE ARITHMETIC OF FUNCTIONS

DEFINITION 1.3
COMBINING

 FUNCTIONS

The sum, difference, product, and quotient of
two functions  f and g are defined as follows:

For any constant c: 

EXAMPLE 1.3 For  and , determine the

functions  , , , , and 5g, along with
their domains.

f g+  x  f x  g x +=

f g–  x  f x  g x –=

fg  x  f x g x =

f
g
--- 
  x  f x 

g x 
----------= providing g x  0 

cf  x  cf x =

f g+ f g– fg

Df g+ Df g– Dfg Df Dg= = =

f
g
---

g x  0=

D f
g
---

x x is in Df Dg  and g x  0 =

Dcf Df=

f x  x= g x  x 1–=

f g+ f g– fg
f
g
---

f g+  x  f x  g x + x x 1–+= =

f g–  x  f x  g x – x x 1– – x x– 1+= = =

fg  x  f x g x  x x 1–  x
3
2
---

x–= = =

f
g
--- 
  x  f x 

g x 
---------- x

x 1–
-----------= =

5g x  5 x 1–  5x 5–= =
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Noting that  and  we conclude that:

 

If  then . You get that answer by first

subtracting 3 from 8: , and then squaring the

result: . In other words, you first apply the function

, and then apply the function  to that result.
This operation of first performing one function, and then another on

that result, is called composition, and is denoted by :                                              

SOLUTION: 

Answer:

f g+  x  x2 6x– 10+
x 3–

-----------------------------=

f g–  x  x2 6x– 8+
x 3–

--------------------------=

fg  x  x 3–
x 3–
----------- 1 if x 3 = =

f
g
--- 
  x  x2 6x– 9;+=

5g  x  5
x 3–
-----------=

all domains are – 3  3  

CHECK YOUR UNDERSTANDING 1.6

For  and , determine the functions  ,

, , , and 5g, along with their domains.

COMPOSITION OF FUNCTIONS

Df 0 = Dg –  =

Df g+ Df g– Dfg Df Dg 0  –   0 = = = = =

D f
g
---

x x is in 0   and x 1– 0  0 1  1  = =

D5g Dg –  = =

f x  x 3–= g x  1
x 3–
-----------= f g+

f g– fg
f
g
---

COMPOSITION

x. . .
f g

gf

f x  g f x  

DEFINITION 1.4 The composition  is given by:

[Assuming   is in the domain of  g]

h x  x 3– 2= h 8  25=

x 3–  8 3–  5= =

5 2 25=

f x  x 3–= g x  x2=

gf  x 

gf  x 

gf  x  g f x  =

first apply f

and then apply g

f x 

Note that composition is
not a commutative oper-
ation: 

g f  2  fg  2 

EXAMPLE 1.4 Determine  and  for:

  and  

gf  2  fg  2 

f x  x2 1+= g x  2x 3–=

gf  2  g f 2   g 22 1+  g 5  2 5 3– 7= = = = =

fg  2  f g 2   f 2 2 3–  f 1  12 1+ 2= = = = =
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SOLUTION:

SOLUTION: There are many choices for f and g. Perhaps the most nat-

ural one is to first do: , then take the square root of that

result and add 5: . In other words: 

EXAMPLE 1.5 Determine  and   for:

    and 

f g  x  gf  x 

f x  3x 1–= g x  2x2– 3x– 1+=

f g  x  f g x   f 2x2 3x– 1+–  3 2x2– 3x– 1+  1–= = =

Definition 1.4

6– x2 9x– 3 1–+=

6x2– 9x– 2+=

gf  x  g f x   g 3x 1–  2 3x 1– 2– 3 3x 1– – 1+= = =

2– 9x2 6x– 1+  9x– 3 1+ +=

18x2– 3x 2+ +=

f x  3x 1–=

Answers:

(a-i) 13  (a-ii) 
(b) One possible answer:

An alternate solution:

h x  gf  x  where:=

f x  x2 1–=

and g x  x 5+=

16x2 32x 13+ +

f x  x2 and g x  x
x 3+
------------= =

EXAMPLE 1.6 Express the function  as 

a composition .

CHECK YOUR UNDERSTANDING 1.7

(a) For  and :

 (i) Evaluate           (ii) Determine 

(b) Express  as a composition .

h x  x2 1– 5+=

h gf=

f x  x2 1–=

g x  x 5+=

h x  gf  x  where f x  x2 1–  and g x  x 5+= = =

f x  x2 2x 2–+= g x  4x 3+=

f g  2–  f g  x 

h x  x2

x2 3+
--------------= h gf=
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Exercises 1-6. Determine the domain of the given function.

Exercises 7-12. Determine , , , , , , and 

 for the given functions  f  and  g.

Exercises 13-18. Determine , , , , , ,

and  for the given functions  f  and  g.

Exercises 19-22. (a) Determine   for the given functions  f  and  g. 

(b) Evaluate   both with and without using the result of (a).

Exercises 23-28.  Evaluate the given function at .

EXERCISES

1. 2. 3.

4. 5. 6.

7. 8.

9. 10.

11. 12.

13. 14.

15. 16.

17. 18.

19. 20.

21. 22.

23. 24.

25. 26.

27. 28.

f x  3x2 x+= g x  x 3+
x 3–
------------= k x  x

x 1–  x 100+ 
---------------------------------------=

k x  x x 2–+= h x  x 7+= f x  x 3+
x x 1– 
-------------------=

f g+  2  f g–  2  fg  2  f
g
--- 
  2  2f  2  f g  2 

gf  2 

f x  2x 3  g x + x– 1+= = f x  x– 5  g x + x 3–= =

f x  x2 x  g x + x– 2+= = f x  x2– 2  g x + x 1+= =

f x  1
x 5+
------------, g x  x 3+= = f x  x 1– 2  g x  x

x 3–
-----------= =

f g+  x  f g–  x  fg  x  f
g
--- 
  x  2f  x  f g  x 

gf  x 

f x  x 3  g x + 2x– 1+= = f x  x– 2  g x + 2x 10+= =

f x  x2 x 1–  g x + x 3+= = f x  2x2 1  g x + 2x– 3+= =

f x  1
x– 2+

----------------, g x  x2 3+= = f x  x– 3+  g x  1
x
---= =

f g  x 

f g  2 

f x  2x 5, g x + 3x– 1–= = f x  5x 7, g x – 7x 5+= =

f x  x2 x  g x + x 1+= = f x  2x– 3 g x + 2x2 2x 1+ += =

2 2 h, and at x h+ +

f x  3x 9+= f x  5x– 2+=

f x  x2– x 1+ += f x  2x2 x 2+ +=

f x  x2

2x 3+
---------------= f x  x–

x2 2+
--------------=
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Exercises 29-34. Simplify the algebraic expression  for the given function f.

35. Evaluate the function    at    and at .

36. Evaluate the function    at    and at .

37. Evaluate the function  at: , , , and at 

 (Are you sure? What is the domain of f?).

38. For    and  determine:

Exercises 39-41. (Theory) Prove:

Exercises 42-47. (Even and Odd Functions) 
f is an even function if  for every . 

f is an odd function if  for every .    

                Determine if the given function is even, odd, or neither even nor odd.

29. 30.

31. 32.

33. 34.

   (a) (b) (c) 

39. Theorem 1.1(a) 40. Theorem 1.1(b) 41. For any numbers a and b: 

42. 43. 44.

45. 46. 47.

f x h+  f x –
h

----------------------------------

f x  3x 9+= f x  5x– 2+=

f x  x2– x 1+ += f x  2x2 x 2+ +=

f x  x2

2x 3+
---------------= f x  x–

x2 2+
--------------=

f x  x2   if x 1
x 1+   if x 1




= x 0= x 1=

f x 
3x 5–   if x 0

1
x 1+
------------   if x 0







= x 1–= x 1=

f x 
3x 5–   if x 0
x2   if 0 x 5

2x–   if 5 x 10





= x 1–= x 1= x 7=

x 10=

f x  x 2+   if x 1
x 1+   if x 1




= g x  2x 1–   if x 0
x 5–   if x 0




=

f g+  0  gf  1  fg  2 

a b– a b–

f x–  f x = x Df

f x–  f– x = x Df

f x  3x2= f x  3x3= f x  3x3 x+=

f x  3x2 1+= f x  3x4 x2 5+ += f x  x3 x 1+ +=
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Though a function  can not assign more than one value of y
to each x in its domain, it can assign the same y-value to different x’s.

The function , for example, assigns the number 4 to both 2

and , and we say that f maps 2 and  onto 4.

Of particular interest are those functions that map different values of
x onto different values of y:

The function f, represented in Figure 1.1(a), is one-to-one since no
two elements in its domain, , are mapped to the same ele-

ment in its range . The function g, of Figure 1.1(b), is not
one-to-one since 2 and 3 are both mapped to 5.

Figure 1.1

Looking at more traditional graphs of functions, we see that the function
f of Figure 1.2(a) is one-to-one (no two x’s map onto the same y), while
the function g of Figure 1.2(b) is not (different x’s map onto the same y).

Figure 1.2

§2. ONE-TO-ONE FUNCTIONS AND THEIR INVERSES

DEFINITION 1.5
ONE-TO-ONE

A function f is one-to-one if for all a and b in
:

y f x =

f x  x2=

2– 2–

Df

If  f a  f b   then  a= b.=

Equivalently: If  a b   then  f a  f b .

1 2 3 4   
0 2 5 6   

(a) (b)

1
2

3
4

0

5
2
4.

. .. . .
6

f ..
.

1
2

3
4

0

5
2
4.. . .

6

g

.
. . . .

one-to-one                                         not one-to-one

Horizontal Line Test:
No horizontal line can
intersect the graph of a
one-to-one function at
more than one point.

x

y
y

x1 x2 x3

(a)          
                                                 

    (b)

f
g

. ...

one-to-one                                         not one-to-one
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SOLUTION: Appealing to Definition 1.5, we begin with ,
and show that this can only hold if :

An attempt to reverse the direction of the arrows in Figure 1.3(a), rep-
resenting the action of the non-one-to-one function g, would not yield a
function. As is shown in Figure 1.3(b), the number 5 would be mapped
onto two numbers, 2 and 3, and a function can not assign more than one
value to each number in its domain.

Figure 1.3

Reversing the arrows of the one-to-one function f of Figure 1.4(a)
does lead to a function [see Figure 1.4(b)]. That function is called the

inverse of f and is denoted by the symbol . As you can see, the

domain of  is the range of f: , and the range of  is the

domain of f: .

EXAMPLE 1.7 Show that the function  is one-
to-one.

f x  x
5x 2+
---------------=

f a  f b =

a b=

f a  f b =
a b=

f a  f b =

a
5a 2+
--------------- b

5b 2+
---------------=

a 5b 2+  b 5a 2+ =

5ab 2a+ 5ab 2b+=

2a 2b=

a b=

Answer: See page A-2.

CHECK YOUR UNDERSTANDING 1.8

Show that the function  is one-to-one.

INVERSE FUNCTIONS

f x  x
x 1+
------------=

. ...
... ..1

2

3

4

6

5

0

2

1 . . .1
2

3

4

6

5

0

2

1.. .. ..
not one-to-one                                          not a function

(a)                                                               (b)

g

Do not confuse  with

.

f 1–

f x   1– 1
f x 
---------=

f 1–

f 1– 0 1 5 6    f 1–

1 2 3 4   
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y

f 1–
Figure 1.4

The relationship between the functions f and  depicted in the mar-
gin reveals the fact that each function “undoes” the work of the other.
For example:

In general:

SOLUTION: We offer two methods for your consideration.

. ...
... ..1

2

3

4

6

5

0

2

1 . . .1
2

3

4

6

5

0

2

1.. .. ..
(a)                                                               (b)

f f 1–

. .2
5

1

3
4

.
..

6
2

1
0

..
..

f

f 1–

f 1–

f 1–  f  2  f 1– f 2   f 1– 5  2= = =
and

f f 1–  5  f f 1– 5   f 2  5= = =

Only one-to-one func-
tions have inverses (see
Figure 1.3).

DEFINITION 1.6

INVERSE
FUNCTIONS

The inverse of a one-to-one function f with

domain  and range  is that function 

with domain  and range  such that:

 for every x in 
and 

 for every x in 

EXAMPLE 1.8 Find the inverse of the one-to-one function:

Df Rf f 1–

Rf Df

f 1–  f  x  x= Df

ff 1–  x  x= Rf

f x  x
5x 2+
---------------=

To say that  is to say that .f f 1– x   x=

f t  x=

t
5t 2+
-------------- x=

t 5t 2+ x=

t 5tx 2x+=
t 5tx– 2x=

t 1 5x–  2x=

t 2x
1 5x–
---------------=

f 1– x  2x
1 5x–
---------------=

Start with:

For notational
convenience,
substitute t for 

   
f 1– x :

Since f x  x
5x 2+
---------------:=

Solve for t:

Substituting f 1– x 
back for t:

y f x = f 1– y  x=

5x 2+ y x=

5xy 2y+ x=

5xy x– 2y–=

x 5y 1–  2y–=

y x
5x 2+
---------------=

x 2y–
5y 1–
--------------- 2y

1 5y–
--------------- f 1– y = = =

So, start with:

And solve for x in terms of y:

To obtain the inverse 
function expressed in terms
 

y 2x
1 5x–
--------------- f

1–
x = =

of the variable x (instead of 
y), interchange x and y:

x

f
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As a check, we verify directly that : 

We end this section with a result which relates the graph of a one-to-
one function with that of its inverse. In that endeavor, we will use the
following distance formula:

PROOF:

f 1–
f  x  x=

f 1–
f  x  f 1– f x   f 1– x

5x 2+
--------------- 
 

2
x

5x 2+
--------------- 
 

1 5
x

5x 2+
--------------- 
 –

---------------------------------= = =

2x
5x 2 5x–+
--------------------------- 2x

2
------ x= = =

Since  f 1– x  2x
1 5x–
---------------=

Since f x  x
5x 2+
---------------=

Multipy numerator and denominator by 5x 2:+

Answer: 

and see page A-3,

f 1– x  x
1 x–
-----------=

CHECK YOUR UNDERSTANDING 1.9

Determine the inverse of the one-to-one function: 

Verify, directly, that  and that .

GRAPH OF AN INVERSE FUNCTION

f x  x
x 1+
------------=

ff 1–  x  x= f 1–
f  x  x=

c

a

b

c2 a2 b2+=

Pythagorean Theorem

THEOREM 1.2
DISTANCE BETWEEN  

TWO POINTS

The distance D between the points  and

 in the plane is given by:

THEOREM 1.3
The graph of 
is the reflection
of the graph of f
about the line

.

x1 y1 
x2 y2 

D x1 x2– 2 y1 y2– 2+=

.
.

x1 y1 

x2 y2 

x2 x1–

D D2 x2 x1– 2 y2 y1– 2+=

x2 x1– 2 y2 y1– 2+=

D x1 x2– 2 y1 y2– 2+=

Pythagorean Theorem:

or:

y2 y1–

a b .
. .

b a 

c c 

f

f 1– y x=

x

y
f 1–

y x=
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PROOF: Since  if and only if , to say that 

is on the graph of f, is to say that  is on the graph of . Since

the slope of the line joining  and  is , that line

segment is perpendicular to the line  (which has slope 1). More-
over, using Theorem 1.2, we see that the point  on that line seg-
ment is equidistant from  and :

SOLUTION: (a) The graph of the function  appears
in Figure 1.5(a). From that graph, we see that the domain of f is

, and that its range is .  

Figure 1.5 

(b) Reflecting the graph of f about the line  we arrive at the

graph of   [Figure 1.5(b)]. Note that the domain of  is the range

of f, namely: ; and that the range of  is the domain of f,

namely: .

EXAMPLE 1.9 (a) Sketch the graph of the function

. Specify its domain and
range. 

(b) Use Theorem 1.3 to obtain the graph of its

inverse . Specify its domain and range.

(c) Find . 

(a) (b)

f a  b= f 1– b  a= a b 
b a  f 1–

b a  a b  a b–
b a–
------------ 1–=

y x=
c c 

b a  a b 

b c– 2 a c– 2+ a c– 2 b c– 2+=

distance between b a  and c c  distance between a b  and c c 

f x  x 3– 3+=

f 1– x 

f 1– x 

f x  x 3– 2+=

3  2 

. . .

1     2       3      4      5       6      7      8       9     10   11    12    13    14     15    16    17     18    19 

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

.

(3,2)

(4,3)

(7,4)

(12,5)

(19,6)

y f x  x 3– 2+= =
|       |       |       |       |        |       |       |         |       |      |       |       |        |        |       |        |       |       |

_

_

_

_

_

_

_

_

_

_

_

_

_

_

_

x

y

. . . .

1     2       3      4      5       6      7      8       9     10   11    12    13    14     15    16    17     18    19 

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

.
..

.

.

.
(3,2)

(4,3)

(7,4)

(12,5)
(19,6)

(2,3)

(3,4)

(4,7)

(5,12)

y f x  x 3– 2+= =

y f
1–

x   =

|       |       |       |       |        |       |       |         |       |      |       |       |        |        |       |        |       |       |

_

_

_

_

_

_

_

_

_

_

_

_

_

_

_

x

y

y x=

f 1– f 1–

2  f 1–

3 
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(c) Proceeding as in Example 1.8 (right-hand side), we find :

Answer: See page A-3.

CHECK YOUR UNDERSTANDING 1.10

Show that the function  is one-to-one. Indicate its
domain and range. Find its inverse and indicate its domain and
range. Sketch the graph of both functions on the same set of axes. 

f 1– x 

x 3– y 2–=

x 3– y 2– 2=

x 3– y2 4y– 4+=

x y2 4y– 7+=

y x 3– 2+=

Solve for x in terms of y:

y x2 4x– 7+ f 1– x = =

Start with:

To obtain the inverse function expressed in terms
of the variable x (instead of y), interchange x and y:

with domain: 2 

f x  x 2–=
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Exercises 1-9. Prove that the given function is one-to-one.

Exercises 10-13. Show that the given function is not one-to-one by finding two different values of 
x: a and b, such that .

Exercises 14-22. Find the inverse of the given one-to-one function, and verify directly that
 and .

Exercises 23-25. Sketch the graph of the given one-to-one function along with the inverse of that
function on the same set of axes.

Exercises 26-27. Sketch the graph of the inverse function  from the given function of f. 

EXERCISES

1. 2. 3.

4. 5. 6.

7. 8. 9.

10. 11.

12. 13.

14. 15. 16.

17. 18. 19.

20. 21. 22.

23. 24. 25.

26. 27.  

f x  5x– 1–= f x  6x 5+= f x  x3 1+=

f x  1
x
---= f x  4

2x 3–
---------------= f x  3x

2x 1+
---------------=

f x  x 1+ 2+= f x  4

x 1+
----------------= f x  3x

2x 1+
---------------=

f a  f b =

f x  x2 1+= f x  x2 x– 6–=

f x  x2 3+
x

--------------= f x  x
x2 1+
--------------=

ff 1– x x= f 1–
f x x=

f x  2x 3–= f x  x– 1+= f x  1
x
---=

f x  3
2x 5–
---------------= f x  1

x 1–
-----------= f x  5x 2+

x 3–
---------------=

f x  x3 1–= f x  2 x 3+= f x  2x 3+=

f x  2x 3–= f x  x– 1+= f x  x 1– 2+=

f 1– x 

1
.

.
3 2 

.
3
5
--- 1– 
 

.
.

.

2 2–– 

3 4 

2
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 1

 

We begin by noting that one solves linear inequalities in exactly the
same fashion as linear equations, with one notable exception: 

To illustrate: 

Solving a polynomial equation often hinges on the important fact that:

SOLUTION:  

§3. EQUATIONS AND INEQUALITIES

WHEN MULTIPLYING OR DIVIDING BOTH SIDES OF AN INE-
QUALITY BY A NEGATIVE QUANTITY, REVERSE THE DIREC-
TION OF THE INEQUALITY SIGN.

Answer:

   and x 8
5
---–= x 8

5
---–

Equation Inequality

CHECK YOUR UNDERSTANDING 1.11

Solve:

Suggestion: Begin by multiplying both sides of the inequality by 15 so as to elimi-
nate all denominators.

POLYNOMIAL EQUATIONS

A product is zero if, and only if, one of its  factors is zero.

EXAMPLE 1.10 Solve:
(a)     

(b) 

(c) 

3x 5– 5x 7–=

3x 5x– 7– 5+=

2x– 2–=

x 1=

3x 5– 5x 7–
3x 5x– 7– 5+

2x– 2–
dividing by a
negative number

x 1  

reverse

3x
5

------ 2 5x+
3

---------------– 1–
x– 1–
15

----------------  and   3x
5
------ 2 5x+

3
---------------– 1–

x– 1–
15

----------------=

x3 x2 6x–+ 0=

x3 x2 5x–+ 0=

3x3 5x2 6x– 10–+ 0=

x3 x
2

6x–+ 0=

x x
2

x 6–+  0=

x x 3+  x 2–  0=

Pull out the common factor, x:

x 0 or x 3 or x– 2= = =A product is zero if, and only if, one of its factors is zero:

factor further:

(a)



1.3   Equations and Inequalities      19
(b) 

(c) If you look closely at the polynomial   you
can see that by grouping the first two terms together:

, and the last two terms together:
, the common factor   emerges:  

A zero of a polynomial  is a number which when substituted for

the variable x yields zero. For example,  is a zero of the polynomial

, since:

It is easy to see that if  is a factor of the polynomial , then 
c is a zero of that polynomial (margin). The converse is also true:

The following example illustrates how the above theorem can be used
to solve certain polynomial equations.

Quadratic Formula:
If:   

Then: 

ax2 bx c+ + 0=

x b– b2 4ac–
2a

---------------------------------------=

x3 x
2

5x–+ 0=

x x
2

x 5–+  0=

x 0 or x 1– 21
2

------------------------= = (see margin)

Answers:  (a) 

(b) 

(c)  

x
1
2
--- 4–=

x 2 13
3

-------------------=

x 1 4–=

CHECK YOUR UNDERSTANDING 1.12

Solve:
(a)                        (b) 

                       (c) 

ZEROS AND FACTORS OF A POLYNOMIAL

3x3 5x2 6x– 10–+

3x3 5x2+ x2 3x 5+ =
6x– 10– 2 3x 5+ –= 3x 5+ 

3x3 5x2 6x– 10–+ 0=

3x3 5x2+  6x– 10– + 0=

x2 3x 5+  2 3x 5+ – 0=

3x 5+  x2 2–  0=

3x 5+  x 2+  x 2–  0=

x 5
3
---–   or  x 2= =

2x2 7x 4–+ 0= 3x2 4x– 3– 0=

x3 x2 16x–+ 16=

If 

then:

p x  x c– q x =

p c  c c– q x  0= =

THEOREM 1.4
 ZEROS AND FACTORS

If c is a zero of a polynomial then  is a
factor of the polynomial.

EXAMPLE 1.11 Solve:

p x 
1–

p x  x3 3x– 2–=

p 1–  1– 3 3 1– – 2– 1– 3 2–+ 0= = =

x c–  p x 

x c– 

2x3 3x2– 8x– 3– 0=
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SOLUTION: We simply observe (see margin) that  is a zero of the

polynomial :

 

Theorem 1.4 assures us that  is a factor of
, and as you can easily check:

Returning to our equation we have: 

               Solution: , , .

Each of the following expressions is zero at :

                                       

In those cases where  is raised to an odd power we will say that

5 is an odd-zero, and that it is an even-zero when  is raised to
an even power. For example:

5 is an odd-zero of   , , , , ...

5 is an even-zero of , , , , ...

Note that the sign of  will change as one moves from one side of 5
to the other on the number line (it is positive to the right of 5 and nega-
tive to the left of 5). It follows that if you raise  to any odd
power, say , then the change of sign “will survive.” On the
other hand, if  is raised to an even power, say , then the
change of sign will “not survive.” In general:

The following result provides a 
method for determining the 
rational zeros of a given poly-
nomial: Let 

be a polynomial of degree n with
integer coefficients. Each ratio-
nal zero of  (reduced to

lowest terms) is of the form ,

where b is a factor of the constant

coefficient , and c is a factor

of the leading coefficient .

p x  anxn an 1– xn 1–  a0+ + +=

p x 
b
c
---

a0
an

1–

p x  2x3 3x2– 8x– 3–=

p 1–  2 1– 3 3 1– 2– 8 1– – 3– 0= =

x 1– – x 1+=
2x3 3x2– 8x– 3–

x 1  2x3 3x2– 8x– 3–+
2x2 5x– 3–

Leading us to: 2x3 3x2– 8x– 3– x 1+  2x2 5x– 3– =

2x3 3x2– 8x– 3– 0=

x 1+  2x2 5x– 3–  0=

x 1+  2x 1+  x 3–  0=

Answer: x 1 x 4–= =

CHECK YOUR UNDERSTANDING 1.13

Solve by finding a zero: 
 

POLYNOMIAL INEQUALITIES

Traversing the zero c of :
If c is an odd-zero (i.e: n is odd): Sign Changes.

If c is an even-zero (i.e: n is even): Sign does NOT Change.

x 1–= x 1
2
---–= x 3=

x3 2x2 7x– 4+ + 0=

x 5=

x 5–  x 5– 7 x 5– 2 x 5– 8

x 5– 
x 5– 

x 5–  x 5– 3 x 5– 5 x 5– 7

x 5– 2 x 5– 4 x 5– 6 x 5– 8

x 5–

x 5– 
x 5– 7

x 5–  x 5– 8

x c– n
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We now show how the above information can be used to solve a poly-
nomial inequality when expressed in factored form.

SOLUTION: 
Step 1. Locate the zeros of  on the
number line: 

Place the letter c above the odd-zeros  and 4 to remind you that the

SIGN of the product  will change as one tra-
verses those zeros, and place the letter n above the even-zero  to
remind you that the sign of the product will not change about that
even-zero: 

Step 2. You can get the “SIGN-ball rolling” by determining the SIGN

of  at any number other than . For
our part, we simply ask ourselves: 

What is the SIGN  to the right of the last zero, say at a million?
At a million, SIGN is negative [for only the factor  is negative
at that point]. Bringing us to:

Step 3. (Walk the sign to the left) The c above 4 indicates that the sign
will change about 4 (from negative to positive):

The n above  indicates that the sign will not change as you traverse
 (will remain positive): 

Finally, the c above  indicates a sign changes:

Here is the end result:

Figure 1.6

EXAMPLE 1.12 Solve:
 x 3+ 3 x 1+ 2 4 x–  0

x 3+ 3 x 1+ 2 4 x– . . .
3– 1– 4

3–

x 3+ 3 x 1+ 2 4 x– 
1–

. . .
3– 1– 4

c            n                               c

x 3+ 3 x 1+ 2 4 x–  3 1 or 4––

4 x– 

. . .
3– 1– 4

c            n                               c _

. . .
3– 1– 4

c            n                              c
+ _

1–
1–

. . .
3– 1– 4

c            n                              c++ _

3–

. . .
3– 1– 4

c            n                               c
+ _+_

. . .
3– 1– 4

SIGN  x 3+ 3 x 1+ 2 4 x– 

_                                                                   _+                      +
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Step 4. Since we are solving , we read off
the intervals where the polynomial is negative (the “-” intervals):

.

          SOLUTION: We begin by factoring:

The zeros are , and   [CYU

1.12(b)]. 
Of the five zeros, only  is an even-zero (margin). So, the sign of the
polynomial will not change about , but will change about the rest:

At a million, the polynomial is easily seen to be positive:

Proceed to the left, changing the sign each time you traverse a c, and
not changing the sign when traversing an n:

Giving us:

NOTE: The information in Figure 1.6 also enables us to solve
the inequalities:

x 3+ 3 x 1+ 2 4 x–  0

– 3–  4  

x 3+ 3 x 1+ 2 4 x–  0:    3– 1–  1– 4 

x 3+ 3 x 1+ 2 4 x–  0:    3– 4 

x 3+ 3 x 1+ 2 4 x–  0:    – 3  4  1– –

Answers:
(a) 
(b) 

2– 3  5  
2–  

CHECK YOUR UNDERSTANDING 1.14

Solve:

(a)        (b) 

EXAMPLE 1.13 Solve:

x 3–  x 2+  x– 5+  0 x 1+ 2 x 2+ 3 x 4– 2 0

x 3+ 2 x2 8x– 15+  3x2 4x– 3–  0

Note: If a quadratic poly-
nomial has a positive dis-
criminant then it has two
distinct zeros, and they are
both odd-zeros.

x 3+ 2 x2 8x– 15+  3x2 4x– 3–  0

x 3+ 2 x 3–  x 5–  3x2 4x– 3–  0

x 3–= x 3 x 5= = x 2 13
3

-------------------=

3–
3–.   .   .  .    .

3– 2 13–
3

------------------- 2 13+
3

------------------- 3                     5

n               c               c            c                     c

.   .   .  .    .
3– 2 13–

3
------------------- 2 13+

3
------------------- 3                     5

n               c               c            c                     c +

.    .    .    .      .n            c               c             c               c
+              +                              +                                   +_                               _

 3               5
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Since we are solving 

                    

we read off the intervals where the polynomial is positive (the “+
intervals”):

  

SOLUTION: We replaced the factor  of the previous
example which has two zeros with the factor  which
has no zeros: negative discriminant: .
All else remains as in the previous example, leading us to:

Solution of : 

Just as a rational number is an expression of the form , where m

and n are integers with , so then a rational expression (in the

variable x) is an algebraic expression of the form , where 

and  are polynomials, with . 

A rational equation of the form  can be solved by mul-

tiplying both sides of the equation by the least common denominator

EXAMPLE 1.14 Solve:

.   .   .  .    .
3– 2 13–

3
------------------- 2 13+

3
------------------- 3                     5

++                +                              +_                          _

SIGN  x 3+ 2 x
2

8x– 15+  3x2 4x– 3– 

x 3+ 2 x2 8x– 15+  3x2 4x– 3–  0

– 3–  3–
2 13–

3
------------------- 

  2 13+
3

------------------- 3 
  5    

x 3+ 2 x
2

8x– 15+  3x2 4x– 3+  0

Only the zeros of the
polynomial are repre-
sented on the number line.

[
has no zeros.]

3x2 4x– 3+ 

3x2 4x– 3– 
3x2 4x– 3+ 

b2 4ac– 16 36– 20–= =

3– 3                      5

n                                    c                    c ++ + _.            .       .
SIGN  x 3+ 2 x

2
8x– 15+  3x2 4x– 3+ 

x 3+ 2 x
2

8x– 15+  3x2 4x– 3+  0
– 3–  3– 3  5   

Answer:

– 2  1 21–
2

------------------- 1–

1 21+
2

-------------------  


CHECK YOUR UNDERSTANDING 1.15

Solve:     
    

RATIONAL EQUATIONS

x2 x 2–+  x2 x– 5+  x2– x 5+ +  0

m
n
----

n 0
p x 
q x 
---------- p x 

q x  q x  0

p1 x 

q1 x 
-------------

p2 x 

q2 x 
-------------=
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(LCD) of the rational expressions in that equation, and then solving the
resulting polynomial equation. It is important to remember, however,
that while you can’t “lose” a root of an equation by multiplying both
sides by any quantity:

Consider the following example:

SOLUTION: Factor all expressions:

Clear denominators by multiplying both sides of the equation by
, the LCD of the three rational expressions:

At this point, we see that the only possible solutions are , , and 1.

Any candidate which causes a denominator in the original equation to be

zero must be discarded. Discarding 0 (as it renders the denominator of 

to be zero), we conclude that  and 1 are the only solutions of the given

equation.

 

MULTIPLYING BOTH SIDES OF AN EQUATION BY A QUAN-
TITY WHICH CAN BE ZERO MAY INTRODUCE EXTRANEOUS
SOLUTIONS. CHECK YOUR ANSWERS.

EXAMPLE 1.15 Solve:
2x2

x2 x– 6–
---------------------- 2

x2 2x+
----------------- 1

x
---–=

2x
2

x 2+  x 3– 
--------------------------------- 2

x x 2+ 
------------------- 1

x
---–=

x x 2+  x 3– 

2x2

x 2+  x 3– 
--------------------------------- x x 2+  x 3–  2

x x 2+ 
------------------- x x 2+  x 3–  1

x
--- x x 2+  x 3– –=

2x
2

x  2 x 3–  1 x 2+  x 3– –=

2x
3

2x 6– x
2

x– 6– –=

2x
3

x
2

3x–+ 0=

x 2x 3+  x 1–  0=

x 0  x 3
2
---–  x 1= = =

0 3
2
---–

1
x
---

3
2
---–

Answers:  (a)      

(b) 

1–

3 5
2

----------------

CHECK YOUR UNDERSTANDING 1.16

Solve: 

 (a)          (b) 

Suggestion: Make the substitution: 

x 2–

x
2

4–
-------------- 5

4
---– 1

x 3–
-----------= 3

x
x2 1+
-------------- 
  x2 1+

x
-------------- 
 + 4=

y x
x2 1+
--------------=
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One can use the SIGN method previously introduced to solve rational
inequalities. Consider the following examples.

SOLUTION: Combine terms, and factor:

Locate the zeros of either the numerator or denominator on the num-
ber line, positioning a c above each, as all are odd-zeros. Noting that
the rational expression is positive to the right of 2, we placed a “+” over
the right-most interval, and then moved to the left, changing the sign
each time we crossed over an odd-zero:

Reading off the intervals with “+” signs, and adding the numbers
where the numerator is zero (the black dots), we see that:

SOLUTION: (WARNING) All too often, when confronted with such
an inequality, one is tempted to begin by multiplying both sides by x,
as one typically does with rational equations: 

RATIONAL INEQUALITIES

EXAMPLE 1.16 Solve:
2

x 2–
----------- x

x 1+
------------ 1 0+ +

2 x 1+  x x 2–  x 2–  x 1+ + +
x 2–  x 1+ 

-------------------------------------------------------------------------------------- 0

2x 2 x2 2x– x2 x– 2–+ + +
x 2–  x 1+ 

-------------------------------------------------------------------- 0

2x2 x–
x 2–  x 1+ 

--------------------------------- 0

x 2x 1– 
x 2–  x 1+ 

--------------------------------- 0

We are adopting the con-
vention of placing a “hole”
where the denominator is
zero (function not defined).

EXAMPLE 1.17 Solve:

-1                0                                            21
2
---

. .
SIGN  x 2x 1– 

x 2–  x 1+ 
---------------------------------

+                                +                                          +_                                   _c                c          c                               c

2
x 2–
----------- x

x 1+
------------ 1 0:   – 1–  0 1

2
---  2   + +

3
x
--- 2 5x–

3
x
--- 2 5x–

3 2x 5x
2–WRONG:

when x 0
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DON’T DO IT! The resulting inequality will not be equivalent to the
original one when x is a negative number (as you know, if you multi-
ply both sides of an inequality by a negative number, you must
reverse the inequality sign). Therefore, if you’re set on clearing the
denominator, then you will have to consider two cases: (1) if ,

and (2) if . A simpler approach is to bring all terms to the left,
and proceed as in the previous example

Noting that each zero is odd, and that the rational expression is nega-
tive to the right of the last zero, we have:

Reading off the “_” intervals, and where the numerator is zero (the
black dots in the SIGN chart), we arrive at the solution set of the
given inequality:

x 0
x 0

3
x
--- 2 5x–

3
x
--- 2– 5x 0–

3 2x– 5x2–
x

----------------------------- 0

5x
2

– 2x– 3+
x

----------------------------------- 0

5x– 3+  x 1+ 
x

------------------------------------------ 0

-1                           0                    

+                                             +
_                                                    _

3
5
---

SIGN  
5x– 3+  x 1+ 

x
------------------------------------------

. .c                            c                    c

1 0  3
5
--- –

Answers: 
(a) 

(b) 

2– 1  3  –

– 1–  2
3
--- –

1
3
--- 

 

CHECK YOUR UNDERSTANDING 1.17

Determine the solution set of the given inequality.

      (a)                             (b)  
x 2+

x
2

2x– 3–
-------------------------- 0 x

1
3x 2+
---------------
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Exercises 1-20. Solve. 

EXERCISES

1. (a) (b) (c) 

2. (a)         (b)         (c) 

3. (a)                         (b) 

4. (a)                  (b)                 (c)               (d) 

5. (a) (b) (c) 

6. (a) (b) (c) 

7. (a) (b) (c) 

8. (a) (b) (c) 

9. (a)         (b) 

10. (a)    (b) 

11. (a)    (b) 

12. (a)            (b) 

13. (a)            (b) 

14.  (a) (b) (c) 

15.  (a)                    (b) 

16.  (a)                     (b) 

3x 5– 2x 7+= 3x 5– 2x 7+ 3x 5– 2x 7+

3x 5–
2

--------------- 2x 7+
6–

---------------=
3x 5–

2
--------------- 2x 7+

6–
--------------- 3x 5–

2
--------------- 2x 7+

6–
---------------

1
3
--- 2x 1–

6
---------------– 1

2
--- 2 3x 2+ 

3
-----------------------–= 1

3
--- 2x 1–

6
---------------– 1

2
--- 2 3x 2+ 

3
-----------------------–

x3 4x= x3 4x x– 3 4x x– 3 4x

x4 x3– 6x2– 0= x4 x3– 6x2– 0 x4 x3– 6x2– 0

x4 x3– 5x2– 0= x4 x3– 5x2– 0 x4 x3– 5x2– 0

x3 2x– 1– 0= x3 2x– 1– 0 x3 2x– 1– 0

9x3 9x2– x 1–+ 0= 9x3 9x2– x 1–+ 0 9x3 9x2– x 1–+ 0

1 x–  2x 3+  x 2+  0= 1 x–  2x 3+  x 2+  0

1 x– 2 2x 3+ 3 x 2+  0= 1 x– 2 2x 3+ 3 x 2+  0

1 x– 21 2x 3+ 30 x 2+ 2 0= 1 x– 21 2x 3+ 30 x 2+ 2 0

1 x– 2 x 5+ 3 5 x– 3 0= 1 x– 2 x 5+ 3 5 x– 3 0

x4 2x 3+ 3– x– 1+ 5 0= x4 2x 3+ 3– x– 1+ 5 0

x2 4– 3 64– 0= x2 4– 3 64– 0 x2 4– 3 64– 0

3 x2 1– 2 10 x2 1– = 8+ 3 x2 1– 2 10 x2 1–  8+

3x 2+ 4 2 3x 2+ 2– 3= 3x 2+ 4 2 3x 2+ 2– 3
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Exercises 21-22. Exhibit a polynomial equation with the given solution set.   

Exercises 23-25. Exhibit a polynomial inequality with the given solution set.   

Exercises 26-28. Exhibit a rational inequality with the given solution set.   

17. (a) (b) (c) 

18. (a) (b) (c) 

19. (a) (b) (c) 

20. (a) (b) (c) 

21. 22.

23. 24. 25.

26. 27. 28.

1
x 1+
------------ 1

2x
------=

1
x 1+
------------ 1

2x
------ 1

x 1+
------------ 1

2x
------

1
x 1+
------------ x 1–

2x
-----------=

1
x 1+
------------ x 1–

2x
----------- 1

x 1+
------------ x 1–

2x
-----------

x 2
x
--- 1+= x 2

x
--- 1+ x 2

x
--- 1+

x 3+
2x 4+
--------------- 4x

x2 x– 6–
----------------------=

x 3+
2x 4+
--------------- 4x

x2 x– 6–
---------------------- x 3+

2x 4+
--------------- 4x

x2 x– 6–
----------------------

1 2 3   1– 0 2 4   

– 1  2 5  – 1  2 5  – 1  2 5  9   

– 1  2 5  – 1  2 5  – 1  2 5  9   
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 1

 

An angle is formed by two line segments having a common endpoint.
The line segments are the sides of the angle and the common endpoint
is the vertex. Lower case Greek letters will be used to denote angles;
particularly the letters  (alpha),  (beta),  (gamma), and  (theta).

The most commonly used unit of angle measurement is the degree
(denoted “ ”). A  angle is said to be a right angle, and one strictly
between  and  is called an acute angle.

Two triangles are said to be similar if the angles of one of them are
the same as those of the other (margin). While similar triangles have
the same shape, they need not be of the same size; however: 

Since the sum of the angles in any triangle equals , if two angles
in one triangle equal two angles in another, then their third angles are
also equal, and the triangles are similar. In particular, any right triangle
with acute angle  has to be similar to any other right triangle with the

same acute angle . This enables us to define the trigonometric func-

tions of an acute angle  in terms of ratios of lengths of sides of any

right triangle containing :

If one acute angle of a right triangle measures , then so does the
other: . This means that the legs of the triangle are
equal in length. Such a triangle is said to be isosceles. Since all isosce-
les right triangles are similar, any one of them can be used to compute
the values of the trigonometric functions of a  angle. The one in
Figure 1.7(a), with legs of length 1 unit and, consequently, with hypot-

enuse of length  will be called the  reference trian-
gle. The  reference triangle is depicted in Figure 1.7(b).

§4. TRIGONOMETRY

TRIGONOMETRIC FUNCTIONS OF ACUTE ANGLES

   

 90
0 90












a

b

c

b

c

a

a
a
---- b

b
---- c

c
----= =

The ratio of corresponding sides of similar triangles are equal (margin).

DEFINITION 1.7
TRIGONOMETRIC

FUNCTIONS

Let  be an acute angle. The functions sine,
cosine, tangent, cosecant, secant, and cotan-
gent of  (abbreviated sin, cos, tan, csc, sec,
and cot, respectively), are defined as follows:

where opp, adj, and hyp are the lengths of the
opposite side, adjacent side and hypotenuse,
respectively.

TWO IMPORTANT RIGHT TRIANGLES

180







hypoten
use 

(h
yp)

side adjacent (adj)

side opposite (op
p

)





sin
opp
hyp
--------- cos

adj
hyp
--------- tan= opp

adj
---------= =

csc
hyp
opp
--------- sec

hyp
adj
--------- cot= adj

opp
---------= =

45
90 45– 45=

45

12 12+ 2= 45
30 60
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Figure 1.7

The radian measure of an angle with vertex at the center of a circle
is the ratio of the length of the arc subtending that angle to the radius of
the circle. Since that ratio is independent of the radius of the circle, it
can be used as a measure of the angle.

Radian measure, being the ratio of two lengths, is a real number and
is not associated with a unit (like degrees). Nonetheless, when referring
to radian measure the word “radian” is often used to refer to that mea-
sure. To convert from degrees to radians, or the other way around, use
the “bridge:” 

 

SOLUTION: Using (*): 

  (a)  

  (b)  

The  reference trian-
gle was obtained by folding
the above equilateral trian-
gle (all sides of equal length)
in half along the dashed line.
Using the Pythagorean Theo-
rem, we then found the
length of the leg opposite the

 angle:

Answer: See page A-6.

2

2                           2

1
60 60

3030

a

30 60

60

22 1 a2, or a+ 3= =

CHECK YOUR UNDERSTANDING 1.18

Complete the table of values:

RADIAN MEASURE

EXAMPLE 1.18 (a) Convert  to radian measure.

(b) Convert  to degree measure.

1

1
2

45

45

1

2

3

60

30

45 reference triangle 30 60 reference triangle
(a)                                                    (b)



30

45

60

sin cos tan csc sec cot

3

1

2
-------

2

90 
2
--- radians or:   180  radians== (*)

 45=

 3
2

-------=

 45 45  radians
180

---------------------- 
4
--- radians= = =

 3
2

-------
3
2

------- radians 
  180

 radians
---------------------- 
  270= = =
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It is often useful to think of an angle  as evolving from the follow-
ing dynamic process:

A fixed ray or half-line, called the initial side of the angle, is
rotated about an endpoint O, called the vertex of the angle, to
a final destination, called the terminal side of the angle. If the
rotation is counterclockwise, then the angle is said to be posi-
tive, and if clockwise then it is negative. Because of the sign
associated with it, such angles are said to be oriented angles.

Typically, one positions an angle in the Cartesian plane, with its ver-
tex at the origin and its initial side along the positive x-axis. In such a
setting, the angle is said to be in standard position. Two angles in
standard position are depicted in Figure 1.8. The one in Figure 1.8(a) is
positive (counterclockwise rotation) and that in (b) is negative (clock-
wise rotation).

Figure 1.8

When the terminal sides of two angles in
standard position coincide, then the angles are
said to be coterminal. The two angles
depicted in the adjacent figure are coterminal
(one positive and the other negative). 

The Cartesian plane is divided into four quadrants QI through QIV
(see margin). When the terminal side of an angle in standard position
lies within one of the four quadrants, the angle is said to lie in that
quadrant. In particular, the angle of Figure 1.8(a) lies in the second
quadrant (QII), the angle in Figure 1.8(b) lies in the fourth quadrant
(QIV). No quadrant is associated with an angle whose terminal side lies
on a coordinate axis, such as  or  radians. Such angles are called
quadrantal angles.

Answers: (a)    (b) 2
3

------ 30

CHECK YOUR UNDERSTANDING 1.19

(a) Convert  to radians.  

(b) Convert  radians to degrees.

ORIENTED ANGLES

 120=

 
6
---=



x

y

x

y

positive angle                         negative angle
(a)                                                (b)

x

y

QIQII

QIII QIV
90 
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We begin by defining the sine and cosine of any oriented angle: 

Note that this definition coincides with the previous one when  is an
acute angle: 

The remaining four trigonometric functions of oriented angles are
defined in terms of the sine and cosine functions:

Figure 1.9 shows the four points of intersection of the unit circle and
the x- and y-axes: . These points lie
on the terminal side of quadrantal angles (angles whose terminal side
lies on an axis). The sine and cosine of such angles are easily deter-
mined, as is illustrated in the following examples.

Figure 1.9

TRIGONOMETRIC FUNCTIONS OF ORIENTED ANGLES

DEFINITION 1.8
SINE AND COSINE 
FUNCTIONS

For any angle ,
 is the

point of intersection
of the terminal side of

 with the unit circle.
1



. sincos 

x-coordinate

y-coordinate


 sincos 



The hypotenuse has length
1 as it coincides with the
radius of the circle.

When neither   nor
 is zero:

1


. x y  cos sin =

y
x

1

sin
cos

tan
1
cot

-----------  cot 1
tan

-----------==

sin
1
csc

-----------  cos 1
sec

-----------==

DEFINITION 1.9
TANGENT, COSECANT, 
SECANT, COTANGENT

For any :

TRIGONOMETRIC VALUES OF QUADRANTAL ANGLES

EXAMPLE 1.19 Determine the value of .



sin opp
hyp
--------- y

1
---= =

cos adj
hyp
--------- x

1
---= =

From right-triangle
definition (see margin):

From Definition 1.8: 

y sin=

x cos=
same

same



tan
sin
cos

------------                  csc 1
sin

-----------= =

sec
1
cos

------------                  cot cos
sin

------------= =

1 0  0 1  1 0– , and 0 1–  

.
.

.
.

1 0 

0 1 

1 0– 

0 1– 

270sin
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SOLUTION: Placing the angle in standard
position and reading off the y-coordinate
of the intersection of its terminal side with
the unit circle, we find that: 

SOLUTION: Placing the angle in standard posi-
tion we see that  (y-coordinate),
and that  (x-coordinate). Con-
sequently: 

We now turn our attention to that of determining   for certain
non-quadrantal angles , where “trig” represents any one of the six
trigonometric functions. This will involve two steps: finding (1) the
sign of   and (2) the magnitude of . 

To determine the signs of   you need only remember that
 is the point of intersection of the terminal side of  with

the unit circle:

Figure 1.10

EXAMPLE 1.20 Evaluate .

270

.
0 1– 270sin 1–=

3– tan

Answer: See page A-6.

CHECK YOUR UNDERSTANDING 1.20

Complete the following table:

TRIGONOMETRIC VALUES OF NON-QUADRANTAL ANGLES

3–.1 0– 

3– sin 0=
3– cos 1–=

3– tan 3– sin
3– cos

----------------------- 0
1–

------ 0= = =


degrees   radians

0
90

270

0

    cos    tan     csc        cotsecsin

0         1         0                               undef



trig


trig trig
trig

cos sin  

. cosine positive

sine positive

all positive 

.cosine negative

sine positive

csc  positive
sec, tan, and cot negative

. cosine positive

sine negative

sec positive
csc, tan, and cot negative

.cosine negative

sine negative

tan and cot positive
sec and csc negative

QIQII

QIII      QIV
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SOLUTION: Since ,

the angle  is coterminal with ,
and therefore lies in the second quadrant,
where the sine is positive and the cosine
is negative. Consequently: 

As you have seen, determining the sign of  is an easy matter, once
the quadrant of  has been determined. Our next concern is with the mag-
nitude of , and we begin by defining the reference angle, , of any
non-quadrantal angle , to be that acute angle formed by the terminal
side of  and the x-axis:

Figure 1.11

Consider, now, any angle  with reference angle . The terminal side
of   is one of the four depicted in Figure 1.11. By symmetry, the coor-
dinates of the points of intersection of the terminal sides with the unit cir-
cle only differ in sign:

Thus , and , depending on the quad-

rant in which  lies.   Noting that  , we have:

EXAMPLE 1.21 Determine the sign of the six trigonometric
functions of       825=

Answer: cosine and secant
are positive, the others are
negative.

CHECK YOUR UNDERSTANDING 1.21

Determine the sign of the six trigonometric functions of .

cosine neg

sine pos

105

825 2 360  105+=

825 105

825 0sin 825 0cos

825csc 0 825sec 0
825tan 0

825cot 0

 29
7

---------–=

trig


trig r




. .
r

r
r

r

x y 

x y– x– y– 

x– y 

1

.      .

 r


x y  x y–  x y––  x y–   

cos x  or x–= sin y  or y–=

 x y  rcos rsin =

cos rcos=

sin rsin= 


           consequently: trig trigr=
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SOLUTION:
STEP 1: Noting that  , we
conclude that  lies in QIII, where the
cosine is negative.

Step 2: Noting that the reference angle of  is
, we conclude that

. Thus: 

SOLUTION:

STEP 1: Noting that , we

conclude that  lies in QIV, where the

cotangent is negative ( ). 

Step 2: Noting that the reference angle of  is , we conclude

that  . Thus: 

We can now find the exact value of   for any  whose ref-

erence angle is , , or . It is a two-step process:

Step 1. Determine the sign of . Locate the quadrant in
which  lies, and then refer to Figure 1.10.

Step 2. Determine the magnitude of . Find the reference

angle , and then use the fact that 

EXAMPLE 1.22 Evaluate .

trig 
30 45 60

trig


trig
r trig trigr=

570cos

30

60

1

2

3

EXAMPLE 1.23
Evaluate .

30

210

570 360– 210=
 570=


r 210 180– 30= =

570cos 30cos=

570cos 30cos– adj
hyp
---------– 3

2
-------–= = =

see margin

Step 1 Step 2

17
4

---------– 
 cot


4
---

17
4

---------–

17
4

---------– 4– 
4
---–=

 17
4

---------–=

cot cos
sin

------------=


4
---

1

1

2

 r

4
---=

17
4

---------– 
 cot 

4
---cot=

17
4

---------– 
 cot 

4
---cot– adj

hyp
---------– 1–= = =

see margin

Step 1 Step 2
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Though it may be comfortable to think of the trigonometric functions
as acting on angles, a different interpretation is called for in the calcu-
lus where one is concerned with functions defined on real numbers. As
you can see from the following definition, the transition from trigono-
metric functions of angles to trigonometric functions of numbers
hinges on the fact that the radian measure of an angle, being a ratio of
two lengths, is actually a real number. 

Figure 1.12 displays the graphs of the sine and cosine functions. As
you can see, both are periodic with period : the bold-faced portion
of each graph just keeps repeating itself. In other words:

 and  for every integer k.  

Figure 1.12

Answers: (a)    

(b)      (c) 

3
2

-------–

1–
2

3
-------

CHECK YOUR UNDERSTANDING 1.22

Determine the exact value of:

     (a)               (b)                 (c) 

TRIGONOMETRIC FUNCTIONS OF A REAL VARIABLE

DEFINITION 1.10
TRIGONOMETRIC 
FUNCTIONS OF A 
REAL VARIABLE

For any real number x:

where  is the angle with radian measure x.

840– sin 11
4

---------cot 25
6

---------– 
 sec

trig x trig=

a number              an angle



Principal period of the
sine function:

Principal period of the
cosine function:

1–

1

0 
2
---  3

2
------ 2

1–

1

0 
2
---  3

2
------ 2

2

x 2k+ sin xsin= x 2k+ cos xcos=

f x  xsin=

 2 3–2–3– 0

1

-1

y

x


(b)
f x  xcos=

 2 3–2–3– 0

1

_-1


x

y
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The graph of the tangent function appears in Figure 1.13. Note that
the tangent function has period : with principal period the bold-faced

portion of the graph over the interval .

Figure 1.13

An identity is an equation that holds for every value of the vari-
able(s) for which both sides of the equation are defined. At this point,
we content ourselves with acknowledging several important trigono-
metric identities. 

A vertical asymptote
for the graph of a func-
tion is represented by a
dashed vertical line
about which the graph
tends to either plus or
minus infinity. In partic-
ular the graph of the tan-
gent function has
vertical asymptotes at

odd multiples of .
2
---

TRIGONOMETRIC IDENTITIES



2
---–

2
--- 

 

23
2

------
2
---0

2
---––3

2
------–2– x

y

THEOREM 1.5

PYTHAGOREAN IDENTITY

     

ADDITION IDENTITIES

DOUBLE-ANGLE IDENTITIES

 

HALF-ANGLE IDENTITIES

POWER-REDUCTION IDENTITIES

For all numbers x and y:

(i)

(ii)

(iii)

(iv)   

(v)

(vi)

(vii)

(viii)

(ix)

{
{
{
{

sin
2
x cos

2
x+ 1=

x y+ sin x y x ysincos+cossin=

x y– sin x y x ysincos–cossin=

x y+ cos x y x ysinsin–coscos=

x y– cos x y x ysinsin+coscos=

2xsin 2 x xcossin=

2cos x cos
2
x sin

2
x–=

x
2
---sin 1 xcos–

2
--------------------=

x
2
---cos 1 xcos+

2
---------------------=

sin
2
x 1 2xcos–

2
-----------------------=

cos
2
x 1 2xcos+

2
------------------------=
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Exercises 1-8. Convert to radian measure. 

Exercises 9-16. Convert to degree measure. 

Exercises 17-32. Evaluate. 

Exercises 33-41. Use the trigonometric identities of Theorem 1.5 to simply the expression.

EXERCISES

1. 2. 3. 4.

5. 6. 7. 8.

9. 10. 11. 12.

13. 14. 15. 16.

17. 18. 19. 20.

21. 22. 23.
24. sin

25. 26. 27. 28.

29. 30. 31.
32. sin

33. 34. 35.

36. 37. 38.

39. 40.
41.

 30=  45– =  60=  90=

 120=  135=  150– =  360=

 
4
---=  

3
---=  

6
---–=  3

4
------=

 
2
---=  5

4
------–=  7

6
------=  11

3
---------=

810sin 5cos 17
2

---------cot 180– csc

11sec 540cot 360– tan 15
2

---------– 
 

135sin 5
4

------cos 17
3

---------tan 45– csc

11
6

---------sec 240cot 510– tan 15
6

---------– 
 

2sin
2
x

2xsin
--------------- 2cos

2
x

2xsin
----------------

x xcos+sin 2 1–
2xsin

---------------------------------------------

sin
2
x
xcos

------------ xsec– sin
2x

2
---cos

2 x
2
---

1 2xcos+
-------------------------

1 2xcos+
2xsin

------------------------

xtan xcot+
2xcsc

---------------------------- x xcos–sin 2 1–
2xsin

-------------------------------------------- x xtan+sec 2 xsec xtan– 
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CHAPTER SUMMARY

ABSOLUTE VALUE

AND

DISTANCE

The absolute value of a, denoted by , is given by:

 represents the distance (number of units) between the num-
bers a and 0 on the number line.

The distance between a and b is given by . 

DOMAIN AND RANGE OF A 
FUNCTION

Roughly speaking, the domain of a
function f is the set, , on which f

“acts,” and its range is the set  of

the function values.

THE ARITHMETIC OF 
FUNCTIONS

COMPOSITION

The sum, difference, product, and quotient of two functions  f
and g are defined as follows:

For any constant c: 

The composition  is given by:

ONE-TO-ONE FUNCTION 
AND ITS INVERSE

A function  f  is one-to-one if for all a and b in :

The inverse of a one-to-one function f with domain  and

range  is that function  with domain  and range 

such that:

 for every x in 
and 

 for every x in 

a

a
a     if    a 0
a–     if    a 0




=

a

a b–

Domain        Range

x f x 

Df
Rf

f
Df

Rf

f g+  x  f x  g x +=

f g–  x  f x  g x –=

fg  x  f x g x =

f
g
--- 
  x  f x 

g x 
----------= providing g x  0 

cf  x  cf x =

gf  x 

gf  x  g f x  =

first apply f

and then apply g

Df

f a  f b  a= b=

Df

Rf f 1– Rf Df

f 1–  f  x  x= Df

ff 1–  x  x= Rf
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TRIGONOMETRIC FUNCTIONS
OF ACUTE ANGLES

TRIGONOMETRIC FUNCTIONS
OF ARBITRARY ANGLES

For any angle ,  is
the point of intersection of the ter-
minal side of  with the unit circle.

Then:

TRIGONOMETRIC FUNCTIONS
OF A REAL VARIABLE

For any real number x:

where  is the angle with radian measure x.

GRAPHS OF THE SINE, COSINE,
AND TANGENT FUNCTIONS

hypoten
use 

(h
yp)

side adjacent (adj)

side opposite (opp
)

sin
opp
hyp
--------- cos

adj
hyp
--------- tan= opp

adj
---------= =

csc
hyp
opp
--------- sec

hyp
adj
--------- cot= adj

opp
---------= =

1


. sincos 

x-coordinate

y-coordinate

  sincos 



tan
sin
cos

------------            csc 1
sin

-----------= =

sec
1
cos

------------          cot cos
sin

------------= =

trig x trig=

a number              an angle



1–

1

0 
2
---  3

2
------ 2

1–

1

0 
2
---  3

2
------ 2

y xsin= y xcos=

xx

yy

3
2

------
2
---0

2
---–– x

y

y xtan=
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TRIGONOMETRIC IDENTITIES For all numbers x and y:

(i)

(ii)

(iii)

(iv)   

(v)

(vi)

(vii)

(viii)

(ix)

sin
2
x cos

2
x+ 1=

x y+ sin x y x ysincos+cossin=

x y– sin x y x ysincos–cossin=

x y+ cos x y x ysinsin–coscos=

x y– cos x y x ysinsin+coscos=

2xsin 2 x xcossin=

2cos x cos
2
x sin

2
x–=

x
2
---sin 1 xcos–

2
--------------------=

x
2
---cos 1 xcos+

2
---------------------=

sin
2
x 1 2xcos–

2
-----------------------=

cos
2
x 1 2xcos+

2
------------------------=
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CHAPTER 2 
LIMITS AND CONTINUITY

At the very heart of the calculus is the concept of a limit, and here is
an example:

It is read: The limit as x approaches 2 of the function .

It represents: That number which  approaches as the value of
x approaches 2.

Clearly, as x gets closer and closer to 2, 3x will get closer and closer
to 6, and  will consequently approach 11. We therefore write:

By the same token,

(as x approaches 3, the numerator approaches  3,

and the denominator approaches .)

At this point, you might be wondering what all of the fuss is about.
Up to now, it was totally natural to simply plug the given number into
the  function to arrive at the limit, right? Yes, but consider: 

Attempting to substitute 2 for x in the numerator and denominator

brings us to the meaningless expression “ ”. However, if you let the

value of x get closer and closer to 2; say , ,

, , and so on, you will find that 

will indeed approach a particular number. To find that number, we turn
to a related algebra problem:

§1.  THE LIMIT: AN INTUITIVE INTRODUCTION

3x 5+ 
x 2
lim

3x 5+

3x 5+

3x 5+

3x 5+ 
x 2
lim 11=

x
x2 5+
--------------

x 3
lim 3

14
------=

32 5+ 14=

Answer:  (a) 3   (b)  

               (c) 84 

5
4
---

CHECK YOUR UNDERSTANDING 2.1

Determine the given limit.

(a)           (b)            (c)    4x2 x+ 
x 1–
lim x 3+

x 2+
------------

x 2
lim x 3x2 1+  

x 3
lim

   x2 x 6–+
x2 4–

-----------------------
x 2
lim

You can use your calcula-
tor to see what happens,
but at some point, say for

, you may
receive an error message,
since most calculators
think that .
Poor things.

x 1.99999999=

1.99999999 2=

0
0
---

x 1.99= x 2.001=

x 1.9999= x 2.00001=
x2 x 6–+

x2 4–
-----------------------
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Simplify:  .  

Solution:  

But the above is not totally correct, for one should really write:

 

In the limit process however, the variable x approaches 2 — it can get
as close to 2 as you wish but it is never equal to 2; and we do indeed
have:

We’ve encountered two types of limits:

Those like  and , which can be

determined by simply plugging in the indicated x-value.

And the more interesting type, like ,

which cannot be evaluated at .

SOLUTION: Since both the numerator and denominator are zero at
,  must be a factor of both polynomials:   

x2 x 6–+
x2 4–

-----------------------

x2 x 6–+
x2 4–

----------------------- x 3+  x 2– 
x 2+  x 2– 

--------------------------------- x 3+
x 2+
------------= =

We remind you that one
cannot “cancel a 0.” 

x2 x 6–+
x2 4–

----------------------- x 3+  x 2– 
x 2+  x 2– 

---------------------------------
x 3+
x 2+
------------  if x 2= =

conditional equality

(*)

   x2 x 6–+
x2 4–

-----------------------
x 2
lim x 3+  x 2– 

x 2  x 2– +
----------------------------------

x 2
lim x 3+

x 2+
------------

x 2
lim 5

4
---= = =

not conditional

EXAMPLE 2.1 Evaluate: 

x
x2 5+
--------------

x 3
lim x 3+

x 2+
------------

x 2
lim

x2 x 6–+
x2 4–

-----------------------
x 2
lim

x 2=

x3 2x2– 3x–
x2 2x 15–+
-------------------------------

x 3
lim

x 3= x 3– 

x3 2x2– 3x–
x2 2x 15–+
-------------------------------

x 3
lim x x2 2x– 3– 

x 3–  x 5+ 
----------------------------------

x 3
lim x x 3–  x 1+ 

x 3–  x 5+ 
-------------------------------------

x 3
lim= =

x x 1+ 
x 5+ 

-------------------
x 3
lim= 3 3 1+ 

3 5+
-------------------- 12

8
------ 3

2
---= = =

Answer: (a)     (b) 2
5
2
---

CHECK YOUR UNDERSTANDING 2.2

Determine the given limit.

    (a)                          (b)  x2 3x 4–+
x2 1–

--------------------------
x 1
lim    x3 2x2– 2x 4–+

x2 x– 2–
-----------------------------------------

x 2
lim



 2.1    The Limit: An Intuitive Introduction       45
SOLUTION: The problem is with the zero in the denominator (when
). Our goal is to alleviate that problem:

      

SOLUTION: We have to do something to get rid of that bothersome 0
in the denominator (when ). Out of desperation, we rationalize
the numerator:

You can determine  by simply substituting 1 for x in

the expression : . We now turn

that problem upside down, and consider: 

EXAMPLE 2.2

Evaluate:     

1
2
--- 1

x
---+

  x 2  +
-------------------

x 2–
lim

Note: We carry the
limit symbol until the
limit is performed. An
analogous situation:

3 2 4+ 6 4+ 10= =

you write the “+” until

the sum is performed

EXAMPLE 2.3 Evaluate:

                    

x 2–=

1
2
--- 1

x
---+

  x 2  +
-------------------

x 2–
lim

x 2+
2x

------------

  x 2  +
-------------------

x 2–
lim

x 2+
2x

------------ 1
x 2+
------------ 

 
x 2–
lim= =

1
2x
------

x 2–
lim 1

2 2– 
-------------- 1

4
---–= = =

see margin

x 1+ 1–
  x  

-------------------------
x 0
lim

x 0=

x 1+ 1–
  x  

-------------------------
x 0
lim

x 1+ 1–
  x  

------------------------- x 1+ 1+

x 1+ 1+
------------------------- 

 
x 0
lim=

x 1+  1–

  x x 1+ 1+   
----------------------------------------

x 0
lim=

x

  x x 1+ 1+   
----------------------------------------

x 0
lim=

1

  x 1+ 1+   
--------------------------------

x 0
lim 1

0 1+ 1+
------------------------- 1

2
---= = =

a b–  a b+  a2 b2:–=

The numerator got nicer while
the denominator got uglier. But
ugliness is in the eyes of the 
beholder. The truly “ugly” thing
was that x in the denominator
which vanishes.

 

Answer:  (a) 1    (b)     1
16
------

CHECK YOUR UNDERSTANDING 2.3

Determine the given limit.

      (a)                            (b)   1
x
--- 1

x2 x+
--------------– 

 
x 0
lim x 2+ 2–

x2 4–
-------------------------

x 2
lim

x2 3x 4–+
x2 1+

--------------------------
x 1
lim

x2 3x 4–+
x2 1+

-------------------------- 1 2 3 1  4–+

1 2 1+
------------------------------------- 0

2
--- 0= =

   x2 1+
x2 3x 4–+
--------------------------

x 1
lim
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Observing that as x gets closer and closer to 1, the denominator of

 gets closer and closer to 0 while the numerator approaches

2, we can conclude that the quotient must get arbitrarily large in magni-
tude:  LIMIT DOES NOT EXIST.

Here is another situation where a limit fails to exist:

The function  does not have a limit

at . Why not? Because:

As x approaches 2 from the left, the top rule is in effect,
and  approaches . On the other hand,
as x approaches 2 from the right, the bottom rule is in

effect, and  approaches . 

One says that the left-hand limit of the above function equals 7 and
that the right-hand limit equals 4; written:

You can easily convince yourself that the following assertion holds:

In particular, the function , does not have

a limit at 2 since, as we have seen, .

How about the function  — does it have a

limit at 2? Yes, and it equals 7:

Finally, does the function  have a limit at 2?

Yes, it is again 7; for the limit is “not concerned” with what happens at
2, but only what happens as x approaches 2!

x2 1+
x2 3x 4–+
--------------------------

ONE-SIDED LIMITS

f x  3x 1+ if x 2
x2 if x 2




=

x 2=

f x  3 2 1+ 7=

f x  22 4=

f x 
x 2–
lim 7     and     f x 

x 2+
lim 4==

You are invited to
establish this result in
the next section.

THEOREM 2.1  exists if and only if  and

 both exist and are equal; and, if they

are, then:

  

f x 
x c
lim f x 

x c
_


lim

f x 
x c+
lim

f x 
x c
lim f x 

x c
_


lim f x 

x c+
lim= =

f x  3x 1+ if x 2
x2 if x 2




=

f x 
x 2

_

lim f x 

x 2+
lim

g x  3x 1+ if x 2
x2 3+ if x 2




=

g x 
x 2+
lim g x 

x 2
_


lim 7= =

h x 
3x 1+ if x 2

100 if x 2=

x2 3+ if x 2





=
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Consider the functions depicted in Figure 2.1. 

Figure 2.1
Looking at the function in (a), we see that as x approaches 3, from

either the left or the right, the function values (y-values) approach the
number 4. Thus: . The function in (b) differs from that of

(a) only at , where it has a “hiccup.” But that anomaly has abso-
lutely no effect on the limit, since the limit does not care about what hap-
pens at 3 — it only cares about what happens as x approaches 3. Thus:

. (The same conclusion could be drawn, even if g were

not defined at 3.) The function h in (c) does not have a limit at ,
since  while . A discussion of the limit

situation depicted in Figure (d), (e), and (f) is offered in the margin. 

Answer:  (a) 6    (b)  DNE
(c) DNE      (d) 2

CHECK YOUR UNDERSTANDING 2.4

Determine if the given limit exists, and if does, evaluate it.

(a)           (b)     

(c) , for 

(d) , for 

GEOMETRICAL INTERPRETATION OF THE LIMIT CONCEPT

x2 9–
x 3–
--------------

x 3
lim x 3–

x2 6x– 9+
--------------------------

x 3
lim

f x 
x 3
lim f x  2x 1– if x 3

x 5+ if x 3



=

g x 
x 3
lim g x  x 1– if x 3

2 if x 3



=

The solid dot above 3 in
(a) depicts the value of the
function at 3: .
Similarly in (b) ,
and in (c)  . 

Note that “ ” and “ ” are
not numbers. The notation

 in (d) is used to

indicate that the function k
takes on arbitrarily large pos-
itive values as x approaches 3
from either side.

 indicates that

the function l takes on arbi-
trarily large negative values
as x approaches 3 from either
side [see (e)]. 
The function m in (f) does not
have a limit at 3, as the func-
tion values approach  as x
approaches 3 from the left,
and  as it approaches 3
from the right. One can write:

 

    and 

(Formal definition appears at
the end of the next section.)

f 3  4=
g 3  7=

h 3  7=

 –

k x 
x c
lim =

l x 
x 3
lim –=

+

–

m x 
x 3–

lim =

m x 
x 3+
lim –=

3

4 .
    

3

4

    

o

.
_

7

3

4 o_
7 .

(a)                               (b)                                (c)

_ _
_

f g h

| | |

g x 
x 3
lim 4= h x 

x 3
lim DNE f x 

x 3
lim 4=

3
    

3
    

(d)                                  (e)                                (f)

| |

k

k x 
x 3
lim =

l

l x 
x 3
lim –=

    3
    |

m

m x 
x 3
lim   DNE

f x 
x 3
lim 4=

x 3=

  g x 
x 3
lim 4=

x 3=
h x 

x 3
_


lim 4= h x 

x 3+
lim 7=
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Let’s reconsider the functions: 

Figure 2.2
While the function in (c) does not have a limit as x approaches 3, both

the functions in (a) and (b) do. The limit, oblivious of what happens at
3, cannot tell you that the function g in (b) behaves in a somewhat
peculiar fashion at . Another concept, one more sensitive than
that of the limit, is called for:

In other words, for the function f to be continuous at c, three things
must happen:

(1) The function must be defined at c.

(2) The limit must exist at c.

(3) That limit must equal the function value at c.

Answers: 
(a) 1        (b) DNE       (c) 1
(d) DNE:  f x 

x 7
lim =

CHECK YOUR UNDERSTANDING 2.5

Referring to the graph of the function f below, determine if the given
limit exists, or is infinite. If it exists, indicate its value.

(a)       (b)      (c)     (d)  

CONTINUITY 

DEFINITION 2.1
CONTINUITY 

A function f  is continuous at  c  if:

A function that is not continuous at c, is
said to be discontinuous at that point.

o

.
o

2                 5            7

1

3

2
f

.

   f x 
x 0
lim    f x 

x 2
lim    f x 

x 5
lim    f x 

x 7
lim

3

4 .
    

3

4

    

o

.
_

7

3

4 o_
7 .

(a)                               (b)                                (c)

_ _
_

f g h

| | |

g x 
x 3
lim 4= h x 

x 3
lim Does Not Exist f x 

x 3
lim 4=

x 3=

f x 
x c
lim f c =
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Returning to Figure 2.2, we see that:

The function f in (a) is continuous at 3
         (limit equals 4, and )

The function g in (b) is not continuous at 3
         (limit equals 4, but ).

The function h in (c) is also not continuous at 3
                 (limit does not even exist)

If a function f has a limit at c but that limit is not equal to  (per-
haps because the function is not even defined at c), then f is said to have
a removable discontinuity at c. [The function in Figure 2.2(b) has a
removable discontinuity at 3.

If the left- and right-hand limits of a function f exist at c but are not
equal to each other, then f is said to have a Jump discontinuity at that
point [The function in Figure 2.2(c) has a jump discontinuity at 3].

SOLUTION: 

(a) Since  and ,

the limit does not exist at 3, and the function has a jump discontinuity
at that point.

(b) Since , , 

and since , the function is continuous at 4.

(c) Since the function is not defined at 5, it cannot possibly be contin-
uous at that point. But is the discontinuity removable? Yes:

 and 

f 3  4=

g 3  7=

REMOVABLE
DISCONTINUITY

JUMP
DISCONTINUITY

If the left- or right-hand
limit of f fails to exist at c,
then the function is said to
have an essential discon-
tinuity at that point. It can
be shown that the function

 has an essen-

tial discontinuity at 0.

f x  1
x
---sin=

EXAMPLE 2.4 Determine if the function

  

has a discontinuity at: 
    (a)          (b)         (c) 
If so, is it removable or  a jump discontinuity? 

f c 

f x 

2x if x 3
3x 1+ if 3 x 4 
x2 3– if 4 x 5 
4x 2+ if 5 x








=

x 3= x 4= x 5=

f x 
x 3

_

lim 2 3 6= = f x 

x 3+
lim 3 3 1+ 10= =

f x 
x 4

_

lim 3 4 1+ 13= = f x 

x 4+
lim 42 3– 13= =

f 4  3 4 1+ 13= =

f x 
x 5

_

lim 52 3– 22= = f x 

x 5+
lim 4 5 2+ 22= =
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Finally, we note that a continuous function is a function that is con-
tinuous at every point in its domain. Roughly speaking, a function is
continuous if it can be graphed without lifting the writing utensil. The

function  is continuous everywhere, as is every polynomial
function. Rational functions are continuous wherever they are defined.

Answers: 
(a) Jump discontinuity.
(b) Removable discon-
tinuity.

CHECK YOUR UNDERSTANDING 2.6

Is the given function continuous at ? If not, does it have a
removable or jump discontinuity at the point?

 (a)    (b)  

x 2=

f x  x 1+ if x 2
x2 1.001– if x 2




= f x 
x 1+ if x 2

25 if x 2=

x2 1– if x 2





=

f x  x2=



 2.1   The Limit: An Intuitive Introduction       51
 3

Exercises 1-29. Evaluate the given limit, if it exists.

Exercises 30-33. Determine if the given limit exists. If it does, indicate its value. Is the function
continuous at the given point? If not, is the discontinuity removable or is it a jump discontinuity?

EXERCISES

1. 2. 3.

4. 5. 6.

7. 8. 9.

10. 11. 12.

13. 14. 15.

16. 17. 18.

19.
20.

21.

22. 23. 24.

25.
26.

27.

28. 29.

30.   where: 31.   where:

x2 5–
x 3+
--------------

x 3
lim x2 5–

x 3+
--------------

x 5
lim x2 5–

x 5+
--------------

x 5
lim

x2 5–
x 5–
--------------

x 5
lim x2 25–

x2 3x– 10–
-----------------------------

x 5
lim x2 25–

x2 4x 5+ +
---------------------------

x 5–
lim

x2 3x 10–+
x2 4x– 4+

-----------------------------
x 2
lim x2 4x 4+ +

x2 3x 2+ +
---------------------------

x 2–
lim 2x3 5x2 3x+ +

x2 3x– 4–
-----------------------------------

x 1–
lim

x2 1–
x2 2x– 1+
--------------------------

x 1
lim x2 2x– 1+

x2 1–
--------------------------

x 1
lim x2 1–

x3 1–
--------------

x 1
lim

x2 1–
x3 x2– 2x 2–+
-------------------------------------

x 1
lim x2 x 2–+

x3 x2 4x– 4–+
-------------------------------------

x 2–
lim x2 1–

x3 2x2– 1+
-----------------------------

x 1
lim

2 x–
x2 16–
-----------------

x 4
lim 1 x+ 2–

x 3–
-------------------------

x 3
lim 1 x+ 1–

x2
-------------------------

x 0
lim

x2 1–

1 x+ 1–
-------------------------

x 0
lim

1
x 2+
------------ 1

4
---–

x2

x 1–
----------- 4–
---------------------

x 2
lim

1
x
--- 1

x x 1+
-------------------– 

 
x 0
lim

1
x 2–
----------- 1

x2 4–
------------------+ 

 
x 2
lim x2 8+ 3–

x 1+
---------------------------

x 1–
lim

x h+ 2 x2–
h

------------------------------
h 0
lim

x h+ 3 x3–
h

------------------------------
h 0
lim

1
x h+ 2

------------------- 1
x2
-----–

h
-------------------------------

h 0
lim

sin2x xsin+
xcot

-----------------------------
x 0
lim

cos2x 1–
cos2x xcos 2–+
----------------------------------------

x 0
lim

1 xsin–
xcos

-------------------
x


2
---

lim

f x 
x 2
lim

f x 
x 2     if  x 2+

x2          if   x 2



=

f x 
x 2
lim

f x 
x 2     if  x 2+

x2          if   x 2



=
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Exercises 34-37. (Geometrical Interpretation) Referring to the graph of the function f, deter-
mine if the given limit exists or is infinite. If it exists, indicate its value. Is the function continuous
at the given point? If not, is the discontinuity removable, a jump discontinuity, or an essential dis-
continuity?

Exercise 38-42. (Theory) Sketch the graph of a function  f  satisfying the given conditions.

32.   where: 33.   where:

34. 35.

36. 37.

38.  and 39.  and 

40.  and . 41.  and .

42.  f is:
 (i) Continuous at 1.          
(ii) Defined at 2 and has a removable discontinuity at 2.
(iii) Is not defined at 3 and has a removable discontinuity at 3.
(iv) Is defined at 4 and has a jump discontinuity at 4.

f x 
x 2
lim

f x 
x 2     if  x 2+

2           if  x 2=

x2          if   x 2





=

f x 
x 2
lim

f x 
x 1     if  x 2+

x2          if   x 2



=

f x 
x 3
lim

o

3

.
2

5

f x 
x 3
lim

o

3

.2

5

f x 
x 3
lim

3

f x 
x 3
lim

o

3

.
2

5

f 1  5= f x 
x 1
lim 5= f 3  1= f x 

x 3
lim 1–=

f 1  5= f x 
x 1
lim 6= f 1  5= f x 

x 1
lim 5=



 2.2    The Definition of a Limit       53
 2

The intuitive notion of the limit concept is valuable, but hardly rigor-
ous. It’s fine to say that  tells us that the function values

 get arbitrarily close to L as long as x is sufficiently close to c, but
what exactly does “arbitrarily close,” and “sufficiently close” mean?
The time has come to place the limit concept on a firm foundation: 

We remind you that, geometrically, the absolute value expression
 denotes the distance between a and b on the number line. Now

look at the last line in the above definition. It says exactly what needs to
be said:

In the exercises you are invited to establish the following result which
asserts that limits, if they exist, are unique: 

To show that  we need to find, for any given , a

positive number  such that for every x within  units of c (excluding
c itself)  falls within  units of L. Generally, the smaller the given

, the smaller the corresponding . Consider, for example, the function
f depicted in Figure 2.3. Note that while “everything in the  neigh-
borhood of c in Figure 2.3(a) maps into the  neighborhood of L,” a
smaller  (labeled ) had to be chosen to accommodate the smaller 
(labeled ) of Figure 2.3(b).

Figure 2.3

§2.  THE DEFINITION OF A LIMIT

The Greek letters  and 
(“epsilon” and “delta,”
respectively) are tradition-
ally used in the definition
of the limit.

Left-Hand Limit:
 if:

For any given  there
exists  such that:

if  then 

Right-Hand Limit:
 if:

For any given  there
exists  such that:

if  then 

 

f x 
x c

_
lim L=

 0
 0
c  x c –

f x  L– 

f x 
x c+
lim L=

 0
 0
c x c + 

f x  L– 

DEFINITION 2.2   if:

For any given  there exists  such that:

if  then 

THEOREM 2.2
UNIQUENESS

THEOREM

If  and , then:

                         .

f x 
x c
lim L=

f x 

f x 
x c
lim L=

 0  0
0 x c–   f x  L– 

a b–

if 0 x c–     then    f x  L–  

f x  is within  units of Lif x c is within  units of c    then

f x 
x c
lim L= f x 

x c
lim M=

L M=

f x 
x c
lim L=  0

 
f x  

 
1

1
 2 
2

c

L1

1

1
1

c

L
2

2

2

2

f f

(a)                                                  (b)
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SOLUTION: For a given  we are to find  such that: 

While a choice of  for which 

in the top line above may not be so apparent, it is trivial to find a   that
works in the rewritten form (bottom line):

             ; namely: . 

               For certainly: !

SOLUTION: For a given  we are to find  such that:

The proof will be complete once we find a  for which:

While it is tempting to choose , that temptation must be

suppressed, for  has to be a positive number and not a function of x. 

Since we are interested in what happens near , we decide to
focus on the interval: 

Within that interval  (see margin).
 

EXAMPLE 2.5 Prove that .2x 5+
x 3
lim 11=

 0  0

0 x 3–  f x  11–  
0 x 3–  2x 5+  11–  
0 x 3–  2x 6–  
0 x 3–  2 x 3–  

0 x 3–  x 3–

2
--- 

sam
e

 is the largest 

that “works.” Any pos-
itive number less than

 can also be used.

Answer: See page A-9.

 
2
---= 


2
---

CHECK YOUR UNDERSTANDING 2.7

Prove that

EXAMPLE 2.6 Prove that .

 0 x 3–  2x 5+  11–  


0 x 3–  x 3–

2
---   

2
---=

0 x 3–

2
--- x 3–


2
--- 

5x 1+
x 4
lim 21=

x2

x 3
lim 9=

 0  0

0 x 3–  x2 9–  
0 x 3–  x 3+  x 3–   
0 x 3–  x 3+ x 3–  

 0

0 x 3–  x 3+ x 3–   (*)

2    3    4

y x 3+=

7

5

 
x 3+
---------------=


x 3=

2 4  x x 3– 1 =

x 3+ 7
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Consequently, within that interval:

Taking  to be the smaller of the two numbers 1 and  [written:

], we are assured that  and that . Thus:

  

The following theorem formalizes results that you have been taking
for granted all along. 

PROOF: We prove (a) and (c). You are invited to establish (e) in CYU
2.9 below,  and (b) and (d) in the exercises. 

x 3+ x 3– 7 x 3–

 
7
---

 min 1

7
--- 

 = x 3+ 7  
7
---

Answer: See page A-9.

CHECK YOUR UNDERSTANDING 2.8

Show that: 

0 x 3–  x2 9–  x 3+ x 3– 7

7
--- = =

x2 1+ 
x 2
lim 5=

The theorem also holds for
one-sided limits. In particu-
lar, if:

 

then:
 .

f x 
x c+
lim L      =

 and g x 
x c+
lim M      =

f x  g x + 
x c+
lim L M+=

PROPERTIES OF LIMITS

THEOREM 2.3
LIMIT THEOREMS

If   then:

(a) .

(b) .

(c) .

(d) .

(e)  for any number a.

IN WORDS: (a) The limit of a sum is the sum of the limits.

(b) The limit of a difference is the difference of the limits.

(c) The limit of a product is the product of the limits.

(d) The limit of a quotient is the quotient of the limits
(providing the limit of the denominator is not zero).

(e) The limit of a constant times a function is the constant
times the limit of the function.

f x 
x c
lim L   and   g x 

x c
lim M==

f x  g x + 
x c
lim L M+=

f x  g x – 
x c
lim L M–=

f x  g x  
x c
lim LM=

f x 
g x 
----------

x c
lim

L
M
-----    if  M 0=

af x  
x c
lim aL=
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(a) For a given  we are to find  such that:

By virtue of the triangle inequality (see margin) we have:

 

It follows that (*) will hold for any  for which 

implies that BOTH  and . Let’s find such a

:
Since , there is a  such that

 .

Since  there is a  such that

 .

Taking  to be the smaller of  and  we have: 

, implies tha BOTH  and .

(c) For a given  we are to find  such that

The triangle inequality tells us that:

We now set our sights on finding a  for which both:

(A)    

             and    (B) 

For (A): Since , we can choose  such that: 

Throughout this devel-
opment we are assum-
ing that the variable x
will always be con-
tained in the domain of
both f and g.

For any two numbers a
and b:

(Triangle Inequality)
a b+ a b+

 0  0

0 x c–  f g+  x  L M+ –  
0 x c–  f x  g x  L– M–+  
0 x c–  f x  L–  g x  M– +   (*)

f x  L–  g x  M– + f x  L– g x  M–+

 0 0 x c–  

f x  L–

2
--- g x  M–


2
---


f x 

x c
lim L= 1 0

0 x c– 1  f x  L–

2
---

g x 
x c
lim M= 2 0

0 x c– 2  g x  M–

2
---

 1 2

0 x c–   f x  L–

2
--- g x  M–


2
---

We want to work 
and  into the
picture, and do so by intro-
ducing the clever zero:

 
within the expression:

f x  L–
g x  M–

f x M– f x M+

fg  x  LM–

 0  0

0 x c–  fg  x  LM–  
0 x c–  f x g x  LM–  
0 x c–  f x g x  f x M f x M LM–+–  
0 x c–  f x  g x  M–  M f x  L– +  

see margin:

f x  g x  M–  M f x  L– + f x  g x  M– M f x  L–+

 0

0 x c–   f x  g x  M–

2
---

0 x c–   M f x  L–

2
---

f x 
x c
lim L= 1

0 x c– 1 f x  L– 1

could choose any positive number 
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Then:   

        So that: 

Since , we can choose  such that: 

Letting , we find that (A) is satisfied: 

For (B): Since , there exists a  such that: 

Then: 

End result: For , both (A) and (B) are satisfied.

Since the concept of continuity rests on the limit concept, and since
the limit concept has rigorously been defined, a rigorous definition of
continuity follows nearly free of charge. 

1 f x  L– f x  L f x  L 1+–
Exercise 41, page 10

(**)

f x  g x  M– 1 L+  g x  M–

g x 
x c
lim M= 2 0

0 x c– 2 g x  M–


2 L 1+ 
----------------------- (***)

A min 1 2 =

0 x c– A f x  g x  M– L 1+  
2 L 1+ 
----------------------- 

2
---=

(**)

(***)

We used  instead
of  in the denominator,
as  might be zero.

M 1+
M
M

f x 
x c
lim L= B 0

0 x c– B f x  L–


2 M 1+ 
-------------------------

(margin)

0 x c– B M f x  L– M


2 M 1+ 
------------------------- 

2
--- 

Answer: See page A-9.

CHECK YOUR UNDERSTANDING 2.9

Prove Theorem 2.3(e).

CONTINUITY

 min A B =

(Continuous from the left)
Left-Hand Continuity at c:

(Continuous from the right)
Right-hand Continuity at c:

If a function is defined
only on one side of an
endpoint of an interval,
such as is the case with the
function  which
is only defined on the
interval , we then
understand continuity at
that endpoint to mean con-
tinuity from the right (or
continuous from the left;
whichever is appropriate).

f x 
x c

_
lim f c =

f x 
x c+
lim f c =

f x  x=

0 

From Definition 2.1: A function  f  is continuous at  c  if:

Equivalently:For any given  there exists  such that:

    if  then 
                             (Why  rather than ?)

A function that is not continuous at c, is said to be discontinu-
ous at that point.

A function that is continuous at every point in an interval is said
to be continuous in that interval.

A function that is continuous throughout its domain is said to be
a continuous function.

f x 
x c
lim f c =

 0  0
x c–  f x  f c – 
x c–  0 x c–  
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Theorem 2.3 readily extends to accommodate continuity:

PROOF: Each of the above results follows directly from its corre-
sponding limit theorem. Consider the following proof of (c):

In the exercises you are asked to show that all polynomial and rational
functions are continuous. The sine and cosine functions are also contin-
uous. That being the case, the composite functions  and

 are also continuous; for:.

PROOF: Let c be in the domain of , and let  be given. As is
suggested in Figure 2.4(a), we need to find a  such that:

  
Let’s do it:

Since g is continuous at , we can find a  such that:

             [Figure 2.4(b)].

(In particular: )

Now, think of  as being an “ -challenge” for the function f.
By the continuity of f, we can find a  such that:

                 [Figure 2.4(c)].

Merging Figures (b) and (c) we see that (*) holds [Figure 2.4(d)]:

THEOREM 2.4
      
       

If  f and g are continuous at c then so are the
functions:

  (a)            (b)               (c) 

  (d)  [providing ]           (e) 

f g+ f g– fg

f
g
--- g c  0 af

fg  x 
x c
lim f x  g x  

x c
lim f x  g x 

x c
lim

x c
lim= =

f c g c  fg  c = =

Theorem 2.3(c)

continuity of f and g:

Answer: See page A-9.

CHECK YOUR UNDERSTANDING 2.10

Prove Theorem 2.4 (a).

Recall that:
   
(See Definition 1.4, page 7)

gf  x  g f x  =
THEOREM 2.5

  COMPOSITION
     THEOREM

If f and g are continuous functions with the
range of f contained in the domain of g, then
the composite function  is also continuous.

x2 2x 5–+ sin
3x

x2 7+
-------------- 
 cos

gf

gf  0
 0

x c–  g f x   g f c  –  (*)

f c  

y f c –  g y  g f c  – 

f x  f c –  g f x   g f c  – 

 


x c–  f x  f c – 

x c–  f x  f c –  g f x   g f c  –  
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Figure 2.4

We now extend the limit concept to accommodate the concept of
infinity:

(        )



(              )



(        )

c f c  g f c  
. . .(      )

f g

 
need to find a  for the given  

(a)

f c  g f c  
. .(      )

g

 
(b)

(        )



c
f c 

. .f

 
(c)



(              )



c f c  g f c  
. . .(  

  

  )

 

(d)



gf

f g

and
 h

ere it is

(          )

Answer: See page A-9.

CHECK YOUR UNDERSTANDING 2.11

Prove: If f  is continuous at b and if , then:

 

g x 
x a
lim b=

f g x  
x a
lim f g x 

x a
lim =

DEFINITION 2.3  if for any given number M there

exists  such that: .

 if for any given number M there

exists  such that: .

 if for any given  there exists a

number N such that: .

 if for any given number M there

exists a number N such that: .

f x 
x c
lim =

 0 0 x c–  f x  M 

f x 
x c
lim –=

 0 0 x c–  f x  M 

f x 
x 
lim c=  0

x N f x  c– 

f x 
x 
lim =

x N f x  M
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Answers: See page A-10. 

CHECK YOUR UNDERSTANDING 2.12

Formulate a definition for:
(a)         (b)        (c) 

 (d)       (e)       (f) 

f x 
x c-
lim = f x 

x c+
lim = f x 

x –
lim c=

f x 
x 
lim –= f x 

x –
lim = f x 

x –
lim –=
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 3

Exercises 1-6. Determine the limit L. Find, for the given , the largest  for which

 implies that the function values fall within  units of L. 

Exercises 7-15. Establish the following claim.

Exercises 16-17. (Theory) Prove:

Exercises 18-23. Use Exercises 16-17, and Theorem 2.3 to establish the claim.

Exercises 26-29. (Theory) Give examples of functions f and g such that neither f nor g is contin-
uous at c but:

EXERCISES

1. , 2. , 3. , 

4. , 5. , 6. , 

7. 8. 9.

10. 11. 12.

13. 14. 15.

16.  for any number c. 17.  for any numbers c and .

18. 19. 20.

21. 22. 23.

24. For what values of a and b is  continuous at 2?

 

25. For what values of a and b is  continuous at 1? 

26.  is continuous at c. 27.  is continuous at c.

28.  is continuous at c.
29.  is continuous at c.

 0  0
0 x c–   

2x 
x 1
lim  3= 2x 

x 1
lim  1

3
---= x 5– 

x 2
lim  1=

x 5– 
x 2
lim  1

10
------= x2 1+ 

x 2
lim  1= x2 1+ 

x 2
lim  1

2
---=

5x 3– 
x 1
lim 2= 3x 5– 

x 1
lim 2–= x– 1– 

x 2–
lim 1=

2
3
---x 3+ 
 

x 1
lim 11

3
------=

1
2
---x 1+ 
 

x
1
2
---

lim 5
4
---= x 1

2
---+ 

 
x 1

2
---–

lim 0=

x2

x 2
lim 4= x2

x 2–
lim 4= x2 1– 

x 3
lim 8=

x
x c
lim c= d

x c
lim d= f x  d=

x2

x 1
lim 1= 3x2

x 2
lim 12= x 1+

x2 x–
-------------

x 5
lim 3

10
------=

2x 1+ 3

x 2–
lim 27–= 2x3 7x– 1–

3x 5+
-----------------------------

x 2–
lim 3= x3 25– 3

x 3
lim 8=

f x  ax3 bx 1+ + if x 2
bx2 a+ if x 2




=

f x  ax2 b– if x 1
bx3 ax 3+ + if x 1




=

f g+ gf

f
g
--- gf
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Exercises 30-40. (Theory) Prove: 

30. Theorem 2.1 31. Theorem 2.2 32. Theorem 2.3(b)

33. Theorem 2.3(d) 34. Theorem 2.4(b) 35. Theorem 2.4(d)

36. Theorem 2.4(e)

37.  if and only if  . That is:

                   

38. Every polynomial  is a continuous function.

39. Every rational function  is a continuous function.

40. Prove Theorem 2.1, page 46.

41. If f and g are continuous functions and if , then: .

f x 
x c
lim 0= f x 

x c
lim 0=

f x 
x c
lim 0 f x 

x c
lim 0=   and  f x 

x c
lim 0 f x 

x c
lim 0===

p x  anxn an 1– xn 1–  a1x a0+ + + +=

r x 
anxn an 1– xn 1–  a1x a0+ + + +

bmxm bm 1– xm 1–  b1x b0+ + + +
-------------------------------------------------------------------------------------=

g x 
x 
lim b= f g x  

x 
lim f b =
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CHAPTER SUMMARY

THE LIMIT

INTUITIVE:

RIGOROUS DEFINITION:

“As x approaches c, the function values  approach L.”

For any given  there exists  such that

if  then 

LIMIT THEOREMS: If  then:

    

The limit of a sum (difference) is the sum (difference) of the limits.

   and 

The limit of a product (quotient) is the product (quotient) of the limits.

                           

The limit of a constant times a function  is
the constant times the limit of the function.

CONTINUITY AT A POINT: A function f  is continuous at  c  if:

In other words: The limit exists and is equal to the function value.

CONTINUITY THEOREMS: If f and g are continuous at c then so are the functions:

                             [providing ]          

CONTINUOUS FUNCTION: A function that is continuous throughout its domain is said
to be a continuous function.

COMPOSITION THEOREM: If f and g are continuous functions with the range of f contained in

the domain of g, then the composite function  is also continu-
ous.

f x 
x c
lim L=

f x 

 0  0
0 x c–   f x  L– 

f x 
x c
lim L   and   g x 

x c
lim M==

f x  g x  
x c
lim L M=

f x  g x  
x c
lim LM= f x 

g x 
----------

x c
lim

L
M
-----    if  M 0=

af x  
x c
lim aL=

f x 
x c
lim f c =

f g fg
f
g
--- g c  0 af

gf
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 3

CHAPTER 3
THE DERIVATIVE

Consider the two lines of Figure 3.1. Which do you feel better repre-
sents the tangent line to the curve at the indicated point ?
Chances are that you chose the dashed line, and might have based that
decision on the concept of a tangent line to a circle (see margin). Our
goal in this section is to define (find?) the “tangent line” of Figure 3.1,
so that it conforms with our predisposed notion of tangency. 

Figure 3.1

But why bother? What’s so special about tangent lines? For one
thing, near the point of interest a tangent line offers a nice approxima-
tion for the given function [see Figure 3.2(a)]. For another, tangent
lines can be used to find where maxima and minima occur [see Figure
3.2(b)].

Figure 3.2

Returning to the our goal of defining the tangent line to the graph of a
function f at a point , we reasonably demand that it must con-

tain the point . That being the case, we can now focus our
attention on “finding” the slope of the line in question. 

§1.  TANGENT LINES AND THE DERIVATIVE

The tangent line to a
point on the circle is
that line which touches
the circle only at that
point:

This will not do for
more general curves.
The “tangent line” in
Figure 3.1, for exam-
ple, touches the curve
at more than one point.

.

(a) (b)

c f c  

.

c

f

c f c  

|

_
f(c)

.
these tangent lines have 0 slopes

c f c  
c f c  
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But there is a problem. We need 2 points to find the slope, and we
have but one: . And so we turn our attention to the situation in
Figure 3.3, where the would-be tangent line T is represented in dotted
form (it really doesn’t exist, until we define it). A solid line  also

appears in the figure, and it is the line passing through the two points on
the curve:   and .

Figure 3.3
The line  is not the tangent line we seek. But we can do something

with  which we were not able to do with our phantom line T; we can

calculate its slope:

It is easy to see that the “wrong” lines  will pivot closer and closer
to T as h gets smaller and smaller! It is therefore totally natural to
define:

Yes, the above limit (when it exists) is the slope of the tangent line to
the graph of the function f at the point , but it is also called the

derivative of f at c, and is denoted by :

We call the line  to
remind us that we got
it by moving h units
from c along the x-
axis. (If h were nega-
tive, then  would
lie to the left of c.

Wh

c h+

c f c  

Wh

c f c   c h f c h+ + 

.
c

f

c f c  

|

T

W.
|

c+h

c h f c h+ + 

}h

h

Wh

Wh

m f c h+  f c –
c h+  c–

----------------------------------
f c h+  f c –

h
----------------------------------     

 change in y
change in x
----------------------------- 
 = =

Wh

slope of T f c h+  f c –
h

----------------------------------
h 0
lim=

The definition of left- and
right-hand limits (page 46)
gives rise to that of left-
and right-hand derivatives:

 

and

.

f c h+  f c –
h

----------------------------------
h 0–

lim

f c h+  f c –
h

----------------------------------
h 0+
lim

DEFINITION 3.1
DERIVATIVE OF A 

FUNCTION AT A POINT

The derivative of a function f at c is the
number  given by:

providing the limit exists. If it does, then the
function is said to be differentiable at c. 

EXAMPLE 3.1 Determine  and  for the function

.

c f c  
f  c 

f  c 

f  c  f c h+  f c –
h

----------------------------------
h 0
lim=

f  0  f  1 
f x  3x2– 6x 1–+=
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    SOLUTION: Turning to Definition 3.1 with  we have:

                                                                                                                                                              
Repeating the process with , we have:

We did some work in Example 3.1 to find  , and repeated the

same process to find . We could save some time by finding the

derivative function, , and then evaluating it at 0 and at 1; where:       

The graph of:

appears below.

From the figure, we can
anticipate that  will
be a positive number
(tangent line climbs, and
rather rapidly), and that

.

f x  3x2– 6x 1–+=

f  0 

f  1  0=

c 0=

f  0  f 0 h+  f 0 –
h

-----------------------------------
h 0
lim f h  f 0 –

h
-------------------------

h 0
lim= =

3h2– 6h 1–+  1– –
h

-------------------------------------------------------
h 0
lim= 3h2– 6h+

h
--------------------------

h 0
lim=

h 3h– 6+ 
h

----------------------------
h 0
lim= 3h– 6+ 

h 0
lim 6= =

undetermined 

c 0=

c 1=

f  1  f 1 h+  f 1 –
h

-----------------------------------
h 0

lim 3 1 h+ 2– 6 1 h+  1–+  2–
h

-------------------------------------------------------------------------------
h 0

lim= =

3 1 2h h2+ + – 6 6h 1–+ +  2–
h

-------------------------------------------------------------------------------------
h 0

lim=

3– 6h– 3h2– 6 6h 1– 2–+ +
h

--------------------------------------------------------------------------
h 0

lim= 3h2–
h

------------
h 0
lim=

3h–
h 0
lim 0==

Note that the  of Defi-
nition 3.1 is a number: the
slope of the tangent line at

. On the other hand,
 is a function whose

value at x is the slope of the
tangent line at the point

. 

f  c 

c f c  
f  x 

x f x  

DEFINITION 3.2
  DERIVATIVE       

FUNCTION

The derivative of a function f is the func-
tion  given by:

providing the limit exists.

EXAMPLE 3.2 Find the derivative, , of the function

, and then use it to determine

,  , and  .

f  1 
f  0 

f  x 

f  x 

f  x  f x h+  f x –
h

----------------------------------
h 0
lim=

f  x 

f x  x
2x 1+
---------------=

f  0  f  1  f  5– 
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SOLUTION: Turning to Definition 3.2, we have:

We found the derivative of :

                                  

In particular:,

                                                 

SOLUTION: Whenever you see the word “line” you should think of:

The first step is to find the slope m, which is to say: .

If the derivative exists,
then the h in the denomi-
nator has to eventually
cancel with an h-factor
in the numerator. For
this to happen, all terms
in the numerator that do
not contain an h must
drop out.

f  x  f x h+  f x –
h

----------------------------------
h 0
lim=

x h+
2 x h+  1+
----------------------------- x

2x 1+
---------------–

h
---------------------------------------------------

h 0
lim=

  
x h+  2x 1+  x 2 x h+  1+ –

2 x h+  1+  2x 1+ 
---------------------------------------------------------------------------------  

h
----------------------------------------------------------------------------------------

h 0
lim=

2x2 x 2xh h 2x2 2xh– x––+ + +
h 2 x h+  1+  2x 1+ 

---------------------------------------------------------------------------------
h 0
lim=

h
h 2 x h+  1+  2x 1+ 
----------------------------------------------------------

h 0
lim=

1
2 x h+  1+  2x 1+ 

-------------------------------------------------------
h 0
lim=

1
2 x 0+  1+  2x 1+ 

------------------------------------------------------- 1
2x 1+ 2

----------------------= =

Ah!

Take the limit:

common denominator:

expand the numerator:

simplify:

We see that the tangent
line to the graph at ,

,  has a pos-
itive slope. Since the tan-
gent line approximates
the graph of the function
at the indicated point, the
graph must be climbing at
those points. It climbs
faster at  than at

, and is nearly flat
at ,

x 0=
x 1= x 5–=

x 0=
x 1=

x 5–=

EXAMPLE 3.3 Determine the equation of the tangent line to

the graph of the function , at

.

f x  x
2x 1+
---------------=

f  x  1
2x 1+ 2

----------------------=

f  0  1
2 0 1+ 2

--------------------------- 1= =

f  1  1
2 1 1+ 2

--------------------------- 1
9
---= =

f  5–  1
2 5–  1+ 2

------------------------------- 1
81
------= =

f x  x 2+=

x 7=

You can also determine
 and then evaluate

it at 7.
f  x 

y mx b+=

slope y-intercept

f  7 
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At this point we know that the tangent line is of the form:

To determine b we use the fact that the tangent line must pass through
the point on the curve whose x-coordinate is 7, namely, the point: 

Substituting 7 for x and 3 for y in (*) we solve for b:

f  7  f 7 h+  f 7 –
h

-----------------------------------
h 0
lim=

7 h+  2+ 3–
h

---------------------------------------
h 0
lim=

9 h+ 3–
h

------------------------- 9 h+ 3+

9 h+ 3+
-------------------------

h 0
lim=

9 h+  9–

h 9 h+ 3+ 
----------------------------------

h 0
lim=

h

h 9 h+ 3+ 
----------------------------------

h 0
lim=

1

9 h+ 3+
-------------------------

h 0
lim 1

9 0+ 3+
------------------------- 1

6
---= = =

take the limit

y
1
6
---x b+= (*)

7 f 7   7 3 =

f 7  7 2+ 3= =

3
1
6
--- 7 b+=

b 3 7
6
---– 11

6
------= =

y x
6
--- 11

6
------+=Tangent line:

Answer: y x 2+=

CHECK YOUR UNDERSTANDING 3.1

Find the tangent line to the graph of the function  at

. (See Example 3.2.)

f x  x
2x 1+
---------------=

x 1–=
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The Greek letter “ ” (called “delta”) is often used to denote a
“change in.” Replacing h with the symbol  (for change in x) in the

expression  we have:

 or 

When using the above form, one typically replaces the derivative

symbol  with the symbol  or , and the symbol 

with   . 

TO ILLUSTRATE:

The ratio  in the expression  denotes the average

rate of change of y with respect to x over the interval , and one calls

the derivative  the instantaneous rate of change of y

with respect to x, or simply the rate of change of y with respect to x. 

In particular, if the volume V of a balloon varies with respect to the

temperature t, then the derivative  or  denotes the rate of

change of volume with respect to temperature. 

As you know, the rate of change of position with respect to time is called
velocity, and the rate of change of velocity with respect to time also has
a special name: acceleration. We will have occasions to focus on these
two important rate of change functions (derivatives) later in the text. 

ALTERNATE FORM FOR THE DERIVATIVE

The “double-d” notation

for the derivative, , is

attributed to  Gottfried
Leibnitz  (1646-1716) 

It is important to note
that we are simply
acknowledging differ-
ent notations for one
and the same thing.

dy
dx
------

  


x

f c h+  f c –
h

----------------------------------
h 0
lim

f c x+  f c –
x

--------------------------------------
x 0
lim y

x
------

x 0
lim change in y

change in x

f  x  dy
dx
------ d

dx
------ f x  f  c 

dy
dx
------

x c=

For  f x  x
2x 1+
---------------:=

f  x  1
2x 1+ 2

----------------------=

Also: 
x

2x 1+
--------------- 
   1

2x 1+ 2
----------------------=

f  2  1
25
------=

Example 3.2:

In particular:

For y f x  x
2x 1+
---------------:= =

dy
dx
------ 1

2x 1+ 2
----------------------=

Also: 
d
dx
------ x

2x 1+
--------------- 
  1

2x 1+ 2
----------------------=

In particular: 
dy
dx
------

x 2=

1
25
------=

y
x
------ dy

dx
------ y

x
------

x 0
lim=

x
dy
dx
------ y

x
------

x 0
lim=

V  t  dV
dt
-------

Answer: ,dy
dx
------ 6x 1–=

dy
dx
------

x 2=

11=

CHECK YOUR UNDERSTANDING 3.2

Determine  and  for the function .
dy
dx
------ dy

dx
------

x 2=

y f x  3x2 x– 1+= =
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Consider the two graphs of Figure 3.4. The function  f  in (a) has a (pos-
itive) derivative at  (tangent line exists and has positive slope).

The function g in (b) is not differentiable at .  Why not?   

Figure 3.4

BECAUSE: Lines are notoriously straight, and the graph of g has a sharp
bend at c [the “would-be tangent line (1)” is of positive slope, while the
“would-be tangent line (2)” is of negative slope]. Since no line can
approximate the graph of g at c, there cannot be a tangent line at c [in

other words:  does not exist]. To be more specific, we call your
attention to the graph of the absolute value function:

From our previous discussion, we can anticipate that the absolute value
function is not differentiable at ; a fact which we now verify:

SOLUTION: For , and  the derivative formula: 

takes the form:

GEOMETRICAL INSIGHTS INTO THE DERIVATIVE

The function g in Figure
3.4(b) does appear to
have a left- and right-
hand derivative at c; the
left-hand derivative being
positive and the right-
hand derivative negative.

Geometrically speaking, if
a function is differentiable
at c, then the graph has to
change direction gradually
at that point [as in Figure
3.4(a)]. If the graph
abruptly changes direction
at that point [as in Figure
3.4(b)], then the function is
not differentiable at c.

Differentiable at c
(a)

Not differentiable at c
(b)

EXAMPLE 3.4 Show that the absolute value function
 is not differentiable at 0.

x c=

x c=

.
c
|

f .
(2) (1)

|
c

g

f  c 

Abs x  x
x  if  x 0
x  if  x 0–




= =
1

1- 1

_

||

x 0=

f x  x=

f x  x= c 0=

f  c  f c h+  f c –
h

----------------------------------
h 0
lim=

0 h+ 0–
h

---------------------------
h 0
lim h

h
-----

h 0
lim=
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Letting x approach 0 from the left, we have:.

From the right

Since the left-hand limit is different than the right-hand limit, the limit
(derivative) does not exist. It follows that the absolute value function
is not differentiable at 0.

h
h

------
h 0–
lim h–

h
------ 1–= =

since  h  is negative

h
h

------
h 0+
lim h

h
--- 1= =

since  h  is positive

Answer: See page A-11

CHECK YOUR UNDERSTANDING 3.3

Complete the construction of the graph of  from the given graph
of  at the top of the figure.

f  x 
y f x =

1     2    3   4     5-5    -4   -3   -2   -1  0

1

1     2    3   4     5        -4   -3   -2   -1  0

1.

tangent line has slope of  0

tangent lines in this region appear to

-2

y f x =
have slope approximately equal to 1

slope approximately
equal to -2

y f  x =

construct the graph of f 
x
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The following result asserts that differentiability implies continuity:

PROOF: Let f be differentiable at c. We are to show that:

or, equivalently (see margin) that:

Let’s do it:

We’ve established the following pecking order:

Figure 3.5 illustrates that neither of the
above two implications is reversible.

Figure 3.5

CONTINUITY AND THE DERIVATIVE

It follows that if a func-
tion is not continuous at
c, then it is not differen-
tiable at c.

In the expression: 

make the substitution:
  

to arrive at:

f x 
x c
lim f c =

x c h+=

x c h+= h x c–=

and to say that x c
is to say that  h 0

f c h+ 
h 0
lim f c =

THEOREM 3.1 If a function f is differentiable at c, then f is
continuous at c.

f x 
x c
lim f c =

f c h+ 
h 0
lim f c =

f c h+  f c – 
h 0
lim 0=

f c h+  f c – 
h 0
lim

f c h+  f c –
h

---------------------------------- h
h 0
lim=

f c h+  f c –
h

----------------------------------
h 0
lim h

h 0
lim=

f  c  0 0= =

Theorem 2.3(c), page 55:

Differentiability Continuity Limit Exists 

o

o

.

| |

limit exists but
function is not
continuous

function is
continuous but
not differentiable

a b c

f
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Answer: See page A-11

CHECK YOUR UNDERSTANDING 3.4

Sketch the graph of a function f satisfying the following three condi-
tions:

(i) f is differentiable at .

(ii) f  is continuous but not differentiable at .

(iii) f  has a limit but is not continuous at .

x 1=

x 2=

x 3=
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 3

Exercises 1-9. (Derivative at a Point) Determine  for the given function.

Exercises 10-12. (Derivative at a Point) Determine  for the given function. 

Exercises 13-24. (Derivative Function) Determine   for the given function.

Exercises 25-27. (Derivative Function) Determine   for the given function.

Exercises 28-29. (Tangent Line) Find the equation of the tangent line to the graph of the given
function at the indicated point.

EXERCISES

1. 2. 3.

4. 5. 6.

7.
8. 9.

10. 11. 12.

13. 14. 15.

16. 17. 18.

19. 20. 21.

22. 23. 24.

25. 26. 27.

28.   at  29.   at  

f  2 

f x  4x2= f x  3x2 x+= f x  x2– 3x 1–+=

f x  x3= f x  55= f x  x
x 1+
------------=

f x  x2 x+
x

--------------=
f x  x x 3– = f x  3x 1+=

dy
dx
------

x 2=

y 2x2= x– 1+ y 3x
x 1+
------------= y x 2+=

f  x 

f x  x= f x  5= f x  3x2=

f x  3x2 3+= f x  2x2– x 2–+= f x  x 5–
x

-----------=

f x  2x 3+
x 1+

---------------= f x  2
2x 1+
---------------–= f x  x 3+=

f x  1

x 3+
----------------= f x  x

x2 1+
--------------= f x  2x

x 1+
----------------–=

dy
dx
------

y x2– x–= y x 1+
2x

------------= y 1

2x 3+
-------------------=

f x  x2= 2x+ x 0= f x  x2= 2x+ x 1=
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30. (Graphs of Functions and their Derivatives) Pair off each function [A] through [F] with its 
corresponding derivative function [1] through [6].

Exercises 31-32. (Geometrical Interpretation) By positioning a tangent line to the graph of the
function  f, at the indicated point, estimate the value of , , and .

[A] [1]

[B] [2]

[C] [3]

[D] [4]

[E] [5]

[F] [6]

31. 32. 

f  2  f  4  f  7 

1     2    3    4    5    6    7    8

1

2

3

4

1     2    3    4    5    6    7    8

1

2

3

4
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Exercises 33-34. (Geometrical Interpretation) Consider the given graph of the function f.
Where does  f  fail:   (a) to have a limit?     (b) to be continuous?    (c) to be differentiable?

Exercises 35-36. (Geometrical Insight) Sketch the graph of    from the given graph of

the function .

Exercises 37-39. (Geometrical Insight) Sketch the graph of a function f satisfying the following
conditions:

Exercises 40-41. (Theory) Sketch the graph of the given function. Verify that the function is not
differentiable at .

Exercises 42-43. (Theory) Sketch the graph of the given function. Verify that the function is dif-
ferentiable at .

33. 34. 

35.  36. 

37. f does not have a limit at 0; it has a limit at 1 but is not continuous at 1; it is continuous at
2 but not differentiable at 2.

38. f is not defined at 0 but has a limit at 0; it is defined at 1 but does not have a limit at 1; it
has a limit of 5 at 2, but is not continuous at 2; it is continuous at 3 with function value 6,
but is not differentiable at 3.

39. Where f  is differentiable in , f  has a positive derivative. f  has a negative derivative
between 2 and 4. f  is not continuous at 1. f  is continuous at 2 but not differentiable at that
point.

40. 41.

42. 43.

o o o

o o.
.

1          2          3         4

|

||| | o

.
.2 6    7     8      4

| | | ||

y f  x =

y f x =

1     2    3    4    5    6    7    8

1

2

3

4

f

1     2    3    4    5    6    7    8

1

2

3

4

f

0 2 

x 2=

f x 
2x 2  if  x 2+

               3x       if   x 2



= f x 
x       if  x 2

x2 2  if  – x 2



=

x 1=

f x 
x     if  x 1

x2

2
-----   if  x 1







= f x  x2 if x 1
2x 1– if x 1




=
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 3

We begin by listing some derivative formulas which, with a bit of
practice, will enable you to quickly and easily determine the derivative
of numerous functions. 

PROOF: We offer a proof of (a), the sum part of (d), and (e). You are
invited to establish (c) and (f) in the exercises.
 (a) Let  (the function that assigns the number c to every x).
Then:

 

   

§2.  DIFFERENTIATION FORMULAS

THEOREM 3.2 (a) The derivative of any constant function is 0. 
For example: 

(b) For any real number r:
 

For example: 

(c) For any real number r and any differentiable function f:

For example: 

(d) If f and g are differentiable, then so are  and ; and:

 and   . 

For example: 

(e) If f and g are differentiable, then so is , and:
 . 

For example: 

(f) If f and g are differentiable, then so is , and:

  [for ].

For example: 

17  0   and   375–  0= =

xr  rxr 1–=

x5  5x
4

=    and   x 2–  2x 3––=

rf x   rf  x =

7x5  7 x5  7 5x4  35x4= = =   and  4x 2–  8x 3––=

f g+ f g–

f x  g x +  f  x = g x + f x  g x –  f  x  g x –=

7x5 x3+  35x4 3x2  and  2x 3 2x 4––+  2 8x 5–+=+=

fg
f x g x   f x g x  g x f  x +=

5x3 x–  x7   5x3 x–  x7  x7 5x3 x– +=

5x3 x–  7x6  x7 15x2 1– + 50x9 8x7–= =

f
g
---

f x 
g x 
-----------  g x f  x  f x g x –

g x  2
----------------------------------------------------= g x  0

5x 4–
3x 2+
--------------- 
  3x 2+  5x 4–  5x 4–  3x 2+ –

3x 2+ 2
------------------------------------------------------------------------------------------=

3x 2+  5  5x 4–  3 –
3x 2+ 2

-------------------------------------------------------------- 15x 10 15x– 12+ +
3x 2+ 2

------------------------------------------------ 22
3x 2+ 2

----------------------= = =

We are not currently in a
position to establish (b) in all
of its splendor. A proof that

 holds for any
positive integer n is offered
at the end of the section.

(A general proof appears 
in Section 6.3)

xn  nxn 1–=

A geometrical argument: The graph of the function
 is a horizontal line. At each point on that line, the

tangent line is the horizontal line itself, which is of slope 0.

f x  c=

f  x  f x h+  f x –
h

----------------------------------
h 0
lim c c–

h
-----------

h 0
lim 0

h
---

h 0
lim 0= = = =

f x  c=



3.2    Differentiation Formulas      79
(d) (Sum part):

 

 

f x  g x +  f x h+  g x h+ +  f x  g x + –
h

----------------------------------------------------------------------------------------
h 0
lim=

f x h+  f x –
h

---------------------------------- g x h+  g x –
h

-------------------------------------+
h 0
lim=

f x h+  f x –
h

---------------------------------- g x h+  g x –
h

-------------------------------------
h 0
lim+

h 0
lim=

f  x  g  x +=

regroup:

Theorem 2.3(a), page 55:

f x g x   f x h+ g x h+  f x g x –
h

------------------------------------------------------------------
h 0

lim=

f x h+ g x h+  f x h+ g x – f x h+ g x  f x g x –+
h

---------------------------------------------------------------------------------------------------------------------------------------------
h 0

lim=

f x h+ g x h+  g x –
h

-------------------------------------
f x h+  f x – 

h
---------------------------------------g x +

h 0
lim=

f x h+ 
h 0

lim g x h+  g x –
h

------------------------------------- f x h+  f x – 
h

---------------------------------------
h 0

lim g x 
h 0

lim+
h 0

lim=

f x g x  f  x g x +=

(e) }a clever zero

regroup:

Theorem 2.3, page 55

Differentiability implies continuity (Theorem 3.1, page 73).

Consequently: f x h+ 
h 0
lim f x =

Answers: See page A-11.

CHECK YOUR UNDERSTANDING 3.5

(a) Appeal to a geometrical argument, similar to that offered in the
proof of Theorem 3.2(a), to show that .

(b) Use Definition 3.2, page 67 to prove that .

EXAMPLE 3.5
(a) Determine 

(b) For , determine .

(c) For , find the rate of
change of Z with respect to y.

x 1=

x 1=

3x2 2x 4–+
2x 1+

----------------------------- 
  

y 3x3 2x2– 1+
x2

--------------------------------=
dy
dx
------

Z y  3y3 2y 4–+=
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SOLUTION: (a) 

(b) 

(c) 

SOLUTION: We first set our sites on determining the slope of the tan-
gent line [namely ]: 

In particular:

At this point, we know that our tangent line is of the form

. Knowing that the point  lies on

the line enables us to determine b: 

Tangent line: .

You could use the quo-
tient rule, but going with
powers of x is the better
choice [a choice that was
not available in (a)].

3x2 2x 4–+
2x 1+

------------------------------ 
   2x 1+  3x2 2x 4–+  3x2 2x 4–+  2x 1+ –

2x 1+ 2
---------------------------------------------------------------------------------------------------------------------------=

2x 1+  6x 2+  3x2 2x 4–+  2 –

2x 1+ 2
------------------------------------------------------------------------------------------- 6x2 6x 10+ +

2x 1+ 2
----------------------------------= =

d
dx
------ 3x3 2x2– 1+

x2
-------------------------------- 
  d

dx
------ 3x 2– x 2–+  3 2x 3–– 3 2

x3
-----–= = =

dZ
dy
------

d
dy
------ 3y3 2y 4–+  9y2 2+= =

Answers: 

(a) 

(b) 

12x3 2– 20
x5
------+

4x2 24x 525+ +
x 3+ 2

---------------------------------------

CHECK YOUR UNDERSTANDING 3.6

Differentiate the given function.

(a)            (b) 

EXAMPLE 3.6 Find the tangent line to the graph of the func-

tion  at 

f x  3x4 2x– 5 5x 4––+= y 4x2 525–
x 3+

-----------------------=

f x  x2 x– 1+
3x3 2+

-----------------------= x 1=

f  1 

f  x  x2 x– 1+
3x3 2+

----------------------- 
  =

3x3 2+  x2 x– 1+  x2 x– 1+  3x3 2+ –
3x3 2+ 2

----------------------------------------------------------------------------------------------------------------=

3x3 2+  2x 1–  x2 x– 1+  9x2 –
3x3 2+ 2

------------------------------------------------------------------------------------------=

Theorem 3.2(f):

Theorem 3.2(a)-(e):

f  1  3 13 2+  2 1 1–  12 1– 1+  9 12 –
3 13 2+ 2

--------------------------------------------------------------------------------------------------------- 4
25
------–= =

y
4
25
------x– b+= 1 f 1   1

1
5
--- 

 =

1
5
---

4
25
------ 1– b+=

b 1
5
--- 4

25
------+ 9

25
------= =

y
4
25
------x– 9

25
------+=
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SOLUTION: Reading the problem carefully we see that we need to
solve the equation   to find the x-coordinates of the
points in question. Lets do it:

Evaluating the function  at  will yield the
corresponding y-coordinates of the two points:

  

CONCLUSION: At  and , the graph of

 has tangent lines parallel to that of

 at .

EXAMPLE 3.7 Determine the points on the graph of the func-
tion  at which the tangent
line is parallel to the tangent line to the graph

of the function  at .

f x  x3 x– 1–=

g x  1
4
---x4 3

2
---x2–= x 2=

f  x  g 2 =

f x  x3 x– 1–=

f  x  3x2 1–=
g x  1

4
---x4 3

2
---x2–=

g x  x3 3x g 2 – 2= =

f  x  g 2 =

3x2 1– 2=

x2 1=

x 1=

f x  x3 x– 1–= x 1=

f 1  13 1– 1– 1  and  f 1–  1– 3 1– – 1– 1–= =–= =

1 1–  1– 1– 
f x  x3 x– 1–=

g x  x4

4
-----

3
2
---x2–= x 2=

Answer:
 , , 0 1  1 1–  1 1–– 

CHECK YOUR UNDERSTANDING 3.7

Determine the points on the graph of the function

 where the tangent line is horizontal.f x  2x4 4x2– 1+=
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Consider the function f in Figure 3.6 along with the tangent line at the
point . As is depicted in the figure:

, or:  .

Moreover, since the tangent line T has slope , and since it hovers
close to the graph of the function near c: 

; so that:   (*)

Figure 3.6

SOLUTION: For : .

Turning to (*), with ,  we have:

 

 We are trying our best to 
say 

 that, which  Figure 3.6
 so aptly displays.   

The tangent line T at the
point  is sometimes
said to be the linearization
of f at c; the symbol  is at
times replaced by the symbol

 (called the differential of
x); and yet another symbol,
the symbol  (called the
differential of y), is used to
represent the expression

; leading one to the so
called differential form:

  

c f c  

x

dx

dy

f c dx

dy f x dx=

APPROXIMATING FUNCTION VALUES

EXAMPLE 3.8 Approximate the value of .

c f c  
y f c x+  f c –= f c x+  f c  y+=

f (c)

y f  c x f c x+  f c  y+= f c  f  c x+

. ..

x

y f  c x

c x+c

f c 

f c x+ 

T

25.3

f x  x= f  x  x
1
2
---

 
   1

2
---x

1
2
---– 1

2 x
----------= = =

c 25= x 0.3=

25.3 f 25 0.3+ = f 25  f  25  0.3 + 25= 0.3

2 25
-------------+ 5.03=

Answer:

 2 0.1
12
-------+ 2.008

CHECK YOUR UNDERSTANDING 3.8

Proceed as in Example 3.8 to approximate the value of  .

EXAMPLE 3.9 The edge of a cube is measured as 10 inches
with a possible error in measurement of at
most 0.05 inches. Estimate the corresponding
largest possible error in calculating the vol-
ume of the cube. Estimate the relative volume
error (error divided by volume) stemming
from the calculation.

8.13
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SOLUTION: We find an approximation for the volume error 
resulting from a change of an edge measurement from 10 to 
inches, where  inches:

For : . Thus:

Conclusion:Maximum Possible Volume Error: . 

Relative Volume Error: .

The following axiom, called the Principle of Mathematical Induction,
will be used to show that  for any positive integer n.
Here is how that all-important principle works:   

Step II of the induction procedure may strike you as being a bit
strange. After all, if one can assume that the proposition is valid at

, why not just assume that it is valid at  and be done
with it? Well, you can assume whatever you want in Step II, but if the
proposition is not valid for all n you simply are not going to be able to
demonstrate, in Step III, that the proposition holds at the next value of
n.  It’s sort of like the domino theory. Just imagine that the propositions

 are lined up, as if they were
an infinite set of dominoes:

V
10 x+

x 0.05=

V x  x3= V x  3x2=

V V  10 x 3 10 2 0.05  15in
3

= =

V 15in
3

V
V

------- 15
103
-------- 0.015=

Answer:

 , 50 cm
2 1

50
------ 0.02=

CHECK YOUR UNDERSTANDING 3.9

The radius of a circle is measured to be 50 cm with a possible error
in measurement of 0.5 cm. Estimate the maximum possible error in
using that measurement to calculate the area of the circle. Estimate
the relative error in the area calculation.

Roughly speaking, axioms
are “dictated truths” upon
which, with the cement of
logic, mathematical theo-
ries are constructed.

MATHEMATICAL INDUCTION

Let  denote a proposition that is either true or false, depend-
ing on the value of the integer n. 

If: I.  is True.

And if, from the assumption that: II.   is True

one can show that: III.  is also True

then the proposition  is valid for all integers .

xn  nxn 1–=

P n 

P 1 

P k 

P k 1+ 

P n  n 1

n k= n k 1+=

P 1  P 2  P 3   P k  P k 1+   

P(1) P(2) P(3) P(4) P(5) P(6)    P(7)    P(8)   P(9)   P(10) .......
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If you knock over the first domino (Step I), and if when a domino falls
(Step II) it knocks down the next one (Step III), then all of the domi-
noes will surely fall. But if the falling  domino fails to knock over
the next one, then all the dominoes will not fall.

To illustrate how the process works, we ask you to consider the sum
of the first n odd integers, for  through :

Figure 3.7
Looking at the pattern of the table on the right in Figure 3.7, you can

probably anticipate that the sum of the first 6 odd integers will turn out
to be , which is indeed the case. In general, the pattern cer-
tainly suggests that the sum of the first n odd integers is ; a fact that
we now establish using the Principle of Mathematical Induction:  

Let  be the proposition that the sum of the first n odd inte-
gers equals .

I. Since the sum of the first 1 odd integers is ,  is true.

II. Assume  is true; that is: 

III. We show that  is true, thereby completing the proof:  

 

SOLUTION:

I. Since  (CYU 3.5), and since , the claim

holds at .

II. Assume the claim holds at : .

III. We show the claim holds at ; which is to say, that

:

kth

The Principle of Mathe-
matical Induction might
have been better named
the Principle of Mathe-
matical Deduction, for
inductive reasoning is
used to formulate a  con-
jecture, while deductive
reasoning is used to rigor-
ously establish whether or
not the conjecture is valid. 

n 1= n 5=

n   Sum of the first n odd integers  Sum
1
2
3
4
5

1 1
1 + 3 4

9
16
25

1 + 3 + 5
1 + 3 + 5 + 7

1 + 3 + 5 + 7 + 9

n
      

Sum
1        1
2        4
3        9
4      16
5      25
6      ?

62 36=
n2

The last integer in:
The sum of the first 3 odd
integers is:

The sum of the first 4 odd
integers is:

Suggesting that the last
integer in the sum of the
first k odd integers is:        

1 3 5+ + 2 3 1–

1 3 5 7+ + + 2 4 1–

1 3  2k 1– + + +

EXAMPLE 3.10 Use the Principle of Mathematical Induction

to verify that  for any posi-
tive integer n.

P n 
n2

12 P 1 

P k  1 3 5  2k 1– + + + + k2=
see margin

P k 1+ 

1 3 5  2k 1– + + + +  2k 1+ + k2 2k 1+ + k 1+ 2= =

  
the sum of the first k 1 odd integers+

induction hypothesis: Step II

xn  nxn 1–=

x 1= 1x1 1– x0 1= =

n 1=

n k= xk  kxk 1–=

n k 1+=

xk 1+  k 1+ x k 1+  1– k 1+ xk= =
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The second derivative of a function f, denoted by , is simply the
derivative of  (if it exists) — the third derivative, , is the

derivative of the second derivative. We note that the symbol 
can also be used to denote the  derivative of the function f. For

example 

In the Leibnitz notation, the second derivative of  is denoted

 or  — the third derivative , and so on.

For example: 

             and: 

xk 1+  x xk =

x xk  xk x+=

x kxk 1– xk+=

kxk xk+ k 1+ xk= =

Theorem 3.2(e):

II:

Answer: See page A-12.

CHECK YOUR UNDERSTANDING 3.10

Using Theorem 3.2(f), extend the result of the previous example to

show that:  holds for all integers n. (For , assume

that ).

HIGHER ORDER DERIVATIVES

xn  nxn 1–= n 0
x 0

f  x 
f  x  f  x 

f n  x 
nth

f 3  x  f  x =

y f x =
d2y
dx2
-------- d2

dx2
-------- f x  d 3y

dx3
--------

5x3 3x2 x– 1+ +  15x2 6x 1–+  30x 6+= =

d2

dx2
-------- x6– 2x+  d

dx
------ 6x5– 2+  30x4–= =

Answer: (a) 
              (b) 
              (c) See page A-12.

60x2

1– nn!x n 1+ –

CHECK YOUR UNDERSTANDING 3.11

(a) Find the third derivative of the function .

(b) Find an expression for the  derivative of the function
.

(c) Establish the validity of your claim in (b) using the Principle of
Mathematical Induction.

f x  x5=

nth

f x  x 1–=
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 3

Exercises 1-18. Find the derivative of the given function.

Exercises 19-20. (Second Derivative) Determine  for the given function. 

Exercise 21-22. (Second Derivative) Determine  for the given function. 

Exercises 23-34. (Derivative Rules) Evaluate the given expression at the indicated point, if:

EXERCISES

1. 2.

3. 4.

5. 6.

7. 8.

9. 10.  

11. 12.

13. 14.

15.
16.

17. 18.

19. 20.

21. 22.

23.   at  24.   at  

25.   at  26.   at  

27.   at  28.   at  

29.   at  
30.   at  

f x  3x5 4x3 7–+= f x  4x4 7x3 3x– 2–+=

g x  7x3 5x2 4x– x 4– 1+ + += f x  1
3
---x3 1

5
---x2 x– 1–+=

g x  x7– 2x2 x 1–– x 2–– 101+ += h x  4x4 x3 2x2–+
x2

----------------------------------=

h x  x5 3x4 5x2–+
x2

----------------------------------= f x  x2 x
1
2
---

5x
2
5
---

–+=

f x  x 2+= g x  3x
1
3
---

x
1
2
---–

2x 1+ + +=

F x  3x2 2x 5–+
x 4+

-----------------------------= F x  x5– 3x 4–+
x2 2x+

-------------------------------=

f x  5
3x2 1+
-----------------= g x  1

x 2– 2
-------------------=

K x  4x4 2x3 x2+ +  x3 x 1+ + =
K x  x4 1

x
--- 2x 3––+ 

  x2 x 1
x2
-----+ + 

 =

h x  x 1+

x 1–
----------------= f x  5 x

3x2 1+
-----------------=

f  2 
f x  x5= 3x2– x– 1+ f x  x

x 1+
------------=

d2y
dx2
--------

x 2=

y 2x4 x– 1–= y x 1–
2x

-----------=

f 0  1 f 1  3 f 2  6 f  0  2 f  1  6 f  2  0= = = = = =

g 0  3 g 1  2 g 2  5 g  0  1 g  1  2 g  2  2= = = = = =

h 0  0 h 1  6 h 2  2 h  0  3 h  1  1 h  2  1= = = = = =

f x  g x +  x 1= f x  g x   x 1=

f x 
g x 
----------


x 1=

g x 
f x 
----------


x 1=

f x  g x  h x + +  x 2= f x  g x  h x +  x 2=

f x  g x  h x +  x 2= f x  g x +
h x 

--------------------------


x 1=
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Exercises 35-38. (Tangent Line) Determine the tangent line to the graph of the given function at
the indicated point.

Exercises 39-40. (Horizontal Tangent Lines) Determine all points on the graph of the given
function at which the tangent line is horizontal (derivative is zero).

Exercises 41-42. (Tangent Lines of a Given Slope) Determine all points on the graph of the
given function at which the tangent line has the indicated slope.

Exercises 43-51. (Tangent Line Problems) 

31.   at  32.   at  

33.   at  34.   at  

35. 36.

37.   at  38.   at  

39. 40.

41. ; slope: 2. 42. ; slope: 1.

43. Show that no tangent line to the graph of the function  has a slope
equal to .

44. Show that there is but one tangent line to the graph of the function  with y-
intercept equal to 4.  Determine the equation of the tangent line.

45. Show that there does not exist a tangent line to the graph of the function 
with y-intercept equal to .

46. Show that for any  there exists a unique tangent line to the graph of the function

 with y-intercept equal to b.

47. Find the point(s) on the graph of the function  which have  

as tangent line.

48. Show that the line    is tangent to the graph of the function   at

some point. Determine the point of tangency.

49. Find a second degree polynomial  such that ,
, and 

50. Find a second degree polynomial  such that its graph passes through
the point , the tangent line at  has slope 1, and the tangent line at  has
slope 3.

51. Determine a, b, c, d such that  and   are the tangent lines to the
graph of the polynomial function  at   and ,
respectively.

f x  g x 
h x 

------------------------


x 1=
f t  g– t 
h t  1+
----------------------


t 0=

g t 
h t 
--------- g t + 
   t g 1 =

f s 
g  s 
-------------- g 2  h  s + s g  1 =

f x  3x2 x– 1  at  x– 1= = f x  x3– 2x 2  at  x+– 0= =

f x  x5 2x+
x4

-----------------= x 1–= f x  2x 3+
x2 1+
---------------= x 1=

f x  2
3
---x3 1

2
---x2– x– 1+= f x  3x

x2 1+
--------------=

f x  x3 5
2
---x

2
– 1+= f x  x3 x2– 1+=

f x  x3 x2 100–+=
4–

f x  x 2+=

f x  x 2+=
4–

b 2
f x  x 2+=

f x  x3

3
----- x2 x+ += y 4x 9+=

y x
4
--- 4+= f x  x 2+=

p x  ax2= bx c+ + p 1  4–=
p 1  11= p 1  6=

p x  ax2= bx c+ +
1 3  x 3= x 1=

y 3x 3–= y 2x– 1+=
p x  ax3 bx2 cx d+ + += 1 0  0 1 
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Exercises 52-53. (Normal Line) The normal line to the graph of a function f at the point
 is the line passing through that point that is perpendicular (or orthogonal) to the tangent

line at that point. Using the fact that a line of slope  is perpendicular to a line of slope  if

and only if , determine the equation of the normal line to the graph of the given func-

tion at the indicated point.

Exercises 54-58. (Theory) Prove: 

Exercises 59-64. (Mathematical Induction)

52.  at 53.  at 

54. Theorem 3.2(c) 55. Theorem 3.2(f)

56. Use Theorem 3.2(f) to establish the following reciprocal rule:

        If f is differentiable then  (providing )

57. Show that if f, g, and h are differentiable, then:

 

58. Show that if  is a factor of a polynomial , then  is a factor of . Is 
the converse true? Justify your answer.

59. Prove that for every integer , 

60. Prove that for every integer , 

61. Prove that the sum of n differentiable functions is again differentiable.

62. Prove that the product of n differentiable functions is again differentiable.

63. Prove that the  derivative of  equals for any positive integer n.

64. What is wrong with the following “Proof” that any two positive integers are equal:

Let  denote the larger of the two integers a and b. 

Let  be the proposition: If a and b are any two positive integers such that

, then .

I.  is true: If , then both a and b must equal 1.

II. Assume  is true: If , then .

III. We show  is true: If  then .

By II, .

c f c  
m1 m2

m1
1

m2
------–=

f x  3x4 x2+= 2x– 1+ x 1= f x  2x3 x2–
x

-------------------= x 2=

1
f x 
---------  f  x 

f x  2
----------------–= f x  0

fgh  x  f x g x h x  f x g x h x  f  x g x h x + +=

x a– 2 p x  x a–  p x 

n 1 1 2 3  n+ + + + n n 1+ 
2

--------------------=

n 1 12 22 32  n2+ + + + n n 1+  2n 1+ 
6

-----------------------------------------=

nth xn n!

max a b 

P n 
max a b  n= a b=

P 1  max a b  1=

P k  max a b  k= a b=

P k 1+  max a b  k 1+= max a 1– b 1–  k=

a 1– b 1 a– b= =
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 3

It is not difficult to convince oneself of the validity of the following
result, a proof of which is relegated to the exercises:

SOLUTION: We cannot simply substitute 0 for x in the given expres-

sion, nor can we hope to get rid of the bothersome x in  by some

algebraic means. What we can do is observe that, for any :

  and that therefore:   

Noting that , we apply the Pinching The-

orem to conclude that . 

PROOF: Letting  represent the angle with radian measure x, we first

show that  and :

§3. DERIVATIVES OF TRIGONOMETRIC FUNCTIONS

AND THE CHAIN RULE.

This theorem is also called: 
The Sandwich Theorem 

or 
The Squeeze Theorem.

Aptly named, since it main-
tains that if both  and

 tend to L as x
approaches c, and if h is
pinched (or sandwiched, or
squeezed) between f and g,
then,  must also tend to
L as x approaches c.

f x 
g x 

h x 

THEOREM 3.3
THE PINCHING 

THEOREM

Let f, g, and h be such 
that within an open 
interval about c:   

If:    then 

EXAMPLE 3.11
Show that .

f
g

h

c

Lf x  h x  g x 

f x 
x c
lim g x 

x c
lim L= = h x 

x c
lim L=

x2 1
x
---sin 

 
x 0
lim 0=

1
x
---

x 0

1
1
x
--- 1sin– x2– x2 1

x
---sin x2 

Answer: See page A-12.

CHECK YOUR UNDERSTANDING 3.12

Given that  for all , find .

x2– 
x 0
lim x2 

x 0
lim 0= =

x2 1
x
---sin 

 
x 0
lim 0=

1 x2

4
-----– h x  1 x2

2
-----+ x 0 h x 

x 0
lim

0

y xsin=1

1 y xcos=

0

_

x

y

x

y

THEOREM 3.4 As is suggested by the graphs of the sine and
cosine functions (margin):
      and  xsin

x 0
lim 0= xcos

x 0
lim 1=


sin

 0+
lim 0= cos

 0+
lim 1=
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L

r

Applying the Pythagorean Theorem to the shaded right triangle in the
margin, we have:

Since the length c is less than the represented arc length  (see
boxed region in margin):

It follows that: 

Applying the Pinching Theorem (note that  and

) we conclude that: 

      and    

A similar argument can be used to show that the above limits also
hold if we allow  to approach 0 from below.
 

The limits of Theorem 3.4 might have been anticipated. The same
cannot be said for the following important result:

PROOF: Letting  represent the angle with radian measure x, we show

that , leaving it for you to verify that :

The (positive) angle  in the adjacent figure intersects the unit circle;
giving rise to three regions: Triangle , Sector S, and Triangle .

Letting , ,  denote the area of those three regions, respectively, 

we observe below that , , and :



L =

1

1

1 cos–

c
sin

.  sincos 
1

 is to  as the perimeter of the

circle 2  is to a complete

evolution  2 : L

--- 2

2
------ 1= =

Or: L =

cos

sin
2 1 cos– 2+ c2=

L =

sin
2 1 cos– 2+ 2

sin
2 2     and    1 cos– 2 2

sin  and 1 cos– 
–  sin and – 1 cos–  

–
 0
lim 0=


 0
lim 0=

sin
 0+
lim 0= 1 cos– 

 0+
lim 0 cos

 0+
lim 1==



Answer: See page A-12.

CHECK YOUR UNDERSTANDING 3.13

Prove that: .

THEOREM 3.5
                 

xtan
x 0
lim 0=

xsin
x

----------
x 0
lim 1=

T1

T2

S

1



sin


-----------

 0+
lim 1= sin


-----------

 0
_


lim 1=


T1 T2

A1 AS A2

A1
1
2
--- sin= AS


2
---= A2

1
2
--- tan=

.
1

cos sin 



T1 is a triangle of base 1 and

 height , so: A1
1
2
--- sin=sin

T1


sin


S

AS

Area of circle
--------------------------------- 

circumference
----------------------------------=

As


----- 

2
------= AS 

2
---=

1

1


T2 is a triangle of base 1 and

 height , so: A2
1
2
--- tan=tan

T2

tan
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By virtue of inclusion:

Noting that  and  (Theorem 3.4), we apply 

the Pinching Theorem and conclude that .

We are now in a position to establish the following important deriva-
tive formulas:

 

PROOF: Turning our attention to the derivative of  we have:

A1 AS A2  1
2
--- sin


2
--- 1

2
--- tan

  sin
cos

------------ sin

1

sin

----------- 1
cos

------------ 

1
sin


----------- cos 

since  0:sin

Answer: See page A-13.

CHECK YOUR UNDERSTANDING 3.14

Prove: 

     Suggestion.   Start with: 

THEOREM 3.6     and     

1
 0
lim 1= cos

 0
lim 1=

sin


-----------
+ 0
lim 1=

xcos 1–
x

--------------------
x 0
lim 0=

xcos 1–
x

--------------------
x 0
lim xcos 1–

x
--------------------

x 0
lim

xcos 1+
x 1+cos

---------------------=

xsin  xcos= xcos  xsin–=

h does not appear in
either  or 

 + sin
 cossin  sincos+=

(Theorem 1.5(ii), page 37)

xsin xcos

xsin

xsin  x h+ sin xsin–
h

-----------------------------------------
h 0

lim=

Definition 3.2, page 67

x h x hsincos+cossin xsin–
h

--------------------------------------------------------------------
h 0

lim=

x hcossin xsin–
h

--------------------------------------- x hsincos
h

----------------------+
h 0

lim=

x
hcos 1–
h

-------------------- 
 sin x

hsin
h

---------- 
 cos+

h 0
lim=

xsin
h 0

lim
hcos 1–
h

-------------------- 
 

h 0
lim xcos

h 0
lim

hsin
h

---------- 
 

h 0
lim+=

x
hcos 1–
h

--------------------- 
 

h 0
limsin x

hsin
h

------------- 
 

h 0
limcos+=

x 0 x 1cos+sin xcos= =

CYU 3.14 Theorem 3.5
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In the CYU below you are invited to offer a proof like the one above
to show that . Here, we will cheat a bit by showing
that if the cosine function is differentiable (and it is), then

: 

 Parts (a) and (b) of the following theorem have already been estab-
lished. We prove (c) and invite you to verify the rest in CYU 3.16
below.

PROOF: 

(c)  

Theorem 3.2(e), page 78
   (the product theorem)

xcos  xsin–=

xcos  xsin–=

sin
2
x cos

2
x+ 1=

cos
2
x 1 sin

2
x–=

x xcoscos  1 x xsinsin– =

x xcos cos xcos  xcos+ 0 xsin xsin  xsin  xsin+ –=

2 x xcos cos x x x xsincos+cossin –=

2 x xcos cos 2 x xcossin–=

xcos  xsin–=

Answer: See page A-13.

CHECK YOUR UNDERSTANDING 3.15

Fill in the “ ” in:  xcos  x h+ cos xcos–
h

----------------------------------------------
h 0

lim  xsin–= = =

THEOREM 3.7
(a) (b) 

(c) (d) 

(e) (f) 

d
dx
------ xsin  xcos=

d
dx
------ xcos  xsin–=

d
dx
------ xtan  sec

2
x=

d
dx
------ xcot  csc

2
x–=

d
dx
------ xcsc  x xcotcsc–=

d
dx
------ xsec  xsec xtan=

Answer: See page A-13.

CHECK YOUR UNDERSTANDING 3.16

Prove Theorem 3.7(d), (e), and (f).

d
dx
------ xtan  d

dx
------ xsin

xcos
----------- 
 

x
d
dx
------ xsin cos x

d
dx
------ xcos sin–

cos
2
x

--------------------------------------------------------------------------= =

x xcos cos x xsin– sin–

cos
2
x

----------------------------------------------------------------=

cos
2
x sin

2
x+

cos
2
x

-------------------------------- 1

cos
2
x

------------- sec
2
x= = =
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SOLUTION: 

(a) 

(b)  

Consider the functions , , along with the compos-
ite function .

 Suppose that the following derivatives exist: 

 and 

Then, algebraically speaking:

Suggesting that:

EXAMPLE 3.12 Differentiate the given function.

(a)            (b) f x  x2 xsin= y xsec
1 xtan+
--------------------=

sin
2
x cos

2
x+ 1=

sin
2
x

cos
2
x

------------- cos
2
x

cos
2
x

-------------+ 1

cos
2
x

-------------=

tan
2
x 1+ sec

2
x=

f  x  x2 xsin  x2 xsin  xsin x2 += =

x2 x 2x xsin+cos=

dy
dx
------

d
dx
------ xsec

1 xtan+
-------------------- 
 

1 xtan+  d
dx
------ xsec  xsec

d
dx
------ 1 xtan+ –

1 xtan+ 2
-------------------------------------------------------------------------------------------------= =

1 xtan+  x xtansec  xsec 0 sec
2
x+ –

1 xtan+ 2
--------------------------------------------------------------------------------------------------=

x xtansec xtan
2
xsec sec

3
x–+

1 xtan+ 2
------------------------------------------------------------------------=

x x tan
2
x sec

2
x–+tan sec

1 xtan+ 2
-----------------------------------------------------------------=

x x tan
2
x tan

2
x 1+ –+tan sec

1 xtan+ 2
-------------------------------------------------------------------------------=

x x 1–tan sec

1 xtan+ 2
------------------------------------=

Theorem 3.7(f) and (c):

sec
2
x tan

2
x 1+= :

Answers: 
(a) 

(b) 

xsec  x x xsec 1++tan 
x 2x 2xsin–cos

x3
--------------------------------------

f               g

x. . .
gf 

y
z

CHECK YOUR UNDERSTANDING 3.17

Differentiate:

    (a)                          (b) 

THE CHAIN RULE

f x  x xsec xtan+= y x xcossin
x2

----------------------=

y f x = z g y =
z gf  x  g f x  = =

f  x  dy
dx
------ y

x
------= g f x   dz

dy
------ z

y
------=

gf  x  dz
dx
------ z

x
------ z

y
------y

x
------ g f x  f  x = =
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A proof of the above theorem is offered at the end of the section. Our
priority here is to make sure you know how to use it.

First of all, note that in applying the chain rule, you take the deriva-
tive of the outermost function in the chain first. For example: 

SOLUTION: (a) The first thing you should see when you look at:

  
is that it is the product of two functions. So, that’s what you do first:

For the sake of remember-
ing the chain rule:

But only for the sake of
remembering. 

 is but part of the

mathematical word .

Canceling a  makes
just as much sense as
canceling the word at
from the word cat. 

dz
dx
------

dz
dy
------dy

dx
------=

dy
dy
dx
------

dy

THEOREM 3.8
THE CHAIN RULE

If f is differentiable at x and g is differentiable
at , then the composite function  is
differentiable at x, and:

In words: The derivative of a composite is the product of the derivatives.

EXAMPLE 3.13 Differentiate

(a) 

(b)     

f x  gf

gf  x  g f x  f  x =

In Leibniz noation: If y f x  and z g y = =

then dz
dx
------

dz
dy
------dy

dx
------=

          sin                      cos=

x2 2x+ sin  x2 2x+  x2 2x+ cos x2 2x+  2x 2+ cos= =

stuff stuff stuff

derivative of sine evaluated at stuff
times the derivative of stuff

derivative of sine evaluated at x2 2x+  times the derivative of x2 2x+ 

For example:

x3 2x–  x2 2x+ sin

x2

2x 3+
---------------sin 

 cos

x3 2x–  x2 2x+ sin

x3 2x–  x2 2x+ sin 

x3 2x–  x2 2x+ sin  x2 2x+ sin x3 2x– +=

x3 2x–  x2 2x+  2x 2+  x2 2x+  3x2 2+ sin+cos=

x3 2x–  2x 2+  x2 2x+  3x2 2+  x2 2x+ sin+cos=

2x4 2x3 4x2– 4x–+  x2 2x+  3x2 2+  x2 2x+ sin+cos=
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(b)  is the composite of three functions. So:

Here is an important consequence of the chain rule:

PROOF: Let . Then:

Applying the Chain Rule Theorem:

 

x2

2x 3+
---------------sin 

 cos

d
dx
------ x2

2x 3+
---------------sin 

 cos x2

2x 3+
---------------sin 

  d
dx
------ x2

2x 3+
---------------sin 

 sin–=

x2

2x 3+
---------------sin 

  x2

2x 3+
--------------- 
  d

dx
------ x2

2x 3+
--------------- 
 cossin–=

x2

2x 3+
---------------sin 

  x2

2x 3+
--------------- 
  2x 3+  2x  x2 2–

2x 3+ 2
--------------------------------------------------cossin–=

x2

2x 3+
---------------sin 

  x2

2x 3+
--------------- 
  2x2 6x+

2x 3+ 2
-----------------------cossin–=

2x2 6x+

2x 3+ 2
----------------------- x2

2x 3+
---------------sin 

  x2

2x 3+
--------------- 
 cossin–=

Answers: 

(a) 

(b) 

x
x 1+ 2

------------------- sec
2 x

x 1+
------------ 
  +

x
x 1+
------------ 
 tan

2x x x2coscos x x2sinsin+

cos
2
x

---------------------------------------------------------------

CHECK YOUR UNDERSTANDING 3.18

Differentiate the given function:

(a)                        (b)  f x  x
x

x 1+
------------ 
 tan= g x  sinx2

xcos
------------=

If , then:

and we’re back to Theo-
rem 3.2(b), page 78.

f x  x=
d

dx
------ f x  

r
xr =

rxr 1– x =

rxr 1–=

THEOREM 3.9
GENERALIZED 
POWER RULE

If f is differentiable at x then so is the function
 for any real number r, and:f x  r

d
dx
------ f x  r r f x  r 1– d

dx
------ f x  =

Alternate notation: f x  r  r f x  r 1– f  x =

From Theorem 3.2(b):

Consequently:

In the spirit of full-disclosure we
point out that while Theorem
3.2(b) does indeed hold for all r,
we have (up to now) only estab-
lished its validity for integer
exponents (see Example 3.10
and CYU 3.10 of the previous
section).      

g x  xr  rxr 1–= =

g f x   r f x  r 1–=

EXAMPLE 3.14 Differentiate

(a)     (b) 

(c)              (d) 

g x  xr=

gf  x  g f x   f x  r= =
(*)

f x  r  g f x    g f x  f  x  r f x  r 1– f  x = = =

see margin(*)

f x  x4 3x2– 23= g x  cos
5
x3=

h x  4
x2 1+
--------------= k x  x2tan=
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SOLUTION: (a) 

(b) You may find it safer to rewrite the function  in its

more revealing form: . Then: 

(c) 

(d) 

d
dx
------ x4 3x2– 23 23 x4 3x2– 23 1– d

dx
------ x4 3x2– =

23 x4 3x2– 22 4x3 6x– =

23 4x3 6x–  x4 3x2– 22=

h x  cos
5
x3=

h x  cos x3 5=

d
dx
------ cos x3 5 5 cos x3 5 1– d

dx
------ x3cos =

5 cos x3 4 x3sin–  d
dx
------x3=

5cos
4
x3 x3sin–  3x2 15x2 cos

4
x3  x3sin–= =

4
x2 1+
-------------- 
  4 x2 1+  1–  4 x2 1+  1– = =

4 1 x2 1+  1– 1––  x2 1+ =

4 x2 1+  2– 2x– 8x
x2 1+ 2

----------------------–= =

x2tan  x2tan 
1
2
---  1

2
--- x2tan 

1
2
--- 1–

x2tan = =

1
2
--- x2tan 

1
2
---–

x2tan =

1

2 x2tan
--------------------- sec

2
x2 x2 =

1

2 x2tan
--------------------- sec

2
x2 2x  xsec

2
x2

x2tan
------------------= =

Chain Rule Theorem:

Answers: 
(a) 

(b) 

(c) 

3 x4 xsin+ 2 4x3 xcos+ 

9x2 x3sin
2
x3cos

x x2cos

x2sin
-----------------

CHECK YOUR UNDERSTANDING 3.19

Differentiate the given function:

     (a)                  (b) 

     (c) 

f x  x4 xsin+ 
3

= g x  sin
3
x3=

f x  x2sin=
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Now that you are comfortable applying the chain rule, we want to
make sure that you truly understand what it is saying. With this in mind
we ask you to consider the following situation:

Figure 3.8

Three functions are depicted in Figure 3.8: 

, , and the composite function:

      

The chain rule  asserts that the derivative

of the composite function equals the derivatives of the function g eval-
uated at  times the derivative of . Let’s check it out:

Let’s show that  leads to the same result:

From : . In particular:

 

Also: 

Bringing us to: 

SOLUTION: With the chain rule:

 Without the chain rule:

Differentiating:

EXAMPLE 3.15 For  and ,

determine , both with, and without

using the chain rule.

f x  x3 1+= g x  x2=

gf  x  x3 1+ 2 x6 2x3 1+ += =

f x  x3 1+= g x  x2=

gf  x  g f x   g x3 1+  x3 1+ 2 x6 2x3 1+ += = = =

gf  x  g f x  f  x =

f x  f x 
gf  x  x6 2x3 1+ +  6x5 6x2+= =

g f x  f x 
g x  x2= g x  2x=

g f x   g x3 1+  2 x3 1+  2x3 2+= = =

f  x  x3 1+  3x2= =

g f x  f x  2x3 2+  3x2  6x5 6x2+= =

f x  4x 1+= g x  x2 2x+=

gf  x 

gf  x  g f x   f  x  g 4x 1+  4= =

since f x  4x 1 f  x + 4= =

8x 4+  4 32x 16+= =
g x  x2 2x g x + 2x 2+= =

g 4x 1+  2 4x 1+  2+ 8x 4+= =

gf  x  g f x   g 4x 1+  4x 1+ 2 2 4x 1+ += = =

16x2 8x 1+ +  8x 2+ += 16x2 16x 3+ +=

gf  x  16x2 16x 3+ +  32x 16+= =
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Here is a seductively simple “proof” for the Chain Rule theorem: 
If  and  are differentiable (which is to say that

 and  exist) then so is  differentiable:

 
Alas, there is a flaw in the above argument:

While it is true that as  goes to zero so must , there is noth-
ing preventing  from assuming the value of 0 along the way,

in which case the expression  is undefined! We have to be

more careful, and to make sure we are not tempted to do silly
things like canceling the “ ” in the Leibnitz form of the chain

rule  we shall use the prime notation in

the statement and proof of the Chain Rule Theorem:

PROOF: Let f be differentiable at c, and let g be differentiable at
. Consider the function 

Answer:       16x3 40x–

CHECK YOUR UNDERSTANDING 3.20

For  and  determine , both

with and without using the chain rule.

PROOF OF THE CHAIN RULE: 

Chain Rule Theorem

If f is differentiable at c and g is differentiable at , then
the composite function  is differentiable at c, and:

f x  2x2 5–= g x  x2 2+= gf  x 

y f x = z g y =
dy
dx
------ dz

dy
------ z gf  x =

dz
dx
------ z

x
------

x 0
lim

y
x
------z

y
------ 

 
x 0
lim= =

y
x
------ z

y
------

x 0
lim

x 0
lim=

y
x
------ z

y
------

y 0
lim

x 0
lim

dy
dx
------ dz

dy
------= =

x y
y

z
y
------

dy
dz
dx
------

dy
dx
------dz

dy
------: nonsense!= 

 

f c 
gf

gf  c  g f c  f  c =

f c 

F f x  
g f x   g f c  –

f x  f c –
-----------------------------------------   if f x  f c 

g f c     if f x  f c =





= (*)
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Since , F is continuous at

. In the event that :

                 

                                 (see margin)
Since f is continuous at c, and F is continuous at , the com-

posite function  is also continuous (Theorem 2.5, page 58);

bringing us to:

Finally:

Conclusion: 

         If :

        If :
The right side of (**) is zero,
as is the let side: 
Since g is differentiable at

, it is continuous at .

F f x   f x  f c –
x c–

-------------------------

g f x   g f c  –
f x  f c –

------------------------------------------ f x  f c –
x c–

-------------------------=

g f x   g f c  –
x c–

-----------------------------------------=

f x  f c 

f x  f c =

f c  f c 

g f x   g f c  –
f x  f c –

-----------------------------------------
f x  f c 

lim g f c  =

f c  x c

g f x   g f c  –
x c–

----------------------------------------- F f x   f x  f c –
x c–

-------------------------= (**)

f c 
Ff

F f x  
x c
lim F f c   g f c  = = (***)

(*)

g f x   g f c  –
x c–

-----------------------------------------
x c
lim F f x   f x  f c –

x c–
-------------------------

x c
lim=

F f x   f x  f c –
x c–

-------------------------
x c
lim

x c
lim=

g f c  f  c =

(**)

(***):

gf  c  g f x   g f c  –
x c–

-----------------------------------------
x c
lim g f c  f  c = =
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 3f I

Exercises 1-24. Differentiate the given function.

Exercises 25-26. (Rate of Change) Determine the rate of change of the given function, at the
indicated point.

Exercise 27-28. (Composite Functions) Determine the derivative of  both with and

without using the chain rule (as in Example 3.15), for:

Exercises 29-34. (Chain Rule) Evaluate the given function at the given point, if:

EXERCISES

1. 2.

3. 4.

5. 6.

7. 8.

9. 10.

11. 12.

13.
14.

15. 16.

17. 18.

19. 20.

21. 22.

23. 24.

25. 26.

27. 28.

29. 30. 31.

32. 33. 34.

f x  x2 3x 10–+ 15= f x  3x4 2x 5–+  7–=

f x  x3 2x+= f x  1

3x4 x2+
------------------------=

f x  3x

x 1+
----------------= f x  1

x 1+
------------=

f x  2x2 1+ sin= f x  x 2x2 1+ sin=

f x  xcos sin= f x  sin
2
x xcos=

f x  x xsin cos= f x  xsec tan=

f x  sin
2
x
xcos

------------=
f x  x x2tansec=

f x  x2 x 1–+ sin tan= f x  x2sin x2cos=

f x  2x 3+ sec= f x  2x 3+cot=

f x  cos
2
x sin= f x  sin

2
cosx =

f x  cot
2

cos x2 = f x  sin
2

cos
2
x2 =

f x  x2cos csc 
2
3
---

= f x  cos
2
x tan=

f x  1
3x 5– 3

----------------------= , at  x 2= f x  x
xsin

----------= , at  x 
3
---=

  gf  x 

f x  3x2 x  and  g x + 1
x 1+
------------= = f x  x  and  sin g x  x2= =

f 0  1   f 1  3   f 2  2   f  0  2   f  1  6   f  2  0   f  3  3= = = = = = =

g 0  2   g 1  2   g 2  5   g  0  1   g  1  2   g  2  2   g 3  2= = = = = = =

gf  0  fg  0  gg  0 

gf  1  ff  1  gf  2 
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Exercises 35-38. (Tangent Line) Determine the tangent line to the graph of the given function, at
the indicated point.

Exercises 39-41. (Point of Tangency)

Exercises 42-43. (Normal Line) Determine the normal line to the graph of the given function at
the given point (See Exercises 52-53, page 88).

Exercises 44-46. (Pinching Theorem) Evaluate:

Exercises 47-49. (Pinching Theorem) Show that:

Exercises 51-61. Evaluate (You may need to use the result of Exercise 50):

35. 36.

37. 38.

39. Determine the numbers  where the tangent line to the graph of the function

 is horizontal.

40. For what values of x is the slope of the tangent line to the graph of  parallel to that of
?

41. Show that the line    is tangent to the graph of the function   

at some point. Determine the point of tangency.

42.  at 43.  at 

44. , given that  for .

45. , given that  for .

46. , given that  for .

47. 48. 49.

50. (Theory) Prove that  for any .     (Suggestion: Make the substitution )

51. 52. 53. 54.

55. 56. 57. 58. 

59. 60.  61. 

f x  x
2x 5+
--------------- 
  2

= , at  x 2–= f x  3x 1
3x 1+
---------------, at x+ 0= =

f x  sin
2
x= , at  x 

2
---= f x  x xcos= , at  x =

0 x 2
f x  x 3 xcos+sin=

xsin
xcos

y 4x– 9+= f x  1
2x 3– 2

----------------------=

f x  x2 2x– 1+ 5= x 1= f x  x2 xsin= x 
2
---=

f x 
x 2
lim 3 f x  x 3–  4+ x 2– 1

f x 
x 2
lim x 2– 2– f x  0 x 2

f x 
x 0
lim 5 x 2+ 2– f x  1

x2 1+
--------------  x 0

x 1
x
---sin 

 
x 0
lim 0= x2 5

x
---cos 

 
x 0
lim 0= x 1– 2 100

x 1–
-----------sin

x 1
lim 0=

cxsin
cx

-------------
x 0
lim 1= c 0 y cx=

3 xsin
x

-------------
x 0
lim 3xsin

3x
-------------

x 0
lim 3xsin

x
-------------

x 0
lim 3xsin

7x
-------------

x 0
lim

7xsin
3x

-------------
x 0
lim sin

2
x

x2
------------

x 0
lim

sin
2

2x 
x2

--------------------
x 0
lim

xsin
x xtan+
--------------------

x 0
lim

xcos 1–
x

--------------------cos
x 0
lim

xcos 1–
x

--------------------tan
x 0
lim

xsin
x

-------------- 
 sin

x 0
lim
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62. (Investment) If $100 is invested at an annual interest rate r compounded quarterly, then the 

future value  (in dollars) accumulated after 10 years is given by: . 

Find the rate of change of the future value with respect to r.

63. (Investment) The effective rate  of an annual nominal rate  r  compounded monthly is 

given by: . Find the rate of change of the effective rate with respect to 

the nominal rate.

64. (Sales) A baseball stadium has a capacity of 35,000 fans. Attendance starts falling off when 
the temperature rises above 90 degree Fahrenheit, in accordance with the formula 

, where x is the (average) number of degrees above 90 during the 
game. The number of sodas sold during a baseball game at the stadium to a capacity crowd 

of  fans is given by , where T is the average temperature at the stadium dur-
ing of the game.  A quarter profit is made on each can sold. 

(a) How many cans of soda are sold during a game, when the temperature is  Fahren-
heit? ? ?

(b) Express the soda-profit for a game as a function of temperature, for .

(c) Use the function in (b) to find the rate of change of profit with respect to temperature.

(d) Use the Chain rule to find the rate of change of profit with respect to temperature. 

65. (Theory) Derive the chain rule formula for three differentiable functions f, g, and h: 

FV FV 100 1 r
4
---+ 

  40
=

re

re 1 r
12
------+ 

  12
1–=

A x  35000 500x–=

N T  35T 3 5/=

90
95 100

90 T 100 

hgf  x   =
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 3

While the circle in Figure 3.9(a) is NOT the graph of a function, the curve

does possess tangent lines at , .     

Figure 3.9

We exhibit two differentiation methods which can be used to deter-
mine the slopes of those tangent lines.

EXPLICIT DIFFERENTIATION METHOD:

 From Figures 3.9(b) and (c) we see that the slope at   is

 where f is the function , and that the slope

at  is  where g is the function .
Specifically:

 

and

It follows that the slope of the tangent line to the curve of Figure

3.9(a) at  is  and that the slope at 

is .

§4. IMPLICIT DIFFERENTIATION

1 3  1 3– 

21

.

.
x2 y2+ 4 or y 4 x2–= =

1 3 

1 3– 

.
1 2

(a)                                                      (b)

y f x  4 x2–= =

1 3 

1
2

1 3– .
y g x  4 x2––= =           (c)

In this method, a function
with graph coinciding
with the given curve at
the point of interest is
explicitly displayed.

1 3 

f  1  f x  4 x2–=

1 3–  g 1  g x  4 x2––=

f  x  4 x2– 
1
2
---  1

2
--- 4 x2– 

1
2
---–

2x–  x

4 x2–
------------------–= = =

g  x  4 x2– –
1
2
---  1

2
---– 4 x2– 

1
2
---–

2x–  x

4 x2–
------------------= = =

1 3  f  1  1

3
-------–= 1 3– 

g 1  1

3
-------=
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  IMPLICIT DIFFERENTIATION METHOD:

Assume that there exists a function  whose graph coin-

cides with that of the curve  at the point , and
a function  with graph coinciding with the curve about

the point . Differentiating both sides of 
with respect to x, we have:

In particular, to find the slope of the tangent line to the curve

 at the point , we simply substitute 1 for x

and  for y in the slope equation : . By the

same token, the slope of the tangent line at the point

 is: .

Before moving on to other implicit differentiation examples, we call
your attention to the curve of Figure 3.10. It is not the graph of a func-
tion. Still, at just about every point on the curve there does exist a func-
tion whose graph coincides with the curve about that point. In
particular, the graph of the depicted function g coincides with the curve
near the point  while the function f does the same near .

The function h coincides with the curve near , but h is not differ-
entiable at that point (why not?). Note that no function (of x) can
approximate the curve near the points  or  (why not?).

Figure 3.10 

While :

 is  

for y is a function of x!

After all:  is not

simply  — it is
, right?

d
dx
------x2 2x=

d
dx
------y2 2y

d
dx
------y 2yy=

d
dx
------ f x  2

2f x 
2f x f  x 

y f x =

x2 y2+ 4= 1 3 
y g x =

1 3–  x2 y2+ 4=

x2  y2 + 4=

2x 2yy+ 0=

2yy 2x–=

y x
y
--–=

see margin

x2 y2+ 4= 1 3 

3 y x
y
--–= y 1

3
-------–=

x y  1 3– = y x
y
--– 1

3–
----------– 1

3
-------= = =

Note: To determine the
slope of a tangent line to
the graph of a function at
a given point, only the x-
coordinate of that point
need be supplied, for there
can be but one y associ-
ated with that x. That may
not be the case when it
comes to a general curve.
There are, for example,
two points on the adja-
cent curve with x-coordi-
nate b. The slope of the
tangent line at 
appears to be a bit nega-
tive, while that at 
looks to be slightly posi-
tive.

b y1 

b y2 

b y1  b y2 
c y3 

a y  d y4 

.

.
a                    b                                   c

a y 

b y1 

b y2 

c y3 f h

g

d

. . d y4 

x

y
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SOLUTION: Assume that the curve near each of those two points
coincides with the graph of some function (not necessarily the same
function for both points). Differentiating we have:

To find the slope of the tangent line at  we substitute 1 for x and
2 for y in the above equation, and then solve for . Substituting 0 for
x and 1 for y leads us to the slope of the tangent line at :

So, even though we may not have a nice picture of the curve

, we do know that the tangent line at  has

slope , which tells us that the curve is climbing at that point (move

to the right a bit, and the y values will increase by about  times that

bit). We also know that the curve has a horizontal tangent line at .

Is the explicit differentia-
tion option viable in this
example?

EXAMPLE 3.16 Find the slope of the tangent line to the curve

 at the point  and

at the point .

x3 2x2y2– y3+ 1= 1 2 
0 1 

Note the big difference
between taking the derivative
with respect to x of  and of

. Why so? Because the
chain rule tells us that:

So, while 

By the same token, when
applying the product rule to

 we have:

 

x3

y3

f x  3  3 f x  2f  x =
                      yy

d
dx
------ x3  3x2dx

dx
------ 3x2= =

d
dx
------ y3  3y2dy

dx
------=

x2y2 

x2 y2  y2 x2 +

x22yy y22xx+=

x22yy y22x+=

x
d

x
d

x
------

1
=

=

: :

x3 2x2y2– y3+  1 =

3x2 2 x22yy y22x+ – 3y2y+ 0=margin

1 2 
y

0 1 

3x2 2 x22yy y22x+ – 3y2y+ 0=

x 1 y 2= =
3 2 4y 8+ – 12y+ 0=

4y 13=

y 13
4
------=

x 0 y 1= =

3y 0=

y 0=

x3 2x2y2– y3+ 1= 1 2 
13
4
------

13
4
------

0 1 

Answer: , 

               .

y
5
6
---x– 8

3
---+=

y
1
3
---x 8

3
---–=

CHECK YOUR UNDERSTANDING 3.21

Determine an equation for the tangent line to the curve

 at  and at .

EXAMPLE 3.17 Find  and  in terms of x and y, given that

x2 xy 2y2+ + 8= 2 1  2 2– 

y y
y2 xy 1+=
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SOLUTION: 

SOLUTION: Using implicit differentiation, we find :

We see that the derivative  fails to exist at  and at . 

y2  xy 1+ =

2yy xy y+=

2y x– y y=

y y
2y x–
---------------= y 2y x– y y 2y 1– –

2y x– 2
-------------------------------------------------------=

2y x–  y
2y x–
--------------- 
  y 2y

2y x–
--------------- 1– 
 –

2y x– 2
-------------------------------------------------------------------------------=

2y2 xy– y 2y 2y– x+ –
2y x– 3

-------------------------------------------------------------=

2y2 2xy–
2y x– 3

----------------------- 2 y2 xy– 
2y x– 3

-------------------------= =

2 1
2y x– 3

---------------------- 2
2y x– 3

----------------------= =since y2 xy 1:+=

Answer: 24y

3y2 1– 3
-------------------------–

CHECK YOUR UNDERSTANDING 3.22

Find  in terms of x and y, given that .
d 2y
dx2
-------- y3 2x+ y=

x

y

.

.

.

.

EXAMPLE 3.18 The curve  (called a lemnis-
cate) appears in the margin. Determine the
four indicated points on the curve where ver-
tical tangent lines occur. 

y4 y2– x2+ 0=

y

4y3y 2yy– 2x+ 0=

2y3y yy– x+ 0=

y x–
2y3 y–
-----------------=

x–
y 2y2 1– 
------------------------- x–

y 2y 1+  2y 1– 
---------------------------------------------------= =

y y 0= y
1

2
-------=
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Returning to the equation  we find the points on the

curve with y-coordinate 0 or :

For : . Point: .

For : 

Points:  and 

For : 

Points:  and 

Note that the curve cannot be approximated by the graph of a function
at  (see margin) which means that implicit differentiation can not

be used there. Why is  not defined at ? Because there are

vertical tangent lines at the four points  and  (see

margin).

y4 y2– x2+ 0=
1

2
-------

y 0= 04 02– x2+ 0 x 0= = 0 0 

y 1

2
-------=

1

2
------- 
  4 1

2
------- 
  2

– x2+ 0=

1
4
--- 1

2
---– x2+ 0 x2 1

4
--- x 1

2
---= = =

1

2
------- 1

2
--- 

  1

2
------- 1

2
---– 

 

x

y

.

.

.

.

12
-------

–
12 ---








12

-------
–

12 ---
–







12
-------

12 ---








12
-------

12 ---
–







y 1

2
-------–=

1

2
-------– 

  4 1

2
-------– 

  2
– x2+ 0=

1
4
--- 1

2
---– x2+ 0 x2 1

4
--- x 1

2
---= = =

1

2
-------–

1
2
--- 

  1

2
-------– 1

2
---– 

 

0 0 

y y
1

2
-------=

1

2
------- 1

2
---– 

  1

2
------- 1

2
--- 

 

Answer: Vertical tan-
gent line at  and
horizontal tangent lines

at .

1 0– 

2
3
---– 2

27
------ 

 

CHECK YOUR UNDERSTANDING 3.23

It appears that the adjacent curve

 contains but one point
where it has a vertical tangent line and two
points where it has a horizontal tangent
line. Find those points.

x

y

2y2 x3– x2– 0=
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 3

Exercises 1-8.  (Explicit vs. Implicit) Sketch the given curve and determine the slope of the tan-
gent line at the given points, both by means of explicit and implicit differentiation.

Exercises 9-24. (Tangent Line) Determine the tangent line to the given curve at the given point.

Exercises 25-26. (Horizontal Tangent Lines) Find the points on the given curve at which a hori-
zontal tangent line occurs.

EXERCISES

1.The points  and  on the parabola .

2.The points  and  on the parabola .

3. The points  and   on the circle .

4. The points  and   on the circle .

5. The points  and   on the ellipse .

6. The points  and    on the ellipse .

7. The points , ,  and     on the hyperbola .

8.The points , ,  and     on the hyperbola  .

9.  at 10.  at 

11.  at 12.  at 

13.  at 14.  at 

15.  at 
16.  at 

17.  at 18.  at 

19.  at 
20.  at 

21.  at 22.  at 

23.  at 
24.  at 

25. 26.

1 1  1 1–  x y2=

2 1– 1

2
-------+ 

  2 1– 1

2
-------– 

  x 2– 2 y 1+ 2=

1
2
--- 3

2
------- 

  1
2
--- 3

2
-------– 

  x2 y2+ 1=

1 3+ 0  1 3– 0  x 1– 2 y 1– 2+ 4=

1
3

2
------- 

  1 3
2

-------– 
  x2

4
----- y2+ 1=

1 3– 4 2
3

----------+ 
  1 3– 4 2

3
----------– 

  x 2– 2

9
------------------- y 3+ 2

4
-------------------+ 1=

4 3  4 3–  4– 3  4– 3–  x2

4
----- y2– 1=

1 2 2  1 2 2–  1– 2 2  1– 2 2–  x– 2 y2

4
-----+ 1=

x2y2 4= 1 2  x2 4y2– 4= 2 0 

x2 xy2 y–+ 4= 2 0  x2 xy y2–+ 1= 2 3 

x3 y3+ 6xy= 3 3  x3y4 4= 1 2 

y4 xy– x2 1–= 1 0 
x2 y2+ 2x2 2y2 x–+ 2= 0

1
2
--- 

 

x2 y3+ 2y 3+= 2 1  4x4 8x2y2+ 25x2y 4y4–= 2 1 

x ycos+ xy= 0
3
2

------ 
  x2 y2+ 2 x y– 2= 1 1– 

xcos
2
y ysin= 0 0  2 x y– sin y= 1 0 

x y y 2xcos–sin 2x=

2
---  
  x y+ sin y2 xcos= 0 0 

x2 y3 3y– 2–+ 0= xy2 2y 2+=
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Exercises 27-28. (Normal Line) Determine the normal line to the given curve at the given point
(See Exercises 52-53, page 88).

Exercises 29-34. (Leibnitz Notation) Determine .

Exercises 35-38. (Second Derivative) Determine  at the given point.

Exercises 39-42. (Second Derivative) Express  in terms of x and y.

Exercise 43-46. (Orthogonal Curves) Two curves are orthogonal if their tangent lines are per-
pendicular at each point of intersection. Show that the given curves are orthogonal.

47. (Theory) Prove that the tangent line at any point on the circle  is per-
pendicular to the radius of the circle at that point.

48. (Theory) (a) Prove that the tangent line at any point  on the circle  is

given by .

 (b) Verify directly that the formula in (a) holds at the points  and  on the cir-

cle .

(c) Generalize the result of (a) for any point  on the circle .

(d) Find all points on the circle  with tangent line passing through the point

.

27.  at 28.  at 

29. 30.

31. 32.

33. 34.

35.  at    36.  at 

37.  at  
38.  at 

39. 40.

41. 42.

43.  and 44.  and 

45.  and 46.  and 

x2 y+ y2 7x–= 1 3  xy x2 y2–+ 1= 1 1 

dy
dx
------

xy2 yx2 3x 2y–+= xy2 yx2 3+=

y2 xy
x 1+
------------= x2 3/ y+ y2 3/ x+=

y2 ysin x y+= x 1+
y

------------ 2x y2+=

y

x2 y2+ 25= 3 4–  x3 3xy y2+ + 5= 1 1 

x y+ 1=
1
4
--- 1

4
--- 

  xy sin y2+ 4= 0 2 

y

x3 y3– 1= x3 2y2– 0=

xy3 12= y2cos xy 1+=

xy 2= x2 y2– 3= y2 4x– 4– 0= y2 64– 6x+ 0=

x2 y2+ 4= 2x 3y+ 0= x2 y2+ x= x2 y2+ 2y=

x x0– 2 y y0– 2+ r2=

x y  x2 y2+ r2=

y x
y
--– x r2

y
----+=

1 3  1 3– 
x2 y2+ 4=

x y  x x0– 2 y y0– 2+ r2=

x2 y2+ 4=

0 2 
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 3

Our concern in this section is to determine how the rates of change
with respect to time, of certain quantities affect the rates of change of
other quantities. The Leibnitz notation (rather than the prime notation)
will be utilized to underline the fact that the quantities are varying as a
function of time.  

SOLUTION: As it is with any word problem, the first step is to display
the problem in a compact visual form. You want to “see the problem,”
and to have no further need to return to its initial verbal representation:

 

As you can see we are given the rate  and want to find the rate .

The next step is to find a relation between the quantities in the numer-

ators of those expressions [the r of  and A of ]:

 Differentiating both sides of the above equation with respect to t, we
have:

Substituting 4 cm for r and  for  in the above equation we

find that:

 

§5. RELATED RATES

Throughout this section we will use the following geomet-
rically plausible fact — roughly stated here, and formally
established in the next chapter:

 

EXAMPLE 3.19 The radius of a circle is increasing at the rate of
3 centimeters per minute. Determine the rate
of change of its area when the radius is 4 cm.

df
dt
----- 0 f is increasing         

df
dt
----- 0 f is decreasing

r
dr
dt
----- 3

cm
min
---------=

dA
dt
-------

r 4=

?=

dr
dt
----- dA

dt
-------

dr
dt
----- dA

dt
-------

A r2=

Note that the rate of change
of area with respect to time
increases as r increases. This
makes perfectly good geo-
metrical sense: 

r

A
larger

sm
al

le
r

r r

dA
dt
------- 2r

dr
dt
-----=

Since r is a function of time, 
d
dt
-----r2 2r

dr
dt
-----   (Chain Rule!)=

3
cm
min
--------- dr

dt
-----

dA
dt
------- 2 4 3  24cm

2

min
---------= =
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Conclusion: At the instance of time when the radius is  4cm the area

in increasing ( is positive) at a rate of .

SOLUTION: Step 1. See the Problem:

Step 2. Find a relation between the quantities in the numerators, x
and s.
       From the two similar triangles in the above figure:

 

Step 3. Differentiate: 

Step 4. Evaluate at the specified instant of time. When :

(His shadow is decreasing at the rate of 2.6 ft/sec)

dA
dt
------- 24cm

2

min
---------

Answer: 6 cm
min
---------

CHECK YOUR UNDERSTANDING 3.24

With reference to Example 3.19, determine the rate of change of the
circumference of the circle with respect to time when . 

EXAMPLE 3.20 A spotlight on the ground shines on a wall 18
feet away. If a man 6 feet tall walks toward the
wall at a speed of 4 feet per second, how fast is
the length of his shadow changing when he is
5 feet from the wall?

r 12cm=

Two triangles are simi-
lar if they have the
same set of angles; and
while similar triangles
have the same shape,
they need not be of the
same size. However:
The ratios of corre-
sponding sides of
similar triangles are
equal.

x

s

18

6

dx
dt
------ 4

ft
sec
-------–=

why the negative sign?

ds
dt
----- ?  when  x 5ft = = 

s
18
------ 6

18 x–
--------------=

s 108
18 x–
-------------- 108 18 x–  1–= =

ds
dt
----- 108 18 x–  2– dx

dt
------– 

 –=

from where?

x 5=

ds
dt
----- 108 18 5–  2– 4– – –

432
132
--------- 2.6

ft
sec
-------––= =
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SOLUTION: Typically, the “snap-shot” of interest (in this case the sit-
uation at 3 PM) only comes into play at the end of the solution pro-
cess. In this example, however, we need to know if ship A is still east
of ship B, and it is (see margin):

Step1. 

Step2.                      

Step 3.                 

Step 4.At 3 PM, , 

, and . 
So, at 3 PM: 

           

Answer:  feet per second.3
2
---

CHECK YOUR UNDERSTANDING 3.25

A ladder 10 feet long is leaning against the side of a building, and its
foot is being pulled away from the building at the rate of 2 feet per
second. Determine the rate of change of the distance from the top of
the ladder to the ground when it is 6 feet from the wall.

In 3 hours time ship A trav-
eled km. Since
initially it was 120 km east
of B, A will still be east of B
at 3 PM. As such, x
decreases with time.

Were A west of B:

 

 then  would be positive.

3 35 105=

xA

B

dx
dt
------

EXAMPLE 3.21 At noon ship A is 120 km east of ship B. Ship
A is sailing west at 35 km/hr and ship B is sail-
ing north at 25 km/hr. How fast is the distance
between the ships changing at 3 PM?

Ax

B

s

dy
dt
------ 25

km
hr
-------=

y
dx
dt
------ 35

km
hr
-------–=

ds
dt
----- ?= (at 3 PM)

s2 x2 y2+=

2s
ds
dt
----- 2x

dx
dt
------ 2y

dy
dt
------+=

ds
dt
-----

x
dx
dt
------ y

dy
dt
------+

s
------------------------=

Answer:  160

26
---------- 31.4

 km
hr

---------

CHECK YOUR UNDERSTANDING 3.26

Referring to Example 3.21, find the rate of change of the distance
between the two ships at 4 PM.

x 120 3 35 – 15km= =

y 3 25 75km= = s 152 752+ 15 26= =

ds
dt
-----

x
dx
dt
------ y

dy
dt
------+

s
------------------------ 15 35–  75 25 +

15 26
--------------------------------------------

90

26
---------- 17.7

km
hr
-------= = =
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SOLUTION: 

We need to relate the water volume V and the water height h. The
water volume V is  given by the area A of the shaded triangle in Fig-
ure 3.11(a) times the length of the trough (12 ft): . Cutting
that triangle in half, brings us to Figure 3.11(b). 

Figure 3.11

At this point we have the relation . From the simi-

lar triangles of Figure 3.11(b) we see that . Thus:

Differentiating: 

EXAMPLE 3.22 Water is flowing into a 12 foot trough at a rate

of . The cross sections of the trough are

inverted isosceles triangles with base of length
2 feet and height of length 4 feet. How fast is
the water level rising when the water level is
18 inches deep?

15 ft
3

min
---------

122

4

dV
dt
------- 15 ft

3

min
---------=

dh
dt
------ ?= when h

3
2
---ft= 

 
h

V 12A=

12

2

4
h A

1

a
4

h

2a

A
2
---

1
2
---ah= A ah=

(a)                                (b)

Area of a triangle is
one-half the length of
its base times its height

V 12A 12ah= =

a
h
--- 1

4
---= a h

4
---=

V 12
h
4
--- h  3h

2
= =

dV
dt
------- 6h

dh
dt
------=

dh
dt
------

dV
dt
------- 1

6h
------ 15

6h
------ 5

2h
------= = =
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In particular, when : 

Conclusion: The water level is rising ( ) at the rate of .

h 18 in.
3
2
---ft= = dh

dt
------ 5

2
3
2
---

----------
5
3
--- 

ft
min
---------= =

dh
dt
------ 0 5

3
--- 

ft
min
---------

Answer: 2 in
3

min
---------

CHECK YOUR UNDERSTANDING 3.27

Water is leaking out from the bottom of a cone-shaped cup at a con-

stant rate of . The cup is 16 inches across the top and 32 inches

deep. Determine c, given that the depth of water is decreasing at a
rate of 2 inches per minute at the instant of time when the water
depth is 4 inches. 

(Volume of a cone of radius r and height h: )

c
in

3

min
---------

V
1
3
---r2h=
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EXERCISES

1. (Cube) The edge x of a cube is increasing at the rate of . Determine:

(a) The rate of change of the volume of the cube when .

(b) The rate of change of the surface area of the cube when .

(c) The rate of change of the volume of the cube when its surface area is .

2. (Circle) The radius r of a circle is increasing at the rate of . Determine:

(a) The rate of change of the area of the circle when .

(b) The rate of change of the circumference of the circle when .

(c) The rate of change of the area of the circle when its circumference is .

3. (Sphere) The radius r of a sphere is decreasing at the rate of . Determine:

(a) The rate of change of the volume of the sphere when . Note: .

(b) The rate of change of the surface area of the sphere when . Note: .

(c) The rate of change of the volume of the sphere when its surface area is .

4. (Cone) The radius r of a cone is increasing at a rate of 2 inches per second while its height is 

decreasing in such a way that the volume remains constant at . At what rate is the 

height decreasing when the radius is 1 inch? Note: .

5. (Cylinder) The radius r of a cylinder is decreasing at the rate of  and its height is 

increasing at the rate of ? Find the rate of change of the volume when the radius of the 

cylinder is 2 feet and its height is 3 feet.

6. (Cylinder) The radius r of a cylinder is increasing at 2 inches per second. When the radius is 

4 inches, the volume is  and is increasing at . How fast is the height of the 

cylinder increasing at that instant?

7. (Circular Ripples) A stone is dropped into a pool of water creating a series of concentric cir-
cular ripples. 
(a) At what rate is the area of the outer circle changing when its diameter is 6 feet, if the

diameter of that outer ripple is changing at a constant rate of 4 feet per second?
(b) At what rate is the diameter of the outer circle changing when its diameter is 3 feet, if the

area of the outer circle is changing at a constant rate of 30 square feet per second?

1
cm
min
---------

x 50 cm=

x 50 cm=

2400 cm
2

1
cm
min
---------

r 50 cm=

r 50 cm=

40 cm

1
cm
min
---------

r 50 cm= V
4
3
---r3=

r 50 cm= S 4r2=

1600 cm
2

12 in
3

V
1
3
---r2h=

4
ft

min
---------

2
ft

min
---------

400 in
3

24  in
3

sec
---------
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8. (Rectangle) One side or a rectangle is 5 cm longer than the other side. Both sides are increas-

ing at a rate of .

(a) How fast is the area (A) of the rectangle increasing when the length of the shorter side
is 50 cm?

(b) How fast is the perimeter (P) of the rectangle increasing when the length of the shorter
side is 50 cm?

(c) How fast is the diagonal (S) of the rectangle increasing when the length of the shorter
side is 50 cm?

9. (Rectangle) The length l of a rectangle is increasing at a rate of  and its width w is 

decreasing at a constant rate . Determine c if its area is increasing at a rate of  

when  and . 

10. (Rectangle) The length l of a rectangle is increasing at a rate of . Find the value of l at

which the area of the rectangle starts to decrease if the perimeter of the rectangle is held
fixed at 20 cm.

11. (Rectangle) The length of a rectangle is increasing at 2 inches per second. Determine the
rate of change of the area when the rectangle is a square, if the perimeter remains constant at
42 inches.

12. (Rectangle) The length of a rectangle is increasing at 2 inches per second. How fast is the
perimeter increasing when the length is 6 inches if its width decreases in such a way that the
area remains constant at 24 square inches?

13. (Equilateral Triangle) At a certain instant of time the sides of an equilateral triangle are 1 

inch long and increasing at a rate of . Determine:

(a) The rate of change of the area of the triangle.
(b) The rate of change of the perimeter of the triangle.
(c) The rate of change of an angle of the triangle.

14.(Shadow) A man 6 feet tall is walking away from a 24 foot lamppost at a rate of 3 feet per 
second. At what rate is the end of his shadow moving away from him? 

15. (Ladder) A ladder 12 feet long is leaning against the side of a building, and its foot is being
pulled away from the building at the rate of 1 foot per second. Determine the rate of change
of the angle formed by the ladder and the ground when the top of the ladder is 9 feet from
the ground.

16.  (Equilateral Triangle) The area of an equilateral triangle is  and it is increasing at 

the rate of . At what rate is the side of the triangle increasing at that time?

17. (Triangle) The base of a triangle is increasing at the rate of 3 inches per minute, while the 
altitude is decreasing at the same rate. At what rate is the area changing when:

(a) The base is 7 inches and the altitude is 6 inches?
(b) The altitude is 7 inches and the base is 6 inches?

10
cm
min
---------

25
cm
min
---------

c
cm
min
--------- 250

 cm
2

min
-----------

l 25 cm= w 20 cm=

1
cm
sec
-------

1 
in

min
---------

5 in.
2

5
 in.

2

min
----------
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18. (Triangle) The altitude of a triangle is increasing at a rate of  and its base is increasing

at a rate of . At what rate is the area of the triangle increasing when its height 15 cm

and its area is ?

19. (Isosceles Triangle) The base of an isosceles triangle is held constant at 24 inches. At what 
rate is the vertex angle changing at the instant of time when the altitude is 12 inches and is 
increasing at the rate of 1 inch per minute?

20. (Balloon) A spherical balloon is expanding in such a way that its radius is increasing at a
rate proportional to its surface area. Show that the surface area is increasing at a rate propor-
tional to its volume.

21. (Mothball) A spherical mothball evaporates in such a way that its volume decreases at a
rate proportional to its surface area. Show that the radius decreases at a constant rate.

Note: .

22.  (Balloon) A balloon rises vertically at a rate of 200 feet per minute, from a point on the 
ground that is 500 feet from an observer. Determine:

(a) The rate of change of the distance between the observer and the balloon at the instant
when the balloon is 600 feet above the ground.

(b) The rate of change of the angle of inclination of the observer’s line of sight when the
balloon is 500 feet above the ground.

23. (Sand) The volume of a cone is increasing at a constant rate of 2 cubic feet per minute in

such a way that the height of the cone is always equals to its diameter. (Note: .)

(a) At what rate is the height of the cone changing when the height is 2 feet?
(b) At what rate is the radius of the cone changing when the height is 2 feet?
(c) At what rates are the radius and the height of the cone changing when the volume is 35

cubic feet?

24. (Boat) A boat is pulled toward a dock by a rope attached to the bow of the boat and passing
through a ring on the dock that is 6 feet higher than the bow of the boat. 

(a) How fast is the boat approaching the dock when it is 12 feet from the dock, if the rope
is pulled in at a rate of 1 foot per second? 

(b) At what constant rate must the rope be pulled for the boat to approach the dock at 1
foot per second when it is 12 feet from the dock?

25. (Boyle’s Law) A gas occupies a volume of 1000  and is subjected to a pressure of  

Find the rate at which the pressure is changing at the instant when the volume is  if 

the gas is being compressed at a rate of . 

Use Boyle’s Law: .

1
cm
min
---------

2
cm
min
---------

90 cm
2

V
4
3
---r3 S 4r2= =

V
1
3
---r2h=

in
3

1
lb

in.
2

--------

800in.
3

4
in.

3

min
---------

pressure volume constant=
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26. (Two Ships) At noon ship A is 200 km west of ship B. Ship A is sailing south at  and

ship B is sailing north at . How fast is the distance between the ships changing at

2:00 PM?

27. (Walking) At 1 PM a man starts walking north at a rate of  from a point P. Five

minutes later, a woman starts walking east at a rate of  from a point Q that is 1000

feet west of P. How fast is the distance between the two individuals changing at:
      (a)1:08 PM?        (b) 1:10PM?

28. (Particle) A particle moves along the curve . Find the points on the curve
at which the x-coordinate is increasing 9 times faster than its y-coordinate.

29. (Water) Water is leaking out of an inverted conical tank of height 120 inches and radius 10

inches at a rate of , while water is being pumped into the tank at a constant rate. (Note:

.) Find that constant rate if:

(a) The water level is rising at a rate of  when the height of the water is 40 inches.

(b) The volume of water is decreasing at a rate of .

30. (Water) Water is pumped into a tank at the rate of 75 cubic feet per min-
ute. The tank consists of a cylinder of radius 2 feet, centered at the top of

a hemisphere of radius 5 feet. (Volume of sphere: ). How fast is the

water level rising when the water is:
      (a) 3 feet deep?            (b) 7 feet deep?             (c) 5 feet deep?

31. (Swimming Pool) A rectangular swimming pool 20 feet
long and 10 feet wide is 6 feet deep at one end and 2 feet
deep at the other. Water is pumped into the empty pool at

the rate of . At what rate is the water level rising

when it is:
      (a) 2 feet deep at the deep end?             (b) 5 feet deep at the deep end?

25
km
hr
-------

35
km
hr
-------

300 
ft

min
---------

250 
ft

min
---------

x3 3y– 2+ 0=

3
 in

3

sec
--------

V
1
3
---r2h=

6
 in
sec
-------

1
 in

3

sec
--------

2 ft
5 ft

4
3
---r3

6 

2 

20

500
ft

3

min
---------
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CHAPTER SUMMARY

DERIVATIVE AT A POINT:

GEOMETRICAL

 INTERPRETATION:

The derivative of a function   at c is the number:

The slope of the tangent line to the graph of the function f at
the point .

DERIVATIVE FUNCTION:

ALTERNATE NOTATION:

The derivative of a function   is the function:

THEOREM: If a function is differentiable at  c, then it is continuous at c.

DERIVATIVE FORMULAS: The derivative of any constant function is 0. 

For any real number r:  . 

For any real number r and any differentiable function f:

                          

If f and g are differentiable then:
    

 

DERIVATIVES OF TRIGONO-
METRIC FUNCTIONS:

THE CHAIN RULE: If f is differentiable at x and g is differentiable at , then
the composite function  is differentiable at x, and:

y f x =

f  c  f c h+  f c –
h

----------------------------------
h 0
lim=

dy
dx
------

x c=

f c x+  f c –
x

--------------------------------------
x 0
lim=  or:

c f c  

y f x =

f  x  f x h+  f x –
h

----------------------------------
h 0
lim=

dy
dx
------ y

x
------

x 0
lim=or:

xr  rxr 1–=

rf x   rf  x =

f x  g x   f  x  g x =

f x g x   f x g x  f  x g x +=

f x 
g x 
----------  g x f  x  f x g x –

g x  2
---------------------------------------------------=

d
dx
------ xsin  xcos=

d
dx
------ xcos  xsin–=

d
dx
------ xtan  sec

2
x=

d
dx
------ xcot  csc

2
x–=

d
dx
------ xcsc  x xcotcsc–=

d
dx
------ xsec  xsec xtan=

f x 
gf

gf  x  g f x  f  x =
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GENERALIZED POWER RULE: If f is differentiable at x then so is the function , and:

PINCHING THEOREM: Let f, g, and h be such that
within an interval about c:

If: 

then 

IMPLICIT DIFFERENTIATION: AN ILLUSTRATION: 
Differentiating both sides of the equation

with respect to x, we have:

RELATED RATES

PROCEDURE:
Step 1. See the problem: Draw a diagram which includes

variables representing the quantities that vary. Spec-
ify the given rate(s) of change, and the rate of
change you are looking for.

Step 2. Find an equation involving the variables in Step 1.

Step 3. Differentiate both sides of the equation with respect
to time t.

Step 4. Calculate the desired rate of change at the specified
instance of time.

f x  r

f x  r  r f x  r 1– f  x =

f
g

h

c

L

f x  h x  g x 
f x 

x c
lim g x 

x c
lim L= =

h x 
x c
lim L=

2x 3y+ x2y3=

2 3y+ x2 3y2y  y32x+=
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CHAPTER 4
THE MEAN VALUE THEOREM
AND APPLICATIONS

We begin by introducing a main character of this section, one that
plays an essential role in the development of the calculus:

A (partial) proof of the above result is offered at the end of the section.
For now, we suggest that Rolle’s Theorem is geometrically “believable.”
It is saying that the graph of any “nice” function [continuous on 

and differentiable on ] whose graph passes through the points

 and  must encounter at least one horizontal tangent line
along the way (see Figure 4.1).

Figure 4.1

As a consequence of Rolle’s Theorem, we have:

Before turning to a proof of the above theorem, lets acknowledge
what it is saying: 

If f satisfies the conditions of the theorem, then there exists at
least one number  such that the slope of the tangent line
at the point  is parallel to the slope of the line passing

through the points  and  [see Figure 4.2].

§1.  THE MEAN VALUE THEOREM

A slightly weaker version:

If f is differentiable on  
and if  then 
there is at least one number c 
in  for which: 

[Recall that differentia-
bility implies continuity] 

continuity is needed:

differentiability is needed:

a b 
f a  f b  0= =

a b  f  c  0=

. ..
a             b f

. .
a             b

f

THEOREM 4.1

ROLLE’S
THEOREM

Let f be continuous on  and differentiable
on . If , then there is at

least one number  in  for which .

a b 
a b  f a  f b  0= =

c a b  f  c  0=

a b 
a b 

a 0  b 0 

. .
a        c                            b

f

f  c  0=.

Rolle’s Theorem

Rolle’s Theorem is a special
case of this theorem, in that
if  then:

 

for some c in .

Indeed if  (not
necessarily 0), then we still
must have that:

for some c in .

f a  f b  0= =

f  c  f b  f a –
b a–

-------------------------=

0
b a–
------------ 0= =

a b 

f a  f b =

f  c  f b  f a –
b a–

-------------------------=

0
b a–
------------ 0= =

a b 

THEOREM 4.2

MEAN VALUE
 THEOREM

If f is continuous on  and differentiable
on , then there is at least one number 
in  for which:

a b 
a b  c

a b 

f  c  f b  f a –
b a–

-------------------------=

a c b 
c f c  

a f a   b f b  
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Figure 4.2

PROOF: Let  denote the linear function whose graph is the
line passing through the points , . 

Consider the function . Since L is differ-
entiable everywhere, and since f is continuous on  and
differentiable on , H is again continuous on  and
differentiable on . Moreover, since  and

, . Applying Rolle’s Theo-
rem to the function H, we choose  for which

. Since :

                                                                                                                                           

Noting that  is the slope of the line L (why?), we have:

Figure 4.2 displays the geometrical interpretation of the Mean Value
Theorem. Here is an analytical interpretation:

If f is continuous on  and differentiable on , then
there is at least one number  where the instantaneous

rate of change of the function at c, [ ], equals the average rate

of change of the function over the interval : .

..
 a        c       b

fa f a  

b f b  

slope: f  c 

slope: 
f b  f a –

b a–
-------------------------

equal

The Mean Value Theorem                  
L

L x 
a f a   b f b  

H x  f x  L x –=
a b 

a b  a b 
a b  f a  L a =

f b  L b = H a  H b  0= =
c a b 

H  c  0= H x  f x  L x –=

H c  f  c = L c – 0 f  c  L c = =

L c 

f  c  f b  f a –
b a–

-------------------------=

In particular: On any trip,
there will be at least one
instant of time at which
your instantaneous veloc-
ity matches the average
velocity of the trip.

a b  a b 
c a b 

f  c 

a b  f b  f a –
b a–

-------------------------

Answers: (a) .

                (b) 

1 0 1 –

1 19
3

-------------------

CHECK YOUR UNDERSTANDING 4.1

(a) Rolle’s Theorem assures us that the graph of the function
 has at least one horizontal tangent line in the interval

 (how so?). Find all  such that .

(b) The Mean Value Theorem assures us that in any given interval
 there will exist at least one  such that

. Find all such c for the function 

within the interval .

f x  x4 2x2–=

2– 2  c 2– 2  f  c  0=

a b  c a b 

f  c  f b  f a –
b a–

-------------------------= f x  x3 x2–=

2– 3 
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The Mean Value Theorem contains two conditions: 
IF (1) f  is continuous on  and 

(2) f is differentiable on 

THEN:  for some .

 There are, however, functions which are neither continuous on 
nor differentiable on  for which the conclusion of the Mean Value
Theorem still holds. Consider the following CYU:

 

Geometrically speaking, a function is increasing where its graph is
climbing, and it is decreasing where its graph is falling. To be more
precise:

Since the derivative at a point on the graph of a function corresponds
to the slope of the tangent line at that point, it should come as no sur-
prise to find that:

a b 
a b 

f  c  f b  f a –
b a–

-------------------------= a c b 

a b 
a b 

Answer: See page A-17.

CHECK YOUR UNDERSTANDING 4.2

(a) Show that the function  is not continuous

on  and is not differentiable on .

(b) Find a c in the interval  for which .

SOME PARTICULARLY IMPORTANT CONSEQUENCES 
OF THE MEAN VALUE THEOREM

DEFINITION 4.1
  INCREASING AND
   DECREASING
     FUNCTIONS

A function f is:
(a) Increasing on an interval I if for every

,  in I: . 

(b) Decreasing on an interval I if for every
,  in I: . 

THEOREM 4.3 Let f be differentiable on the open interval
 [or  or ].

(a) If  for all , then f is increas-
ing on I.

(b) If  for all , then f is decreas-
ing on I.

(c) If  for all , then f is con-
stant on I.

f x  x if x 1
1– if x 1=




=

1– 1  1– 1 

1– 1  f  c  f 1  f 1– –
1 1– –

----------------------------=

x1 x2 x1 x2 f x1  f x2 

x1 x2 x1 x2 f x1  f x2 

I a b = a   – b 

f  x  0 x I

f  x  0 x I

f  x  0= x I



124     Chapter 4    The Mean Value Theorem and Applications
PROOF: The Mean Value Theorem assures us that for any
, there exists a number  such that:

 

Noting that the denominator  is positive, we can conclude that:

   [For (a)]: 

   [For (b)]: 

   [For (c)]: 

The following result may also be anticipated (see margin): 

PROOF: (a) Let . Letting the posi-

tive number  play the role of  in the definition of the limit (see
margin), we can find  such that:

 

In particular,  must be positive for any ,
while  must be negative for any .

Now it’s your turn: 

a x1 x2 b   c x1 x2 

f  c 
f x2  f x1 –

x2 x1–
------------------------------=

x2 x1–

f  c  0 f x2  f x1 – 0

f  c  0 f x2  f x1 – 0

f  c  0= f x2  f x1 =

Answer: See age A-18.

CHECK YOUR UNDERSTANDING 4.3

Prove that if  for every x in an open interval I, then f
and g differ by a constant on that interval.
Suggestion: Consider the function 

f  x  g x =

h x  f x  g x –=

If the tangent line has a
positive slope at ,
then near that point the
graph is climbing.
    [Similarly for (b)]       

.
c

f

f  c  0

c f c  

THEOREM 4.4 Let f be differentiable at c.
(a) If , then there exists  such

that  for all ,
and  for all .

(b) If , then there exists  such
that  for all 
and  for all .

f  c  0  0
f x  f c  x c c + 

f x  f c  x c – c 

f  c  0  0
f x  f c  x c c + 

f x  f c  x c – c 

:

Given  there exist 
such that:

f x 
x c
lim L=

 0  0

0 x c–   f x  L– 

f  c  f c h+  f c –
h

----------------------------------
h 0
lim  0=

f  c  
 0

0 h  f c h+  f c –
h

---------------------------------- f  c – f  c 

f  c  f c h+  f c –
h

---------------------------------- f  c – f  c  –

0
f c h+  f c –

h
---------------------------------- 2f  c  

Answer: See page A-18.

CHECK YOUR UNDERSTANDING 4.4

Prove Theorem 4.4(b).

f c h+  f c – 0 h  
f c h+  f c –  h 0 –
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Another totally believable result (see margin): 

PROOF: Suppose that  has a local maximum at c. 

Can  be positive? No, for if it were positive then there would be
x’s immediately to the right of c with function values greater than

 [Theorem 4.4(a)].
Can  be negative? No, for if it were negative then there would
be x’s immediately to the left of c with function values greater than

 [Theorem 4.4(b)]. 

Since  exists and cannot be positive or negative, it must be 0.

It is important that you do not read into Theorem 4.5 more than that
which it is saying. In particular:

• There can be a zero derivative at c without either a local maximum 
or local minimum occurring at that point [see Figure 4.3(a)].

• A maximum or minimum can occur at c without the derivative 
assuming a value of zero at c [see Figure 4.3(b)]

Figure 4.3
To summarize: If c is an interior point in the domain of a function f at

which a local maximum or minimum occurs, then either  or
 does not exist. The points in the domain of f where the derivative

is zero or does not exist are called critical points. Local maxima and
minima occur among those points.

More precisely
A local maximum occurs at
c if there exist  such
that  for every
point  that
lie in the domain of f.

 0
f c  f x 
x c – c + 

local maximum

local minimum

DEFINITION 4.2
 LOCAL EXTREMES

A function f has a local (or relative) maxi-
mum at a point c in its domain if 
for all x in its domain that are sufficiently
close to c.

A function f has a local (or relative) mini-
mum at c if  for all x sufficiently
close to c.

THEOREM 4.5 Let f be differentiable in some open interval
containing c. If f has a local maximum or a
local minimum at c, then .

f c  f x 

f c  f x 

f  c  0=

f

f  c 

f c 
f  c 

f c 

Answer: See page A-18.

CHECK YOUR UNDERSTANDING 4.5

Establish the “minimum part” of Theorem 4.5.

f  c 

The end-point situation
is discussed in the next
section. 

f x  x3=

since f  x  3x2,=

f  0  0, but...=

f x  x=

f  has a local 
minimum at 0, but...

(a)                                                    (b)

f  c  0=
f  c 
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Intuitively speaking, if a function f is continuous on the closed inter-

val , then you can sketch its graph from  to 
without lifting the writing utensil. Continuing along the path of intu-
ition, one can then anticipate that the graph of f must certainly cross the
horizontal line  for every r lying between  and  (see
margin). Intuition is right on target:

Both the Intermediate Value Theorem and Rolle’s Theorem come into
play in the solution of the following Example.

SOLUTION: We show that the graph of the function
 has one and only one x-intercept; which is

to say, that  for one and only one value of x:

f has at least one x-intercept: 
Since f is continuous and since  and , the Interme-
diate Value theorem assures us that  for some . 

                                   

f cannot have more that one x-intercept: 
We show that the assumption that there are two or more x-intercepts
leads to a contradiction (see margin):

Assume that for some : . 

Rolle’s Theorem tells us that there exists some 
for which .

But  for
all x — a contradiction. 

SOME ADDITIONAL POINTS OF INTEREST

A proof of this believable
theorem lies outside the
scope of this text.

r

a                    b

f b 

f a  .
..

THEOREM 4.6
INTERMEDIATE
VALUE THEOREM

If f is continuous on the closed interval
 and if r is a number lying between

 and , then there exists at least
one c between a and b such that .

a b  a f a   b f b  

f x  r= f a  f b 

a b 
f a  f b 

f c  r=

EXAMPLE 4.1 Show that the equation 
has exactly one solution.

2x5 x3 7x 2–+ + 0=

f x  2x5 x3 7x 2–+ +=
f x  0=

f 0  0 f 1  0
f r  0= r 0 1 

One can prove that a proposition
P is True by demonstrating that
the assumption that P is False
leads to a false conclusion
(something like ). 

For: 
Logic dictates that from Truth,
only Truth can follow. So, if the
assumption that P is False leads
to a false conclusion, then the
assumption that P is false must
itself be false. In other words:

 P must be True.

Answer: See page A-18.

1 2=

CHECK YOUR UNDERSTANDING 4.6

Show that the equation  can have at most two dis-
tinct solutions.

a b f a  f b  0= =

c a b 
f  c  0=

f  x  2x5 x3 7x 2–+ +  10x4 3x2 7 7+ += =

2x4 x– 10+ 0=
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We employ the Intermediate Value Theorem to establish the follow-
ing Fixed-Point result:

SOLUTION: Case 1. If  or , then we are done. 

Case 2. If  and  then, since :
 and . It follows that the continuous function

 is positive at 0 and negative at 1:

  

Applying the Intermediate Value Theorem to the function g we con-
clude that for some  ; which is to say:

 

The following important result tells us that a continuous function on a
closed interval will attain a maximum and a minimum value: 

Alright, we’re cheating a bit by not proving the above result, but its
all for a good cause, for we can now establish Rolle’s Theorem:

PROOF: If f is the constant zero function on , then any

 will do the trick.

The notation
 

indicates that for every
: .

f: 0 1  0 1 

x 0 1  f x  0 1 

EXAMPLE 4.2 Let  be continuous (see mar-
gin). Show that there is at least one 
such that .

f: 0 1  0 1 
c 0 1 

f c  c=

f 0  0= f 1  1=

f 0  0 f 1  1 f: 0 1  0 1 
f 0  0 f 1  1
g x  f x  x–=

g 0  f 0 = 0 0  and  g 1 – f 1  1 0–=

Answer: See page A-18.

CHECK YOUR UNDERSTANDING 4.7

Let f and g be continuous on  and such that:

.

Show that there exists some  for which .

PROOF OF THE MEAN VALUE THEOREM

c 0 1  g c  0=

f c  c– 0=

f c  c=

a b 
f a  g a  g b  f b   

c a b  f c  g c =

A proof of this result
lies outside the scope
of this text.

THEOREM 4.7
MAXIMUM-
MINIMUM
THEOREM

If f is continuous on the closed interval ,
then there exists some  such that

 for every , and some
number    such that  for
every .

If f is continuous on  and differentiable on  and if

, then  for some .

a b 
c a b 

f c  f x  x a b 
d a b  f d  f x 

x a b 

a b  a b 
f a  f b  0= = f  c  0= c a b 

a b 
c a b 
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If f is not the constant zero function, then it must take on some
positive or negative values in . Assume the former (you
are asked to deal with the other case in CYU 4.8). 

Theorem 4.7 assures us that f assumes its maximum value
at some . Indeed, c must be contained in ,
for f is assumed to take on positive values in , and

.

Can  be positive? No, for Theorem 4.4(a) would
imply that  for some . 

Can  be negative? No, for Theorem 4.4(b) would
imply that    for some .

Since  can not be positive or negative: .    

a b 

c a b  a b 
a b 

f a  f b  0= =

f  c 
f x  f c  x c b 

f  c 
f x  f c  x a c 

Answer: See page A-18.

CHECK YOUR UNDERSTANDING 4.8

Modify the above proof to accommodate the assumption that
 for some .

f  c  f  c  0=

f x  0 x a b 
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Exercises 1-9. (Theory) Verify that the function satisfies the conditions of the mean-value theo-

rem on the indicated interval  and then find a c  for which .

Exercises 10-30. (Consequences of the Intermediate and Mean Value Theorems) 

10. (a) Show that if f is differentiable on  and if its derivative is never 0, then .

(b) Show that if  on  then .

11. Show that the function  does not have a zero derivative in the interval ,

even though . Explain how this does not violate Rolle’s theorem.

12. Show that the function  does not have a derivative equal to  in the inter-

val . Explain how this does not violate the Mean-Value Theorem.

13. (a) Sketch the graph of  .

(b) Does the function satisfy the conditions of the Mean-Value Theorem over the interval [0,3]? 

(c) Does there exist a c for which  in the interval [0,3]? 

14. (a) Sketch the graph of  .

(b) Does the function satisfy the conditions of the Mean-Value Theorem over the interval [0,2]? 

(c) Does there exist a c for which  in the interval [0,3]? 

15. Let f be differentiable on . Prove that if  has two distinct solutions in , 
then  has at least one solution in .

16. Show that the equation  has exactly one real root.

17. Show that the equation  has exactly one real root.

18. Show that the equation  cannot have more that two distinct real roots.

EXERCISES

1. ; 2. ; 3. ; 

4. ; 5. ; 6. ; 

7. ; 8. ; 9. ; 

a b  f  c  f b  f a –
b a–

-------------------------=

f x  x2= 1 1–  f x  x2= 1 0–  f x  x2= 3 2– 

f x  x3= 1 1–  f x  x3= 1 0–  f x  x3= 3 2– 

f x  x 5+= 1– 4  f x  3 1 x
2

–+= 0 1  f x  x
x 1+
------------= 0 1 

a b  f a  f b 

f  x  0 a b  f a  f b  0–

f x  1

x
2

----- 1
4
---–= 2– 2 

f 2  f 2–  0= =

f x  1
x
---=

f 1  f 1– –
1– 1–

----------------------------

1– 1 

f x 
2x 2  if  x 2+

               3x       if   x 2



=

f  c  f b  f a –
b a–

-------------------------=

f x 
2x   if  x 1

               x2  if   x 1



=

f  c  f b  f a –
b a–

-------------------------=

a b  f x  0= a b 
f  x  0= a b 

6x5 13x 1+ + 0=

x3 6x2 15x 23–+ + 0=

6x4 7x– 1+ 0=
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19. Show that the equation  has exactly one real root.

20. (a) Show that the equation  can have at most two real roots.

(b) Show that the equation  has exactly two real roots.

21. Show that the equation  cannot have more that two distinct real roots.

22. Let f be differentiable on . Prove that if  has two distinct solutions in , 
then  has at least one solution in . 

23. Show that  for any real numbers a and b.

24. Let f and g be differentiable on  with  and  for . 
Show that .

25. Two runners start the 100-yard dash and finish in a tie. Prove that at some time during the
race they are running at the same speed.

26. Suppose that  and  for . What is the largest possible value of ? 

27. Suppose that  and  for . What is the smallest possible value of ? 

28. A fixed point for a function f is a number c for which . 

(a) Let f be differentiable on . Show that if f has two distinct fixed-points in , then
 must equal 1 for some .

If  for some  must f have at least one fixed-point in ?

(a) Let  be continuous. Show that f has a fixed point .

29. Suppose that f and g are differentiable on  and that the graphs of the two functions
intersect at  and at . Show that there is some point between a and b where the
tangents to the graphs of f and g are parallel. 

2x 1 xsin+=

x2 x x xcos+sin=

x2 x x xcos+sin=

x4 50x2 300–+ 0=

a b  f x  0= a b 
f  x  0= a b 

b asin–sin b a–

a b  f a  g a = f  x  g x  a x b 
f b  g b 

f 0  6= f  x  1 0 x 2  f 2 

f 0  6= f  x  1 0 x 2  f 2 

f c  c=

a b  a b 
f  x  x a b 

f  x  1= x a b  a b 

f: 0 1  0 1  0 c 1 

a b 
x a= x b=
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As you will see, the sign of f, , and  (labeled , 

and )1 will come into play when sketching the graph of a func-
tion f. You already know that the graph lives above the x-axis where

 is positive, and below the x-axis where it is negative. You also
know that the graph is increasing where  is positive and decreasing
where it is negative. To see what additional information can be inferred
from the sign of  we call your attention to Figure 4.4

Figure 4.4

While  and  coincide (both functions are positive to

the right of 0, and negative to its left), and while  and 
also coincide (both are increasing functions), the graph of f is concave up
(bending up, as you move from left to right) while that of g is concave
down (bending down). 

Note that the slope of the tangent line increases as you move along the
concave up curve of Figure 4.4(a), while it decreases along the concave
down curve of Figure 4.4(b). But to say that the slope of the tangent line

is increasing (or decreasing) is to say that  is increasing (or decreas-

ing); which is to say that  is positive (or negative). 

In the way of a definition: 

Summarizing:

There is no question that
graphing calculators can
graph most functions better
and faster than any of us, but
this does not diminish the
importance of this section,
for:

Learning how to graph a
function by hand rein-
forces an understanding
of important concepts.

§2.  GRAPHING FUNCTIONS 

1. We suggest you review the discussion on inequalities appearing in Section 
1.3; specifically: pages 20-23 and pages 25-26.

f  f  SIGN f SIGN f 

SIGN f 

f x 
f  x 

f  x 

(a)                                            (b)

f

g

slopes of 
tangent lines
increase

slopes of
tangent lines
decrease

SIGN f SIGN g

SIGN f  SIGN g

In this discussion we
are assuming the exist-
ence of the second
derivative.

If the second derivative of a function f exists at each point of an
interval I, then 

f is concave up on I if   for every .

f is concave down on I if   for every .
A point on the graph of a differentiable function about which
concavity changes is called a point of inflection.

f  x 
f  x 

f  x  0 x I
f  x  0 x I
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We begin by noting that the graphs of the functions  (for n
a positive integer) fall within two categories: 

It is important to note that, in general:  

For example, as , the graph of 
resembles that of . This makes sense since as x gets larger
and larger in magnitude, the term  becomes more and more dominant.

+: graph lies above the x-axis   -: graph lies below the x-axis
    (and consequently where the graph crosses the x-axis)

+: graph is increasing            -: graph is decreasing
   (and consequently where maximums and minimums occur)

+: graph is concave up            -: graph is concave down
    (and consequently where inflection points occur)

SIGN f 

SIGN f 

SIGN f 

GRAPHING POLYNOMIAL FUNCTIONS

n even n odd

The graph of every  is
similar to those of the functions

, and  (below).
Each such graph passes through
the origin, and the points 
and .
The larger the exponent, the flat-
ter is the graph over  and
the steeper outside of .

The graph of every  is
similar to those of the functions

, and  (below).
Each such graph passes through
the origin, and the points 
and .
The larger the exponent, the flat-
ter is the graph over  and
the steeper outside of 

f x  x
n

=

y x
even

=

y x
2

= y x
4

=

1– 1( , )
1 1( , )

1 1– 
1 1– 

y x
odd

=

y x
3

= y x
5

=

1– 1–( , )
1 1( , )

1 1– 
1 1– 

..
.

x

x

y

.
.

.

y

x

The graph of a polyno-
mial function and that of
its leading term need not
get arbitrarily close to
each other as x tends to

, but they will have
similar shapes.


Far away from the origin the graph of the polynomial function:

resembles, in shape, that of its leading term 

p x  anx
n

an 1– x
n 1–  a1x a0+ + + +=

g x  anx
n

=

x  p x  6x4 3x3– 6x– 1+=
g x  6x4=

6x4
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Here is another way to arrive at the same observation: 

We now describe a procedure that can be used to graph polynomial
functions when expressed in factored form. For our part: 

SOLUTION: 

Step 1. Factor: 

Step 2. y-intercept:  [Y of Figure 4.5(a)].

       x-intercepts: : at , 5,
and   [X’s of Figure 4.5(a)].

: From the SIGN information at the top of Figure
4.5(a), we see that as you move from left to right, the
graph crosses from below the x-axis to above the x-axis at

; from above to below at 0; and from below to above at
5 [X’s of Figure 4.5(a)].

Step 3. As : The graph of f resembles that of its leading

term  [L’s of Figure 4.5(a)].

Step 4. Anticipated Graph: With the above portion of the graph
at hand, we can anticipate the general shape of the graph
throughout its domain [Figure 4.5(b)].

Answers:  (a) 

                 (b) 

g x  x3=

g x  2x6=

CHECK YOUR UNDERSTANDING 4.9

Determine a function , whose graph resembles that of

the given polynomial function f as . 

     (a)           (b) 

p x  6x4 3x3– 6x– 1+ 6x4 1 3x3

6x4
--------– 6x

6x4
--------– 1

6x4
--------+ 

 = =

6x4 1 1
2x
------– 1

x3
-----– 1

6x4
--------+ 

 =

tend to 0 as x 

g x  ax
n

=

x 

f x  x
3

x–= f x  2x3 x+  x2 5x– 1+  x 1– =

The first three steps of
the inequality proce-
dure of Example 1.12,
page 21, is used to
determine .SIGN f

WHEN GRAPHING A FUNCTION, WE WILL LET THE
FUNCTION ITSELF DIRECT US, AS BEST IT CAN, TO ITS
GRAPH; AND WILL THEN CALL ON THE CALCULUS TO
CHALLENGE AND REFINE OUR INITIAL EFFORT. 

EXAMPLE 4.3 Sketch the graph of :

f x  x3 2x2– 15x–=

f x  x x 5–  x 3+ =

f 0  0=

f x  x x 5–  x 3+  0= = x 0=
3–

SIGN f

3–

x 

y x
3

=
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Figure 4.5
We now turn to the calculus to challenge the anticipated graph of Fig-
ure 4.5(b), and to determine precisely where maxima, minima and
inflection points occur.

Step 5 (a)  (Increasing/Decreasing; Maxima/Minima). 

Figure 4.5(b) suggests that the function increases to a max-
imum value somewhere between  and 0, and then
decreases to a minimum value somewhere between 0 and
5, and then increases forever more. And so it does:

Step 5 (b)  (Concavity and Inflection Points). Figure 4.5(b)
suggests that the graph is concave down from minus infin-
ity to some point between its maximum and minimum
points, and that it is concave up from that point to infinity.
And so it is:

(a) (b)

X

Y.. .

-3             0                      5 

+                                 +_                            _

0

L

L

y x3=

SIGN x x 5–  x 3+ :

3– 5

.   .     .  c              c                      c

-3       0                         5

f x  x3 2x2– 15x–=

Anticipated Graph:

SIGN  f 

3–

f x  x3 2x2– 15x–=

f  x  3x2 4x– 15– 3x 5+  x 3– = =

3

increasing decreasing           increasing
+                                             +_

maximum                minimum

    

 

f 3  36–=

5
3
---–

Values:   f 5
3
---– 

  400
27

---------=

SIGN  f :

(as you can verify)

..c c

SIGN  f 
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Figure 4.6 reveals the fruit of our labor .

Figure 4.6

 

As you already know, a local maximum or local minimum can occur

at an interior point c in the domain of a function f only if  or

if f fails to be differentiable at c. You also know that  reveals
the specific nature of the function at those interior critical points. For

example,  in Figure 4.7(a) reveals the fact that the function f

f  x  3x2 4x– 15–=

f  x  6x 4   f   x – 0 at x 2
3
--- = = =

SIGN  f :
_ +

concave down concave up

2
3
---

Inflection point: 2
3
--- f 2

3
---   2

3
--- 286

27
---------– =

as you can verify

.c

Yes, but how much does
one learn?

5

 

3
...

2
3
--- 286

27
---------– 

 .
400
27

---------

5
3
---–

3–

36– .

.
x

y

Answer: See page A-19.

Note: Even though you may not be able to factor the cubic
polynomial in , you can still get a
good sense of its graph by simply lifting the graph of the func-
tion  in Figure 4.6  9 units. 

CHECK YOUR UNDERSTANDING 4.10

Sketch the graph of the given function:

        (a)                (b) 

ENDPOINT EXTREMES

g x  x3 2x2– 15x– 9+=

f x  x3 2x2– 15x–=

f x  3x5 5x3–= g x  3x5 5x3– 3+=

f  c  0=

SIGN f 

SIGN f 
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has a (local) maximum at the interior point a and a (local) minimum at
the interior point c.

Figure 4.7

Now consider Figure 4.7(b) where the domain of f has been restricted
to the closed interval with left endpoint L and right endpoint R. Note
that since f is increasing to the right of L (why?), L is an endpoint min-
imum. Similarly, since f is increasing to the left of R, R is an endpoint
maximum. Note that the maximum and minimum values of f over the
closed interval  of Figure 4.7(b) must occur at critical points or
at endpoints (see Theorem, 4.7, page 128).
 

So far,  was used to find where the function f assumes maxi-
mum or minimum values — a method called the first derivative test.
Here is another approach for your consideration:

If a differentiable function f achieves a maximum value at c,
then the slopes of the tangent lines: , decrease as you
move from the left to the right of c [see Figure 4.8(a)]. Conse-
quently the derivative of  at c, which is to say , must
be negative (providing it exists). If the function f achieves a
minimum value at c, then the slopes of the tangent lines
increase as you move from the left to the right of c [see Figure
4.8(b)]. Consequently,  is increasing about the point c,

and  must be positive at c (providing it exists).

.  .   .+                                     +_            _

a           b               c
SIGN f 

maximum                   minimum
neither max nor min

(a)                                                           (b)

+                                     +_            _

a           b               c
SIGN f 

.   . .
                                             R
. .endpoint min endpoint max

L

L R 

Answers: (a) Endpoint max at
0 and 9; local min at 3 and 8;
local max at 5.
(b) Endpoint min at 10 and
endpoint max at 13; local max
at 11 and local min at 12.

CHECK YOUR UNDERSTANDING 4.11

Indicate, from the given , where 
 f assumes a local or endpoint maximum and where it assumes a local
or endpoint minimum value.

SECOND DERIVATIVE TEST

SIGN f 

. .  .  .. . 
0   1       3         5           8    9

_    _                   _+                     +(a) .
10        11                  12

(b)

SIGN f  SIGN f 
L       R                       L                                    R

. . 
13
  .+                    +_

SIGN f 

f  x 

f  x  f  c 

f  x 
f  x 
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Figure 4.8
Turning the above observations around, we have:

SOLUTION: First:

Then:

slope decreases

   
 
                                                              

 

slo
pe

 in
cr

ea
se

s

f

f

c                                                            c
f  x  0f  x  0

(a)                                           (b)

Exercise 54 addresses the
-inconclusive issue. f  c  0=

THEOREM 4.8
SECOND

DERIVATIVE
TEST

If  and , then f has a   local
maximum at c.

If  and , then f has a local
minimum at c.
(The second derivative test is inconclusive if

, or if it does not exist.)

EXAMPLE 4.4 Use the second derivative test to locate where
the function, , assumes max-
imum or minimum values.

Since , the second derivative test is inconclusive.
                              [While the first derivative test is not — see CYU 4.10(a)]

Since  is negative, a local maximum occurs at . 

Since  is  positive, a local minimum occurs at 1.

f  c  0= f  c  0

f  c  0= f  c  0

f  c  0=

f x  3x5 5x3–=

f  x  3x5 5x3–  0= =

15x4 15x2– 0=

15x2 x2 1–  0=

15x2 x 1+  x 1–  0=

x 0 x 1 x– 1= = =

f  x  15x4 15x2–  60x3 30x–= =

f  0  0=

f  1–  30–= 1–

f  1  30=

Answer: max: 0; min: 2–

CHECK YOUR UNDERSTANDING 4.12

Use both the first and second derivative tests to determine where the

function  assumes (local) maximum or minimum val-

ues. Any preference?

f x  x2

x 1+
------------=
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In many ways, the procedure for sketching the graph of a rational func-
tion is quite similar to that for polynomial functions. To begin with:

Since the leading term of a polynomial function dominates its
behavior far away from the origin:

For example, as  the graphs of: 

  and  

have similar shapes.

For example, as  the graph of  

approaches the horizontal line , and we say that 

is a horizontal asymptote for the graph of f. 

The graph of  approaches that of the function

, which approaches 0 as . Consequently, the x-

axis ( ) is a horizontal asymptote for the graph of h.

For example, as , the shape of the graph of   will

resemble that of a line of slope .  To be more precise, since: 

 

the graph of f will get arbitrarily close to the line , and that
line is the oblique asymptote for the graph of f.

GRAPHING RATIONAL FUNCTIONS

As  , the graph of the rational function:

  

will resemble, in shape, that of:   

A SPECIAL CASE: When the degree of the numerator of
a rational function f  is less than or equal to the degree of
the denominator, the graph will approach a horizontal
line, called a horizontal asymptote for the graph of  f.

x 

f x 
anx

n
an 1– x

n 1–  a1x a0+ + + +

bmxm bm 1– xm 1–  b0+ + +
-------------------------------------------------------------------------------------------=

g x 
anx

n

bmxm
----------------=

x 

f x  3x5 2x3– 3x–
2x2 x 5–+

-----------------------------------= g x  3x5

2x2
--------

3
2
---x3= =

x 2  2x2+

2x2 4x+

4x–

4x– 8–

8

2x 4–

ANOTHER SPECIAL CASE: When the degree of the
numerator of a rational function f  is one more than that
of the denominator, the graph will approach an oblique
line, called an oblique asymptote for the graph of  f.

x  f x  2x3 3x2 5–+
5x3 x+

--------------------------------=

y 2x3

5x3
-------- 2

5
---= = y 2

5
---=

h x  2x3 3x2 5–+
5x4 x+

--------------------------------=

y 2x3

5x4
-------- 2

5x
------= = x 

y 0=

x  f x  2x2

x 2+
------------=

2x2

x
-------- 2=

f x  2x2

x 2+
------------ 2x 4–

8
x 2+
------------   (see margin)+= =

y 2x 4–=
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The main difference between graphing polynomial functions and
rational functions is that vertical asymptotes might come into play
when graphing a rational function; where: 

Consider, for example, the function:

As x gets closer and closer to 2, the numerator  approaches 3
while its denominator  shrinks to zero. It follows that, as

x approaches 2, the quotient  must tend to plus or minus

infinity. From the sign information:

we conclude that: 
As x approaches 2 from the left, the values of ,
being negative, tend to  (see margin).

As x approaches 2 from the right, the values of ,
being positive, tend to  (see margin).

Your turn:

Answers: (a) Horizon-

tal asymptote: .

(b) Horizontal asymp-
tote: .
(c) Oblique asymptote:

.
(d) Resembles .

y 1
2
---=

y 0=

y 2x 1–=

y 2x2=

CHECK YOUR UNDERSTANDING 4.13

If the graph of the given function has a horizontal or oblique asymptote,
determine the equation of the asymptote. If not, then specify a function
whose graph resembles, in shape, that of the given function as .

(a) (b) 

(c) (d)  

VERTICAL ASYMPTOTES

x 

f x  3x4 2x+
6x4 5–

--------------------= f x  3x4 2x+
6x5 5–

--------------------=

f x  4x3 1–
2x2 x+
-----------------= f x  6x6 5–

3x4 2x+
--------------------=

The graph of a rational

function  will

approach a vertical asymp-
tote at c where 

and . A vertical
asymptote need not occur at
a point at which both the
numerator and denominator
of the rational expression
are zero. (see Exercise 53).

.

f x  p x 
q x 
----------=

q c  0=

p c  0

2

A vertical asymptote for the graph of a function f is a vertical
line about which the graph tends to either plus or minus infinity. 

f x  2x 1–
x 2–  x 1+ 

---------------------------------=

2x 1–
x 2–  x 1+ 

2x 1–
x 2–  x 1+ 

---------------------------------

1– 1
2
--- 2

_                                                       _+                                          +

SIGN  f x  2x 1–
x 2–  x 1+ 

---------------------------------=

.c                                 c                 c

f x 
–

f x 


Answer: The graph tends to
 as x approaches 

from the left, and it tends to
 as x approaches 

from the right.

– 1–

+ 1–

CHECK YOUR UNDERSTANDING 4.14

Indicate the nature of the graph of  about the ver-

tical asymptote at . 

f x  2x 1–
x 2–  x 1+ 

---------------------------------=

x 1–=
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Returning to the five step procedure for graphing polynomial func-
tions, we now modify Step 2 to accommodate vertical asymptotes.

SOLUTION: 

Step 1. Factor: Already in factored form.

Step 2. y-intercept:  [Figure 4.9(a)].

x-intercepts:  at  [Figure 4.9(a)].

Vertical Asymptotes: The line  [Figure 4.9(a)].

SIGN : From the sign information at the top of Figure
4.9(a), we conclude that the graph goes from below the x-axis
to above the x-axis as you move from left to right across the x-

intercept at . Since the function is positive to the left of

the vertical asymptote at , the graph must tend to 

as x approaches  from the left. Since the function is nega-

tive just to the right of , the graph tends to  as x

approaches  from the right. 

Figure 4.9

EXAMPLE 4.5 Sketch the graph of the function:

(a) (b)

f x  4x 7–
2x 5+
---------------=

y f 0  7
5
---–= =

f x  0= x 7
4
---=

x 5
2
---–=

f x 

x 7
4
---=

x 5
2
---–= +

5
2
---–

x 5
2
---–= –

5
2
---–

 .
5
2
---– 7

4
---

  c                  c

. .
2

7
4
---

5
2
---–

7
5
---–

+                                     +
_

SIGN  
4x 7–
2x 5+
---------------:

 

2

7
4
---

5
2
---–

7
5
---–

y

Anticipated Graph of  

f x  4x 7–
2x 5+
---------------=
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Step 3. As : The graph of  approaches the

horizontal asymptote  [Figure 4.9(a)].

Step 4. Anticipated Graph: With the above portion of the graph at
hand, we can anticipate the general shape of the graph
throughout its domain [Figure 4.9(b)].

Step 5: We now turn to the calculus to challenge the anticipated
graph of Figure 4.9(b). If that graph is “on target,” then the first deriv-
ative has to be positive everywhere, and the second derivative has to

be positive up to  and negative to the right of that point, right?

And that is indeed the case: 

 

SOLUTION: 
Step 1. Factor: The function is already in factored form.

Step 2. y-intercept:  [Figure 4.10(a)].

            x-intercepts: Where :  [Figure 4.10(a)].

Vertical Asymptotes: The line  [Figure 4.10(a)].

SIGN : From the sign information at the top of Figure
4.10(a), we conclude that the graph lies above the x-axis on
both sides of its x-intercept at [Figure 4.13(a)].
Since the function is negative to the left of the vertical
asymptote at , the graph must tend to  as x
approaches  from the left [Figure 4.10(a)]. By the same
token, since the function is positive to the right of , the
graph tends to  as x approaches  from the right.

We tried to get a sense of the
graph of a function prior to
invoking the calculus, for:
Differentiation tends to be
a “vulnerable” activity

EXAMPLE 4.6 Sketch the graph of the function:

x  f x  4x 7–
2x 5+
---------------=

y 4x
2x
------ 2= =

5
2
---–

f  x  4x 7–
2x 5+
--------------- 
   2x 5+  4 4x 7–  2–

2x 5+ 2
------------------------------------------------------------- 34

2x 5+ 2
----------------------= = =

SIGN  f  :
n+             +
5
2
---–

increasing increasing

f  x  34
2x 5+ 2

---------------------- 
  34 2x 5+  2– = =

SIGN  f  :
c

68 2x 5+  3–– 2 136
2x 5+ 3

----------------------–= =

+             _

5
2
---–

concave up        concave down

f x  2x2

x 1+
------------=

y f 0  0
1
--- 0= = =

f x  0= x 0=

x 1–=

f x 

x 0=

x 1–= –
1–

1–
+ 1–



142     Chapter 4    The Mean Value Theorem and Applications
Step 3. As : The graph of  will resemble, in

shape, that of a line of slope 2 ( ) [Figure 4.10(a)].

Step 4. Sketch the anticipated graph: Figure 4.10(b).

Figure 4.10

Step 5: Turning to the calculus:

2x–

2x 2–
x 1   2x2+

2x2 2x+

2x– 2–

2

Additional information can be derived by observing that:

From the above form, we can conclude that the graph will approach  the

oblique asymptote   from above as   (for   will be

positive), and  from below as  (for  will be negative).

x  f x  2x2

x 1+
------------=

2x2

x
-------- 2x=

f x  2x 2
2

x 1+
------------    (see margin)+–=

y 2x 2–= x  2
x 1+
------------

x – 2
x 1+
------------

(a) (b) (c)

 .
1– 0

1–

_ +               +

.

SIGN:  f x  2x2

x 1+
------------:=

c         n  

1–
.

Anticipated Graph of 

f x  2x2

x 1+
------------=  

y

x

Final Graph of 

f x  2x2

x 1+
------------=

1–2–

need the calculus:

8–.

f  x  2x2

x 1+
------------ 
   x 1+ 4x 2x2–

x 1+ 2
------------------------------------- 2x2 4x+

x 1+ 2
-------------------- 2x x 2+ 

x 1+ 2
-----------------------= = = =

SIGN  f  : Conforms with
Figure 4.10(b) 1–

. .c          n          c+                                  +_          _
inc.      dec.    dec.     inc.

(max)                (min)
2– 0

maximum point: 2 8––  minimum point: 0 0 

f 2–  2 2– 2

2– 1+
-----------------=

[Figure 4.10(c)]
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When graphing a radical function, the first order of business is to
determine its domain. Consider the following example. 

SOLUTION: Here is the domain of f: .

Step 1. Factor: .

Step 2. y-intercept:  [Figure 4.11(a)].

            x-intercepts: :  [Figure 4.11(a)].

Vertical Asymptotes: None.
SIGN

Step 3. As : Since the term with largest exponent in

, namely , dominates the nature of the
graph, the shape of the graph will resemble that of a line of
slope  as  [Figure 4.11(a)]. 

Step 4. Sketch the anticipated graph [Figure 4.11(a)]:

f  x  2x2 4x+
x 1+ 2

--------------------  x 1+ 2 4x 4+  2x2 4x+ 2 x 1+ –
x 1+ 4

---------------------------------------------------------------------------------------------= =

x 1+  x 1+  4x 4+  2 2x2 4x+ – 
x 1+ 4

-----------------------------------------------------------------------------------------------=

4x2 8x 4 4x2– 8x–+ +
x 1+ 3

-------------------------------------------------------- 4
x 1+ 3

-------------------= =

pull out the common
factor  x 1+ :

1–

+_ cconcave down concave up

SIGN  f  : Conforms with Figure 4.10(b)

Answer: See page A-21.

CHECK YOUR UNDERSTANDING 4.15

Sketch the graph of the function:

 

GRAPHING RADICAL FUNCTIONS

EXAMPLE 4.7 Sketch the graph of the function:

 

f x  x2

x2 4–
--------------=

f x  2 x x–=

Df 0 =

f x  2x
1
2
---

x– x
1
2
---

2 x
1
2
---

– 
 = =

y f 0  0= =

f x  0= x 0 or x 4= =

f x  x
1
2
---

2 x
1
2
---

– 
  :=

0                  4
.. +                 _

x 
f x  2 x x–= x–

1– x 
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Figure 4.11

Step 5: Turning to the calculus:

         

At this point we know that the maximum point on the anticipated graph
occurs at . Moreover, since the derivative is not defined at the
origin, a vertical tangent line must occur at that point. This added infor-
mation is reflected in Figure 4.11(b).
Our anticipated graph features a curve that is concave down throughout
its domain. This is indeed the case: 

SOLUTION: Domain: .
Step 1. Factor: 

Step 2. y-intercept:  [Figure 4.12(a)].

            x-intercepts: :  [Figure 4.12(a)].

Vertical Asymptotes: None.

SIGN : From the sign information at the top of Figure
4.12(a), we conclude that the graph goes from below the x-
axis to above the x-axis as you move from left to right across

the x-intercept at , and that it is negative on both sides
of the x-intercept at 0 (see margin). [Figure 4.12(a)].

Step 3. As : Far from the origin the graph of

 resembles, in shape, that of its leading

(dominant) term , which tends to  as  and to
 as  [Figure 4.12(a)].

EXAMPLE 4.8 Sketch the graph of the function:

Anticipated Graph:

.
4

(a)

?
.

Graph:

.
1  4

1

(b)

.

SIGN  f  :
1

+                _

0
.inc.         dec.

f  x  2x
1
2
---

x– 
   2

1
2
---x

1
2
---–

 1– 1 x1 2/–
x1 2/

------------------ 1 x–

x
---------------= = = =

x 1=

f  x  x
1
2
---–

1– 
  1

2
---x

3
2
---–

– 1
2x3 2/
-------------–= = = always negative

f x  x5 3/= 5x2 3/–

–  
f x  x5 3/= 5x2 3/– x2 3/ x 5– =

The factor 

is always positive. 

x
2
3
---

x
1
3
---

 
 

2

=

y f 0  0= =

f x  0= x 0 x 5= =

f x 

x 5=

x 
f x  x5 3/= 5x2 3/–

x5 3/ + x 
– x –
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Step 4. Sketch the anticipated graph: Figure 4.12(b).

Figure 4.12
Step 5: Turning to the calculus:

To accommodate the above calculus information, we adjusted the
anticipated graph of Figure 4.11(b) and arrived at the “final graph” in
Figure 4.11(c) (see margin).

(a) (b) (c)

 
SIGN:  f x  x

2
3
---

x 5– :=. .
0                    5

cn_                 _ +

even

5
.

 

.

Anticipated Graph of

f x  x
5
3
---

= 5x
2
3
---

–

5

 
Final Graph of

f x  x
5
3
---

= 5x
2
3
---

–

52

need the calculus:

.
1–

2 4.8– 1 6–– 
.

.

We anticipated that a mini-
mum occurs somewhere
between 0 and 5, and the cal-
culus showed us that it takes
place at 2. Our anticipated
graph in Figure 4.12(b),
however, did not reveal the
fact that a tangent line does
not exist at the origin, nor
that an inflection point
occurs at . And so we
refined our anticipated graph
accordingly [Figure 4.12(c)].
Did we waste our time in
constructing the anticipated
graph in (b)? No, for it gave
us a sense of what to expect
and then used the calculus to
refine our anticipated graph. 

Answer: See page A-22.

1–

CHECK YOUR UNDERSTANDING 4.16

Sketch the graph of the function:

 

f  x  x
5
3
---

5x
2
3
---

– 
 


5
3
---x

2
3
--- 10

3
------x

1
3
---–

–
5
3
---x

1
3
---–

x 2–  5 x 2– 

3x
1
3
---

-------------------= = = =

SIGN  f  : .
0                         2

c           c+                       +_inc.        dec.       inc.

    (max) (min)
Value:  f 2  2

5
3
---

5 2
2
3
---

4.8––=
note that the derivative does
not exist! No tangent line at 0.

f  x  5
3
---x

2
3
--- 10

3
------x

1
3
---–

– 
 


10
9
------x

1
3
---– 10

9
------x

4
3
---–

+= =

10
9
------x

4
3
---–

x 1+  10 x 1+ 

9x
4
3
---

-----------------------= =

SIGN  f  : .
1–            0

c          n+         +_
concave down         up           up

(inflection point)

Value:  f 1–  1– 
5
3
---

5 1– 
2
3
---

– 6–= =

f x  x 2– 1 3/=
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 3

Exercises 1-29. Sketch the graph of the given function. Label the y-intercept (if it exists), x-inter-
cepts, vertical asymptotes, local maximum and minimum points, and inflection points. Identify
any horizontal or oblique asymptote.

Exercise 30-32.  (“Unmanageable” Second Derivative) Sketch the anticipated graph of the
given function. Label the y-intercept (if it exists) and x-intercepts, vertical asymptotes, and local
maximum and minimum points.   

Exercises 33-38 (Absolute Maximum and Minimum) A function f defined on an interval I is
said to have an absolute maximum at  if  for every , and an absolute min-
imum at  if  for every .
Find where the absolute maximum and absolute minimum values of the given function occur in
the specified interval. (Don’t forget to consider the endpoint extremes.)

EXERCISES

1. 2.

3. 4.

5. 6.

7. 8.

9. 10. 11.

12. 13. 14.

15. 16. 17.

18. 19.

(Function has a removable discontinuity)

20.

(Function has a removable discontinuity)

21. 22. 23.

24.
25. 26.

27. 28. 29.

30. 31. 32.

33. , 34. , 

35. , 36. , 

f x  2x2 7x 4+ += f x  4x2 7x– 2–=

f x  x3 2x2+= f x  2x4 x+=

f x  1
3
---x3– 3x2 8x–+= f x  x4 4x3–=

f x  1
4
---x4 x3+= f x  4x4 4x3 x2+ +=

f x  x
2x 1+
---------------= f x  x2

2x 1+
---------------= f x  2x 1+

x
---------------=

f x  x2 x+
x2 1–
--------------= f x  x 1

x2
-----+= f x  x2 1

x2
-----–=

f x  x
x2 1–
--------------= f x  x 1

x
--- 1

x2
-----–+= f x  x2

x2 9–
--------------=

f x  x3

x2 4–
--------------= f x  x3 x–

x3 x2–
----------------= f x  x3

2x2 x+
-----------------=

f x  x2 1–= f x  x2 1+= f x  x x 1–=

f x  x x 1+=
f x  x

1
3
---

x 4+ = f x  x

x2 1–
------------------=

f x  x 6x
1
3
---

–= f x  3 x
5
3
---

x
4
3
---

– 
 = f x  x

2
3
---

x 5
2
---– 

 =

f x  x2 x–
x2 4–
--------------= f x  x2 1–

2x2 x+
-----------------= f x  x 2+

x2 1–
--------------=

c I f c  f x  x I
c I f c  f x  x I

f x  x3 3x2– 3+= 1 1–  f x  x3 3x2– 3+= 1 4 

f x  3x5 20x3– 2+= 3 3–  f x  3x5 20x3– 2+= 2 2– 
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Exercises 39-50. (Construction) Sketch the graph of a function satisfying the given conditions.

39. Has a local maximum at 0, a local minimum at 5, and does not have an absolute maximum
nor an absolute minimum anywhere. (See Exercises 33-38.)

40. Has domain . Has a local maximum at 0, a local minimum at 5. The absolute

minimum of the function occurs at , and the absolute maximum occurs at 10. (See
Exercises 25-30.)

41. The first and second derivatives of the function are positive everywhere.

42. The first and second derivatives of the function are negative everywhere.

43. The first derivative is positive everywhere, and the second derivative is negative every-
where.

44. The first derivative is negative everywhere, and the second derivative is positive every-
where.

45. The function has a maximum value at   and an inflection point at ; the first
derivative is negative immediately to the left of 3, and positive immediately to the right of 3.

46. The function has a minimum value at   and an inflection point at ; the first
derivative is negative immediately to the left of 3, and positive immediately to the right of 3.

47. Has a vertical asymptote at , an x-intercept at , and a horizontal asymptote
.

48. Has a vertical asymptote at ,  x-intercepts at  and , and a horizontal
asymptote .

49. Has vertical asymptotes at  and , x-intercepts at  and , and a hor-
izontal asymptote .

50. Has a vertical asymptote at , an x-intercept at , and an oblique asymptote
.

51. (Learning Process) Experimentation has shown that the learning performance of rats for a
particular task can be approximated by the function , where t denotes the
number of weeks the rat has been exposed to the learning process, for . At what point in
time does the rat’s rate of change of learning begin to decline? 

52. (Fruit Flies) In the early 1900, the biologist Raymond Pearl discovered that the growth rate of
the population  of fruit flies with respect to time t, in days, can be approximated by the func-

tion, , for .

(a) Find the values of the population for which the growth rate of the population is increasing,
and the values for which the growth rate is decreasing.

(b) Show that the population growth rate reaches a maximum at the point of inflection of the
graph of the population function.

37. , 38. , f x  3x5 20x3– 2+= 1 3–  f x  x4 x3–= 1 1– 

10 10– 
10–

x 1= x 3=

x 1= x 3=

x 1= x 2=
y 3=

x 1= x 2= x 3=
y 4=

x 1= x 2= x 3= x 4=
y 5=

x 1= x 2=
y x 2+=

L t  15t2 t3–=
t 7

P

td
dP 0.2P

0.2
1035
------------P2–= P 1035
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Exercise 53-58. (Theory) 

53. Show that the function  has a vertical asymptote at  but not at .

54. Show that  for each of the following functions, and then go on to show that one
of the functions has a maximum at 0, another has a minimum at 0, and the remaining one has
neither a maximum nor a minimum at 0.

55. (a) Prove that the graph of a cubic polynomial cannot have more that two distinct horizontal
tangent lines.

(b) Give an example of a cubic polynomial whose graph has:
(i) No horizontal tangent line.
(ii) Exactly one horizontal tangent line.
(iii) Two distinct horizontal tangent lines.

(c) Prove that the graph of a cubic polynomial can have at most one maximum point and at
most one minimum point.

56. (a) Prove that the vertex of the parabolic graph of a quadratic function 

occurs at . 

(b) Show that the parabola opens upward if  and opens downward if .

57. (a) Prove that the graph of the cubic function  has but one inflec-

tion point, and that it occurs at  . 

(b) Give an example of a cubic polynomial whose graph has:

(i) A point of inflection at .

(ii) A point of inflection at  and a maximum at 

(iii) A point of inflection at , a maximum at  and a minimum at .

58. (a) Prove that the graph of a polynomial of degree  can have at most  maximum
or minimum points. 

(b) Prove that the graph of a polynomial of degree n can have at most  inflection
points.

x2 1–
x2 x 2–+
----------------------- x 2–= x 1=

f  0  0=

i   f x  x3               (ii)  f x  x4               (iii)  f x  x4–= = =

f x  ax2 bx c+ +=

x b
2a
------–=

a 0 a 0

f x  ax3 bx2 cx d+ + +=

x b
3a
------–=

1 2 

1 2  x 1–=

1 2  x 1–= x 3=

n 1 n 1–

n 2–
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 4

An optimization problem is one in which the maximum or minimum
value of a quantity is to be determined. The main step in the solution pro-
cess is to express the quantity to be optimized as a function of one vari-
able. To achieve that end, we suggest the following 4-step procedure:

Step 1. See the problem.

Step 2. Express the quantity to be maximized or minimized in
terms of any convenient number of variables.

Step 3. In the event that the expression in Step 2 involves
more than one variable, use the given information to
arrive at an expression involving but one variable. 

Step 4. Differentiate, set equal to zero, and solve (to find
where horizontal tangent lines occur). Analyze the
nature of the critical points. 

   

SOLUTION: 

Step 2: Volume is to be maximized, and from the above, we see that:

Step 3: Not applicable, since volume is already expressed as a func-
tion of one variable.

§3  OPTIMIZATION

EXAMPLE 4.9
  

Best Box Company is to manufacture open-
top boxes from 12 in. by 12 in. pieces of card-
board. The construction process consists of
two steps: (1) cutting the same size squares
from each corner of the cardboard, and (2)
folding the resulting cross-like configuration
into a box. What size square should be cut out,
if the resulting box is to have the largest possi-
ble volume?

SEE THE PROBLEMStep 1:

x

x

12

12

x

12-2x

12-2x

V x  12 2x–  12 2x– x 4x
3

48x
2

– 144x+= =
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Step 4: Differentiate, set equal to 0, and solve:

At this point, we know that the graph of the volume function has a
horizontal tangent line at  and at . You can forget
about the 6, for if you cut a square of length 6 from the piece of
cardboard, nothing will remain. Since a box of maximum-volume
certainly exists, and since we are down to one horizontal tangent
line,  inches must be the answer.

SOLUTION: 

Step 2: Total cost C is to be minimized, and from the above we see that:

Lest you doubt that a
maximum really does
occur at 2:

Answer: 

2                 6
. .c                 c

+                              +_

SIGN 12 x 6–  x 2– 

max

inc.          dec.

35000
3

--------------- ft
2

CHECK YOUR UNDERSTANDING 4.17

A rectangular field is to be enclosed on all four sides with a fence.
One side of the field borders a road, and the fencing material to be
used for that side costs $8 per foot. The fencing material for the
remaining sides costs $6 per foot. Find the maximum area that can be
enclosed for $2800.

EXAMPLE 4.10 A cylindrical drum is to hold 65 cubic feet of
chemical waste. Metal for the top of the drum
costs $2 per square foot, and $3 per square foot
for the bottom. Metal for the side of the drum
costs $2.50 per square foot. Find the dimen-
sions for minimal material cost.

V  x  12x2 96x– 144+ 0= =

12 x 6–  x 2–  0=

x 6   or   x 2= =Critical points:

x 6= x 2=

x 2=

Step 1: SEE THE PROBLEM

h                     h  

. r

h

2r$2/ft
2

$3/ft
2

$2.50/ft
2

C cost of the top + cost of the bottom + cost of the side=

$C $2.00 r2  $3.00 r2  $2.50 2rh + +=

C 5r2 5rh+= (*)
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Step 3: We can express C as a function of only one variable by elim-
inating  h. Since the drum is to have a volume of :

Substituting in (*):

Step 4: Differentiate, set equal to 0, and solve:

Returning to (**), we find that: 

Conclusion: The dimensions  for minimal material cost are a radius

of  feet and a height of  feet.

SOLUTION: 

Recall that the area of a

circle of radius r is ,
and that the volume of
the cylinder is the area of
its base, times its height:

.

r2

V r2h=

65 ft 3

r2h 65=

h 65
r2
--------= (**)

C 5r2 5r
65
r2
-------- 
 + 5r2 325

r
---------+= =

65
2
------ 
  1 3/
.

0
_ +

dec.     c       inc

SIGN 
dC
dr
-------:

rd
dC

rd
d 5r2 325r 1–+  10r 325r 2–– 0= = =

10r 325
r2

---------– 0=

10r3 325– 0=

r
325
10
--------- 
  1 3/ 65

2
------ 
  1 3/

= =

multiply both sides by r2:

Critical Point:

h 65
r2
-------- 65

 65
2
------ 
  2 3/

----------------------- 65 2 2 3/

 65 2 3/
------------------------ 651 3/ 41 3/

1 3/
---------------------------

260


--------- 
  1 3/

= = = = =

65
2
------ 
  1 3/ 260


--------- 
  1 3/

Answer:
.18 in. 18 in. 36 in.

CHECK YOUR UNDERSTANDING 4.18

A box with a square base is to be constructed.
For mailing purposes, the perimeter of the
base (the girth of the box), plus the length of
the box, cannot exceed 108 in. Find the
dimensions of the box of greatest volume.

EXAMPLE 4.11 A 16 inch wire is to be cut into two pieces. One
piece is to be bent into a square and the other into
a circle. How should the wire be cut, if at all, in
order for the resulting combined areas to be: 
      (a) Maximum?        (b) Minimum?

girth
 

le
ng

th

Step 1: SEE THE PROBLEM

|
16 in.

x

x
4
---

16 x–

circumference: 16 x–.r
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Step 2: Combined area: 

Step 3: Using the fact that  is the circumference of the circle:

 

Substituting in (*): 

Step 4: Exercise 56, page 148, tells us that the graph of the above qua-
dratic function is a parabola that opens upward with vertex at: 

The adjacent graph of the parabola reveals
the fact that the minimum combined area
occurs when 9 inches is used for the square
and 7 inches for the circle, and that the
maximum occurs at  (don’t cut the
wire at all, but bend it all into a circle).     

A
x
4
--- 
  2

= r2+

area of the square          area of the circle

(*)

16 x–

16 x– 2r=

r 16 x–
2

--------------=

1
16
------ 1

4
------+ 

  x2 8

---x 64


------+–



2 1
16
------ 1

4
------+ 

  x 8

---–=

8 

2 1
16
------ 1

4
------+ 

 
----------------------------

.c +_dec.             inc.

0 16

That a minimum occurs at  is also established in the margin.

A
x
4
--- 
  2

 16 x–
2

-------------- 
  2

+=

x2

16
------

1
4
------ 256 32x– x2+ + 1

16
------ 1

4
------+ 

  x2= =
8

---x– 64


------+

x b
2a
------–

8

---–

2 1
16
------ 1

4
------+ 

------------------------ 9.0–= =

8 

2 1
16
------ 1

4
------+ 

 
----------------------------

16

..
0

.
9

x 0=

Answer: 4 3 in.
2

CHECK YOUR UNDERSTANDING 4.19

Determine the maximum area of an isosceles triangle that can be
constructed from a 12 inch wire.

EXAMPLE 4.12 A cable is to be run from a power plant, on
one side of a river that is 600 feet wide, to a
tower on the other side, which is 2000 feet
downstream. The cable is to be laid from the
plant to a point P on the other side of the river
and then from P to the tower. Determine the
location of P for minimum cost, if the cost of
laying the cable in the water is $60 per foot,
and the cost on land is $40 per foot. 
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SOLUTION:

Step 2:  Cost:  .

Step 3:  

Step 4:

Theorem 4.7 page 127 assures us that the cost function assumes a
minimum value for some value of . Can it occur at the

endpoints? A direct calculation reveals that  is
less than both  and . We can

therefore conclude that the point P should be 
feet from the tower.

Carrying units:

6
$
ft
--- xft 4

$
ft
--- 2000 y– ft+

Step 1: SEE THE PROBLEM

600

y 2000   y

x

Plant

Tower
.

.
_

$60/ft

$40/ftP
.

C 60x 40 2000 y– +=

x y2 600 2+= :

Pythagorean Theorem

C y  60 y2 600 2+ 40 2000 y– +=

C y  0=

60 y2 600 2+ 40 2000 y– +  0=

60 y2 600 2+ 
1
2
--- 

80000 40y– + 0=

60 y

y2 600 2+
-------------------------------- 40– 0=

36y2 16y2 16 600 2+=

20y2 16 600 2=

y2 16 600 2

20
----------------------=

y 240 5=ignoring the negative root:

Answer: 6 miles

CHECK YOUR UNDERSTANDING 4.20

A man in a boat 3 miles from a straight coastline wants to get to a
dock that is 10 miles down the coast in the shortest time, by rowing
to some point P on the coast and running the rest of the way. The
journey is to consist of two linear paths, one from the boat to P, and
the other from P to the dock. Assuming that the man rowed at a rate
of 4 miles per hour, and ran at a rate of 5 miles per hour, determine
the distance between the point P and the dock.

y 0 2000 
C 240 5  106 833

C 0  116,000 C 2000  125 283
2000 240 5– 1463
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SOLUTION: 

Since the volume of the trough is
the area A of its cross-section
times its length, to maximize the
volume is to maximize the area
of the adjacent region — which
is the sum of the areas of the two indicated triangles and the rectangu-
lar region between those triangles:

Now that we have the area expressed as a function of one variable:

we turn to the routine task of locating where its graph has a horizontal
tangent line; which is to say, where :

EXAMPLE 4.13 A water trough is to be constructed from a 12
inch by 6 foot metal sheet by bending up one-
third of the shorter side through an angle .

Determine  so that the resulting trough has
maximum volume.




4 inches

6 ft

4 inches

4 inches
 

SEE THE PROBLEM




h

               

h


4

b 4               b

4

4

A 2
1
2
---bh= 4 h+ bh 4h+ 4 cos  4 sin  4 4 sin += =

area of the two triangles

area of middle rectangular part sin h
4
---=

cos b
4
---=

A   16  sincos sin+ =

A 0=
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Conclusion: To maximize the volume of the trough, bend the sheet
through an angle of  (see margin). 

SOLUTION: 

Clearly . A
direct calculation reveals
that  is
greater than 
and . Apply-
ing Theorem 4.7, page
127, we conclude that the
absolute maximum of the
area cross-section (and
therefore of the volume
of the trough) occurs
when . 

Answer: (a) 

               (b) 

0  90 

A 60  12 3=
A 0  0=

A 90  16=

 60=

 45=

V0
2

128
--------- ft.

CHECK YOUR UNDERSTANDING 4.21

If a projectile is fired with initial velocity

 at an angle of elevation  then,

assuming negligible air resistance, its posi-
tion, , t seconds later is given by:

                 

(a) Determine  so as to maximize d. 
(b) Find the maximum height of the projectile when fired at that

angle of elevation.

EXAMPLE 4.14 When 20 peach trees are planted per acre, each
tree will yield 200 peaches. For every addi-
tional tree planted per acre, the yield of each
tree diminishes by 5 peaches. How many trees
per acre should be planted to maximize yield?

16  sincos sin+   0=

 sincos sin+  0=

 cos cos  sin– sin+  cos+ 0=

cos
2 sin

2– cos+ 0=

cos
2 1 cos

2– – cos+ 0=

2cos
2  1–cos+ 0=

2 cos 1–   1+cos  0=

why can we “drop” the 16?

sin
2 cos

2+ 1:=

cos 1
2
---=

 60=

cos 1–=

only acute angle:

no acute angle

60

x

y

d

x t  y t  .


V0
ft

sec
------- 

x t  y t  

x t  V0 cos t= y t  V0 sin t= 16t2–



SEE THE PROBLEMStep 1:

20 trees/acre 200 per tree

20+x 200   5x per treetrees/acre
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Step 2: Letting x denote the number of trees above 20 to be planted
per acre, we express the yield per acre as a function of x:

Step 3: Not applicable (The function to be maximized, , is
already expressed in terms of one variable).

Step 4:

We conclude that maximum yield will be attained with the planting
of 30 trees per acre.

SOLUTION:

10
.

0
+

SIGN Y x :

_inc.          dec.c

Y x  20 x+  200 5x–  5x2– 100x 4000+ += =

number of trees per acre } }number of peaches per tree

Y x 

Y x  10x– 100+ 0= =

x 100
10
--------- 10= =

Answer: 200 units

CHECK YOUR UNDERSTANDING 4.22

The weekly demand function for a certain company is given by:

where x is the number of units sold each week, and p is the price
per unit (in dollars). Determine the number of units that should be
produced to maximize the (weekly) profit for the company, if it
costs the company $30 to produce one unit.

EXAMPLE 4.15 The Best-Box manufacturing firm has
received an order for 1,500 shipping boxes.
The firm has 25 machines that can be used to
manufacture the boxes, each of which can
produce 30 boxes per hour. It will cost the
firm $55 to set up each machine. Once set up,
the machines are fully automated, and can all
be supervised by a single worker, earning $14
per hour. How many machines should be
used to minimize cost of production?

p 50
x2

6000
------------,   for x 500–=

SEE THE PROBLEM

x machines
 30x boxes/hourproduce

set up cost $55x

Additional cost (for the worker): $14t 
hours worked

Need 1,500 boxes (have 25 machines)
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Using x machines, we have:

We express the variable t in terms of x, and find it helpful to consider
units along the way:

We can now express cost as a function of one variable:

Bringing us to the routine part of the solution process:

Conclusion (see margin): To minimize cost of production, the com-
pany should utilize four machines.

 

By now you know that the real challenge of solving an optimization
problem is that of expressing the quantity to be optimized as a function
of one variable. But what if you are not able to calculate where the
derivative of the function is zero? You invoke some battery power,
that’s what. Consider the following example.

Cost C 55x 14t  (dollars)+= =

time  , to produce 1,500 boxes, using x machines 1500 boxes

30x
boxes
hour
--------------

---------------------------=

50 boxes
x

--------------------- hour
boxes
--------------=

50
x

------ hours=

t

Since x has to be an
integer one must calcu-
late both  and

 directly prior to
making a final decision.
If you do, you will find
that  and
that . 

Answer: 62 boats

C 3 
C 4 

C 3  398
C 4  395=

CHECK YOUR UNDERSTANDING 4.23

A sailboat company can manufacture up to 200 boats per year. The
number of boats, n, that the company can sell per year can be approx-

imated by the function , where p is the price (in dol-

lars) for a single boat. What yearly production level will maximize
profit, if it costs the company  dollars to produce
n boats?

WITH THE HELP OF A GRAPHING UTILITY

C x  55x 14
50
x

------+ 55x 700x 1–+= =

C x  55 700x 2–– 0= =

55 700
x2

---------=

x2 700
55
--------- 140

11
---------= =

x 140
11
--------- 3.6= .

3.6

_ +
0 25SIGN C x 

c

n 200 p
1000
------------–=

100,000 75,000n+
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SOLUTION: 

We want to minimize the combined distance:

and choose to express it in terms of the one represented variable x:
Focusing on the three right triangles: 

we have:

     
Then:

Conclusion: A minimum combined distance of approximately 50.13
miles will be achieved when P is positioned 8.00 miles South of point E.

EXAMPLE 4.16 A straight road runs from North to South.
Point A is 5 miles due West of point E on the
road. If you walk 10 miles south of A and then
go 30 miles due East, you will reach point B. If
you walk 10 miles due South of B and then go
15 miles due west, then you will reach point C.
Use a graphing utility to determine, to 2 deci-
mal places, the point P on the road whose
combined distance from the three points A, B,
and C is minimal.

SEE THE PROBLEM.
.B

.

A

C

.P .
5

10

10

15

5 25

a

b

c

 x

10

E

s a b c+ +=

b

25

10
x

–

B

P5

xa

A

P

P

C
10

c

20
x

–

E

s a b c+ + 52 x2+ 252 10 x– 2+ 102 20 x– 2++ += =
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Answer: 8.8 miles from
plant A.

CHECK YOUR UNDERSTANDING 4.24

Two chemical plants are located 12 miles apart. The pollution count
from plant A, in parts per million, at a distance of x miles from plant

A, is given by  for some constant K. The pollution count from

the cleaner plant B, at a distance of x miles from plant B, is one quar-
ter that of A. A third plant C is located on a road perpendicular to the
road joining A and B and is 5 miles from A and 10 miles from B.
Assuming that the pollution count of plant C is twice that of B, deter-
mine, to one decimal place, the point on the road joining A and B
where the pollution count from the three plants is minimal.

K
x2 10+
-----------------
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1. (Maximize Profit) A company can produce up to 500 units per month. Its profit, in terms of

number of units produced is given by . How many units

should the company produce to maximize profit?

2. (Minimize Cost) The total operating cost, per hour, to operate a freight train is given by

, where s is the speed of the train in miles per hour. Find minimum cost for

a 400 mile trip.

3. (Maximum Drug Concentration) The concentration (in milligrams per cubic centimeter) of
a particular drug in a patient’s bloodstream, t hours after the drug has been administered has

been modeled by . How many hours after the drug is administered will

the concentration be at its maximum? What is the maximum concentration?

4. (Air Velocity in the Trachea) When a person coughs, the radius r of the trachea decreases.
The velocity of air in the trachea during a cough can be approximated by the function

, where a is a constant, and  is the radius of the trachea in a relaxed
state. Determine the radius at which the velocity is greatest.

5. (Bacterial Growth) A pond is treated to control bacterial growth. After t days, the concentra-
tion of bacteria per cubic centimeter can be approximated by the function

, . Determine (a) the minimal bacterial concentration and
(b) the maximal bacterial concentration, in the seven day period.

6. (Minimum Force) An object of weight W is being pulled along a horizontal plane by a force
F acting along a rope attached to the object which makes an angle  with the plane. Find the

angle for which the force is smallest, given that , where the constant k

denotes the coefficient of friction.
7. (Sensitivity) The reaction to a dosage x of a drug administered to a patient is given by

, where x is the amount of the drug administered, and a is the maximum

dosage of the drug that can be administered. The rate of change of R with respect to the dose
x is called the sensitivity of the patient to the dosage x. Find the dosage at which the sensitiv-
ity is greatest.

8. (Maximize Revenue) A car-rental agency can rent 150 cars per day at a rate of $15 per day.
Assume that for each price increase of $1 per day, 3 less cars will be rented, while for each $1
decrease 2 additional cars will be rented. What rate should be charged to maximize the reve-
nue of the agency?

9. (Maximize Revenue) A chemical company charges $90 per pound for a product. The deci-
sion is made to discount each pound in any order that exceeds 10 pounds by $3 per additional
pound; up to and including  pounds. Find the value of x beyond which revenue will
start to decrease. 

EXERCISES

P x  x3

30
------– 9x2 400x 75000–+ +=

C s  250 s2

4
----+=

C t  0.2t
0.9t2 5t 3+ +
--------------------------------=

v r  ar2 r0 r– = r0

K t  25t2 150t– 700+= 0 t 7 



F kW
 k+cos sin

---------------------------------=

R x  x2 a
2
--- x

3
---– 

 =

10 x+
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10. (Maximize Profit) It costs the college bookstore $7 for a student supplement to one of its
mathematics texts. The bookstore is currently selling 300 copies at $12 per book, and it esti-
mates that it will be able to sell 10 additional copies for each 25-cent reduction in price, and
will sell 10 copies less for each 25-cent increase in price. At what price should the bookstore
sell the books in order to maximize profit?

11. (Maximize Revenue) A computer manufacturer will, on the average, sell 25,000 units per
month at $950 per unit. It is estimated that 250 additional units will be sold per month for
each $5 decrease in price. Find the price that will maximize revenue.

12. (Minimum Distance) Find the point on the line  that is closest to the point .
13. (Smallest Sum) Determine the positive number which, when added to its reciprocal, yields

the smallest sum.

14. (Greatest Difference) Determine the positive number which exceeds its cube by the greatest
amount.

15. (Maximum Area) Find the largest possible area of a rectangle with base on the x-axis and
upper vertices on the curve .

16. (Minimum Area) Determine the right triangle of largest area that can be inscribed in a circle
of radius r.

17. (Maximum Area) Determine the maximum area of a right triangle with hypotenuse of
length 4 inches.

18. (Maximum Area) Find the area of the largest rectangle that can be inscribed in a semicircle
of radius r.

19. (Minimum Area) A poster is to surround  of printing material with a top and bot-
tom margin of 4 in. and side margins of 3 in. Find the outside dimensions of the poster that
will require the minimum amount of paper. 

20. (Maximum Volume) Determine the maximum volume of a right circular cylinder that can
be inscribed in a sphere of radius r.

21. (Maximum Volume) A shipping crate with base twice as long as it is wide is to be shipped
by freighter. The shipping company requires that the sum of the three dimensions of the crate
cannot exceed 288 inches. What are the dimensions of the crate of maximum volume? 

22. (Minimum Surface Area) Find the dimensions of a 4  open-top rectangular box with
square base requiring the least amount of material.

23. (Minimum Cost) A fenced-in rectangular garden is divided into 2 areas by a fence running
parallel to one side of the rectangle. Find the dimensions of the garden that minimizes the
amount of fencing needed, if the garden is to have an area of 15,000 square feet. 

24. (Minimum Cost) A fenced-in rectangular garden is divided into 3 areas by two fences run-
ning parallel to one side of the rectangle. The two fences cost $6 per running foot, and the
outside fencing costs $4 per running foot. Find the dimensions of the garden that minimizes
the total cost of fencing, if the garden is to have an area of 8,000 square feet. 

25. (Minimize Cable Length) A power line runs north-south. Town A is 3 miles due east from a
point a on the power line, and town B is 5 miles due west from a point b on the power line
that is 9 miles north of a. A transformer, on the power line, is to accommodate both towns.
Where should it be located so as to minimize the combined cable lengths to A and B? 

y 2x 1+= 1 0 

y 4 x2–=

1200 in.
2

ft
3
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26. (Shortest Ladder) A ladder is to reach over a 8 ft fence to a wall 2 ft behind the fence. What
is the length of the shortest ladder that can be used?

27. (Minimum Commuting Time) A lighthouse lies 2 miles offshore directly across from point
A of a straight coastline. The lighthouse keeper lives 5 miles down the coast from point A.
What is the minimum time it will take the lighthouse keeper to commute to work, rowing his
boat at 3 miles per hour, and walking at 5 miles per hour?

28. (Minimal Distance Between Two Cars) At noon, car A is 10 miles due west of car B, and
traveling east at a constant speed of 55 miles per hour. Meanwhile, car B is traveling north at
40 miles per hour. At what time will the two cars be closest to each other?

30. (Optimizing Area) A 16 inch wire is to be cut into two pieces. One piece is to be bent into
an equilateral triangle and the other into a square. How should the wire be cut in order for the
resulting combined areas to be:   (a) Maximum?    (b) Minimum?

31. (Minimum Production Cost) A union agreement stipulates that the worker of Example 4.15
will now be paid $14 per hour plus $4 per hour for each machine in operation. How many
machines should be used to minimize cost of production?

32. (Minimum Production Cost) A manufacturer receives an order for N units. He can use any
number of machines for the project, each capable of producing n units per hour, and each
costing c dollars to be set up for the job. Once set up, the machines are fully automated, and
can be supervised by a single worker, earning q dollars per hour. Derive a formula for the
number of machines that should be used to minimize production cost. Show that production
costs are minimum when the cost of setting up the machines equals the cost of running the
machines.

33. (Beam Strength) A rectangular beam is to be cut from a log with circular cross section. If
the strength of the beam is proportional to its width and the square of its depth, find the
dimensions of the strongest beam.

34. (Fermat’s Principle and Snell’s Law) The speed of light
depends on the medium through which it travels. Fermat’s
Principle in optics asserts that light will travel along the quick-
est route. Assume that the speed of light in medium 1 and
medium 2 in the adjacent figure is  and  respectively.

Show that angle of incidence  and the angle of refraction

 will be such that  (called Snell’s law or the law of refraction). 

35. (Minimum Perimeter) Prove that among all rectangles of a given area, the square has the
smallest perimeter.

36. (Maximum Area) Prove that among all rectangles of a given perimeter, the square has the
largest area.

29. (Maximum Light Emission) A Norman window is a window in the
shape of a rectangle surmounted by a semicircle. Find the dimensions of
the base of the window that admits the most light if the perimeter of the
window (total outside length) is 15 feet. (Assume that the same type of
glass is used for both parts of the window.)

r.
h

A

B

Medium 1

Medium 2

1

2v1 v2

1

2

1sin

v1
--------------

2sin

v2
--------------=
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37. (Maximum Area) Prove that among all rectangles that can be inscribed in a given circle, the
square has the largest area.

38. (Minimum Area) Prove that the length of the square of minimal area that can be inscribed in

a square of length L is of length . 

Exercises 39-43. Use a GRAPHING UTILITY to find an approximate answer for the given optimi-
zation problem.

39. (Shortest Distance) Determine, to two decimal places, the shortest distance between a

point on the curve  and the point . 

40. (Shortest Distance) Determine, to two decimal places, the value of b such that the dis-
tance between the points where the line  intersects the graphs of the functions

 and  is smallest.

41. (Shortest Distance) Determine, to two decimal places, the value of b such that the dis-
tance between the points where the line  intersects the graphs of the functions

 and  is smallest. 

42. (Shortest Distance) In Example 4.16, insert an additional point D midway between plants
B and C. Determine, to 2 decimal places, the point P on the road whose combined distances
from the four points A, B, C, and D is minimal.

43. (Minimum Pollution Count) In CYU 4.24, introduce a fourth plant D that is on the same
road as C and midway between C and the line joining A and B. Assuming that the pollution
emission of D equals that of B, determine, to one decimal place, the point on the road join-
ing A and B where the pollution count from the four plants is minimal.

44.(Minimum Cost) Point A is at ground level, and point B that is 35
feet below ground level, and 100 feet away from A (at ground
level). The first 15 feet below ground level is soil, after which
there is shale. A pipe is to join the two points. It costs $76 per
foot to lay piping in the soil layer, and $245 per foot to lay piping
in the shale layer. Find the minimum labor cost of the project. 

L

2
-------

y 2x3 3x 1–+= 0
1
2
--- 

 

y x– b+=

y x= y x3 2+=

y x– b+=

y x= y x 3+=

A

B

100
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CHAPTER SUMMARY

ROLLE’S THEOREM Let f be continuous on  and
differentiable on . If

, then there is at
least one number  in  for

which . 

MEAN VALUE THEOREM If f is continuous on   and
differentiable on , then
there is at least one number  in

 for which

.

INTERMEDIATE VALUE

 THEOREM
If f is continuous on the closed interval  and if r is
a number lying between  and , then there exists
at least one c between a and b such that .

THEOREM Let f be differentiable on the open interval   (or
 or .

(a) If  for all , then f is increasing on I.

(b) If  for all , then f is decreasing on I.

(c) If  for all , then f is constant on I.

LOCAL MAXIMUM

                        AND

LOCAL MINIMUM

A function f has a local (or relative) maximum at an interior
point c in its domain if   for all x sufficiently
close to c.

A function f has a local (or relative) minimum at c if
 for all x sufficiently close to c.

THEOREM Let f be differentiable in some open interval containing c. If
f has a local maximum or a local minimum at c, then

.

CRITICAL POINT If c is an interior point in the domain of a function f at which
a local maximum or minimum occurs, then either 

or  does not exist. The points at which  or 
does not exist are called critical points.

MAX/MIN THEOREM A continuous function on a closed interval  achieves
its maximum value and its minimum value on .

c       b
  
a
.      .

.a b 
a b 

f a  f b  0= =
c a b 

f  c  0=

a                        bc

..
.

a b 
a b 

c
a b 

f  c  f b  f a –
b a–

-------------------------=

a b 
f a  f b 

f c  r=

I a b =
a   – b 

f  x  0 x I
f  x  0 x I
f  x  0= x I

f c  f x 

f c  f x 

f  c  0=

f  c  0=

f  c  f  x  0= f 

a b 
a b 
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GRAPHING FUNCTIONS  , , and  
PLAY ROLES WHEN GRAPHING  A FUNCTION f:

+: graph lies above -: lies below the x-axis

+: graph is increasing -: is decreasing

 +: graph is concave up -: is concave down

                    

FAR FROM THE ORIGIN As  , the graph of the polynomial function:

resembles, in shape, that of its leading term .

As  , the graph of the rational function:

  

will resemble, in shape, that of:   

ASYMPTOTES When the degree of the numerator of a rational function f
is less than or equal to the degree of the denominator, the
graph will approach a horizontal line, called a horizontal
asymptote for the graph of  f.

When the degree of the numerator of a rational function f
is one more than that of the denominator, the graph will
approach an oblique line, called an oblique asymptote for
the graph of  f.

SIGN f SIGN f  SIGN f 

SIGN f 

SIGN f 

SIGN f 

x 

p x  anx
n

an 1– x
n 1–  a1x a0+ + + +=

g x  anx
n

=

x 

f x 
anx

n
an 1– x

n 1–  a1x a0+ + + +

bmxm bm 1– xm 1–  b0+ + +
-------------------------------------------------------------------------------------------=

g x 
anx

n

bmxm
----------------=
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 5

CHAPTER 5
INTEGRATION

  A question for you:

One answer:  [since ].

We say that  is an antiderivative of . We do not call it “the
antiderivative,” since there are infinitely many functions whose deriva-
tives are ; here are a couple more: , and . 

In general:

Are there antiderivatives of  that are not of the type
 for some constant c? No:

PROOF: CYU 4.3, page 124.

The fact that all antiderivatives of a function can be generated by add-
ing an arbitrary constant to any one of its antiderivatives enables us to
formulate the following definition: 

For example:
Since  is an antiderivative of : :

Since : 

§1.  THE INDEFINITE INTEGRAL

A similar question:           

Answer: 7 and .
? 2 49=

7–

?  3x2=

x3 x3  3x2=

One possible answer:

x8 and x8 1+

DEFINITION 5.1
ANTIDERIVATIVE

An antiderivative of a function f  is a func-
tion whose derivative is f.

CHECK YOUR UNDERSTANDING 5.1

Find two different antiderivatives for the function . 

THEOREM 5.1 If  then  for
some constant C.

x3 3x2

3x2 x3 9+ x3 173–

f x  8x7=

f x  3x2=
x3 c+

f  x  g x = f x  g x  C+=

The reason for the form

 will surface in

the next section.

f x  xd

DEFINITION 5.2
INDEFINITE INTEGRAL

The collection of all antiderivatives of f is
called the indefinite integral of f and is
denoted by . In other words:

where  is any antiderivative of .
The number C in the above notation repre-
sents an arbitrary (real) number and is called
the constant of integration.

f x  xd
f x  xd g x  C+=

g x  f x 

x3 3x2 3x2 xd x3 C+=

x8  8x7= 8x7 xd x8 C+=
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How can you justify the claim that ? Easy: . By
the same token: 

PROOF: 

For example:

Turning the differentiation theorems around:

brings us to the following result:. 

For example:

Here is a special case:

(Recall that )

1 dx x C+=

1 x0=

THEOREM 5.2 For any number :

THEOREM 5.3
 

49 7= 72 49=

r 1–

xr dx xr 1+

r 1+
----------- C+=

xr 1+

r 1+
----------- 
 

 1
r 1+
----------- xr 1+  1

r 1+
----------- r 1+ xr xr= = =

                c f x   c f  x = xn  nxn 1–=

x9 xd x10

10
------- C             x 5– xd+ x 4–

4–
------- C            x

2
3
---

xd+ x
5
3
---

5
3
---

---- C+= = =

up one up one up one

divided by the “upped one”

f x  g x   f  x  g x =

cf x   cf  x =

f x  g x   xd f x  x g x  xdd=

cf x  xd c f x  xd=

 

5x3 x2 2x– 3+ +  xd 5 x3 x 1 x2 x 2 x x 3 1+d xd–d+d=

5 x4

4
----- x3

3
----- 2 x2

2
----- 3x C+ +–+=

5
4
---x4 x3

3
----- x2– 3x C+ + +=

Check: 
5
4
---x4 x3

3
----- x2– 3x C+ + + 

   5x3 x2 2x– 3+ +=

The four constants associated with the above
integrals are combined into one constant C:  

Answers:

(a)     (b)

(c) 

x5 C+ x 4– C+

x6

3
----- x4 x3

9
-----– 2x C+ + +

CHECK YOUR UNDERSTANDING 5.2

Determine:

(a)             (b)         (c)   5x4 xd 4x 5–– xd 2x5 4x3 1
3
---x2– 2+ +  xd
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Please note that only constant factors can be “extracted” from an
integral. In particular, as you can easily verify:

 and  

Moreover, as it is with derivatives, it is important for you to remember
that:

In particular, as you can easily verify: 

But not all is lost:

SOLUTION: The “trick” is to rewrite the given expression as powers
of x, and then apply Theorems 5.2 and 5.3:

(a) 

(b) 

                                                            

The integral of a product, (or quotient) is NOT
the product (or quotient) of the integrals.

EXAMPLE 5.1 Determine:

(a) 

(b) 

4 x7+  x 4 x7 xd+d x x2 x+  x x x2 x+  xdd

2x 5–  x 4+  xd 2x 5–  x x 4+  xdd

2x5 3x 1+–
x3

----------------------------- xd
2x5 3x– 1+  xd

x3  xd
-------------------------------------------and:

2x 5–  x 4+  xd
2x5 3x 1+–

x3
----------------------------- xd

2x 5–  x 4+   xd 2x2 3x 20–+  xd=

2x3

3
-------- 3x2

2
-------- 20x– C+ +=

2x5 3x 1+–
x3

----------------------------- 
  xd 2x5

x3
-------- 3x

x3
------– 1

x3
-----+ 

  xd=

2x2 3x 2–– x 3–+  xd=

2x3

3
-------- 3x 1–

1–
----------– x 2–

2–
------- C+ + 2x3

3
-------- 3

x
--- 1

2x2
--------– C+ += =

“up one divided
by that up one:”

Answers:

(a) 

(b) 

3
4
---x4 17

3
------x3–

11
2

------x2 5x– C+ +

x 1
x2
----- 2

x3
----- C+ + +

CHECK YOUR UNDERSTANDING 5.3

Determine:

(a)           (b) 3x2 2x– 1+  x 5–  xd x4 2x– 6–
x4

--------------------------  dx
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Turning around the following derivative formulas:

we have: 

A differential equation is an equation that involves derivatives of an
unknown function (or functions). Consider the following example: 

SOLUTION: 

To find C, we use the given information that :

Solution: 

(a) (b) 

(c) (d) 

(e) (f) 

THEOREM 5.4 (a)      

(b)        

(c) 

(d) 

(e) 

(f) 

d
dx
------ xsin  xcos=

d
dx
------ xcos  xsin–=

d
dx
------ xtan  sec

2
x=

d
dx
------ xcot  csc

2
x–=

d
dx
------ xsec  xsec xtan=

d
dx
------ xcsc  x xcotcsc–=

xsin xd x C+cos–= since xcos–  xsin= 

xcos xd x C+sin= since xsin  xcos= 

sec
2
x xd x C+tan=

csc
2
x xd xcot– C+=

x x xdtansec xsec C+=

xcsc x xdcot xcsc– C+=

Answers: 
(a) 

(b) 

x 2 x C+sin+cos–

x3

3
----- x C+sec–

CHECK YOUR UNDERSTANDING 5.4

Determine:

       (a)            (b) 

DIFFERENTIAL EQUATIONS

EXAMPLE 5.2 Solve the differential equation:

xsin 2 xcos+  xd x2 x xtansec–  xd

f  x  2x2 3x 1,  if  f 1 –+ 2= =

f x  2x2 3x 1–+  xd 2x3

3
-------- 3x2

2
-------- x– C+ += =

f 1  2=

2 2 13
3

------------- 3 12
2

------------- 1– C+ +=

C 2 2
3
---– 3

2
--- 1+– 5

6
---= =

If x = 1, f(x) = 2:

f x  2x3

3
-------- 3x2

2
-------- x– 5

6
---+ +=
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SOLUTION: Since :

Since :    .

We now have:    . 

     Integrating:    

 Since :    

                  Thus:      .

 

Due to the force of gravity, an object released near the surface of the
earth will accelerate at a rate of (approximately) 32 feet per second per

second:  (or ). The negative sign
indicates that the object is accelerating in a downward direction.

Based solely on the above measured force of gravity and the force of
mathematics, we are able to express velocity and position of the object
(while in flight) as a function of time:

EXAMPLE 5.3 Solve the second-order differential equation:

if  and 

f  x  2x 2 xcos+=

f  0  
2
---= f 0  1=

f  x   2x 2 xcos+=

f  x  2x 2 xcos+  xd x2 2 x C+sin+= =

f  0  
2
---= 

2
--- 02 2 0sin+= C C+ 

2
---=

f  x  x2 2 x 
2
---+sin+=

f x  x3

3
----- 2 x


2
---x+cos–= C+

f 0  1= 1 03

3
----- 2 0


2
--- 0 C++cos–= C 3=

recall that 0cos 1=

f x  x3

3
----- 2 x


2
---x+cos–= 3+

Answer:

f x  x5 2x– 1+=

CHECK YOUR UNDERSTANDING 5.5

Solve the differential equation:

FREE FALLING OBJECTS 

f  x  5x4 2– ,  if f 0  1= =

a t  32 ft sec2–= 9.8 m sec2–

By convention, a positive
velocity indicates an
upward movement, while
a negative velocity indi-
cates a downward move-
ment. Also, a positive
position indicates “up”
from the reference point,
and a negative position
indicates “down.”

THEOREM 5.5 If an object is thrown, in a vertical direction,
with initial velocity  (in feet per second),
from a point that is  feet from a fixed refer-
ence point, then t seconds later the velocity (in
feet per second) of the object is given by:  

and the position (in feet) of the object from the
fixed reference point is given by:

v0
s0

v t  32t– v0+=

s t  16t2– v0t s0   + +=
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PROOF: Since acceleration is the derivative of velocity with respect to
time, velocity is the integral of acceleration:

When , . So,  , or , and this

brings us to the velocity equation: .
Since velocity is the derivative of position with respect to time, position
is the integral of velocity:

When , . So,  ; or: ,

and this brings us to the position equation: .

SOLUTION: Since the stone is dropped, , and the velocity and
position functions of Theorem 5.5 take the form:

and:

Setting position to zero, we determine the time it takes for the stone to
hit the ground:

Evaluating the velocity function at , we find the impact velocity:

By definition, speed is the magnitude of velocity. Thus, the impact speed
is 320 feet per second.

EXAMPLE 5.4 A stone is dropped from a height of 1600 feet.
What is its speed on impact with the ground?

We don’t have to tell you that the ground is our reference
point, as this is implied by the above equation (how?).

v t  a t  td 32–  td 32t– C+= = =

acceleration due to gravity

t 0= v v0= v0 32 0 C+–= C v0=

v t  32t– v0+=

s t  v t  td 32t– v0+  td 16t2– v0t C+ += = =

t 0= s s0= s0 16 02 v0 0 C++–= C s0=

s t  16t2– v0t s0+ +=

v0 0=

v t  32t–=

s t  16t2– 1600+=

Since both the velocity
and position functions are
functions of time, the criti-
cal step in most gravity
problems, is to find the
particular t of interest.

0 16t2– 1600+=

t2 100  or t 10 (seconds)= =

t 10=

v 10  32 10– 320 (feet per second)–= =

Answers: (a) 144 feet         
               (b) 96 ft/sec.

CHECK YOUR UNDERSTANDING 5.6

A stone is thrown upward from the roof of a 80 foot building at a
speed of 64 feet per second. 

(a) Find the maximum height of the stone (with respect to the
ground). 

(b) At what speed will the stone hit the ground?
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Here are the velocity and position equations governing the fate of the
two objects:

Solving  will yield the time of impact (objects occupy

the same point in space): 

At this point we know that collision, if it occurs, must take place three
seconds into flight. Will they collide? Yes:

 

Collision occurs 216 feet above the ground. 
(We used  to find the point of collision. Could we have gone with ?)

At collision:
 

From the above, we see that at collision the first object is falling at a
speed of 56 feet per second, while the second object is rising at a
speed of 24 feet per second.

EXAMPLE 5.5 Object-one is thrown upward from the top of a
240-foot building at a speed of 40 feet per sec-
ond. At the same time, object-two is catapulted
up from the ground at 120 feet per second along
the same vertical line. Will the objects collide?
If so, determine the directions of the objects at
collision. 

SEE THE PROBLEM

.

240 ft

v1 40=

v2 120=

SOLUTION:

As is evident from the
position functions, the
ground is our chosen
reference point.

Object-one Object-two

 
v1 t  32t– 40+=

s1 t  16t2– 40t 240+ +=

v2 t  32t– 120+=

s2 t  16t2– 120t+=

s1 t  s2 t =

s1 t  s2 t =

16t2– 40t 240+ + 16t2– 120t+=

80t 240=

t 3=

Had  turned out
to be negative, then
collision would not
occur (why not?).

s2 3 
s2 3  16 32 120 3+– 216= =

s2 3  s1 3 

v1 3  32 3– 40+ 56    and   v2 3 – 32 3 120+– 24= = = =
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Answer: 160 feet per
second.

CHECK YOUR UNDERSTANDING 5.7

An object is propelled upward from a 128-foot building at a speed of
32 feet per second. At the same time, a second object is catapulted
upward from ground level along the same vertical line. Determine
the speed of the second object if collision is to occur precisely when
the first object reaches its maximum height.
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Exercises 1-26. Determine:

Exercises 27-38. (Differential Equations) Solve:

Exercises 39-42. Verify the given claim:

EXERCISES

1. 2. 3.

4. 5. 6.

7. 8. 9.

10. 11. 12.

13. 14. 15.

16. 17. 18.

19. 20. 21.

22. 23. 24.

25.

26.

27. 28.

29. 30.

31. 32.

33. 34.

35. 36.

37. 38.

39. 40.

41. The function  is a solution of the differential equation   .

3 xd 3 3x+  xd 6x5 5x4+  xd
4x3 3x2– 5x 2–+  xd  x4

5
----- 3

x5
-----– 

  xd x9 x 9––  xd

 3x4 4x 4–– 2
x5
-----+ 

  xd x 3x 2–  xd x2 2x 5–  xd

3x2 2–  x3 x+  xd x x 1–  x 1+  xd 3x5 2x 1–+
x4

----------------------------- xd

 
x6 x2 x 2––+

2x4
------------------------------ xd

2x3 1+  x4 x2+ 
2x

-------------------------------------------- xd
x4 x+  x 1+ 

x4
------------------------------------ xd

x xd x 3 5/– xd 2x1 3/ x3+  xd
x x2 x 3–+  xd x2 x 5–+

x
----------------------- xd

x 2x1 3/ x3+ 
x2 3/

-------------------------------- xd

3 x
1
2
--- x 1+cos–sin 

  xd x x sec
2
x–tansec  xd xsin x+

5
----------------------- xd

x xtan–sec
xcot

---------------------------- xd sin
2 x

2
--- 
  cos

2 x
2
--- 
 

1 2xcos+
-------------------------------------- xd

f  x  3x 5   f 5 + 1= = f  x  3x 5   f 1 + 5= =

f  x  3x2 5x   f 1 + 1= = f  x  3x2 5x   f 1 + 5= =

f  x  x3 5x 2–   f 0 + 1= = f  x  x3 5x 2–   f 1 + 0= =

f  x  3x2 5x+
x4

--------------------   f 1  2= = f  x  3x2 5x+
x4

--------------------   f 2  1= =

f  x  2x 3+  x 1–    f 1  0= = f  x  2x 3+  x 1–    f 2  1= =

f  x  3x 5   f  0 + 1 f 1  1= = = f  x  3x2 5x  f  1 + 1 f 2  1= = =

x x2 1– 4 xd x2 1– 5

10
--------------------- C+= x2 x3 4 + xd

2
9
--- x3 4+ 

3
2
---

C+=

y xcos= y 2 y2 1–+ 0=
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43. (From Slope to Function) The slope of the tangent line to the graph of a function f at

 is . Find the function, if its graph passes through the point (1,5).

44. (From Slope to Function) The slope of the tangent line to the graph of a function f  at

 is . Find the function, if its graph passes through the point (0,1).

45. (Impact Speed) A stone is dropped from a height of 3200 feet. What is its speed on impact
with the ground? 

46. (Initial Speed) At what speed should an object be tossed upwards, in order for it to reach a
maximum height of 160 feet from the point of its release?

47. (Bouncing Height) An object is thrown downward from a 96 foot building at a speed of 16
feet per second. Upon hitting the ground, it bounces back up at three-quarters of its impact
speed. How high will it bounce?

48. (Collision Velocity) An object is thrown downward from a 264 foot building at a speed of 24
feet per second, at the same time that an object is thrown up from the ground at 64 feet per
second. Assuming that the two objects are in line with each other, determine the velocity of
both objects when they collide. 

49. (Particle Position) Let  represent the position function of a particle moving

along the x-axis, where  is measured in minutes and s in meters. 

(a) Draw a diagram to represent the motion of the particle.
(b) When is the particle moving to the right? Moving to the left?
(c) When is the particle speeding up? When is it slowing down?
(d) Determine the total distance traveled by the particle during the first five minutes.

50. (Particle Position) Repeat Exercise 49 for the position function .

51. (Stopping Distance) After its brakes are applied, a car decelerates at a constant rate of 30
feet per second per second. Compute the stopping distance, if the car was going 60 miles per
hour (88 ft/sec) when the brakes were applied. 

52. (Stopping Distance) After its brakes are applied, a car decelerates at a constant rate of 30
feet per second per second. Compute the speed of the car at the point at which the brakes
were applied, if the stopping distance turned out to be 120 feet. 

53. (Theory) An object is tossed upward from the ground with an initial velocity of  feet per

second. 
(a) Determine the maximum height M reached by the object.

(b) Prove that at any height h, with , the object’s speed when going up is equal to
its speed when going down.

42. The function   is a solution of the  second order differential equation 

.

y
1
2
---x– 1

4
---+=

y y– 2y– x2=

x f x   x2

x f x   2x3 x 1–+

s t  t3 t–=

t 0

s t  t4 2t3– 3t2–=

v0

0 h M 
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 5

  Our geometrical quest for slopes of tangent lines led us to the defini-
tion of the derivative. We now go on another quest, that of finding the
area A in Figure 5.1(a), which is bounded above by the graph of the
function , below by the x-axis, and on the sides by the lines

 and . As it was with the tangent line situation, we know
what we are looking for, but still have to find it (to define it). Here goes:

Loosely speaking, partition the interval  into subintervals
 of length  [see Figure 5.1(b)].  

Figure 5.1

Pick an arbitrary point  in each subinterval , and con-

struct the rectangles of base  and height  [see Figure
5.2(a)]. Let’s denote the sum of the areas of all those rectangles

by the symbol — a sum that gives us an approximation

for the area in question.

Figure 5.2

Clearly, the smaller we make those ’s, the closer 

will get to the area we are looking for [see Figure 5.2(b)]. And
so, we (naturally) define the area A to be:

 

§2. THE DEFINITE INTEGRAL

This “area quest” will lead
us to the definition of
another immensely useful
object — the definite inte-
gral. At first blush, the
definite integral does not
appear to have any connec-
tion whatsoever with the
indefinite integral of the
previous section. But, as
you will see, there is a
beautiful connection, and it
is called the Fundamental
Theorem of Calculus. 

(a) (b)

y f x =

x a= x b=

a b 
xi xi 1+  xi xi 1+ xi–=

                             a                            b

A = ?
f

                                                            xi

f

a x0= b xn=

x1 x2
xi xi 1+

The Greek letter sigma,
denoted by , indicates a
sum. 

We use  to represent

the more intimidating form

, where  and 

are depicted in Figure 5.2(a). 

The sums  are

called Riemann sums,
after the German mathe-
matician Georg Riemann
(1826-1866).

By “ ” we mean the

limit as the length of the
largest   tends to 0.



f x x

a

b



f xi xi

1 1=

n

 xi xi

f x  x

a

b



x 0
lim

xi

(a) (b)

xi xi xi 1+ 

xi f xi 

f x x

a

b



                                
xi

f

a b

Area f xi xi=

xi
_

.

                                

f

a b

xi f x x

a

b



A f x x

a

b

x 0
lim=
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Limits of Riemann sums play many important roles throughout math-
ematics, bringing us to the following definition:

As it turns out, it is “easier” for a function to be integrable than it is for
it to be differentiable. In particular, though a continuous function need
not be differentiable [see Figure 3.4(b), page 71], it can be shown that:

Both the definition of the derivative and that of the definite integral
involve limits. The limit situation for the integral, however, is much
more complicated than that of the derivative: we have to worry about
partitioning the given interval, and then we have to compute the Rie-
mann sum for that partition, and then we have to see if all the Riemann
sums approach something as the largest  of the partition tends to
zero. This gets way out of hand, even for relatively simple functions

like . Help is on the way.     

The derivative and the definite integral are really quite different
objects. The derivative gives slopes of tangent lines to a curve, while
the integral yields the area under a curve (at least for positive func-
tions). At first glance, one would not assume that these two concepts
are related to each other; but they are:

The symbol  is

one “word.” In particular,
“ ” is just a “letter” in
that word, that’s all. The
notation does, however,
recall its origin: the sum
symbol

 “evolving” into ,

and the  into “ .”

f x  xd
a

 b



xd

a

b


a

 b


x xd

DEFINITION 5.3 
DEFINITE INTEGRAL

We would not want it any
other way, since “there is no
area between a and a.”

A function f is said to be integrable over the

interval  if  exists. In

this case, we write:

and call the number  the integral of
f over .

In addition:  for any function

with a in its domain.

THEOREM 5.6 If  f  is continuous on , then it is integra-
ble over that interval.

The Principal and Fundamental Theorems of Calculus

THEOREM 5.7
PRINCIPAL THEOREM

OF CALCULUS

For f continuous on , let:

Then T is differentiable on  and: 

a b  f x  x
a

b

x 0
lim

f x  xd
a

 b

 f x  x

a

b

x 0
lim=

f x  xd
a

 b


a b 

f x  xd
a

a

 0=

a b 

x

f x  x2 x+=

a b 

T x  f t  td
a

 x

=

a b 
T  x  f x =
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We content ourselves by offering a geometrical argument suggesting
the validity of the above amazing result which links the concepts of the
derivative with that of the integral. Our first order of business is to

explain the nature of that strange looking function . To

keep our discussion on a geometric level, we assume that the graph of the
function f lies above the t-axis over some interval  [see Figure 5.3].
Note that the function  simply gives the indicated “this Area” over
the interval ,.

Figure 5.3
From the above figure, we see that:

As h approaches 0, the average height of the shaded region must
approach the height at x: . Hence, as advertised in Theorem 5.7:

SOLUTION: Applying Theorem 5.7 with , we have:

Note that the horizontal
axis is labeled t. We can’t
call it x, since we chose
the variable x for our
“main” function T.

We like to call T a
Trombone function —
as you slide the vari-
able x back and forth,
you get less or more
area from the “integral
instrument:”

T x  f t  td
a

 x

=

EXAMPLE 5.6 Find the derivative of the function: 

T x  f t  td
a

 x

=

a b 
T x 

a x 

t
a                      x

T(x) is
 this Area

x+h
h

T(x + h) 

T(x+h) - T(x) 

th
is S

h
ad

ed
 A

rea

f

b

is this
larger area

T x h+  T x –
h

-------------------------------------

area of shaded region in Figure 5.3

base of shaded region

}

 average height of shaded region

f x 

T  x  T x h+  T x –
h

-------------------------------------
h 0
lim f x = =

T x  t 5+ 5

t2 2+
------------------ td

1

 x

=

f t  t 5+ 5

t2 2+
------------------=

T  x  f x  x 5+ 5

x2 2+
-------------------= =
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What is so great about Theorem 5.7? For one thing it will enable us to
establish the next theorem which says that:

IF you can find an antiderivative g of a function f, then you

can determine the complicated limit  by

simply subtracting the number  from the number :

PROOF: We are given that g is an antiderivative of f, and Theorem 5.7
gives us another. Theorem 5.1, page 167, tells us that these two antide-
rivatives can differ only by a constant C, bringing us to:

Evaluating both sides of the above equation at , we have:

At this point we know that . Evaluating both

sides of this equation at  brings us to:

Since the variable x is no longer in use, we can choose to substitute x
for t in (*) to arrive at our desired result:

Answer: 3x2 2+ 7

CHECK YOUR UNDERSTANDING 5.8

Find the derivative of the function:

T x  3t2 2+ 7

3

 x

= dt

You can now see why sim-
ilar notation and terminol-
ogy is used for both the
definite and indefinite inte-
gral. The connection is this
theorem which links the

definite integral 

with a  of the indefinite
integral .

f x  xd
a

 b


g x 

f x  xd

THEOREM 5.8
FUNDAMENTAL 

THEOREM OF CALCULUS

If f is continuous on  and if
, then: 

f x  x

a

b

x 0
lim

g a  g b 

a b 
g x  f x =

f x  xd
a

 b

 g b  g a –=

g x  f t  td
a

 x

 C+=

x a=

g a  f t  td
a

 a

 C+ 0 C+ C, i.e: C g a = = = =

Definition 5.3

g x  f t  td
a

 x

 g a +=

C

x b=

g b  f t  td
a

 b

 g a +=

f t  td
a

 b

 g b  g a –=or: (*)

f x  xd
a

 b

 g b  g a –=
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SOLUTION: Since  is an antiderivative of
, we have:

SOLUTION: Since the function f is positive (see margin) over the
indicated interval, the area in question is given by the integral:

Which we now evaluate:

NOTATION: The difference  is denoted

by the symbol , leading us to the form:

EXAMPLE 5.7 Evaluate: 

g b  g a –

g x 
a
b

f x  xd
a

 b

 g x 
a
b

g b  g a –= =

3x2 2+  xd
1

 2


g x  x3 2x+=

f x  3x2 2+=

3x2 2+  xd
1

 2

 x3 2x+ 
1

2
23 2 2+  13 2 1+ – 9= = =

g (2) 
                  

g (1)} }

Answer: Same result.

CHECK YOUR UNDERSTANDING 5.9

Referring to Example 5.7, see what happens if you use ,
instead of , as the chosen antiderivative of .

x3 2x 100+ +
x3 2x+ 3x2 2+

Note that:

 

does not represent the area
bounded by the sine graph and
the x-axis:

As you can see, each positive
 over the interval 

is counterbalanced by a nega-
tive  over the interval

 — accounting for zero
Riemann sums.

xsin
0

2

 xcos–
0
2

=

2 0cos– –cos–=

1– 1+ 0= =

x

y

 2x

x

f x x 0  

f x x
 2 

EXAMPLE 5.8 Determine the area of the region over the
interval  that is bounded above by the
graph of the function: 

1 2 

f x  x3 x2 1+ +
x2

--------------------------=

x3 x2 1+ +
x2

--------------------------
1

2

  dx

x3 x2 1+ +
x2

--------------------------
1

2

  dx x3

x2
----- x2

x2
----- 1

x2
-----+ + 

 
1

2

  dx x 1 x 2–+ + 
1

2

  dx= =

x2

2
----- x x 1–

1–
-------+ + 

 

1

2
x2

2
----- x 1

x
---–+ 

 

1

2

= =

22

2
----- 2 1

2
---–+ 

  1
2
--- 1 1

1
---–+ 

 – 3= =
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In the definition of , the lower limit of integration, a, was

less than the upper limit of integration, b. Is there a reasonable way of

defining an integral such as ? Yes, for if we formally

apply the Fundamental Theorem of Calculus to that expression, we
obtain:

On the other hand:

The above observations leads us to:

As it was with indefinite integrals:

Answers: 

(a) (i)     (ii) 

(b)  square units.

1
4
---– 1

2
-------

136
15
---------

CHECK YOUR UNDERSTANDING 5.10

(a) Evaluate:

 (i)                        (ii) 

(b) Determine the area of the region over the interval  that is
bounded above by the graph of the function: 

DEFINITION 5.4 For f integrable on :

In words: Switching the limits of integration introduces a minus sign.

THEOREM 5.9 If f and g are continuous on  then:

(a) 

(b) 

(c)  for any constant c.

x3 x 1–+  xd
0

 1

 x xdsin
4
---–

 

2
---



1– 1 

f x  x2 1+  x2 3+ =

f x  xd
a

 b



2x 1+  xd
4

 2



2x 1+  xd
4

 2

 x2 x+ 
4

2
22 2+  42 4+ – 6 20– 14–= = = =

2x 1+  xd
2

 4

 x2 x+ 
2

4
42 4+  22 2+ – 20 6– 14= = = =

a b 

f x  xd
b

 a

 f x  xd
a

 b
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a b 

f x  g x +  xd
a

 b

 f x  x g x  xd
a

 b

+d
a

 b

=

f x  g– x   xd
a

 b

 f x  x g x  xd
a

 b

–d
a

 b

=

cf x  xd
a
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 c f x 
a
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=
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PROOF: For F and G antiderivatives of f and g, respectively,  is

an antiderivative of  [Theorem 3.2(d), page 78]. So:

The following theorem tells us that the “integral journey” from a to c
can be broken down into pieces. 

“PROOF:” We offer a geometrical argument without words. Think
“Area:”

Theorem 5.7 assures us
that f and g have
antiderivatives.

F G+

f g+

f x  g x +  xd
a

 b

 F x  G x + 
a
b

F b  G b +  F a  G a + –= =

F b  F a –  G b  G a – +=

f x  x      g x  xd
a

 b

+d
a

 b

=

Answer: See page A-28.

CHECK YOUR UNDERSTANDING 5.11

Prove Theorem 5.9(b) and (c).

THEOREM 5.10 If f is continuous on , and , 
then: 

a b  a c b 

f x  xd
a

 b

 f x  xd
a

 c

= f x  xd
c

 b

+

a                           c                      b

A3 f x  xd
a

b

 A1 A2+= =

A1 f x  xd
a

c

= A1 f x  xd
c

b

=

Answers: (a)    (b) 1617–

CHECK YOUR UNDERSTANDING 5.12

Let  ,  and . 

Evaluate:

(a)          (b) 

f x  xd
a

 c

 5= f x  xd
c

 b

 3–= g x  xd
a

b

 7=

2f– x  xd
a

 c

 g x  xd
b

a

+ f x  xd
a

 b

 2g x  xd
a

b

+
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Question: Suppose that f is differentiable on 

what is the value of ?

Answer:                . 

Why? Because  is an antiderivative of , that’s why.

Calling the difference  the net-change of the function f over

the interval , we have observed that: 

 

SOLUTION: (a) Total quantity of oil leaked in the first hour:  

(b) Total quantity of oil leaked in the second hour

NET-CHANGE DERIVED FROM RATE OF CHANGE

THEOREM 5.11 The net-change of a differentiable function   f
from  to  is given by: 

a b 

f  x  xd
a

b



f  x  xd
a

 b

 f b  f a –=

f x  f  x 

f b  f a –

a b 

x a= x b=

Net-change f  x  xd
a

 b

=

Units can help point the
way. We are given a rate
in gallons per minute; and
want to end up with total
gallons over a specified
period of time:

gal
gal
min
---------- min=

125 t
50
------– 

 
0

 60

  dt

“add up those gallons”

EXAMPLE 5.9 Oil is leaking out of a ruptured tanker at a

rate of  gallons per minute, where t

is measured in minutes. How many gallons
leak out during:

   (a) the first hour?         (b) the second hour?

EXAMPLE 5.10 A printing company is considering purchas-
ing a new hole-punching machine for $2,000.
It estimates that with the purchase of the
machine, monthly income will increase at a
rate of  dollars per month (t in
months). How many months will it take for
the machine to pay for itself?

125 t
50
------–

125 t
50
------– 

  td
0

60

 125t t2

100
---------–

0

60

125 60  602

100
---------– 7464 gallons= = =

125 t
50
------– 

  td
60

120

 125t t2

100
---------–

60

120

=

125 120  1202

100
------------– 

  125 60  602

100
---------– 

 – 7392 gallons= =

190 2t+
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SOLUTION: 

First find the total increase of income after T months:

Then set that income to 2000, and solve for T:

Ignoring the negative time period we conclude that the machine will
pay for itself in 10 months.

SEE THE PROBLEM

.
Machine

$

$2,000

How long for
I  t  190 2t+=

Total income increase 190 2t+ 
0

 T

= dt 190t t2+
0

T
190T T 2+= =

190T T 2+ 2000=

T 2 190T 2000–+ 0=

T 10–  T 200+  0=

T 10 or T 200–= =

Answer: $191,250

CHECK YOUR UNDERSTANDING 5.13

The rate of production, in barrels per day, of oil from an oil well is

anticipated to be  (t in days). Find the total income pro-

duced by the well in its first 30 days of operation, if crude sells at
$85 per barrel. 

75 t
2500
------------–
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Exercises 1-21. Evaluate:

Exercises 22-27. (Area) Sketch the region bounded above by the graph of the given function over
the specified interval, and below by the x-axis. Determine the area of that region.

28. (Cost Increase) In July, the price of gas increased at the rate of  cents per
gallon, where t denotes the number of days from June 1. How much did the cost of a gallon
increase during the course of the month?

29. (Depreciation) The resale value of a car decreases at the rate of  dollars
per year, where  denotes the number of years following the car’s year of manufac-
ture.   How much did the car’s value depreciate:

        (a) in the first three years?                             (d) during the third year?

30. (Melting Ice) A 360 cubic inch block of ice is melting at the rate of  cubic inches per min-

ute. How many minutes will it take for the block to totally melt?

EXERCISES

1. 2. 3.

4. 5. 6.

7. 8. 9.

10. 11. 12.

13. 14. 15.

16. 17. 18.

19. 20.

     

21.

     

22. 23. 24.

25. 26.  27.  

3 xd
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 1

 3x xd
1

 2

 3 3x+  xd
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 1



x2 3x 1–+  xd
0

 1
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 2
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 2
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0
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-------------- xd
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2
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 1–
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x
------------ xd

1

2

 xcos  xd
4
---–

 

2
---
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x xsectan xd
4
---

 

3
---

 x2 x sin xd
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 5


Consider the graph of x2 xsin

x5cos
2
x xd

5–

 5


Consider the graph of x5cos

2
x

f x  x2 1– x 1 = f x  x3 0 x 1 = f x  1
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31. (Advertising) A store is launching an aggressive advertising campaign, and anticipates that
the number of daily customers, N, will grow from its current value of 200, at a rate of

, where t is the number of days from the beginning of the campaign. How

many days from the beginning of the campaign will it take before the number of daily cus-
tomers doubles?

32. (Declining Sales) Because of fierce competition, the weekly sales at an appliance store are

expected to decline at the rate of  units per week, where t is number of weeks

from the present date. The store plans to go out of business when weekly sales drop below
500. Currently, the shop sells 900 units weekly. How many more weeks will the company
remain in business?

33. (Income Stream) A printing company can purchase a $2,000 hole-punching machine that
will increase monthly earnings at a rate of  dollars per month, or a $3,000 machine

that will increase monthly earnings at a rate of  dollars per month (t in months).
Which should be purchased, given that the company anticipates using the machine for exactly
five years?

34. (Depreciation) The resale value of a certain industrial machine decreases at a rate that
depends on the age of the machine. When the machine is x years old, the rate at which its
value is dropping during that year is  dollars per year. If the machine was origi-
nally worth $28,000, how much will it be worth when it is 3 years old?

Exercises 35-40. (Theory) Assume that: , , . Eval-
uate:

Exercises 41-43. (Principal Theorem of Calculus) Use Theorem 5.7 to find the derivative of
the given function T.

Exercises 44-46. (Theory) 
(a) Use Theorem 5.7 to find the derivative of the given function .  

(b) Use Theorem 5.8 to first express  in a form that does not involve an integral, and then
differentiate that explicit function of x directly. Compare your answer with that of (a).

(c) Repeat parts (a) and (b), replacing the lower limit of integration “1” with 5.

35. 36. 37.

38. 39. 40.

41. 42. 43.

44. 45. 46.
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+
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=
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47. (Theory) Let f be integrable, and g be differentiable. Use the Chain Rule (page 94) and The-

orem 5.7, to show that for : .

48. (Theory) Let f be integrable, and g and k be differentiable. Use the Chain Rule (page 94) and 

Theorem 5.7, to show that for : .

Exercises 49-51. (Theory) Use the results of Exercises 47 and 48 to differentiate the function H.

Exercise 52-54. (Theory) 
(a) Use the results of Exercise 47 and 48 to find the derivative of the given function . 
(b) Use the Fundamental Theorem of Calculus to first express  in a form that does not

involve an integral, and then differentiate that explicit function of x directly. Compare
your answer with that of (a).

Exercises 55-57. (Second Derivative) Determine .

58. (Theory) Referring to Definition 5.3, offer an argument explaining why the function: 

is not integrable over the interval  (or any other interval, for that matter).
(Use the fact that any interval, no matter how small, contains both rational  and irrational numbers.) 

59. (Theory) Referring to Definition 5.3, offer an argument explaining why 

 for the two functions depicted below.

49. 50. 51.

52. 53. 54.

55. 56. 57.

H x  f t 
a

 g x 

= dt H x  f g x   g x =

H x  f t 
k x 

 g x 

= dt H x  f g x   g x  f k x  k x –=

H x  3t4 1+
5

2x

= dt H x  t
t4 1+
-------------

5

x2

= dt H x  td
x2 1+
--------------

x2

xsin

=

H x 
H x 

H x  3t2 2t+  td
5

2x

= H x  t t 5– 
1

x2

 dt= H x  3t2 1– 
2x

 x2

= dt

d2y
dx2
--------

y t tsin
1

 x

= dt y t 1+
t2

---------------
1

 x

= dt y ttan
1

 x2

= dt

f x 
1  if  x is a rational number

1  if  x is not a rational number–



=

0 1 

f x  xd
0

 2

 g x  xd
0

 2

=

2

.
o

2

f x  1=

1

0

g x 
1  if  x 1 
2  if  x 1=




=

2

1

1
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Next semester you will encounter a half dozen or so integration tech-
niques that will enable you to determine the integrals of a variety of
functions. Here, we will content ourselves with just one technique, the
so called u-substitution method. This method stems from the follow-
ing theorem, which is really the Chain Rule “in reverse.”

PROOF: We simply show that  is an antiderivative of

:

Though easy to prove, Theorem 5.12 in its present form is not very use-
ful because of its intimidating form. To soften its appearance, we make
the substitution: , bringing us to a somewhat improved form:

Still not great. But we now observe that the simpler looking integral

 is also equal to : 

It follows that if we let , and then formally make the sub-
stitution   , we arrive at: 

The following examples illustrate how the above substitution method
can sometimes be used to transform a complicated integral into a sim-
pler form.

§3. THE SUBSTITUTION METHOD

Assuming, of course,
that the function g is
differentiable, and that
the integral exists.

THEOREM 5.12 If , then:   F x  f x =

 f g x  g x  xd F g x   C+=

F g x  
f g x  g x 

F g x    F g x  g x  f g x  g x = =

The Chain Rule, page 94 since F  x  f x =

Please note that we attri-
bute no meaning to
either the expression

 or the expression
. We simply replace

the symbol  in the
(meaningful) expres-

sion , with

the symbol , to arrive
at another meaningful

expression .

u xd
du

u xd

 f u u xd
du

 f u  ud

u g x =

 f u  u xd F u  C+=

 f g x  g x  xd F g x   C+=

f u  ud F u  C+

 f u  ud F u  C+=

since F  u  F  g x   f g x   f u = = =

u g x =
du udx=

 f g x  g x  xd  f u  ud=
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SOLUTION: The “trick” is to let u be some part of the integral, so that
“ ” is “essentially the rest” (up to a multiplicative con-
stant). Specifically:

Let  — then (formally): , or: .

So:

Check:  

If you currently find yourself a bit uncomfortable with the u-substitu-
tion method, that’s par for the course. A few more examples should
remedy the situation.

SOLUTION: (a) Let  — then (formally): , or:

. So:

      Check:  

 
              

 

EXAMPLE 5.11 Determine:

 x x2 5– 7 xd

And the end justifies the
means. The substitution:      

takes us from:

 to:

u x2 5–=

du 2xdx=“                   ”

x x2 5– 7 xd

1
2
--- u7 ud

EXAMPLE 5.12 Determine: 

(a)          (b) 

(c)       

du udx=

u x2 5–= du 2xdx= xdx
1
2
---du=

x x2 5– 7 xd
1
2
--- u7 ud

1
2
--- u8

8
----- C+ x2 5– 8

16
--------------------- C+= = =

xdx
1
2
---du= u x2 5–=

1
16
------ x2 5– 8 C+

 1
16
------ 8 x2 5– 7 x2 5–  1

2
--- x2 5– 7 2x x x2 5– 7= = =

x2

x3 5+
------------------ xd 3x 2x2 7+ 

2
3
---

xd

x x2 xdcos
u x3 5+= du 3x2dx=

x2dx
1
3
---du=

x2

x3 5+
------------------- xd 1

3
--- ud

u1 2/
---------- 1

3
--- u 1 2/– ud 1

3
--- u1 2/

1 2
------------ C+ 2

3
--- x3 5+ C+= = = =

 u x3 5+=x2dx
1
3
---du=

2
3
--- x3 5+ 

1
2
---  2

3
--- 1

2
--- x3 5+ 

1
2
---–

3x2 x2 x3 5+ 
1
2
---– x2

x3 5+
------------------= = =
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            Check: 

(c) 

                     Check:  

Our next example is tricky in that it does not fit the typical u-substitu-
tion mode:

SOLUTION: If that denominator were , then we could pro-

ceed as in the earlier examples, letting , and so on. But it
is not. And so:

But this leaves us with an “unresolved” x in the integral:

And so we return to (*) and solve for x in terms of u: . Sub-
stituting, we then have:

3x 2x2 7+ 
2
3
---

xd 3 x 2x2 7+ 
2
3
---

xd=

u 2x2 7+=

du 4xdx=

xdx
1
4
---du=

3
4
--- u

2
3
---

ud
3
4
--- u

5
3
---

5
3
---
-----

 
 
 
 

C+
9
20
------ 2x2 7+ 

5
3
---

C+= = =

(b)

9
20
------ 2x2 7+ 

5
3
---  9

20
------ 5

3
--- 2x2 7+ 

2
3
---

4x 3x 2x2 7+ 
2
3
---

= =

x x2 xdcos
1
2
--- ucos ud

1
2
--- usin C+

1
2
--- x2 C+sin= = =

u x2=

du 2xdx=

xdx
1
2
---du=

1
2
--- x2sin 
   1

2
--- x2cos 2x  x x2cos= =

Answers: 

(a) 

(b) 

1

40 x2 10– 4
--------------------------------– C+

1
xsin

----------– C+

CHECK YOUR UNDERSTANDING 5.14

Determine:

     (a)                       (b) 

EXAMPLE 5.13 Determine:

x
5 x2 10– 5
--------------------------- xd

xcos

sin
2
x

------------ xd

x
x 1+ 3

------------------- xd
x2 1+ 3

u x2 1+=

u x 1+=

du dx=

(*)

x
x 1+ 3

------------------- xd
x
u3
----- ud=

u x 1+=

du dx=

x u 1–=
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You are invited to check the above result by showing that the deriva-

tive of  is indeed .

 

We now illustrate how the u-substitution method can be used to eval-
uate certain definite integrals.

SOLUTION: One approach is to begin by finding an antiderivative of

:

Bringing us to: 

x
x 1+ 3

------------------- xd
x
u3
----- ud

u 1–
u3

------------ ud u
u3
----- 1

u3
-----– 

  ud= = =

u x 1 x+ u 1–= =

du dx=
u 2– u 3––  ud=

1
u
---– 1

2u2
-------- C+ +=

1
x 1+
------------– 1

2 x 1+ 2
---------------------- C+ +=

1
x 1+
------------– 1

2 x 1+ 2
----------------------+

x
x 1+ 3

-------------------

Answer:

2
5
--- x 1+ 

5
2
--- 2

3
--- x 1+ 

3
2
---

– C+

CHECK YOUR UNDERSTANDING 5.15

Determine . Use differentiation  to check your answer.

SUBSTITUTION AND DEFINITE INTEGRALS

EXAMPLE 5.14 Evaluate: 

x x 1+ dx

x2

x3 1+ 3
---------------------- xd

0

 1



x2

x3 1+ 3
----------------------

x2

x3 1+ 3
---------------------- xd

1
3
--- 1

u3
----- ud

1
3
--- u 3– ud

1
3
--- u 2–

2–
------- C+= = =

1–
6u2
-------- C+= 1–

6 x3 1+ 2
------------------------- C+=u x3 1+=

du 3x2dx=

x2dx
1
3
---du=

x2

x3 1+ 3
---------------------- xd

0

 1

 1–
6 x3 1+ 2
-------------------------

0

1
1–

6 22
------------- 1–

6 12
-------------– 1

8
---= = =
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A better approach is to use the u-substitution,  to also
change the limits of integration:

 

SOLUTION:

EXAMPLE 5.15 Evaluate: 

u x3 1+=

x2

x3 1+ 3
---------------------- xd

0

 1


1
3
--- 1

u3
----- ud

1

 2


1
3
--- u 3–

1

 2

= = du
1
3
--- u 2–

2–
-------

1

2

=

1–
6u2
--------

1

2
1
24
------– 1–

6
------– 1

8
---= = =

 

if u x3 1 and x+ 1  then u 13 1+ 2= = = =

u 03 1+ 1= =

3x 1+ cos xd
0

2



3x 1+ cos xd
0

2


1
3
--- ucos ud

1

7

=

1
3
--- usin 

1

7
1
3
--- 7 1sin–sin  0.06–= =

u 3x 1+=

du 3dx=

dx
1
3
---du=

u 3 2= 1+ 7=

u 3 0= 1+ 1=

Answers:    (b) (a) 1
3
--- 1

4
---

CHECK YOUR UNDERSTANDING 5.16

Evaluate:

     (a)                            (b)  x x2 1– xd
1

2

 x
x2 1+ 2

----------------------
0

1

 dx
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Exercises 1-15. (Indefinite Integrals) Determine:

Exercises 16-27. (Definite Integrals) Evaluate:

Exercises 28-29. (Area) Determine the area bounded above by the graph of the given function
over the specified interval.

30. (Theory) Prove that if   , then:   

EXERCISES

1. 2. 3.

4. 5. 6.

7. 8. 9.

10. 11. 12.

13. 14. 15.

16. 17. 18.

19. 20. 21.

22. 23. 24.

25.
26. 27.

28. , 29. , 

x 5– 15 xd 2x 5– 15 xd  
2x 5– 15

------------------------xd


2x x2 5+ 15 dx x x2 5+ 15 dx x
x2 5+ 15

------------------------ dx

x

5x2 4–
--------------------- xd 6x2 4x+

x3 x2+ 2
------------------------ xd  3x x

x2 3– 2
---------------------+ 

  xd

x2 x3sin xd sec
2
x x xdtan x

x 2+ 3
------------------- xd

x2

x 1+ 4
------------------- xd x 1+  x 1– 17 xd  

x2 x 1–+

x 3–
----------------------- xd

x

x2 1+
------------------ xd

1

2

 x2 x3 2+ 5 xd
1–

 0


6x 1+

3x2 x+ 2
------------------------- xd

1

 2



x

5 x2 4+ 
--------------------------- xd

0

 2


6x2 4x+
x3 x2+ 2

------------------------ xd
1

 2

 x
x2 5+ 2

----------------------
2

 1–

 dx

2x x2 5– 15

1–

 5

 dx x x2 xdcos
1–

 1

 xcos

x
--------------- xd

1

 4



xsec
2
x2

0

 
4
---

 dx
x x 1+ xd

0

 1

 x3 x2+ xd
0

 1



f x  x
x2 1+
--------------= 0 x 1  f x  x2 x3 10+= 1 x 1 –

F x  f x =

 f g x  g x  xd
a

b

 F g b   F g a  –=
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In section 2 we came up with a definition for the area in Figure 5.4(a),
an area that is bounded above by the graph of the positive function

; below by the x-axis; and on the sides by the vertical lines

 and . How about the area of the shaded region in Figure
5.4(b)? (Please consider the question before moving on.)  

Figure 5.4

A correct answer is:  (see margin). Noting that

 

we have:

SOLUTION: SIGN  reveals where the graph of the function lies
above the x-axis, and where it lies below the x-axis:

| f |
A

a        b c

graph of the absolute value
of the function in Figure (b).

§4. AREA AND VOLUME

Answer: 

(a) (b)

EXAMPLE 5.16 Find the area bounded by the x-axis, the graph
of the function , and the
vertical lines:
(a)     (b) 

y f x =

x a= x b=

                             a                            b

A = ?
f

A f x  xd
a

 b

=

                                
a c

b

f
A=?

A f x 
a

 b

= dx

f x  f x  if f x  0
f x – if f x  0




=

A f x 
a

 b

 dx f x  xd
a

 c

 f x – xd
c

 b

+ f x  xd
a

 c

 f x  xd
c

 b

–= = =

f x  x3– x2 6x+ +=

x 1 and x 3= = x 1–  and x 2= =

f x 

f x  x3– x2 6x+ + x x2 x– 6– – x x 3–  x 2+ –= = =

SIGN f (x):
2                     0                             3–
.   .     .c               c                      c

+                                  +_                                        _
above           below                 above                    below
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(a) The above information reveals the fact that the function is not
negative anywhere in the interval . Hence:

(b) SIGN  tells us that the function is negative (or zero) over the

interval , and positive (or zero) over the interval .
Hence:

Keeping in mind that the definite integral is the limit of Riemann sums,
it is natural to define the area of the figure below to be:

1          3

1–
2

1 3 

A x3– x2 6x+ +  xd
1

 3

 x4

4
-----– x3

3
----- 3x2+ + 

 

1

3

= =

34

4
-----– 33

3
----- 3 32+ + 1

4
---– 1

3
--- 3+ +–

38
3
------ 12.7= =

f x 
1 0–  0 2 

A x3– x2 6x+ +  xd
1–

 0

–= x3– x2 6x+ +  xd
0

 2

+

x4

4
-----– x3

3
----- 3x2+ + 

 –
1–

0
x4

4
-----– x3

3
----- 3x2+ + 

 

0

2

+=

0 1
4
---– 1

3
---– 3+ 

 –– 4– 8
3
--- 12+ + 

  0–+=
157
12
--------- 13.1=

since function is negative on (-1,0)

Answers: (a)   (b) 4
32
3

------

CHECK YOUR UNDERSTANDING 5.17

Find the area bounded by the x-axis, the graph of the function
, and the vertical lines:

      (a)                (b) 

AREA BETWEEN CURVES

f x  x2 2x 3–+=

x 3–  and x 1= = x 0 and x 2= =

Note the height of the
indicated rectangle:

f xi  g xi –

dominant or higher function

subordinate 
or lower function

minus

A f x  g x – x

a

b

x 0
lim f x  g x – 

a

 b

= = dx

a b

f

g

x

f
x

g
x

–

Area: height times width f x  g x – x=
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In general:

SOLUTION: The first order of business is to determine the points of
intersection of those two curves (see margin): 

Since the graph of  lies above that of  over the
interval  we have:

The graphs of f and g below switch dominance about the point . 

1

A

g x  x3=

f x  x2=

THEOREM 5.13
 AREA BETWEEN CURVES

Let f and g be continuous over the interval
. The area between the graphs of those

functions between  and  is
given by:

EXAMPLE 5.17 Determine the area of the finite region
bounded by the graphs of the functions

 and .

a b 
x a= x b=

A f x  g x –
a

 b

 dx=

f x  x2= g x  x3=

x3 x2=

x3 x2– 0=

x2 x 1–  0=

x 0  and  x 1= =

f x  x2= g x  x3=
0 1 

A x2 x3–  xd
0

 1

 x3

3
----- x4

4
-----– 

 

0

1
1
3
--- 1

4
---– 1

12
------= = = =

dominant

subordinate

(*)

Answer: 9
2
---

CHECK YOUR UNDERSTANDING 5.18

Determine the area of the finite region bounded by the graphs of the

functions  and .f x  x2= g x  x 2+=

x c=

f

g

g x  f x –

f x  g x –
a bc

A

x

x
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Consequently, two integrals are needed to calculate the area of the indi-
cated shaded region:

SOLUTION: While you are encouraged to consider the graphs of the
two functions (margin), it is not necessary to do so to find the area in
question. All you have to do is to find SIGN :

We are interested in the area bounded by f and g between  and
. From the above, we see that  is positive on
, and negative on . Consequently: 

SOLUTION:                      (Without words)

EXAMPLE 5.18 Determine the area, A, bounded by the graphs

of the functions  and

, between  and .

A f x  g x – xd
a

b

 f x  g x – 
a

c

 dx f x  g x – 
c

b

– dx= =

f x  x3 3x– 1+=

g x  x 1+= x 2–= x 1=

f x  x3 3x– 1+=

g x  x 1+=
2

-2

f x  g x –

SIGN f x  g x – x3 3x– 1+  x 1+ – x3 4x– x x 2+  x 2– = = =
2– 0                    2
.    .    .c                c                c+                                   +_                                 _

1

f dominates g

x 2–=
x 1= f x  g x –

2– 0  0 1 

A x3 3x– 1+  x 1+ –  x x3 3x– 1+  x 1+ –  xd
0

 1

–d
2–

 0

=

x3 4x–  x x3 4x–  xd
0

 1

–d
2–

 0

=

x4

4
----- 2x2– 
 

2–

0
x4

4
----- 2x2– 
 

0

1

–=

0 4 8– –  1
4
--- 2– 
  0–– 4 7

4
---+ 23

4
------= = =

x x– 6+=

x x2 12x– 36+=

x2 13x– 36+ 0=

x 9–  x 4–  0=

x 9   x 4= =

EXAMPLE 5.19 Express the area, A, bounded below by the x-

axis, above by the graph of , and on

the side by the line , in integral form.

OR:

f x  x=

y x– 6+=

x

y

6

4 2 .
..

0 4

y x=

y x– 6+=

A x xd
0

4

= x– 6+  xd
4

6

+

x

y

4 2 .
.
0

x y2=

x y– 6+=

2

A y– 6 y2–+  yd
0

2

=

y
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If you take the shaded region of Figure 5.5(a) and revolve it about the
x-axis, you will generate the solid represented in Figure5.5(b). 

Figure 5.5
The volume, , of the narrow disk in Figure (b) is the area of its

base: , times its thickness: . We then define the vol-
ume of the solid to be:

Generalizing:

SOLUTION:

 

Answer: 289
10
---------

CHECK YOUR UNDERSTANDING 5.19

Determine the area, A, bounded by the graphs of the functions
 and , between  and .

VOLUME OF SOLIDS OF REVOLUTION 

f x  x4 x2–= g x  x3= x2– x 1–= x 3=

a                           b

f x 

V  f x  2x=

x
|

f

x x
(a)                                                   (b)

V
r2  f x  2= x

V  f x  2x
a

b

x 0
lim  f x  2 xd

a

 b

= =

f x  x2=

2
x

y

DEFINITION 5.5
VOLUME OF A SOLID
 OF REVOLUTION

  (DISK METHOD)

Let f be nonnegative and continuous over
the interval . The volume of the solid
obtained by rotating, about the x-axis, the
region bounded above by the graph of the
function f, below by the x-axis, and on the
sides by  and , is given by:

EXAMPLE 5.20 Determine the volume of the solid obtained
by rotating, about the x-axis, the region
bounded by the graph of the function

, over the interval .

a b 

x a= x b=

V  f x  2 xd
a

 b

=

f x  x2= 0 2 

V  x2 2 xd
0

 2

  x4 xd
0

 2

  x5

5
-----= = =

0

2

 25

5
----- 32

5
---------= =
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SOLUTION: We can generate a cone of height h and radius r by rotat-
ing the region below the line passing through the origin and the point

 about the x-axis (see margin). That line has slope  and y-

intercept 0, and is therefore given by: 

Bringing us to the formula:.

If you take the shaded region of Figure 5.6(a) and revolve it about the
x-axis, you will generate the solid represented in Figure 5.7(b).

Figure 5.6

As is depicted in Figure 5.6, the generated “washer” has volume:

 h

r

h r .
x

y EXAMPLE 5.21 Determine a formula for the volume of a
cone of height h and radius r.

h r  r
h
---

y f x  r
h
--- x= =

V  r
h
--- x 
  2

xd
0

h


r2

h2
-------- x2 xd

0

h

= =

r2

h2
-------- x3

3
-----

0

h
r2

h2
--------- h3

3
------ 1

3
---r2h= = =

Answer: 
127

7
------------

CHECK YOUR UNDERSTANDING 5.20

Determine the volume of the solid obtained by rotating, about the x-
axis, the region bounded by the graph of the function, 
above the interval .

f x  x3=
1 2 

Volume of washer:   

Note that V can also be
obtained by subtracting
the volume generated by
rotating g about the x-axis
from that obtained by
rotating f about the x-axis:
the difference of the two
volumes. 

R

r

x

R2x r2x–

 R2 r2– x=

Outside radius
Inside radius   

f

g

a                                 bx

}volume of the “hole”

x

V  f x  2x  g x  2x–=

 f x  2 g x  2– x=

g x 

f x 

(a)                                                      (b)               

“washer”

the “hole”

V  f x  2 g x  2– x=

Outside radius squared inside radius squared
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 As is depicted in Figure 5.6, the generated “washer” has volume:

Taking the limit of the sum of those ’s brings us to an integral repre-
sentation for the volume in question:

 

Summarizing:

 SOLUTION: Finding the points of intersection:

.

(a) 

(b) 

V  f x  2 g x  2– x=

Outside radius squared inside radius squared

V

V  f x  2x g x  2– x

a

b

x 0
lim  f x  2 g x  2–  xd

a

 b

= =

In the event that 
(the x-axis), then the
“washer method” coincides
with the “disk method” of
Definition 5.5.

g x  0=

VOLUME OF A SOLID OF REVOLUTION (Washer Method)

Let f and g be nonnegative and continuous over the interval 

with . The volume of the solid obtained by rotating,
about the x-axis, the region bounded above by  the graph of the
function f, below by the graph of g, and on the sides by  and

, is given by:

a b 
f x  g x 

x a=

x b=

V  f x  2 g x  2–  xd
a

 b

=

f x  x=

1

g x  x2=

g x  x2=

outside radius
inside
radius

f x  x=

1–

x 1+x2 1+

EXAMPLE 5.22 Determine the volume of the solid obtained
by rotating the finite region enclosed by the
graphs of the functions  and

 about:

(a) The x-axis          (b) The line  

f x  x=

g x  x2=

y 1–=

x x2= x2 x– 0 x x 1–  0 x 0 1= = =

V  x 2 x2 2–  xd
0

 1 
  x2 x4–  xd

0

 1 
= =

 x3

3
----- x5

5
-----– 

 

0

1

 1
3
--- 1

5
---– 

  2
15
------= = =

outside radius inside radius

outside radius inside radius

V  x 1+ 2 x2 1+ 2–  xd
0

 1 

  x4– x2– 2x+  xd
0

 1 

= =

 x5

5
-----– x3

3
-----– x2+ 

 

0

1
7
15
------= =
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If you take the region at the top of Figure 5.7(a) and revolve it about
the y-axis you will generate the solid S, with the shaded rectangular
region giving rise to the indicated canister below it. By snipping open
that canister [Figure (b)] and then flattening it out [Figure (c)] we arrive
at a formula for the indicated volume .]

Figure 5.7

Stacking all of the canisters (one inside of another) you will arrive at a
solid resembling S. Clearly, by making the partition finer and finer,  the
sum of the volumes  of the stacked canisters will get closer and
closer to the volume of the solid S. All of which brings us to:

Summarizing:

Answer: 
768

7
------------ CHECK YOUR UNDERSTANDING 5.21

Determine the volume of the solid obtained by rotating, about the x-
axis, the finite region enclosed by the y-axis, the line , and the

graph of the function .

THE SHELL METHOD 

y 8=

f x  x3=

V

a b

x 2x

f x 

g x 

f x  g x –

x

(a)                                     (b)                                              (c)

V 2x f x  g x – x=S

VOLUME OF A SOLID OF REVOLUTION (Shell Method)

Let f and g be continuous over the interval  with .
The volume of the solid obtained by rotating, about the y-axis, the
region bounded above by  the graph of the function f, below by the
graph of g, and on the sides by  and , is given by:

V

Volume S  2x f x  g x – x

a

b

x 0
lim 2 x f x  g x –  xd

a

b

= =

a b  f x  g x 

x a= x b=

V 2 x f x  g x –  xd
a

b
=
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SOLUTION:      (Without words)

The cross sections of a solid need not be disks, but if you can find the
area of its cross-sections, then you may still be able to determine its
volume. Consider the following example. 

EXAMPLE 5.23 Use both the shell and the washer method to
find the volume obtained by generating the
finite region bounded by the graphs of the

functions  and  about
the y-axis.                

f x  x= g x  x2=

Shell Method Washer Method

y x2=

y x=

V 2 x x x2–  xd
0

1

 3
10
------= =

1

x

V 2x x x2– x=

Sum the volume of hollow cylinders

0

Volume of
hollow cylinder

x y2=

0

y

x y=

1
V  y 2 y2 2– y=

V  y 2 y2 2–  yd
0

1

 3
10
------= =

Sum the volume of washers

Volume of washer

x x2= x x4= x x3 1–  0 x 0 1= =

Answer: 3
2

------

CHECK YOUR UNDERSTANDING 5.22

Use both the shell and the washer method to find the volume obtained
by rotating about the y-axis the finite region bounded above by the

parabola , below by the line , on the left by the y-

axis and on the right by the line . 

VOLUMES BY SLICING 

EXAMPLE 5.24 A pyramid of height 20 feet is such that its
cross-section perpendicular to its altitude a
distance x feet from its vertex is a square

with side of length  feet. Find the volume

of the pyramid.

y x– 2= 4+ y 2=

x 1=

x
2
---
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SOLUTION: 

For any given partition of the interval  we can obtain an
approximation for the volume of the pyramid: 

By definition:

In general:

SEE THE PROBLEM

x

cross section

x
2
---

20 ft.
x

x

A
x
2
--- 
  2

= V Ax x2

4
-----x=

 approximately
since the square on the top is
a bit smaller than the one on the
bottom — a discrepancy which
tends to zero as   x 0 .

Note that Definition 5.5 is
a special case of this more
general definition. (How?)

Answer: 

x2

4
----- xd

0

20


1
4
--- x3

3
-----

0

20

 
 
 

=

1
4
--- 203

3
-------- 2000

3
------------= =

4 3
3

----------

DEFINITION 5.6 The volume of a solid with integrable cross-
sections of area  from  to 

is given by .

CHECK YOUR UNDERSTANDING 5.23

Find the volume of a solid with a circular base of radius 1 if the
cross-sections perpendicular to the base are equilateral triangles.

0 20 

V
x2

4
-----x

0

20

 (A Riemann sum!)

V
x2

4
-----x

0

20

x 0
lim

x2

4
----- xd

0

20


2000
3

------------ ft
3

= = =

margin

A x  x a= x b=

A x  xd
a

b
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Exercises 1-3. (Area Between Graph and x-axis) Find the area bounded by the x-axis and the
graph of the function , over the given interval.

Exercises 4-27. (Area Between Curves) Find the area of the finite region bounded by the given
functions and lines.

EXERCISES

1. 2. 3.

4. 5.

6. 7.

8. 9.

10. 11.

12. 13.

14. 15.

16. 17.

18. 19.

20. 21.

22. 23.

24. 25.

26.

27.

f

f x  x– 2 4+ ;  1– 2 = f x  x x;  0 1 += f x  x
x2 1+ 2

----------------------;  0 1 =

f x  x2= ,  y x= f x  x2 2–= ,  y x=

f x  x2 x–= ,  y x= f x  x2 x+= ,  g x  x2 1+–=

f x  x3= ,  y x= f x  x3= 1+ ,  g x  x3 x2+=

f x  x4= ,  g x  x4 2x2– 4+–= y x 3  y– x– 3  x+ 1–= = =

y x 3  y– x– 3  y+ 2x 3––= = = y x y x– 2 x+ 0 x 2= = = =

y x= ,   y x– 1  y+ 0= = f x  x,  y x– 2, y+ 0= = =

f x  1
x2
-----,  y

3
4
---x– 7

4
---+= = y x y x

2
---–= = y x– 2+=

f x  1
x2
-----  y– x y x– 9

4
---–= = = f x  1

x2
-----  y x  x 2= = =

f x  x= ,  g x  4x  y x– 2+= = f x  x3= ,  y x– 2 y+ x 6+= =

f x  2x ,  y x– 1+= = f x  2x ,  g x  x2 1+= =

f x  x
x2 1+ 2

---------------------- y x x– 1= = = f x  x x2 1+= y x y– 2= =

f x  x g x sin x xcos 3
4

------– x 
4
---= = = =

f x  x g x sin x xcos

4
--- x 

2
---= = = =
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Exercise 28-36. (Rotation about the x-axis) Find the volume of the solid obtained by rotating,
about the x-axis, the region bounded above by the graph of the function, below by the x-axis, and
on the sides by vertical lines through the endpoints of the given interval.

37. (Volume of Sphere) Derive the formula for the volume of a sphere of radius r. (Equation of 

the circle of radius r and centered at the origin is given by: .)

Exercise 38-51. (Rotation about the x-axis) Determine the volume of the solid obtained by
rotating, about the x-axis, the finite region enclosed by the graphs of the given functions.

Exercise 52-55. (Rotation about the y-axis) Find the volume of the solid obtained by rotating,
about the y-axis, the finite region enclosed by the graphs of the given functions.

Exercise 56-63. (Rotation about a Line) Find the volume of the solid obtained by rotating,
about the given line, the finite region enclosed by the graphs of the given functions and lines
about the given line.

28. 29. 30.

31. 32. 33.

34. 35. 36.

38. 39.

40. 41.

42. 43.

44. 45.

46. 47.

48. 49.

50. 51.

52. 53.

54. 55.

56. , about 57. , about 

f x  3;  1 3 = f x  x;  1 3 = f x  x2;  1 3 =

f x  x2 1+ ;  0 1 = f x  x2– 2+ ;  0 1 = f x  x2– x+ ;  0 1 =

f x  x2 2+ ;  2– 1 = f x  x;  0 4 = f x  x1 3/ ; 1 8 =

x2 y2+ r2=

f x  x2= ,   y x= f x  x4= ,  y x=

f x  x3= 1+ ,  g x  x3 x2+= f x  x4 1+= ,  g x  x2–= 3+

f x  x4= ,  g x  x4 2x2– 4+–= f x  2
x
---= ,   y x– 3+=

y x= ,   y x– 2  y+ 1 y 2= = = f x  x2= ,   y x 2+=

f x  2
x
---= ,   y x 1,  – x 4= = f x  x2 x 1+ += ,  y x 2+=

f x  x,  y x– 2  x+ 2= = = y 2x 3 y+ x 4 y+ x–= = =

f x  x ysec
4 2 4–


-------------------x 1+= = f x  xsin= y x

2
--- x 

2
---= =

f x  x2= ,   y x= f x  x4= ,  y x=

f x  x3= ,  g x  2x2= f x  2
x
---= ,   y x– 3+=

f x  x2 y= 2x= y 1–= f x  x2 y= 2x= y 4=
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Exercise 64-65. (Rotation about the y-axis) Use both the shell and the washer method to find
the volume obtained by revolving the region S about the y-axis; where

64. S is bounded on the left by the y-axis, on top by the line , and on the right by 

the graph of . 

65. S is bounded on the left by the line , on top by the line , and on the right 

by the graph of . 

Exercise 66-67. (Rotation about the x-axis) Use both the shell and the washer method to find
the volume of the solid obtained by revolving the region S about the x-axis, where:

66. S is bounded on the left by the y-axis, on top by the line , and on the right by 

the graph of . 

67. S is bounded on the left by the line , on top by the line , and on the right 

by the graph of . 

Exercise 68-73. (Slicing) Determine the volume of the given solid.

68. The solid is a 25 foot pyramid whose base is a 10 foot square. 

69. The solid is a pyramid of height h whose base is a square of side l. 

70. The solid is a A pyramid of height 25 feet whose base is a 5 foot by 10 foot rectangle. 

71. The base of the solid is a circular disk of radius r and its cross-sections perpendicular to the 
base are squares.

72. The base of the solid is a circular disk of radius r and its cross-sections perpendicular to the 
base are equilateral triangles.

73. The base of the solid is the ellipse  and its cross-sections perpendicular to the 
base are squares.

74. Two right-circular cylinders of radius r have axes 
that intersect at right angles. Find the volume of the 
region common to the two cylinders.      
Suggestion: Consider the adjacent figure depicting 
one-eighth of the solid in question. 

58. , about 59. , about 

60. , about 61. , about 

62.  about 

63.  about 

f x  x2 y= 2x= x 1–= f x  x2 y= 2x= x 3=

f x  x3= , y x= y 1–= f x  x3= , y x= y 1=

y x y x– 2 y+ 2x–= = = y 1–=

y x y x– 2 y+ 2x–= = = x 1=

y x– 2+=

f x  x2=

x 1= y x– 6+=

f x  x2=

y x– 2+=

f x  x2=

x 1= y x– 6+=

f x  x2=

x2 4y2+ 1=
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 5

The concepts of arc length and work are addressed in this section.
Additional applications are offered in the exercises.

What is the length L of the curve  from  to  in
Figure 5.8(a)? We again know what we are looking for, but still have to
define it. And we are again essentially forced to mold our definition in
accordance with pre-existing expectations. Specifically, we partition
the interval  into a number of pieces  and join their end-
points by the line segments of length , as is done in Figure 5.8(b),

to obtain a polygonal path joining a to b of length  which

appears to approximate the length we seek.   

Figure 5.8

Clearly, the smaller we make those  the better   approxi-

mates that which we are trying to define; forcing us to define:

 

Applying the Pythagorean Theorem to the shaded right triangle in Fig-
ure 5.8(b) enables us to rewrite (*) in the form:

Which can be rewritten in the form (margin):

In the event that the function  is differentiable on :

 

§5. ADDITIONAL APPLICATIONS

We again acknowledge the
fundamental theme for inte-
gral-applications:

FROM CONCEPT
 TO RIEMANN SUM
    TO DEFINITION
        TO APPLICATION

ARC LENGTH

y f x = x a= x b=

a b  xi
Li

Li

a

b



a                             b a                             b
(a)                                                               (b)

L=?

y f x =

x
i

. .
. .

x


y

Li. . . .
.

xis Li

a

b



L Li
a

b

x 0
lim= (*)

x 2 y 2+

x 2 y 2+
x 2

---------------------------------- x 2=

x 2 y 2+
x 2

---------------------------------- x 2=

x 2 y 2+
x 2

---------------------------------- x=

L x 2 y 2+
a

b

x 0
lim=

L x 2 y 2+
x 2

----------------------------------
a

b

x 0
lim x 1

y
x
------ 
  2

+
a

b

x 0
lim x= =

A Riemann Sum!

y f x = a b 
y
x
------

x 0
lim dy

dx
------ f  x = =
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Bringing us to:

SOLUTION: Turning to Definition 5.7:

Alas, even with the techniques
of integration introduced in sub-
sequent sections you will not be
able to evaluate the above inte-
gral; but all is not lost: 

SOLUTION: Turning to , we have:

 

DEFINITION 5.7
    ARC LENGTH

The length of  from  a to b  is:

(assuming that f is differentiable on )

EXAMPLE 5.25 Express, in integral form, the length L of the
graph of the function:

from  to . 

y f x =

L 1 dy
dx
------ 
 2+

a

b

 dx 1 f  x  2+ xd
a

b

= =

a b 

f x  x3 x2+=

x 2–= x 3=

L 1 x3 x2+  2+ xd
2–

3

 1 3x2 2x+ 2+ xd
2–

3

= =

9x4 12x3 4x2+ + 1+ xd
2–

3

=

Answer: 

1 1
4x
------ 1

x5 2/
---------– 1

x4
-----+ + xd

1

5



CHECK YOUR UNDERSTANDING 5.24

Express, in integral form, the length L of the graph of the function:

 from  to . 

EXAMPLE 5.26 Find the length L of the graph of the function

 over the interval .

f x  x 1
x
---+= x 1= x 5=

y x2 2+ 3 2/

3
--------------------------= 1 2 

L 1 dy
dx
------ 
 2

+
a

b

 dx=

y x2 2+ 3 2/

3
--------------------------=

dy
dx
------

1
3
--- 3

2
--- x2 2+ 1 2/ 2x x x2 2+ 1 2/= =

1
dy
dx
------ 
  2

+ 1 x2 x2 2+ + 1 x4 2x2+ += =

x2 1+ 2 x2 1+ x2 1+= = =
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In this case, we are able to finish the job by hand:

    

Work is a measure of the energy expended by a force in moving an
object from one point to another. The work done when a constant force
F causes an object to move a distance d in the direction of the force, is
given by:

As for units:
IN THE METRIC SYSTEM:

The unit of force is the newton, with one newton (N) being
defined to be the force required to effect an acceleration of

one meter-per-second-squared  on an object of

mass one kilogram : .

If F is measured in newtons and d in meters, then
the unit for W is a newton-meter, or joule (J).

IN THE US (CUSTOMARY) SYSTEM: 
The unit of force is the pound (lb).

If F is measured in pounds and d in feet, then the
unit for W is a foot-pounds (ft-lb).

Assume now that a variable force  (not necessarily constant) is
acting on an object in a linear direction from a point a to a point b. How
should work be defined in this situation? Like this:

L 1  
dy
dx
------   

 2+
1

2

 dx x2 1+ 
1

2
 d x  x3

3
----- x+

1

2
10
3
------= = = =

Answer: 13
6
------

CHECK YOUR UNDERSTANDING 5.25

Find the length L of the graph of the function  over

the interval .

WORK

y
4 2

3
----------x3 2/ 1–=

0 1 

W Fd   (work force distance)= =

Conversion formulas that
relate kilograms to pounds
are really comparing apples
to oranges:
A pound is a measure of
force while a kilogram is
a measure of mass. Your
weight on earth (a force)
will differ from your
weight on the moon,
while your mass remains
constant. 

So, what   is the unit for
mass in the US system? The
slug, with:

1pound 1 slug  1 f t

s2
----- 

 =

Warning: While 50 newtons is a force, 50 kilograms
is NOT a force. To convert 50-kilograms to newtons

(on earth), you need to multiply it by :

 

On the other hand: 50 pounds is already a force.

m s2 

kg  1 N 1 kg  1 
m
s2
---- 

 =

9.8
m
s2
----

50kg 50 9.8 N=

mass         force

f x 
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Partition the interval  into a number of subintervals of
length . If  is relatively small, then we are justified in
assuming that the force acting on the object throughout that
small interval is essentially the constant: , where  is

some chosen point in  (see Figure 5.9). It is therefore rea-

sonable to stipulate that the work  required to move the

object through the interval  can be approximated by

. 

Figure 5.9
We can all agree that the approximation will improve as we make the

partition finer and finer; forcing us to:
We can all agree that the approximation will improve as we make the

partition finer and finer; forcing us to:

In the following example we invoke Hooke’s Law which asserts that
the force required to maintain a spring’s position when stretched or
compressed x units beyond its natural length is proportional to x:

, where k, called the spring constant, is measured in force
units per unit length.

SOLUTION: We begin by finding the spring constant k:

Turning to Definition 5.8 and Hooke’s Law:

DEFINITION 5.8 The work done by a continuous force 
along the x-axis from  to  is:

a b 
xi xi

f xi  xi

xi

Wi

xi

Wi f xi xi

a                                                             b

xi
xi
.

Wi f xi xi

f x 
x a= x b=

W f xi xi
a

b

x 0
lim f x  xd

a

b

= =

A Riemann Sum

Hooke’s law remains in
effect providing x is
not “too large.” 

EXAMPLE 5.27 A spring has a natural length of  meter. Deter-

mine the amount of work it will take to stretch
the spring to 1 meter, if a force of 25 newtons

stretches the spring to a length of  meters. 

f x  kx=

1
2
---

3
4
---

Note on units:

W kxxi
1
2
---

1

x 0
lim=

N
m
---- m m 

N m J= =

25 k 3
4
--- 1

2
---– 

  1
4
---k= =

k 100 N m=

force k displacement :=

W f x  xd
0

1
2
---

 100x xd
0

1
2
---

 50x2
0

1
2
---

50
4
------ 0–

50
4
------ J= = = = =
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SOLUTION: Cut the 12 foot chain into  pieces and lift those pieces
to arrive at the hanging chain in Figure 5.10. Since the  piece

weighs , the work done in lifting it a (verti-

cal) distance of , is given by .     

Figure 5.10
Bringing us to:

Answers: (a) 

                 (b) 

1
16
------ ft-lb

1
2
--- ft-lb

CHECK YOUR UNDERSTANDING 5.26

A spring exerts a force of 1 pound when stretched  foot beyond its
natural length. 
(a) What is the work done in stretching the spring  ft beyond its

natural length?
(b) What is the work done in stretching it an additional  foot?

EXAMPLE 5.28 A 12 foot chain that weighs 2 pound per foot
is lying on the ground. Determine the work
done in lifting the chain so that it hangs from
a beam that is 15 feet high. 

1
2
---

1
4
---

1
2
---

“Approximately” since
only the point in   that
is exactly x units from
the indicated end-point
of the chain is lifted pre-
cisely   feet.

x

15 x–

x
x

x ft  2
 lb
ft
------ 

  2x lb=

d 15 x ft–= W 2x 15 x–  ft-lb

                                               

x

 

x

lif
ted

 15 - x
 ft

15

.

.
12 ft

x

x

15 x–

Answer: 3072 ft-lb 

CHECK YOUR UNDERSTANDING 5.27

A 100 pound bag of sand is lifted for 8 seconds at the rate of 4 feet
per second. Find the work done in lifting the bag if the sand leaks out
at the rate of 1 pound per second.

W 2 15 x– x

0

12

x 0
lim 30 2x–  xd

0

12

 216 ft-lb= = =

A Riemann Sum
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SOLUTION: The adjacent water-disk of volume

  is to be lifted a dis-
tance of  m, where  is some chosen point in
the interval . Here is the mass of that disk:

Here is the force needed to overcome the force
of gravity in order to lift that mass (see margin):

Here is the work done in lifting the indicated  water-disk  meters:

  

And here is the total work done to empty the entire tank:

EXAMPLE 5.29 A vertical cylindrical tank of radius 2 m and
height 6 m is full of water. Find the work
done in pumping out all of the water from an
outlet at the top of the tank. (The density of

water is .) 1000 kg m
3

As previously noted,
while pound is a unit of
force, gram is not — it is
a unit of mass. Invoking
Newton’s Law: .
Here, the acceleration is a
consequence of the force
of gravity which, near the
surface of the earth, is

approximately .

Answer: 

F ma=

9.8 m s
2

17,150 J

CHECK YOUR UNDERSTANDING 5.28

An inverted circular cone of height 3 m and
radius 1 m is filled with water. Find the work
done in pumping out all of the water from 1
m above the top of the tank.

(The density of water is .)

x

2

6
x

 22 x 4x m
3

=
x x

x

4x m
3

1000
 kg

m
3

------- 4000x kg=

4000x kg  9.8
 m

s
2

------ 
  4000 9.8 x N=

newton

x

W 4000 9.8 x x J
joule

W 4000 9.8 xx

0

6

x 0
lim 39200 x xd

0

6

= =

A Riemann Sum

39200 x2

2
-----

0

6

 
 
 

=

39200 36
2
------ 
  2.2 106   J=

3

1 1

1000 kg m
3
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Exercises 1-6. (Arc Length) Express, in integral form, the length L of the graph of the function
over the specified interval. Use a graphing calculator to approximate L to two decimal places.

Exercises 7-12. (Arc Length) Determine the length L of the graph of the function over the spec-
ified interval.

13.  (Arc Length) Express, in integral form, the length of the perimeter of the ellipse .

14.  (Arc Length) Express, in integral form,  the length of a cycle of the sine curve. 

15.  ( ) Apply the arc length formula  to the unit circle  to 

show that .

Exercises 16-30. (Work) 

16. A spring is found to exert a force of 10 lb when stretched 4 in. beyond its natural length. 
(a) Find the work done in stretching the spring 1 ft from its natural length.

(b) Find the work done in compressing  the spring 5 in. from its natural length.

17. A spring is found to exert a force of 25 N when compressed 200 cm beyond its natural
length. 
(a) Find the work done in stretching the spring 100 cm from its natural length.

(b) Find the work done in compressing the spring 50 cm from its natural length.

(c) How far will a force of 10N stretch the spring? 

18. A spring has a natural length of 1 ft. A force of 8 oz. stretches the spring to a length of  ft.

(a) Find work required to stretch the spring to 1 ft beyond its natural length.

(b) How far will a force of 1 lb stretch the spring?  

EXERCISES

1. 2. 3.

4. 5. 6.

7. 8.

9.  10.  

11.   

     Suggestion: See Theorem 5.7, page 178.

12.    

      Suggestion: See Theorem 5.7, page 178.

y x2   1 x 5 = y
1

2x 3+
---------------  1 x 3 –= y 2x 5– 4 x 9 =

y xsin 0 x 2 = y 3x2 4x 5–+ 2– x 2 = y x xcos 
2
---– x 0 =

f x  x3 2/   0 8 = f x  4 x2 3/– 3 2/   0 1 =

y x3

3
-----= 1

4x
------+  1 2  Note: 1

dy
dx
------ 
  2

 turns+

out to be a perfect square
y x4

4
-----= 1

8x2
--------+  2 3  Note: 1

dy
dx
------ 
  2

 turns+

out to be a perfect square

y t2 1–
1

x
  dt=  1 2  y t 1–  td

1

x
=  2 3 

x2

a2
----- y2

b2
-----+ 1=

 L 1 f  x  2+ xd
a

b
= x2 y2+ 1=

1

1 x2–
------------------ xd

1–

1
 =

3
2
---
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19. Find the natural length of a spring, given that the work done in stretching it from a length of
2 feet to a length of 3 feet is one-half the work done in stretching it from a length of 3 feet
to a length of 4 feet.

20. A spring has a natural length of 1 m. A force of 12 N compresses the spring to a length of
0.7 m.
(a) Find the work required to stretch the spring to 0.4 m beyond its natural length.

(b) How far will a force of 10 N compress the spring? 

21. Find the natural length of a spring, given that the work done in compressing it from a length
of 1 m to a length of 75 cm is twice the work done in stretching it from a length of 1 m to a
length of 2 m.

22. Find the natural length of a spring given that the work done in stretching it from a length of
1 ft to a length of 1.5 ft is half the work done in stretching it from a length of 1.5 ft to a
length of 2 ft.

23. Given that a work W is needed to stretch a spring from its natural length l ft to a length of
 ft, find the work done in stretching the spring from a length of  ft to a length of

 ft.
24. A vertical cylindrical tank of radius 2 feet and height 6 feet is full of water. (Water weighs

62.5 pounds per cubic foot.) Find the work done in:
(a) Pumping out all of the water from an outlet at the top of the tank.

(b) Pumping out all of the water from an outlet that is 1 foot above the top of the tank. 

(c) Pumping out half of the water from an outlet at the top of the tank.

25. An inverted circular cone of height 3 ft and radius 1 ft is filled with a liquid weighing

. Find the work done in: 
(a) Pumping out all of the liquid from an outlet at the top of the tank.

(b) Pumping out all of the liquid from an outlet that is 1 foot above the top of the tank. 

(c) Pumping out half of the liquid from an outlet at the top of the tank.

26. A chain lying on the ground is 5 m long and has a total mass of 50 kg. How much work is
required to raise the chain to a height of  7 m?

27. A 25 foot rope weighs  is lying on the ground. How much work is required to raise
the rope to a height of 30 ft?

28. A 40 ft cable weighing   hangs from a windlass. How much work is required in
winding up 25 ft of the cable?

29. A bucket of sand that weighs 50 pounds hangs from a 20 foot cable that is attached to a
beam that is 75 feet above the ground. Find the work done in lifting the bucket to the beam
if the cable weighs 2 pounds per foot.

30. A bucket that weighs 50 lb is attached to the end of a 15 foot rope lying on the ground
weighing . The rope is lifted and attached to a 30 ft beam. Initially the bucket con-
tained 25 lb of liquid which is leaking out at a constant rate. How much work is done if:
(a) All of the liquid finishes draining just when the bucked reaches its final destination?

(b) All of the liquid finishes draining when the bucket is 10 ft from the ground?

l a+ l a+

l 2a+

6 oz in
3

4 oz ft

2 lb ft

3 oz ft



216     Chapter 5    Integration
Exercises 31-36. (Center of Mass (Gravity) [On Line]) The center of mass of an object (or sys-
tem of objects) is the point at which the object (or system of objects) would balance if positioned
at a the head of a pin positioned at that point.
Consider the seesaw in the adjacent figure with indicated masses

. In accordance with the lever law of physics, balance will occur

if . Consequently, the center of mass occurs at the point 

where . More generally, if n masses,  are positioned along the

x-axis at points , then the center of mass occurs at that point  satisfies the equation

 

Generalizing further, if  is the density function (mass per unit of
length) of a rod of length l then its center of mass is given by 

31. Find the center of mass of a system consisting of a 10 pound weight at  and a 15

pound weight at .

32. Find the center of mass of a system consisting of a 10 pound weight at , a 15 pound

weight at , and a 2 pound weight at 

33. A system consists of a 10 pound weight at  and a 15 pound weight at . What

size weight needs to be positioned at  for the center of gravity of the system to be at

?

34. A system consists of a 10 pound weight at  and a 15 pound weight at .
Where should a 5 pounds weight be positioned in order for the center of gravity to occur at

?

35. The density of a 10 foot rod, as measured from end-point A, is given by .

Find the rod’s center of mass. 

36. The density of a 7 meter rod, as measured from end-point A, is given by .

Find the rod’s center of mass. 

m1
m2d1 d2

x2x1 x
m1 m2

m1d1 m2d2= x

mi xi x– 
i 1=

2

 0= m1 m2  mn  

x1 x2  xn   x

mi xi x– 
i 1=

n

 0 mixi

i 1=

n

 x mi

i 1=

n

– 0 x

mixi

i 1=

n



mi

i 1=

n



--------------------= = =

0                                             
x

.
can be approximated by
a point of mass  x x

l
 x 

 x x  x x– 

0

l

x 0
lim x x–  x  xd

0

l

 0= =

x x  x x  x  xd
0

l

–d
0

l

 0 x
x x  xd

0

l



 x  xd
0

l


-------------------------==

x 5–=

x 3=

x 5–=

x 3= x 7=

x 5–= x 3=

x 7=

x 0=

x 5–= x 3=

x 1=

 x  1
x

10
------ lb

ft
----+=

 x  2
x
5
---kg

m
------+=
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Exercises 37-39. (Center of Mass (Gravity) [In Plane]) Generalizing the mass-concept to a sys-
tem of n points  in the plane with respective masses 

we find that the system has center of mass  is given by the equations:

37. Determine the center of mass of a system consisting of ten pounds at , twenty pounds

at , and four pounds at .

38. A system consists of ten pounds at , twenty pounds at , and four pounds at

. What size weight needs to be positioned at the origin for the center of gravity of
the system to be at the origin?

39. A system consists of ten pounds at , twenty pounds at , and four pounds at

. Where should a five pound weight be positioned in order for the center of mass of
the system to be at the origin?

Exercises 40-45. (Center of Mass (Gravity)) Let  over the
interval . To determine the center of mass of a region of uniform
density  that is bounded above by the graph of f, below by the graph of
g, and on the sides by the vertical lines  and , we proceed as
follows. Partition the region with vertical strips of base  and height

. Next, concentrate the mass  of that strip at , where 

and  (half-way up the strip). Returning to the formulas for  and  in (*) of

Exercises 37-39 we see that:

Find the center of mass of the finite region bounded by the graphs of the given functions and lines.
Assume that the region is of uniform density. 

40. 41.

42. 43.

44. 45.

x1 y1  x2 y2   xn yn    m1 m2  mn  
x y 

x

mi xi

i 1=

n



mi

i 1=

n



--------------------= y

mi yi

i 1=

n



mi

i 1=

n



--------------------= (*)

1 3 
2 2–  1 8– 

1 3  2 2– 
1 8– 

1 3  2 2– 
1 8– 

a b

f

g
x

. f x  g x +
2

----------------------------

f x  g x 
a b 


x a= x b=

x
f x  g x – f x  g x – x x y  x x

y f x  g x +
2

--------------------------= x y

x

x f x  g x –  xd
a

b



f x  g x –  xd
a

b


-----------------------------------------------    and    y

1
2
--- f x  2 g x  2–  xd

a

b



f x  g x –  xd
a

b


-----------------------------------------------------------------=    =

f x  x2 y 0 x 0 x 2= = = = f x  x2 y 0 x 0 x 1= = = =

f x  x g x  x4= = f x  x g x  x2= =

f x  4 x2– g x  x2

4
----- 1–= = f x  2 x g x  x= =
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Exercises 46-54. (Fluid Force) If a tank contains a fluid weighing ,   then the pressure

exerted by the fluid at depth d is  in all directions. In particular the fluid force on a

horizontal surface of area A at depth d is  pounds (equal to the weight of the column of
fluid above the surface).

Consider, now, a vertical surface submerged in a fluid of constant
weight-density . Partitioning  in the usual way we find the force

on the indicated horizontal strip: ; leading us to

the formula for the fluid force exerted on the submerged surface:

Determine the fluid force on the indicated vertical region when submerged in a liquid of weight-
density w (in pounds per square feet).

52. Find the force on a circular gate of diameter 4 ft in a vertical dam where the center of the

gate is 20 ft below the surface if the water. 

53. A swimming pool is 20 ft wide. The water is 3 ft deep at one
end at 10 ft deep on the other end. Find the force of the water on

one of the 20 ft sides.  

54. Show that if a vertical surface descends vertically at a constant rate, then the fluid force on
the surface increases at a constant rate.

46. 47. 48.

49. 50. 51.

w lb ft
3

wd lb ft
2

wd A

Fluid surface

y

b

a
L y 

y
w a b 

F wyL y y

}area of strip

depth of strip

F F

a

b

y 0
lim w yL y  yd

a

b
= =

2 ft

6 ft

3 ft

1 ft

4 ft

3 ft

2 ft

5 ft

5 ft

5 ft

2 ft

6 ft

6 ft6 ft

5 ft

2 ft 2 ft

2 ft            2 ft 12 ft

6 ft

16 ft
4 ft

Weight density of water 62.4
lb

ft
3

------ 
 

10 ft

20 ft
3 ft

Weight density of water 62.4
lb

ft
3

------ 
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CHAPTER SUMMARY

ANTIDERIVATIVE An antiderivative of a function f  is a function whose deriv-
ative is f.

INDEFINITE INTEGRAL The collection of all antiderivatives of f is denoted by
. In other words

THEOREMS
 (if )

DEFINITE INTEGRAL A function f is said to be integrable over the interval 

if  exists. In this case, we write:

and call the number  the integral of  f over .

In addition:  for any function containing a in

its domain.

THE PRINCIPAL THEOREM

OF CALCULUS

If f is continuous on  then the function  given by

 is continuous on  and differentiable

on , with .

f x  xd
f x  xd g x  C+=

xr dx xr 1+

r 1+
----------- C+= r 1–

xsin xd x C+cos–=

xcos xd x C+sin=

sec
2
x xd x C+tan=

csc
2
x xd xcot– C+=

x x xdtansec xsec C+=

xcsc x xdcot xcsc– C+=

a b 

f x  x
a

b

x 0
lim

f x  xd
a

b

 f x  x

a

b

x 0
lim=

f x  xd
a

 b
 a b 

f x  xd
a

a

 0=

a b  T

T x  f t  td
a

 x

= a b 

a b  T  x  f x =
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THE FUNDAMENTAL

 THEOREM OF CALCULUS

If f is continuous on  and if  , then: 

THEOREMS

 for any constant c.

 (for )

NET CHANGE FROM  RATE

OF CHANGE

The net-change from  to  is given by: 

U-SUBSTITUTION METHOD If  , then:   

To soften the appearance of the above result, one makes the
substitution:  to arrive at:

AREA BETWEEN CURVES Let f and g be continuous over the interval . The area
between the graph of those functions between  and

 is given by:

 

VOLUME OF A SOLID OF
REVOLUTION

(DISK METHOD)

Let f be nonnegative and continuous over the interval
. The volume of the solid obtained by rotating, about

the x-axis, the region bounded above by the graph of the
function f, below by the x-axis, and on the sides by 

and , is given by:

a b  g x  f x =

f x  xd
a

 b

 g b  g a –=

f x  g x +  xd
a

 b

 f x  x g x  xd
a

 b

+d
a

 b

=

f x  g– x   xd
a

 b

 f x  x g x  xd
a

 b

–d
a

 b

=

cf x  xd
a

 b

 c f x 
a

 b

=

f x  xd
a

 b

 f x  xd
a

 c

= f x  xd
c

 b

+ a c b 

x a= x b=

Net- change f  x  xd
a

 b

=

F x  f x =

 f g x  g x  xd F g x   C+=

u g x =

 f u  xd F u  C+=

 f g x   g x  xd F g x   C+=

a b 
x a=

x b=

A f x  g x –
a

 b

 dx=

a b 

x a=

x b=

V  f x  2 xd
a

 b

=
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VOLUME OF A SOLID OF
REVOLUTION
(WASHER METHOD)

Let f and g be nonnegative and continuous over the interval
 with . The volume of the solid obtained

by rotating, about the x-axis, the region bounded above by
the graph of the function f, below by the graph of g, and on
the sides by  and , is given by:

VOLUME OF A SOLID OF
REVOLUTION
(SHELL  MEHTOD)

Let f and g be continuous over the interval  with

. The volume of the solid obtained by rotating,
about the y-axis, the region bounded above by  the graph of
the function f, below by the graph of g, and on the sides by

 and , is given by:

ARC-LENGTH The length of  from  a to b  is:

WORK The work done by a continuous force  along the x-axis
from  to  is:

a b  f x  g x 

x a= x b=

V  f x  2 g x  2–  xd
a

 b

=

a b 
f x  g x 

x a= x b=

V 2 x f x  g x –  xd
a

b

=

y f x =

L 1 dy
dx
------ 
 2+

a

b

 dx 1 f  x  2+ xd
a

b

= =

f x 
x a= x b=

W f x  xd
a

b

=
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 6

CHAPTER 6
ADDITIONAL TRANSCENDENTAL FUNCTIONS 

 

The familiar integration formula 

is a meaningless expression if  (why?). Fine, but since for any

 the function  is continuous throughout its domain, we

know that  yields a number for any  (see margin). This

number is denoted by . Formally:

Thinking in terms of area, and recalling that ,

we note that  is negative for  (see margin). Continuing to
think in terms of area we obtain the (anticipated) graph of : 

Figure 6.1

The above graph suggests that the derivative of the natural logarith-

mic function is positive throughout its domain. But what is ?

Here is the answer: 

§1. THE NATURAL LOGARITHMIC FUNCTION

y

t1             x

y 1
t
---=

area xln=

x  1

xln area –=

DEFINITION 6.1 The natural logarithmic function, denoted
by , has domain  and range

, and is given by:

THEOREM 6.1

xr dx xr 1+

r 1+
----------- C+=

r 1–=

x 0 f t  1
t
---=

1
t
--- td

1

x

 x 0

xln

xln 0  
–  

xln
1
t
--- td

1

x

=

f x  xd
a

b
 f x  xd

b

a

–=

xln 0 x 1 
xln

0 1
.

y xln=

y

x

not in the domain of xln

1

e

Note: 
  
e 2.718 is, by definition,
that number such that eln 1.=
  
 why is 1ln 0?=

d
dx
------ xln

d
dx
------ xln 1

x
---=



224     Chapter 6    Additional Transcendental Functions
PROOF: A direct consequence of the Principal Theorem of Calculus
(page 178).

As was anticipated,  is positive throughout the domain of

. Figure 6.1 also suggests that the graph of  is concave down
throughout its domain; and it is:

SOLUTION: 

(a) 

(b) 

Does the expression  make sense? Sure, as long as  [for the
natural logarithmic function is defined for all positive (real) numbers].
We can say more:

PROOF: Case 1: .

EXAMPLE 6.1 Differentiate the given function.

(a)       (b) 

xln  1
x
---=

xln xln

xln  1
x
--- 
  x 1–  1x 2––

1
x2
----- 0–= = = =

f x  xsin ln= g x  xln sin
x2

---------------------=

f x   xsin ln  1
xsin

---------- xsin  1
xsin

---------- xcos xcot= = = =

 
the chain rule: (ln      )   1  ---------       =

Answer: 
(a) 

(b) 

(c) 

3x2 x2ln 2x2+

x 2xsec
2
x xtan–ln

x 2xln 2
---------------------------------------------

1
x xln
-----------

CHECK YOUR UNDERSTANDING 6.1

Differentiate the given function:

      (a)                      (b)                   (c) 

d
dx
------ xln sin

x2
--------------------- x2 xln sin  xln sin  x2 –

x4
-----------------------------------------------------------------------------=

x2 xln  xln cos  xln sin  2x–
x4

----------------------------------------------------------------------------------------------=

x2 xln  1
x
---cos xln sin  2x–

x4
-----------------------------------------------------------------------------------=

xln  2 xln sin–cos
x3

----------------------------------------------------=

x3 x2ln
xtan

2xln
----------- xln ln

THEOREM 6.2 For any :

xln x 0

x 0
d
dx
------ xln 1

x
---=

x 0
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Case 2: .

Turning Theorem 6.2 around, we have:

SOLUTION: 

(a) 

(b) 

You were exposed to logarithmic functions of base b in precalculus, at
which time you encountered the following logarithmic properties:

d
dx
------ xln

d
dx
------ xln 1

x
---= =

Theorem 6.1

x 0

d
dx
------ xln  d

dx
------ x– ln

1
x–

----- x–  1
x–

----- 1–  1
x
---= = = =

chain rule

So, the “ugly duckling”
 can finally boast of

having an antideriva-
tive: . 

x 1–

xln

THEOREM 6.3

EXAMPLE 6.2 Determine:

    (a)              (b) 

1
x
--- xd x C+ln=

x2

x3 1+
-------------- xd

xln
x

-------- xd
1

e


x2

x3 1+
-------------- xd

1
3
--- 1

u
--- ud

1
3
--- u C+ln

1
3
--- x3 1+ C+ln= = =

u x3 1+=

du 3x2dx=

x2dx
1
3
---du=

xln
x

-------- xd
1

e
 u ud

0

1
 u2

2
-----

0

1
1
2
---= = =

u xln=

du
1
x
---dx=

when x 1 u 1ln 0= = =

when x e u eln 1= = =

Answer:

(a) 

(b) 

7
5
--- 5x 2+ C+ln

5ln ln

CHECK YOUR UNDERSTANDING 6.2

Perform the indicated operation:

              (a)                                    (b) 
7

5x 2+
--------------- xd xd

x xln
-----------

e

5


logb xy logb x logb y+=

logb
x
y
-- logb x logb y–=

logb xr rlogb x=
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That’s all well and good, except for the fact that one needs the calculus
to define the general logarithmic functions . This we shall do in
Section 3. For now: 
   

PROOF: We establish (a), and ask you to prove (b) in CYU 6.3. You
are invited to verify (c) for r a rational number in the exercises (see
margin). 

(a) Consider the function , where a is an arbitrary positive
constant. Note that :

 

It follows from CYU 4.3, page 124, that  and  can only
differ by a constant: 

Evaluating the above equation at  we find that:

Returning to (*) we have: .

Replacing the arbitrary positive constant a with the variable y
brings us to: .

Here are four additional basic integration formulas for your consider-
ation: 

logb x

A general proof of (c) is
offered in Section 3, fol-
lowing the formal defini-
tion of .

  

xr

Note:

52 3/ 51 3/ 2 52 1 3/= =

but what is 5?

THEOREM 6.4 For any positive numbers x and y and any real
number r:
(a) 

(b) 

(c) 

xyln x yln+ln=
x
y
--ln x yln–ln=

xrln r xln=

axln
axln  xln =

axln  1
ax
------ ax  1

ax
------ a 1

x
---    and   xln  1

x
---= = = =

axln xln

axln x c+ln= (*)

x 1=

aln 1 c+ln= c a  (since 1lnln 0)= =

axln x aln+ln=

Answer: See page A-33.

CHECK YOUR UNDERSTANDING 6.3

Use Theorem 6.4(a) and (c) to verify Theorem 6.4(b).          

THEOREM 6.5 (a) 

(b) 

(c) 

(d) 

xyln x yln+ln=

xtan xd xsec C+ln=

xcot xd xcsc C+ln–=

xsec xd x xtan+sec C+ln=

xcsc xd xcsc xcot+ C+ln–=
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PROOF: (a) 

        (c) 

SOLUTION: Since the function f is nonnegative throughout the inter-
val :

We establish (a) and (c)
and invite you to verify
(b) and (d) below.

xtan xd
xsin
xcos

----------- xd
1
u
--- ud– u C+ln–= = =

xcos C+ln–=

xcos 1–ln C+=

xcos  1–ln C+=

xsec C+ln=

u xcos=

du xdxsin–= Theorem 6.4(c):

xsec xd x
x xtan+sec
x xtan+sec

----------------------------sec xd=

sec
2
x xtansec+

x xtan+sec
--------------------------------------- xd ud

u
------= =

u C+ln=

x xtan+sec C+ln=

a clever 1

u x xtan+sec=

du sec
2
x xtansec+ dx=

Answers: See page A-33.

CHECK YOUR UNDERSTANDING 6.4

Establish:

(a)       (b) 

EXAMPLE 6.3 Determine the area A of the region bounded

above by the function , below

by the line  and on the sides by the y-
axis and the line .

xcot xd xcsc C+ln–= xcsc xd xcsc xcot+ C+ln–=

f x  x
x2 1+
--------------=

y 1–=
x 1=

0 1 

A x
x2 1+
-------------- 1– – 
  xd

0

1


x
x2 1+
-------------- 
  x 1 xd

0

1
+d

0

1
= =

 1
2
--- ud

u
------

1

2
= x

0
1

+

1
2
--- uln

1
2  1+=

1
2
--- 2 1ln–ln  1+

1
2
--- 2 1+ln= =

dominant    subordinate

u x2= 1+

du 2xdx=

when x 0 u 1= =

when x 1 u 2= =

1ln 0=
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SOLUTION: 

At this point we have: . Hence:

Final answer: .

Answer:  4 e 3– 

CHECK YOUR UNDERSTANDING 6.5

Find the volume obtained by revolving the region that lies above the

interval  and below the graph of the function ,

about the line .             

EXAMPLE 6.4 Solve the second-order differential equation

, if  and .

1 e  f x  1

x
------=

y 1–=

f  x  1
x2
----- x2+= f  1  1

3
---= f 1  3=

f  x  1
x2
----- x2+ 
  xd x 2– x2+  xd x 1–

1–
------- x3

3
----- C+ += = =

1
3
--- 1– 1

3
--- C+ += C 1=since f  1  1

3
---:=

f  x  1
x
---– x3

3
----- 1+ +=

f x  1
x
---– x3

3
----- 1+ + 

  xd x x4

12
------ x C+ + +ln–= =

3 1  1
12
------ 1 C+ C+ +ln– 23

12
------= =since f 1  3:=

0

f x  x x4

12
------ x 23

12
------+ + +ln–=

Answer:

 f x  1
2
--- 2x 1+ln= x2 x 1+ + +

CHECK YOUR UNDERSTANDING 6.6

Solve the differential equation  if . f  x  1
2x 1+
--------------- 2x 1+ += f 0  1=
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Exercise 1-18. (First Derivative) Differentiate.

Exercise 19-24. (Second  Derivative) Determine .

Exercise 25-26. (Composite Functions) Determine the derivative of the composite function.

                                                       if: 

Exercise 27-30. (Tangent Line) Determine the tangent line to the graph of the given function at
the indicated point. 

31. (Point of Tangency) Find the point on the graph of  at which the tangent line
passes through the origin.

Exercise 32-42. (Integration) Evaluate.

EXERCISES

1. 2. 3.

4. 5. 6.

7. 8. 9.

10. 11. 12.

13. 14. 15.

16. 17.
18.

19. 20. 21.

22. 23. 24.

25. 26.

27.  at 28.  at 29.  at 

30. (Implicit Differentiation)   at 

32. 33. 34.

35. 36. 37.

h x  x3 xln= f x  x x3ln= h x  x2 xln 2+ln=

g x  x x3ln 4= g x  x xlnsin= h x  xln cos=

f x  xcos ln= h x  x 1+ ln ln= f x  xsin
xln

----------=

f x  xln
xsin

----------= f x  x2 1+ ln 2= h x  sin
2
x xln=

h x  x xln= f x  xln tan= f x  xsec ln=

g x  xln= f x  x2ln sin=
f x  x x xlnsin=

d2y
dx2
--------

y xln= y x xln= y x
xln

--------=

y x2 xln 2= y x xln= y tln td
1

x
=

(a)  gf  x  (b)  fg  x  (c)  ff  x  (d)  gg  x 

f x  3x2 x  and  g x + xln= = f x  1
2x
------  and  g x  x 1+ ln= =

y 2 xln= x 1= y x xln= x 1= y xsin ln= x 
2
---=

x2 yln x2 2y3–+ 1–= 1 1 

f x  xln=

x2 x– 5+
x2

----------------------- xd
x2

x3 2+
-------------- xd

xsin
xcos 1+

--------------------- xd
xd

x x2ln
------------- xln sin

x
--------------------- xd

xln cos
x

---------------------- xd
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Exercise 43-46. (Differential Equation) Solve for . 

Exercise 47-48. (Graphing) Sketch the graph of the given function. 

49. (Area) Determine the area A of the region bounded above by the graph of the function , 

below by the line , and on the sides by the vertical line  and . 

50. (Area) Determine the area A of the region that lies above the interval  and below the 

graph of the function . 

51. (Volume) Find the volume obtained by revolving the finite region bounded by the graphs of 

the functions , , and the line  about the x-axis.

52. (Learning Curve) A study has shown that the number, , of words per minute that an 
individual can type, after t hours of practice, is given by:

Determine the rate of change of  after:
      (a) 10 hours of practice.                             (b) 100 hours of practice. 

53. (Work) Determine the work done by a force of  N along the x-axis from  to .

54. (Arc Length) Find the length L of the graph of the function  over the interval 

.
55. (Maximum Velocity) A particle moves on the x-axis in such a way that its velocity is given 

by  for . At what time will velocity be greatest?

56. (Theory) (a) Find a formula for the  derivative of , for .
   (b) Use the Principle of Mathematical Induction to establish your answer in (a).

57. (Theory) Show that  for any rational number r and any .

38. 39. 40.

41. 42.

43.  if . 44.  if 

45.  if . 46.  if  and 

47. 48.

x x2tan xd xcot

x
--------------- xd

xln sec
x

--------------------- xd

x xdcot
6
---


4
---

 2xsin

1 cos
2

+ x
----------------------

0


4
---



f x 

f  x  x
x2 1+
--------------= f 0  2= f  x  xtan= f 0  e=

f  x  1
x
--- 1

x
---ln= f e  1= f  x  1

x2
-----= f  1  1= f 1  0=

f x  x– 5– ln–= f x  x2 x– 2– ln=

y 1
x
---=

y x–= x 1= x e=

e 5 

f x  x2

x3 1+
--------------=

f x  x2= g x  1

x
------= x e=

N t 

N t  10 6 t,  0 t 500 ln+=

N t 

1
x
--- x 2= x 9=

f x  x2 xln
8

--------–=

1 e 

v tln
t

-------= t 1

nth f x  cx ln= c 0

xrln r xln= x 0
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 6

We begin by reminding you that:

• The domain of a function f is the set  on which f “acts,” and 

its range is the set  of the function values (see margin).

• A function  f  is one-to-one if for all a and b in :

  (see margin and page 11)

• Let f be a one-to-one function with domain  and range . The 

inverse of f, denoted by , is that function with domain  and 

range  satisfying the following conditions (see page 13):

 for every x in    

                     and    for every y in 

MOVING ON:
The previously encountered graph of the natural logarithmic function

 displayed in Figure 6.3(a) reveals that it is a one-to-one
function, with domain  and range . The

inverse of that function [with domain  and range ] is
called the natural exponential function, and denoted by . In partic-
ular, since  and  are inverses of each other:   

Employing Theorem 1.3, page 14, we arrive at the graph of 
in Figure 6.3(b), and highlight it exclusively in Figure 6.3(c).

Figure 6.2

§2.  THE NATURAL EXPONENTIAL FUNCTION

Domain        Range

x f x 

Df
Rf

one-to-one not one-to-one

. . .
different x’s

map to
different y’s

some different x’s
map to

a common y

In other words:
        

Df

Rf

Df

a b f a  f b 

Df Rf

f 1– Rf

Df

f 1–  f  x  x= Df

ff 1–  y  y= Rf

f 1– f x   x     and     f f 1– y   y= =

THE NATURAL
EXPONENTIAL

FUNCTION

f x  xln=
Df 0  = Rf –  =

–   0  
ex

xln ex

For any real number x: exln x and, for any x 0: e xln x= =
why?

y ex=

y xln=

1 e

1

(a)

x

y

y xln=

y ex=

y x=

1

1

(b)

x

y

1

y ex=

(c)

x

y
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The exponential function is particularly pleasant in that both its deriv-
ative and integral are again itself:

PROOF: Accepting the fact that the exponential function is differen-
tiable throughout its domain we can easily establish the first part of
the theorem:

And the second part is even easier:

SOLUTION: 
(a) 

(b) 

THEOREM 6.6
 

EXAMPLE 6.5 Differentiate the given function.

  (a)           (b) 

d
dx
------ex ex      and      ex xd ex C+= =

ex ln x=

ex ln  x=

1
ex
---- ex  1=

ex  ex=

Since ex is the inverse of x:ln

 Chain Rule:

Multiply both sides by  ex:

Since ex is an antiderivative of ex: ex xd ex C+=

f x  ex xsin= g x  ex2 xln=

ex xsin  ex xsin  x ex sin+ ex x x exsin+cos= =

ex x xcos+sin =product rule

Answer: 

(a) 

(b) 

(c) 

ex x xln 1– 
x xln 2

------------------------------

ex x 1+ 
2 x

--------------------------

1
2
---e x x 2+ 

CHECK YOUR UNDERSTANDING 6.7

Differentiate the given function.

(a)            (b)           (c) 

d
dx
------ ex2 xln  ex2 xln d

dx
------ x2 xln =

ex2 xln x2 d
dx
------ xln xln

d
dx
------ x2 +=

ex2 xln x2

x
----- xln 2x+ 
  ex2 xln x 2x xln+ = =

 ex  ex eg x   eg x g x  (the Chain rule)= =

f x  ex

xln
-------- 1+= g x  xex= h x  xe x=
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SOLUTION: (a) 

                   (b)

SOLUTION: As is our custom, we will first attempt to get a sense of the
graph of f directly. Noting that  is always positive (margin) and that
a vertical asymptote occurs at  takes us to Figure 6.4(a).

Figure 6.3 

Alternative substitution:

etc.

u ex2 1+=

du ex2 1+ 2xdx=

EXAMPLE 6.6 Perform the indicated operation.

   (a)               (b) xex2 1+ xd
e x

x
-------- xd

1

4


xex2 1+ xd
1
2
--- eu ud

1
2
---eu C+

1
2
---ex2 1+ C+= = =

u x2 1+=

du 2xdx=

e x

x
-------- xd

1

4
 2 eu ud

1

2
 2eu

1

2
2 e2 e– = = =

u x:  x 1 u 1 x 4 u 2= = = = =

du
1

2 x
----------dx=

Answers: 
(a)       (b) 0excos– C+

CHECK YOUR UNDERSTANDING 6.8

Perform the indicated operation.

       (a)                           (b) 

EXAMPLE 6.7 Sketch the graph of the function:

ex exsin xd xe xsin xdcos
0




f x  ex

x
----=

0

ex

x 0=
_ +

0
SIGN f :

(a)

x

y

(b)

(*)

(**)

Anticipated Graph:

?
reading on you will
find that ? 1.=

x

y

y ex=
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Since  tends to zero as , so must  (and even at a faster rate

since the denominator is getting bigger and bigger) [see (*) of Figure
6.4(b)]. Moreover, since  is increasing faster than x to the right of
the origin, we expect that the graph of f will head back up towards 
as  [see (**) of Figure 6.4(b)]. These observations bring us to
the anticipated graph of f in Figure 6.2(b).
If our anticipated graph is on target, then the first derivative of f must
be negative for , as well as between 0 and some positive  x
(“?” in Figure), at which a minimum occurs; after which the derivative
will be positive. In addition, the second derivative must be negative on

, and positive from zero on. This is indeed the case: 

As might be expected:

ex x – ex

x
----

ex


x 

x – 0 

– 0 

f  x  ex

x
---- 
  =

xex ex–
x2

------------------ ex x 1– 
x2

---------------------= =

.
1

_ +

SIGN f x 

c

0

n _  dec          dec              inc

f x  xex ex–
x2

------------------ 
 =

x2 xex ex–  xex ex–  x2 –
x4

-------------------------------------------------------------------------=

x2 ex xex+  ex–  xex ex– 2x–
x4

----------------------------------------------------------------------------------=

x2ex 2xex– 2ex+
x3

------------------------------------------ ex x2 2x– 2+ 
x3

------------------------------------= =

SIGN f  x :

(note that ex and x2 2x– 2 are always positive)+

c

0

concave down               up         +_

Answer: See page A-34.

CHECK YOUR UNDERSTANDING 6.9

Sketch the graph of the function .f x  ex2 1–=

The general exponent for-
mulas appear in the next
section, following the
definition of 
for any .

f x  ax=
a 0

THEOREM 6.7 For all real numbers a and b :
(a) 

(b) 

(c) 

(d) 

eaeb ea b+=
ea

eb
----- ea b–=

ea b eab=

e x– 1
ex
----=
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PROOF: [Proof of (a)] We observe that : 

Since  and since the natural logarithmic func-
tion is one-to-one: .

The irrational number  is the solution of the equation

 (see Figure 6.1, page 223). Taking another approach: 

PROOF: Let . Replacing “h” with “x” in the Definition 3.1,
page 66, we have:

Since  (recall that ):

Certain quantities, like the number of living organisms in a population,
or the mass of a radioactive substance, vary at a rate proportional to the
amount present at any given time. The following result reveals the expo-
nential nature of such quantities.

You are asked to estab-
lish (b) in CYU 6.11;
and (c) and (d) in the
exercises.

eaeb ln ea b+ ln=

eaeb ln ea ebln+ln a b+ ea b+ ln= = =

ex is the inverse of xlnTheorem 6.4(a), page 326

Answer: See Page A-35

CHECK YOUR UNDERSTANDING 6.10

Prove: Theorem 6.7(b).

eaeb ln ea b+ ln=
eaeb ea b+=

An alternate form:

(How?) 

1 1
n
---+ 

  n

n 
lim e=

THEOREM 6.8

EXPONENTIAL GROWTH AND DECAY

e 2.718
xln 1=

e 1 x+ 1 x/

x 0
lim=

f x  xln=

f  1  f 1 x+  f 1 –
x

----------------------------------
x 0
lim 1 x+ ln 1ln–

x
-------------------------------------

x 0
lim= =

1 x+ ln 0–
x

-------------------------------
x 0
lim=

1
x
--- 1 x+ ln

x 0
lim 1 x+ 1 x/ln

x 0
lim= =

Theorem 6.4(c), page 226

f  1  1= f  x  1
x
---=

1 x+ 1 x/ln
x 0
lim 1=

e
1 x+ 1 x/ln

x 0
lim

e1=

e 1 x+ 1 x/ln

x 0
lim e=

1 x+ 1 x/

x 0
lim e=

Theorem 2.5, page 58:
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PROOF: From the given information  we have:

 or  

Recalling that if two functions have the same derivative then they can
only differ by a constant (CYU 4.3, page 124), we conclude that:

Applying the exponential function gives us:

Evaluating (*) at , we have:

Replacing  in (*) with the more compact symbol  to

denote the initial amount , we arrive at the formula
.

By emitting alpha and beta particles and gamma rays, the radioactive
mass of a substance decreases at a rate proportional to the amount pres-
ent. By definition, the half-life of a radioactive substance is the  time
required for half of its original mass to decay.

Organic substances contain both carbon-14 and non-radioactive car-
bon in known proportions. A living organism absorbs no more carbon
when it dies. The carbon-14 decays, thus changing the proportions of
the two kinds of carbon in the organism. By comparing the present pro-
portion of carbon-14 with the assumed original proportion, one can
determine how much of the original carbon-14 is present, and therefore
how long the organism has been dead; hence how old it is. The next
example illustrates this method, called carbon-14 dating.

 
Note that at t 0=

A t  A0=

THEOREM 6.9
EXPONENTIAL
GROWTH/DECAY
FORMULA

If the rate of change of the amount of a sub-
stance  is proportional to its size:

, then the amount present t

units of time before or after an established ini-
tial time  is given by the formula:

where  denotes the initial amount of the

substance.

RADIOACTIVE DECAY

A t 
dA t 

dt
------------- kA t =

t 0= 

A t  A0ekt=

A0

A t  kA t =

A t 
A t 
------------ k= A t ln  kt =

A t ln kt c+=

e A t ln ekt c+=

A t  ekt c+=

A t  ecekt=

e xln x:=

Theorem 6.7(a): (*)

t 0=

A 0  ece0= A 0  ec=

ec A 0 = A0

A 0 
A t  A0ekt=
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SOLUTION: Let  denote the time of demise and  the
amount of carbon-14 present t years later, then:        

This brings us to the exponential decay formula for carbon-14:

We are told that the skeleton contains one-sixth of its original

amount of carbon-14, that is: . To find the skeleton’s age,

we substitute  for  in (*), and solve for t:

We conclude that the skeleton is approximately 14,812 years old.

EXAMPLE 6.8 A skeleton is found to contain one-sixth of its
original amount of carbon-14. How old is the
skeleton, given that carbon-14 has a half-life
of 5730 years?

It is the value of k that dis-
tinguishes one exponential
growth or decay situation
from another. Generally,
the first task in solving an
exponential growth or
decay problem is to deter-
mine the value of  for
the situation at hand. 

ek

t 0= A t 

A t  A0ekt=

1
2
---A0 A0e5730k=

1
2
--- e5730k=

1
2
--- 
 ln 5730k=

A t 
A0
2

------ when t 5730:= =

divide both sides by  A0:

A t  A0e
1 2 ln

5730
-------------------- t

= (*)

A t 
A0
6

-------=

A0
6

------- A t 

A0

6
------ A0e

1 2 ln
5730

-------------------- t
=

e
1 2 ln

5730
-------------------- t 1

6
---=

1 2 ln
5730

-------------------- t 1
6
---ln=

t
5730 1 6 ln

1 2 ln
-------------------------------- 14,812=

Divide both sides by A0:

Apply ln to both sides:

Answer: Approximately
22.7 days.

CHECK YOUR UNDERSTANDING 6.11

A certain radioactive substance loses  of its original mass in four

days. How long will it take for the substance to decay to  of its

original mass?

1
3
---

1
10
------
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In an ideal environment, the rate of change of a population of living
organisms (humans, rabbits, bacteria, etc.) increases at a rate propor-
tional to the amount present. By definition, the doubling time of the
organism is the time required for a population to double.

SOLUTION: We turn to the formula of Theorem 6.8, where  now
denotes the number of cells (in millions) present at time t (in minutes):

We now have the exponential growth formula for E.coli bacteria:

In particular:

We conclude that it will take approximately 63 minutes for the cul-
ture to increase from 1 million cells to 9 million cells. In other
words, in an ideal situation, E.coli bacteria will increase by a factor
of 9 approximately every 63 minutes.

POPULATION GROWTH

The number of individuals
in a population can only
take on integer values. A
sufficiently large popula-
tion, however, can safely
be described by a continu-
ous function.

EXAMPLE 6.9 The doubling time of E.coli bacteria is 20 min-
utes. If a culture of the bacteria contains one
million cells, determine how long it will take
before the culture increases to 9 million cells?

A t 

A t  A0ekt=

2A0 A0e20k=

2 e20k=

2ln 20k=

k 2ln
20
--------=

From Theorem 6.9:

Since A t  2A0 when t 20:= =

A t  A0e

2ln
20
-------- t

=

A t  1 e

2ln
20
-------- t

=

9 e

2ln
20
-------- t

=

9ln
2ln

20
-------- t=

t
20 9ln

2ln
-------------- 63=

 

 

To determine how long it will take for there to be
9 million cells,  set A t  9  and solve for t:=

Since there are 1 (million) initially, A0 1:=

Answer: 70.75 years

CHECK YOUR UNDERSTANDING 6.12

The population of a town grows at a rate proportional to its popula-
tion. The initial population of 500 increased by 15% in 9 years. How
long will it take for the population to triple?
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Exercise 1-22. (First Derivative) Differentiate.

Exercise 23-24. (Implicit Differentiation) Determine . 

Exercise 25-30. (Second Derivative) Determine .

Exercise 31-32. (Composite Functions) Determine the derivative of the composite function.

                                                       if: 

Exercise 33-36. (Tangent Line) Determine the tangent line to the graph of the given function at
the indicated point. 

37. (Point of Tangency) Find the points on the graph of the function  where the slope 
of the tangent line to the graph equals the function value. 

EXERCISES

1. 2.

3. 4.

5. 6.

7. 8.

9. 10.

11. 12.

13. 14.

15. 16.

17. 18.

19. 20.

21. 22.

23.  24.

25. 26. 27.

28. 29. 30.

31. 32.

33.  at 34.  at 35.  at 

36. (Implicit Differentiation)   at 

f x  e2x= g x  ex2=

f x  x3ex= g x  x2ex=

g x  e2x 2ex–= f x  x2ex2=

g x  e2x

2x
-------= f x  x3 2+

ex 1–
--------------=

g x  x ex+ 5= g x  x2e2x 5=

f x  x2 e2+ 5= h t  2te2t t2+ 5 500+=

g x  e xsin= f x  exsin=

f x  ex x2sin= exsin cos

g x  x2tan
ex2

-------------= f x  xsin ln
excos

---------------------=

f x  x2 ex2+ ln= f x  ex xln=

f x  eex= f x  exex=

dy
dx
------

xey y x2–ln+ 1= ey 1+  xy–ln x=

d2y
dx2
--------

y xex= y e xsin= y xex2ln=

y exsin= y e2x 3xcos= y e t3 1+ td
1

x
=

(a)  gf  x  (b)  fg  x  (c)  ff  x  (d)  gg  x 

f x  3x2 x  and  g x + ex= = f x  ex2  and  g x  ex= =

y ex2= x 2= y xex xln+= x 1= y ex xsin= x 
2
---=

xey yex xy–+ 3= 0 3 

f x  ex2=
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38. (Point of Tangency) Find a point on the graph of  at which the tangent line passes 
through the origin.

Exercise 39-50. (Integration) Evaluate.

Exercise 51-58. (Differential Equation) Solve. 

Exercise 59-62. (Graphing) Sketch the graph of the given function. 

63. (Area) Determine the area A of the region bounded above by the graph of the function 
, below by the graph of , and on the sides by the vertical lines  and 
. 

64. (Area) Find the positive number a such that the area lying below the graph of the function 
 and above the x-axis over the interval  is equal to that over the interval .

65. (Volume) Find the volume obtained by rotation about the x-axis the region in the first quad-
rant that lies below the line  and above the graph of the function . 

66. (Related Rate) The vertices of a rectangle are at , and . If x is 
increasing at a rate of 1 unit per second, at what rate is the:

(a) Area increasing when ?     (b) Perimeter increasing when ?

39. 40. 41.

42. 43. 44.

45. 46. 47.

48.
49. 50.

51.  if .
52.  if 

53.  if . 54.  if  ,  and 

55. Show that the function  satisfies the equation  for all 
real numbers A and B.

56. For what values of a does the function  satisfy the equation ?

57. For what values of a does the function  satisfy the equation ?

58. For what values of a does the function  satisfy the equation ?

59. 60. 61. 62.

y e3x=

x2ex3 xd e x

x
-------- xd

e1 x/

x2
--------- xd

ex

ex 1–
------------- xd

ex 1+
ex

-------------- xd
e 1 x2–

x3
-------------- xd

ex excos xd ex ex xdsin ex e x–+
ex e x––
------------------ xd

e3x xd
0

2ln
 e xsin x xdcos

0


4
---


xex2 xd

0
2ln

f  x  xex2= f 0  2=
f  x  e xtan sec

2
x= f


4
--- 
  0=

f  x  e2x= f 0  f  0  1= = f  x  ex= f 1  1= f  1  2=

f 1  2=

y Ae x– Bxe x–+= y 2y y+ + 0=

eax y 6y 8y+ + 0=

eax y 5y– 6y+ 0=

eax y y– y– 0=

f x  xex= f x  ex

x
----= f x  xln

x
--------= f x  x2ex=

y e2x= y e 2x–= x 0=
x 2ln=

y ex= a 0–  0 1 

y e= y ex=

0 0  0 ex  x 0   x ex 

x 5= x 5=
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67. (Optimization) Show that the rectangle of greatest area bounded below by the x-axis and 
above by the graph of the function , has two of its vertices at the inflection points 
of that graph. 

Exercise 68-69. (Continuous Compound Interest) If an amount  is invested at an annual

interest rate of r, and the interest is compounded continuously, then the amount  accumulated
after t years is given by:

68. Determine the annual interest rate r required for capital to double in 10 years, when interest 
is compounded continuously.

69. How much should be invested at an annual rate of 4% compounded continuously in order to 
have a total of $10,000 at the end of 5 years?

70. (Radioactive Substance) A certain radioactive substance loses 20% of its original mass in 
two days. How long will it take for the substance to decay to 90% of its original mass?

71. (Population) The world population was 5.28 billion in 1990, and 6.37 billion in 2004. 
Assuming that, at any given time, the population increases at a rate proportional to the popu-
lation at that time, determine:

(a) The population in the year 2010.

(b) The year in which the population will reach 9 billion.

72. (Dead Sea Scrolls) Approximately 20% of the original carbon-14 remains in the Dead Sea 
Scrolls. How old are they? (See Example 6.9)

73. (Theory) Prove Theorem 6.7(c).

74. (Theory) Prove Theorem 6.7(d).

75. (Theory) Prove that if  for all  in  then  for some constant 
c. Suggestion: consider the derivative of the function . 

76. (Theory) (a) Find a formula for the  derivative of , for .
   (b) Use the Principle of Mathematical Induction to establish your answer in (a).

f x  e x2–=

A0

A t 

A t  A0ert=

f  x  f x = x –   f x  cex=
g x  e x– f x =

nth f x  ecx= c 0
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 6

While  is meaningful for any number x, the same cannot, as yet, be
said for an expression of the form  — but only “as yet:” 

For example:  — a well-defined expression.
In the exercises you are invited to show that the following familiar

laws of exponents hold in the current general setting:

Way back on page 78 [Theorem 3.2(b)] we noted that for any real

number r, , but have only established that result for
integer exponents (Example 3.10, page 84, and CYU 3.10). We now
come to the end of the power-rule journey: 

PROOF: 

            For example:  (for ), 

and  (for ).

§3.    AND  ax logax

Note that the expression
 to the right of the

equal sign is meaningful
for any positive a and any x
whatsoever. We also know
that . and
that . In a way,
then, this definition is kind
of forced on us. 

ex aln

ex aln e aln x=

e aln a=

DEFINITION 6.2  For any  and any x:

THEOREM 6.10 For  and any x and y:

(a) 

(b) 

(c) 

(d) 

THEOREM 6.11 For any  and any real number r:

ex

2x

a 0
ax ex aln=

2 e 2ln=

a 0
axay a x y+=

ax

a y
----- ax y–=

ax y axy=

a x– 1
ax
-----=

xr  rxr 1–=

x 0
xr  rxr 1–=

xr  er xln  er xln r xln  er xln r
x
-- xr r

x
-- rxr 1–= = = = =

e       e          =

x

2

5
-------

 
 
   2

5
-------x

2

5
------- 1–

= x 0

d
dx
------ xsin  1+  1+  xsin = x 0sin

Answer: e2 e+ xe 1–

CHECK YOUR UNDERSTANDING 6.13

 Determine   for .
d 2y
dx2
-------- y x e 1+=
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We now know that    and that , but what is

the derivative of   ? This:

PROOF: 

SOLUTION: (a) 

(b) 

The integral formula for  is just a tad more complicated than that

for :

PROOF: We simply show that  is an antiderivative of :

THEOREM 6.12 For , .

EXAMPLE 6.10 Differentiate:

 (a)          (b)  for .

xa  axa 1–= ex  ex=

ax

a 0 ax  ax aln=

ax  ex aln  ex aln x aln  ex aln aln ax aln= = = =

Definition 6.2

chain rule

y 4 xsin= f x  xx= x 0

d
dx
------ 4 xsin 4 xsin 4

d
dx
------ xsinln 4ln 4 xsin xcos = =

Theorem 6.11 and the Chain Rule

Answer:

x xsin x x xsin
x

----------+lncos 
 

CHECK YOUR UNDERSTANDING 6.14

Differentiate  (for ).

xx  ex xln  ex xln x xln  ex xln xln x x xln + = = =

ex xln xln 1+ =

xx xln 1+ =

Definition 6.2

f x  x xsin= x 0

Why must “1” be elim-
inated?

THEOREM 6.13 For any  distinct from 1:

EXAMPLE 6.11 Perform the indicated operation:

   (a)               (b) 

ax

ex

a 0

ax xd ax

aln
-------- C+=

ax

aln
-------- ax

ax

aln
-------- 
   1

aln
-------- ax  1

aln
-------- ax aln  ax= = =

x9 xsin xdcos x3x2

1

2
 d x 
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SOLUTION: (a) 

(b)  

      

The one-to-one property of  led us to the definition of . Revers-
ing the process will now bring us to the definition of . We first
observe that: 

PROOF: Consider:

Since the natural exponential function only takes on positive values,

 for all x. Noting that  if  and that 

if  (see Figure 6.1, page 223), we conclude that  if

 and that  if . To put it another way: 

In either case,  is one-to-one.

x9 xsin xdcos 9u ud 9u

9ln
-------- C+ 9 xsin

9ln
-----------= = = C+

u xsin=

du xdxcos=

x3x2

1

2
 dx

1
2
--- 3u ud

1

4


1
2
--- 3u

3ln
--------

1

4

 
 
  1

2 3ln
----------- 34 3–  39

3ln
--------= = = =

u x2=   at x  1 u 1 and at x 2 u 4= = = =

du 2xdx=

Answers: (a)  

                (b) 

2 x 1+

2ln
--------------- C+

4
5ln

--------

CHECK YOUR UNDERSTANDING 6.15

Perform the indicated operation: 

             (a)                                     (b) 

THE FUNCTION 

THEOREM 6.14 For any positive number a distinct from 1, the

function  is one-to-one.

2 x

x
-------- 5 xln

x
---------

1

e

 dx

logax

xln ex

logax

f x  ax=

.. .

y 2x=y
1
2
--- 
  x

=

2

 1

1– 1

ax  ex aln  ex aln aln= =

ex aln 0 a 0ln 0 a 1  a 0ln

a 1 ax  0
0 a 1  ax  0 a 1

ax is a decreasing function if 0 a 1 
an increasing function if  a 1




(see margin)

f x  ax=
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Bringing us to:

Since  and  are inverses of each other, we have:

In addition:  

PROOF: We establish (c), and invite you to verify (a) and (b) below. 

Since  and , and

since the function  is one-to-one: .

As previously noted: 

 and, for any : .

There is also little difference between the derivative formula

 and that for the general logarithmic function. Specifically:

The graph of 
can be obtained by
reflecting the graph of

 about the line
. In particular:

Note that since the expo-
nential function  has
domain  and
range , its inverse,
the logarithmic function

, has domain 

and range .

y logax=

y ax=
y x=

y 2x=

y log2x=

1

1

ax

 – 
0  

logax 0  

 – 

DEFINITION 6.3 For any positive number :
, read “log base a of x,” is the

inverse of the function .

NOTE: The logarithmic function  is our friend: the natural loga-

rithmic function .

The logarithmic function  also has its own notation and name. It

is called the common logarithmic function, and is denoted by .

THEOREM 6.15 For any positive numbers x and y and any
positive number :
(a) 

(b) 

(c) 

a 1
loga x

ax

loge x
xln

log10 x

xlog

logax ax

alogax x    for x 0 =

logaax x    for all x =

a 1
loga xy loga x loga y+=

loga
x
y
-- loga x loga y–=

loga xr rlogax=

Answer: See page A-36.

CHECK YOUR UNDERSTANDING 6.16

Prove Theorem 6.15(a) and (b).

THEOREM 6.16 For any positive number :

a
logaxr

xr= arlogax alogax r xr= =

Theorem 6.9(c)

ax logaxr rlogax=

ex  ex= a 0 ax  ax aln=

xln  1
x
---=

a 1

loga x  1
x aln
-----------=
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PROOF: Accepting the fact that the logarithmic function is differentia-
ble throughout its domain, we have:

SOLUTION:

alogax x=

alogax  x=

a alogax loga x ln 1=

a x loga x ln 1=

loga x  1
aln

-------- 1
x
---=

a       a a          :ln=

Compare with Example
6.1(a), page 224.

EXAMPLE 6.12 Differentiate 
             f x  log2 xsin =

log2 xsin   1
2 xsinln

----------------------- xsin  1
2 xsinln

----------------------- xcos xcot
2ln

----------= = =

 
the chain rule: (log2      )   1  

ln2      
----------------       =

Answers: (a) 

(b) 

2
x 3ln
-----------

log5x cos

2x 5 log5x sinln
---------------------------------------------

CHECK YOUR UNDERSTANDING 6.17

Differentiate the given function:

   (a)                    (b) f x  log3x2= g x  log5x sin=
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Exercise 1-20. (First Derivative) Differentiate.

Exercise 21-26. (Integration) Evaluate.

27. (Half Life) Prove that in an exponential decay situation, if the half-life of a substance is H, 

then the amount of substance present at time t is given by  where  
denotes the initial amount present.

28. (Doubling Time) Prove that in an exponential growth situation, if the doubling time of a sub-

stance is D, then the amount of substance present at time t is given by  

where  denotes the initial amount of the substance.

EXERCISES

1. 2.

3. 4.

5. 6.

7.
8.

9. 10.

11. 12.

13. 14.

15. 16.

17. 18.

19.  20.  

21. 22. 23.

24. 25. 26.

f x  52x= g x  2x2=

f x  x33x= f x  x22x2=

g x  22x

2x
-------= f x  x3 2+

5x 1–
--------------=

g x  5 xsin=
f x  5xsin=

f x  5x x2sin= h x  5xsin cos=

g x  xln
3x
--------= f x 

log2x

3x
-------------=

f x  2xlog2x= f x  2x xln=

f x  log2x ln= f x  log2 xln =

f x  log2 log2x = f x  3log232
=

f x  3x x= f x  x xcos=

x5x2 xd 2 x

x
-------- xd

51 x/

x2
--------- xd

4 xln

x
--------- xd

1

4

 x2x2 xd
1

2

 3 xcos xsin xd
0

 2



A t  A0 2
t H–= A0

A t  A0 2
t D=

A0
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Exercise 29-30. (Learning Curve) Learning curves are graphs of

exponential functions of the form  where  and

. As you can see from the adjacent figure, while initially
rapid, the learning process levels off with time. 

29. Practicing one hour a day, it took Bill 9 days to learn to type 30 words per minute. How 
many days of practice will he need in order to get his speed up to 60 words per minute, 
assuming that an average experienced typist can type 73 words per minute?

30. (a) Find the learning curve formula for Mary’s riveting abilities if it took her 5 days before 
she could do 27 rivets per hour, given that the average experienced riveter can do 43 riv-
ets per hour.

(b) In how many more days will she be able to do 30 rivets per hour?

(c) How long will it take before she can be expected to do 40 rivets per hour?

31. (Theory: Change of Base Formula) Prove that for any : 

32. (Theory) Prove: (a) Theorem 6.9(a)           (b) Theorem 6.9(b) 
                               (c) Theorem 6.9(c)           (d) Theorem 6.9(d)

Exercise 33-35. (Sound Intensity) The intensity level L (in bels) of sound is defined in terms of the
common logarithm (base 10) of the intensity I (i.e. energy density) of a sound-wave when it hits your

eardrums. It is measured in bels:  where I is measured in Watts per square meter, and 

is the constant intensity of  Watts per square meter (roughly the intensity of the faintest audible

sound). In this logarithmic scale, when the energy of a sound is , its intensity level, L, is

1 bel. When , its intensity level is 2 bels, and so on. Every time the energy density

increases by a factor of 10, the intensity level increases by one bel.
Because the bel is a large unit, it is customary to express the intensity level in decibels [db], where

. To summarize:

The intensity level of sound, in decibels, is given by: 

where I is the sound intensity in Watts per square meter, and . 

33. Find the intensity of the given sound.

     (a) Heavy city traffic at 90 db.     (b) Dripping faucet at 30 db.     (c) Rustle of leaves at 10 db.

COMMON LOGARITHMS

Common logarithms are logarithms to the base 10 and are typically
denoted by  rather than by . These logarithms appear in

many scientific formulas, a few of which are featured below.

a

L

t

L t  a 1 bt– = a 0
0 b 1 

a 0 b 0 loga x
logbx

logba
-------------=

xlog log10x

L I
I0
----log= I0

10 12–

I 10I0=

I 100I0=

10 db 1 bel=

L 10 I
I0
----log=

I0 10 12– Watts

m2
--------------=
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34. What is the difference in the intensity level of two sounds, if the intensity of one sound is 70 
times that of the other?

35. It is known that the sound intensity due to independent sources is the sum of the individual 
intensities. Given that the intensity level of the average whisper is 20 db, how many students 
would have to be whispering simultaneously in order to produce an intensity level of 60 db, 
which approximates the intensity level of ordinary conversation?

Exercise 36-38. (Richter Scale) Like the intensity level L of sound, the intensity of an earthquake,
as measured by the Richter magnitude scale, is also defined in terms of the common logarithm:
The magnitude R (on the Richter scale) of an earthquake of intensity I is given by: 

                      where  is a “minimum” intensity used for comparison.

36. The 1985 earthquake in Mexico City measured 8.1 on the Richter scale, while the 1989 Cal-
ifornia earthquake measured 7.0. How much more intense was the Mexico City earthquake?

37. On August 16, 1999, an earthquake measuring 7.4 on the Richter scale struck Turkey. The 
following day, an earthquake measuring 5.0 occurred in California. How much more intense 
was the earthquake in Turkey?

38. If an earthquake has an intensity which is 300 times the intensity of a smaller earthquake, 
how much larger would its Richter scale measurement be?

Exercise 39-40. (Chemistry-pH) The pH (hydrogen potential) of a solution is given by

, where  is the hydrogen ion concentration in moles per liter. The pH values
vary from 0 (very acidic) to 14 (very basic, alkaline). Pure water has a pH of 7.0 and is neutral, nei-
ther acidic nor alkaline.

39. Find the pH value of sea water, given that  .

40. (a) Find the  value of lemon juice, given that its pH value is 2.3.

(b) Find the  value of milk, given that its pH value is 6.6.

(c) How much greater is the hydrogen ion concentration of lemon juice than that of milk?

R I
I0
----log=

I0

pH H
+ log–= H

+ 

H
+  6.31 10 9–=

H
+ 

H
+ 
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 6

Since trigonometric functions are not one-to-one, they do not have
inverses (see page 12). We can, however, restrict the domain of each
trigonometric function to an interval on which it is one-to-one, and then
consider the inverse of the resulting restricted function. 

SPECIFICALLY:
Restricting the sine function to the interval  produces a one-

to-one function [see Figure 6.4(a)]. The inverse of that restricted func-
tion is called the inverse sine function (or arc-sine function), and is

denoted by  (or arcsin x). Reflecting the graph of the restricted
sine function about the line  yields the graph of the inverse sine
function in Figure 6.4(b) (see Theorem 1.3, page 14).

                    (a)                                                    (b)
Figure 6.4

Restricting the cosine function to the interval  produces a one-
to-one function [see Figure 6.5(a)]. The inverse of that restricted func-
tion is called the inverse cosine function (or arc-cosine function), and

is denoted by  (or arccos x). Reflecting the graph of the
restricted cosine function about the line  yields the graph of the
inverse cosine function in Figure 6.5(b).

                    (a)                                                 (b)
Figure 6.5

Restricting the tangent function to the open interval  produces

a one-to-one function [see Figure 6.6(a)]. The inverse of that restricted
function is called the inverse tangent function (or arc-tangent), and is

denoted by  (or arctan x). Reflecting the graph of the restricted
tangent function about the line  yields the graph of the inverse tan-
gent function in Figure 6.6(b).

§4.  INVERSE TRIGONOMETRIC FUNCTIONS

In spite of its notation and

name,  is not the
inverse of the sine func-
tion. It can’t be, since the
sine function, not being
one-to-one, has no inverse;
it is the inverse of the sine
function restricted to the

interval . 

sin 1– x


2
--- 

2
---–


2
---–

2
---

sin
1–
x

y x=

y x=

y xsin=

y xsin 1–=


2
---


2
---–

1– 1

.
.

.
.


2
---

y xsin=

2
--- x


2
--- –

0  

cos
1–
x

y x=

y xcos=
0 x  

y cos
1–
x=

y x=


2
---–

2
--- 

 

tan
1–
x

y x=


2
--- x


2
--- –


2
---–
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.

                    (a)                                                    (b)
Figure 6.6

In summary:

The inverse cosecant function has domain  and is

given by:  if  with  or  [see
Figure 6.7(a)].
The inverse secant function has domain  and is

given by:  if  with  or  [see

Figure 6.7(b)].

The inverse cotangent function has domain  and is given by:

 if  with  [see Figure 6.7(c)].

Figure 6.7

DEFINITION 6.4
INVERSE SINE 

INVERSE COSINE 

INVERSE TANGENT 

(a) The inverse sine function has domain
 and is given by:

 if  with .

(b) The inverse cosine function has domain
 and is given by:

  if    with .

(c) The inverse tangent function has domain
 and is given by:

 if  with .

The remaining three inverse trigonometric 
functions are similarly defined:

y xtan=

2
--- x


2
--- –

y x=

y tan
1–
x=

1– 1 

y sin
1–
x= ysin x=


2
--- y


2
--- –

1– 1 

y cos
1–
x= ycos x= 0 y  

–  

y tan
1–
x= ytan x=


2
--- y 

2
---–

– 1  1 –

y csc
1–
x= ycsc x= 

2
---– y 0 0 y


2
---

– 1  1 –

y sec
1–
x= ysec x= 0 y


2
---  y

3
2

------

–  

y cot
1–
x= ycot x= 0 y  

(a) (b) (c)

1– 1
. .


2
---


2
---–.

.
x

y

y csc
1–
x=

1–

3
2

------


2
---



1

.
.

x

y

y sec
1–
x=



x

y

y cot
1–
x=
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   We will establish (a) and invite you to verify the rest on your own.
First, however, we want to point out how the derivative formulas of (a),
(c), and (e) are in total harmony with the graphs of their corresponding
inverse trigonometric functions of Figure 6.4(b), Figure 6.5(b), and
Figure 6.6(b), respectively:

PROOF OF THEOREM 6.17(a): Accepting the fact that the inverse
sine function is differentiable throughout the interval  (Theo-

rem 3.10, page 97), we start with the identity  [see
Definition 6.4(a)], and differentiate both sides:

THEOREM 6.17
(a) (b) 

(c) (d) 

(e) (f) 

d
dx
------ sin

1–
x  1

1 x2–
------------------=

d
dx
------ csc

1–
x  1

x x2 1–
------------------------–=

d
dx
------ cos

1–
x  1

1 x2–
------------------–=

d
dx
------ sec

1–
x  1

x x2 1–
---------------------=

d
dx
------ tan

1–
x  1

1 x2+
--------------=

d
dx
------ cot

1–
x  1

1 x2+
--------------–=

:

Derivative is positive in
 and the graph does

increase over that interval. The
derivative does not exist at 
where the tangent lines to the
graph appear to be vertical.

:

Derivative is negative in 
and the graph does decrease over
that interval. The derivative does
not exist at  where the tangent
lines to the graph appear to be ver-
tical.

:

Derivative is positive everywhere and the
graph does increase throughout the domain

.

Note that  as , reflecting

the fact that the slope of the tangent lines
tend to zero as 

.

.

1– 1

y sin
1–
x=

sin
1–
x  1

1 x2–
------------------=

1– 1 

1

.

.
1– 1

y cos
1–
x=

cos
1–
x  1

1 x2–
------------------–=

1– 1 

1

y tan
1–
x=

tan
1–
x  1

1 x2+
--------------=

–  
1

1 x2+
-------------- 0 x 

x 

1– 1 

sin
1–
x sin x=

sin
1–
x sin  x=

sin
1–
x  sin

1–
x cos 1=

sin
1–
x  1

sin
1–
x cos

-----------------------------=

sin        cos            :=

chain rule
(*)
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Now comes a tricky-trig maneuver:

Returning to (*): 

SOLUTION: (a) Definition 6.4(a) tells us that x is in the domain of

 if and only if , which is to say: 

Conclusion: 

As for the derivative:

Since ,

. It follows
that:


2
--- sin

1–
x


2
---–

sin
1–
x  0cos

cos
2

sin
1–
x  sin

1–
x cos=

cos
2

sin
1–
x  sin

2
sin

1–
x + 1=

cos
2

sin
1–
x  1 sin

1–
x sin 2

–=

cos
2

sin
1–
x  1 sin

1–
x sin 2

–=

sin
1–
x cos 1 x2–=

Theorem 1.5(a), page 37:

(see margin):

sin
1–
x  1

1 x2–
------------------=

Answer: See page A-36

CHECK YOUR UNDERSTANDING 6.18

Verify that:
 

EXAMPLE 6.13 Determine the domain of the given function and
find its derivative.

(a)     (b) 

d
dx
------ cos

1–
x  1

1 x2–
------------------–=

f x  sin
1–

x2 1– = g x  tan
1–
e2x=

f x  sin
1–

x2 1– = 1 x2 1 1––

1 x2 1–– and x2 1 1–

x2 0 x2 2

–   x2 2

x 2

2– x 2 

Df 2– 2 =

f  x  sin
1–

x2 1–   1

1 x2 1– 2–
---------------------------------- x2 1– ==

sin
1–
        1

1        –
-----------------------        =since sin

1–
x  1

1 x2–
------------------:  =

2x

1 x2 1– 2–
---------------------------------- 2x

x4– 2x2+
----------------------------= =

2
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(b) Since  is defined for all x, and since the inverse tangent func-

tion is also defined for all x, the domain of  is

. As for its derivative:

It’s time to turn the derivative formulas of Theorem 6.16 around into

integral formulas. Actually, since the derivatives of  and 
differ only by a negative sign we will just turn around

. For the same reason, turning around

 and  will accommodate

the rest:

SOLUTION: (a) 

Answers: 

       (a) , 

       (b) , 

1
e
--- e 1

e
--- e 
 

0   0  

CHECK YOUR UNDERSTANDING 6.19

Determine the domain of the given function and that of its derivative.

         (a)                            (b) 

THEOREM 6.18
(a) 

(b) 

(c) 

e2x

g x  tan
1–
e2x=

–  

g x  tan
1–
e2x  1

1 e2x 2+
------------------------ e2x  2e2x

1 e4x+
----------------= = =

tan
1–
        1

1     +
---------------------        =since tan

1–
x  1

1 x2+
--------------:=

2

f x  cos
1–

xln = g x  tan
1–
x ln=

sin
1–
x cos

1–
x

d
dx
------ sin

1–
x  1

1 x2–
------------------=

d
dx
------ tan

1–
x  1

1 x2+
--------------=

d
dx
------ sec

1–
x  1

x x2 1–
---------------------=

1

1 x2–
------------------ xd sin

1–
x C+=

1
1 x2+
-------------- xd tan

1–
x C+=

1

x x2 1–
--------------------- xd sec

1–
x C+=

 4

1

1

2

 3

3

1

2

EXAMPLE 6.14 Evaluate: 

(a)        (b) 

(c)                   (d) 

1

1 x2–
------------------ xd

1 2

3 2


ex

1 e2x–
-------------------- xd

x
x4 1+
-------------- xd

1

x x2 9–
--------------------- xd

1

1 x2–
------------------ xd

1 2

3 2

 sin
1–
x

1 2

3 2

sin
1– 3

2
------- sin

1– 1

2
-------–= =


3
--- 

4
---– 

12
------= =(see margin):
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(b) 

(c) 

(d) The integral  looks like 

except for that “9” which we “turn into a 1” by dividing the numera-

tor and denominator by :

Check:

ex

1 e2x–
-------------------- xd

ex

1 ex 2–
------------------------- xd ud

1 u2–
------------------ sin

1–
u C+= = =

u ex=

du exdx=
sin

1–
ex C+=

x
x4 1+
-------------- xd

x
1 x2 2+
---------------------- xd

1
2
--- ud

1 u2+
--------------

1
2
---tan

1–
u C+= = =

u x2=

du 2xdx=
1
2
---tan

1–
x2 C+=

1

x x2 9–
--------------------- xd

1

x x2 1–
--------------------- xd sec

1–
x C+=

9 3=

1

x x2 9–
--------------------- xd

1
3
---

x x2 9–
9

--------------

--------------------- xd
1
3
--- 1

x
x
3
--- 
  2

1–

--------------------------- xd= =

1
3
--- 1

3u u2 1–
-------------------------3 ud=

1
3
---sec

1–
u C+

1
3
---sec

1– x
3
--- C+= =

u
x
3
--- du dx

3
------= = dx 3du=

x 3u=

1
3
---sec

1– x
3
--- 

   1
3
--- 1

x
3
--- x

3
--- 
  2

1–

---------------------------- x
3
--- 
    1

9
--- 1

x
3
--- x

3
--- 
  2

1–

---------------------------- 1

3x
x
3
--- 
  2

1–

------------------------------= = =

1

x 9
x
3
--- 
  2

1–

------------------------------------ 1

x x2 9–
---------------------= =

Answers: (a)    

   (b) 


4
---

1
2
---sin

1–
2x 1+  C+

CHECK YOUR UNDERSTANDING 6.20

Evaluate: 

         (a)                               (b) 
1

x2 1+
-------------- xd

0

1


1

1 2x 1+ 2–
------------------------------------ xd
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Exercise 1-6. (Domain) Determine the domain of the given function. 

Exercise 7-24. (Derivative) Differentiate the given function.

Exercise 25-28. (Tangent Line) Determine the tangent line to the graph of the given function at
the indicated point. 

 Exercise 29-46. Evaluate 

EXERCISES

1. 2. 3.

4. 5. 6.

7. 8. 9.

10. 11. 12.

13. 14. 15.

16. 17. 18.

19. 20. 21.

22. 23. 24.

25.  at 26.  at 27.  at 

28. (Implicit Differentiation)   at 

29. 30. 31.

32. 33. 34.

35. 36. 37.

38. 39. 40.

f x  sin
1–

xln = f x  sin
1–
x ln= f x  etan 1– x=

f x  tan
1–
ex= f x  sin

1–
x sin= sin

1–
x cos

f x  sin
1–

x2 = f x  1

cos
1–
x

---------------= f x  cos
1–

x2 =

f x  cos
1–
x 2

= f x  tan
1–

xcos = f x  tan
1–
x cos=

f x  sec
1–

ex = f x  esec 1– x= f x  sin
1–

e2x =

f x  x

sin
1–

x2 
----------------------= f x  tan

1–
x

x
---------------= f x  sin

1–
x  cos

1–
x =

f x  tan
1–
2x= f x  xsec

1–
x= f x  sin

1– x
x 1+
------------ 
 =

f x  cot
1–

x 1+= f x  csc
1–

x2 1+ = f x  sin
1–

x2 

cos
1–
x 2

-----------------------=

y sin
1–
x= x 0= y xtan

1–
x= x 1= y sec

1–
2x = x 1=

y tan
1–
x  x2y2 4–+ 

2
---= 1 2 

xd

9 x2–
------------------ xd

5 x2–
------------------ xd

3 4x2–
---------------------

xd

x 9x2 1–
------------------------ ex

1 e2x–
-------------------- xd

xd
1 16x2+
--------------------

xd

1 x2– sin
1–
x

-------------------------------------- x

1 x4–
------------------ xd

xd

x 1 x+ 
------------------------

xd

x 5x2 3–
------------------------ xcos

sin
2
x 9+

--------------------- xd
xd

ex e x–+
------------------
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Exercise 47-48. (Differential Equation) Solve for .

49. (Area) Determine the area of the region bounded above by the graph of the function

, below by the x-axis, and on the sides by the y-axis and the vertical line . 

50. (Volume) Find the volume obtained by revolving about the x-axis the region in the first quad-

rant bounded by the graph of the function  over the interval .

51. (Angle of Depression) A boat is pulled toward a dock by a rope attached to the bow of the
boat and passing through a ring on the dock that is 12 feet higher than the bow of the boat.
How fast is the angle of depression of the rope changing when there are still 20 feet of rope
out, if the rope is being pulled in at a rate of 1 ft/sec? 

52. (Maximum Inclination) Determine the maximum angle of elevation of the tangent lines to

the graph of the function . 

Exercise 53-56. (Theory) Establish the following differentiation formulas:

Exercise 57-60. (Theory) Establish the following integration formulas by:

   (a) The u-substitution method.      (b) Differentiating the right side of the equation.

Exercise 61-63. (Theory) The Mean Value Theorem of page 121 assures us that if f is continuous
on  and differentiable on , then there is at least one number  in  for which

. Find such a c in  for the given function.

41. 42. 43.

44. 45. 46.

47.  if . 48.  if 

53. 54.

55. 56.

57. 58.

59. 60.

61. 62. 63.

xd

1 4x2–
---------------------

0

1 4

 4

1 x2–
------------------ xd

1 2

1 2

 8
1 x2+
-------------- xd

1 3

3


xd

x x2 1–
---------------------

2–

2 3–

 sin
1–
x

1 x2–
------------------ xd

0

1 2


xsin

1 cos
2
x+

---------------------- xd
0

 2



f x 

f  x  1
1 3x2+
-----------------= f

1

3
------- 
  1

3
-------= f  x  1

x x2 9–
---------------------= f 3 2  =

f x  x
x4 9+
--------------= x 33 2/=

f x  1

1 x2+
------------------= 0 4 

f x  x
x2 1+
--------------=

d
dx
------ tan

1–
x  1

1 x2+
--------------=

d
dx
------ csc

1–
x  1

x x2 1–
------------------------–=

d
dx
------ sec

1–
x  1

x x2 1–
---------------------=

d
dx
------ cot

1–
x  1

1 x2+
--------------–=

xd

a2 x2–
-------------------- sin

1– x
a
--- C+= xd

a2 x2+
-----------------

1
a
---tan

1– x
a
--- 
  C+=

xd
a2 x b+ 2+
-------------------------------

1
a
---tan

1– x b+
a

------------ 
  C+=

xd

x x2 a2–
------------------------

1
a
---sec

1– x
a
--- C+=

a b  a b  c a b 

f  c  f b  f a –
b a–

-------------------------= 0 1 

f x  sin
1–

x = f x  cos
1–

x = f x  tan
1–

x =
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CHAPTER SUMMARY

THE NATURAL

LOGARITHMIC FUNCTION

The natural logarithmic func-
tion, denoted by , has

domain , range ,
and is given by:

THEOREMS

For any : 

For any positive numbers x and y and any real number r:
(a) 

(b) 

(c) 

THE NATURAL

EXPONENTIAL FUNCTION

The natural exponential function,
denoted by , is the inverse of the
natural logarithmic function. As such,
its domain is  and its range
is .

THEOREMS

For all real numbers a and b :
(a) 

(b) 

(c) 

(d) 

GENERAL EXPONENTIAL

FUNCTIONS

For any , , and any x:

0 1
.

y xln=

y

x

1

e

  
  

xln

0   –  

xln
1
t
--- td

1

x
=

d
dx
------ xln 1

x
---=

x 0 d
dx
------ xln 1

x
---=

1
x
--- xd x C+ln=

xyln x yln+ln=
x
y
--ln x yln–ln=

xrln r xln=

1

y ex=

x

y
ex

–  
0  

d
dx
------ex ex      and      ex xd ex C+= =

eaeb ea b+=
ea

eb
----- ea b–=

ea b eab=

e x– 1
ex
----=

a 0 a 1
ax ex aln=
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THEOREMS For any real number r:

For a positive and distinct from 1: 

                                                

                       For any x and y:  (a) 

(b) 

(c) 

(d) 

GENERAL LOGARITHMIC

FUNCTIONS

For any positive number 

 is the inverse of the function .

THEOREMS For any positive number : 

            For any x and y: (a) 

                    (b) 

                    (c) 

INVERSE SINE

FUNCTION

The inverse sine function, denoted by
, has domain  and is given

by:

 if  with . 

INVERSE COSINE

FUNCTION

The inverse cosine function, denoted by
, has domain  and is given

by:

 if  with . 

x
r  rxr 1–=

ax  ax aln=

ax xd ax

aln
-------- C+=

axay a x y+=

ax

a y
----- ax y–=

ax y axy=

a x– 1
ax
-----=

a 1
logax ax

a 1 logax  1
x aln
-----------=

logaxy logax logay+=

loga
x
y
-- logax logay–=

logaxr rlogax=

1–

.

.

1
| |


2
---


2
---–

x

y

sin
1–
x 1– 1 

y sin
1–
x= ysin x=


2
--- y


2
--- –

.

.
1– 1 x

y
cos

1–
x 1– 1 

y cos
1–
x= ycos x= 0 y  
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INVERSE TANGENT
 FUNCTION

The inverse tangent function,

denoted by , has domain
 and is given by:

 if  with

.

INVERSE COSECANT
FUNCTION

The inverse cosecant function 
has domain  

and is given by:  if 

 with  or 

.

INVERSE SECANT
FUNCTION

The inverse secant function,

denoted by , has
domain 

and is given by: 
if  

with .

INVERSE COTANGENT
FUNCTION

The inverse cotangent func-
tion has domain  and

is given by:  if
 with .

THEOREMS
               

           

           

                         


2
---


2
---–

x

y

tan
1–
x

–  

y tan
1–
x= ytan x=


2
--- y


2
--- –

1– 1
. .


2
---


2
---–.

.
x

y

– 1  1 –

y csc
1–
x=

ycsc x= 0 y

2
---


2
--- y 0–


2
---



3
2

------

.
1–

.

1
x

y

sec
1–
x

– 1  1 –

y sec
1–
x=

ysec x=

y 0

2
---
  3

2
------





x

y

–  

y cot
1–
x=

ycot x= 0 y  

sin
1–
x  1

1 x2–
------------------= tan

1–
x  1

1 x2+
--------------=

sec
1–
x  1

x x2 1–
---------------------=

xd

1 x2–
------------------ sin

1–
x C+= xd

1 x2+
-------------- tan

1–
x C+=

xd

x x2 1–
--------------------- sec

1–
x C+=
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 7

CHAPTER 7
TECHNIQUES OF INTEGRATION

Shifting the chain rule into reverse brought us to the u-substitution
method (Theorem 5.12, page 189). Turning the derivative product rule
around takes us to another important technique of integration, called
integration by parts: 

As we did in the development of the u-substitution method, we can
soften the appearance of the last equation by letting 
and by symbolically replacing  and  with  and ,
respectively: 

Basically, the above Integration by Parts Formula should be

invoked when you can’t evaluate  but can evaluate . The

first obstacle, of course, is to be able to go from “ ” to “v”; which is

to say, that the “ ” must itself be integrable.

TO ILLUSTRATE: 

Check: 

§1.  INTEGRATION BY PARTS

f x g x   f x g x  g x f  x +=

f x g x   xd f x g x  x g x f  x  xd+d=

f x g x  xd f x g x   x g x f  x  xd–d=

f x g x  xd f x g x  g x f  x  xd–=

For f and g differentiable:

Integrate both sides:

Rearrange:

f x g x  is an antiderivative
of f x g x  :

u f x =  v g x =
f  x  xd g x  xd du dv

u vd uv= v ud– (*)

u vd v ud
dv

dv - expression

x xsin xd
u x=

du dx=
dv xdx :  vsin xsin xd x C+cos–= = =

x xsin xd u vd uv= v ud– x xcos–  xcos–  xd–= =

x xcos x C+sin+–=

dv - expression is integrable

And:

 

u x=

du dx=
So:

dv xdxsin=

v xcos–=

x xcos xsin+–  x xcos – x x–  xsin +cos+=

x xsin– – x xcos+cos– x xsin= =
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SOLUTION: 

Check:  

In the above, of all the antiderivatives of ; namely , we
chose the simplest: . Suppose you are particularly fond of
the number 7, and decide to do this:   

No problem:

EXAMPLE 7.1 Evaluate:
                             

xsin x C+cos–
v xcos–=

u x=

du dx=

dv xdsin x=
v x 7+cos–=

x xsin xd u vd uv v ud– x x 7+cos–  xcos– 7+  xd–= = =
x x 7x x 7x+sin– – C+ +cos–=

x x x C+sin+cos–= same result

x3ex2 dx

x3ex2 dx x2 xex2  xd=

u x2=

du 2xdx=

dv xex2dx= v xex2dx
1
2
--- eu ud

1
2
---eu C+

1
2
---ex2 C+= = = =

we needed to get to a “manageable dv”

And: x3ex2 dx u vd uv= v ud–= x2 1
2
---ex2

 
  1

2
---ex2

 
  2x xd–=

1
2
---x2ex2 xex2 xd–=

1
2
---x2ex2 1

2
---ex2– C+=

1
2
---ex2 x2 1–  C+=

dv xex2dx=

v
1
2
---ex2=

1
2
---ex2 x2 1– 

 1
2
--- ex2 x2 1–  =

1
2
--- ex2 2x x2 1–  2xex2+ =

1
2
--- 2xex2 2x3ex2 2xex2–+  x3ex2= =

Answer:  x x x C+cos+sin

CHECK YOUR UNDERSTANDING 7.1

Determine:
     x xcos xd
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You already know that: 

 , , and 

How does one integrate the logarithmic function? Like this:

PROOF: We could, of course, simply verify that 
(margin), but inquiring minds may want to know where the formula
came from in the first place. Alright then, have it your way:

SOLUTION:                

x x x–ln 
x xln  x x x–ln+=

x
1
x
--- x 1–ln+ xln= =

THEOREM 7.1

EXAMPLE 7.2 Evaluate: 

ex  ex= xln  1
x
---= ex xd ex C+=

xln dx x x x– C+ln=

x x x–ln  xln=

xln dx

u xln=

du
1
x
---dx=

dv dx=

v x=

xln dx u vd uv= v ud– x x x
1
x
--- xd–ln x x x– C+ln= = =

x xsin lncos xd
4
---


2
---



x xsin lncos xd
6
---


2
---

 uln ud
1
2
---

1

 u u u–ln 
1
2
---

1
= =

1 1–ln  1
2
--- 1

2
---ln 1

2
---– 

 –=

0 1–  1
2
---ln 1

2
---– 

 –=

1
2
---– 1

2
---ln–=

u xsin=

du xdxcos=

x

6
--- u 

6
---sin 1

2
---= = =

x

2
--- u 

2
---sin 1= = =

Answers: (a)  

(b) 

1
2
---–

3
4
--- 3ln+

xtan
1–
x

1
2
--- 1 x2+  C+ln–

CHECK YOUR UNDERSTANDING 7.2

Evaluate: 

       (a)               (b) x 2x2 1+ ln xd
0

1

 tan
1–
x xd

Suggestion: u tan
1–
x dv dx= =
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The integration by parts procedure may need to be employed more than
once to evaluate a given integral. Consider the following examples: 

SOLUTION: (a)  

                                   Then : 

Returning to (*):

 (b) 

Continuing the good fight: 

Returning to (*):

Adding  to both sides of the above equation brings us to: 

EXAMPLE 7.3 Evaluate:
   (a)          (b) x2 x xdcos ex xsin xd

x2 x xdcos
u x2=

du 2xdx=

dv x dxcos=

v xsin=

x2 xcos dx u vd uv= v ud– x2 x 2x xsin xd–sin= = (*)

2x xsin xd

2x xsin dx 2x xcos– xcos– 2 xd– 2x x 2 x C+sin+cos–= =
uv v ud

u 2x=

du 2dx=

dv xsin dx=

v xcos–=

x2 xcos dx x2 x 2x xsin xd–sin x2 x 2x x 2 x C+sin–cos+sin= =

ex xsin xd
u ex=

du exd x=

dv xdsin x=

v xcos–=

ex xsin dx ex x x excos– x d–cos– ex x ex xcos xd+cos–= = (*)

ex xcos xd
u ex=

du exd x=

dv x dcos x=

v xsin=

ex xcos dx ex x ex x xdsin–sin=

Just in case you’re wondering:

To say that  is an arbi-

trary constant is the same
as saying that C is an arbi-
trary constant.

C
2
----

ex xsin dx e– x x ex xcos xd+cos=

e– x x ex x ex x xdsin–sin+cos=

ex xsin dx

2 ex xsin dx ex– x ex x C+sin+cos=

ex xsin dx
1
2
---ex xsin xcos–  C+=
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The integration by parts formula for indefinite integrals:

can be modified to accommodate definite integrals. Specifically:

SOLUTION:                       

Answer:

 1
2
---ex xsin xcos+  C+

CHECK YOUR UNDERSTANDING 7.3

Determine: 

EXAMPLE 7.4 Employ the above formula to Evaluate:

If you prefer, you may use the indefinite integral formula, as we 

did on page 261 to arrive at: 

               Then:   

ex x xdcos

u vd uv= v ud–

u vd
a

b

 uv
a
b

v ud
a

b

–=

x xsin xd
0





x xsin xd
0




u x=

du d x=

dv xdsin x=

v xcos–=

x xsin xd
0



 uv
0


v ud
0



– x xcos– 
0


xcos–  xd
0



–= =

x x
0


x
0


sin+cos–=

 cos 0 0cos–  sin 0sin– +–=

 1–  – 0+ = =

x xsin xd x xcos x C+sin+–=

x xsin xd
0


 x xcos xsin+– 

0


=

Answer: 
2
--- 1–

CHECK YOUR UNDERSTANDING 7.4

Evaluate:

                                                x xcos xd
0


2
---
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The following theorem illustrates a procedure that can be used to
integrate powers of the sine or cosine functions.   

PROOF: We derive the sine-formula 

and invite you verify the cosine-formula in the exercises:

                                            

Adding  to both sides of the above equation brings us to:

THEOREM 7.2
REDUCTION
FORMULAS

For any integer :n 2

sin
n
xdx

xcos
n

----------- sin
n 1–

x
n 1–

n
------------ sin

n 2–
x dx+–=

cos
n
xdx

xsin
n

---------- cos
n 1–

x
n 1–

n
------------ cos

n 2–
x dx+=

sin
n
xdx

xcos
n

----------- sin
n 1–

x
n 1–

n
------------ sin

n 2–
x dx+–=

sin
n
xdx

u sin
n 1–

x=

du n 1–  sin
n 2–

x  xdxcos=

dv xdsin x=

v xcos–=

sin
n
x xd u vd uv= v ud– sin

n 1–
x xcos–  x n 1–  sin

n 2–
x  xdxcos cos––= =

xsin
n 1–

x n 1–  cos
2
x sin

n 2–
x xd+cos–=

xsinn 1– x n 1–  1 sin
2
x–  sin

n 2–
x xd +cos–=

xsinn 1– x n 1–  sin
n 2–

x xd n 1–  sinnx xd–+cos–=

n 1–  sinnx xd
sin

n
xdx n 1–  sinnx xd+ xsin

n 1–
x n 1–  sin

n 2–
x xd+cos–=

n sin
n
xdx xsin

n 1–
x n 1–  sin

n 2–
x xd+cos–=

sin
n
xdx

xcos
n

----------- sin
n 1–

x
n 1–

n
------------ sin

n 2–
x dx+–=
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SOLUTION: Appealing to the cosine-reduction formula a couple of
times:

 

EXAMPLE 7.5 Use a reduction formula to determine:
cos

4
x xd

cos
4
x xd

xsin
4

---------- cos
3
x

3
4
--- cos

2
x dx+=

xsin
4

---------- cos
3
x

3
4
--- xsin

2
---------- xcos

1
2
--- cos

0
x dx++=

xsin
4

---------- cos
3
x

3 xsin
8

------------- xcos
3
8
--- xd+ +=

xsin
4

---------- cos
3
x

3 xsin
8

------------- x 3x
8

------ C+ +cos+=

Answer:
1
3
--- xcos sin

2
x–

2
3
--- xcos– C+

CHECK YOUR UNDERSTANDING 7.5

Use a reduction formula to determine: 
sin

3
x xd
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Exercise 1-47. Evaluate.

EXERCISES

1. 2. 3.  

4. 5. 6.

7. 8. 9.

10. 11. 12.

13. 14. 15.

16. 17. 18.

19. 20. 21.

22. 23. 24.

25. 26. 27.

28. 29. 30.

31.  32.  33.  

34. 35. 36.

37. 38. 39.

40.  41.  42.

43.  
44.  45.  

46.  
47.

xe x– xd xe2x xd x 3xsin xd

2x–
x
2
--- xdcos x axsin xd x axcos xd

x2 xln xd xe3x xd x2e3x xd
x2ex xd x3

1 x2+
------------------ xd x3 x xdln

x2e x– xd sin
1–
x xd x xln xd

xln 2 xd 1
x
---ln xd x c+ ln xd

x x c+ ln xd xe2x

1 2x+ 2
---------------------- xd xln  xdcos

xln sin xd x xsin lncos xd sin
1–
x 2

xd
x2 5x– ex xd x xln 2 xd xtan

2
x xd

xln

x
-------- xd cos

3
xdx sin

4
xdx

x2

1 x2+ 2
---------------------- xd tan

1–
x

x2
--------------- xd x2tan

1–
x xd

3x 2xsinsin xd 3x 2xcossin xd x 3xcoscos xd

x2ex xd
0

1

 x 2x xdsin
0



 x2e 3x– xd
0

1



xln
x2

-------- xd
1

2

 tan
1–
x xd

0

1

 x2 x xdln
1

e



x 3+ ln xd
2–

2

 x x xdcoslnsin
0


2
---

 x 4xsin xd
0


2
---



sin
4
2xcos

3
2x xd

0


2
---


x3

x2 1+
------------------ xd

0

1
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48. (Area) Find the area of the region enclosed by the graph of  and the x axis for 

.

49.(Area) Find the area of the region enclosed by the graph of  and the x axis for 

.

50. (Area) Find the area of the region enclosed by the graph of , and the lines 

, , and .

51. (Volume) Find the volume obtained by revolving the region bounded by the graph of the
function , the line  and the x-axis about the x-axis.

52. (Volume) Find the volume obtained by revolving the finite region enclosed by the graphs of
the sine and cosine functions, the y-axis and the vertical line  about the x-axis.

53. (Velocity) A particle moving along a line has velocity  feet per second. How far
will it travel during the first 3 seconds?

54. (Velocity) A particle moving along a line has velocity  meters per second.
How far will it travel during the first 2 seconds?

Exercise 55-59. (Reduction Formulas) Derive the given reduction formula, where n is an inte-
ger greater than 1.

Exercise 60-64. (Integral Formulas) Derive the given integral equation.

65. (Theory) Show that  for any constant C.

66. (Theory) Show that .

55.

56.

57.

58.  

59.

60.

61.

62.

63.

64.

f x  x xcos=

0 x
3
2

------ 

f x  x xsin=

0 x 3 

f x  x xsin=

y x= x 0= x 
2
---=

f x  xln= x e=

y =

v t  tet=

v t  et tsin=

xnex xd xnex n xn 1– ex xd–=

cos
n
xdx

xsin
n

---------- cos
n 1–

x
n 1–

n
------------ cos

n 2–
x dx+=

sec
n
xdx sec

n 2–
x xtan

n 1–
-------------------------------

n 2–
n 1–
------------ sec

n 2–
xdx+=

tan
n
x xd tan

n 1–
x

n 1–
------------------- tan

n 2–
x xd–=

x
m

xln ndx xm 1+ xln n

m 1+
-----------------------------

n
m 1+
------------- x

m
xln n 1– dx–=

xnsin
1–
x xd

xn 1+

n 1+
------------ sin

1–
x  1

n 1+
------------ xn 1+

1 x2–
------------------ xd–=

x x2 a2++ ln xd x x x2 a2++  x2 a2+– C+ln=

x a+ ln xd x a+  x a+  x– C+ln=

eax bxsin xd
eax

a2 b2+
----------------- a bsin x b bxcos–  C+=

eax bxcos xd eax b bxsin a bcos x+ 
a2 b2+

------------------------------------------------------ C+=

uv v ud– u v C+  v C+  ud–=

f x  xd xf x  x f  x dx–=
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 7

Once we rewrite the quadratic polynomial  in the form

, we will be able to evaluate :

But how does one go from  to ? By using the
completing the square method, which we now describe: 

When polynomials of the form:

are expanded, they take on the following form:

In particular, to be a perfect square, the question mark in the expression:

must be replaced by the square of one-half the coefficient of : 

In particular: 

The above completing the square method can be used to evaluate cer-

tain integrals involving . Consider the following examples.

§2. COMPLETING THE SQUARE AND 
PARTIAL FRACTIONS

x2 4x 8+ +

x 2+ 2 4+ xd
x2 4x 8+ +
---------------------------

xd
x2 4x 8+ +
--------------------------- xd

x 2+ 2 4+
----------------------------

1
4
--- xd

x 2+
2

------------ 
  2

1+

-----------------------------= =

1
2
--- ud

u2 1+
--------------=

1
2
---tan

1–
u C+

1
2
---tan

1– x 2+
2

------------ 
  C+= =

u
x 2+

2
------------ du 1

2
---dx dx 2du:= = =

Theorem 6.17(b), page 255:

x2 4x 8+ + x 2+ 2 4+

x a+ 2   and   x a– 2 (called perfect squares)

Note that for this tech-
nique to work the coeffi-
cient of  must be 1.x2

EXAMPLE 7.6 Evaluate:

(a)          (b) 

x a+ 2 x2 2ax a2+ +=

x a– 2 x2 2ax– a2+=
The square of 

1
2
--- the coefficient of x

x2 4x ?+ +
x

x2 4x 4+ + x 2+ 2=

4
2
--- 
  2

4=

x2 4x 8+ + x2 4x 4 4– 8+ + + x 2+ 2 4+= =

turn this piece into a perfect square

since we added 4, we must subtract 4

ax2 bx c+ +

xd

x2– 10x 21–+
-----------------------------------------

x 5–
x2 2x 2+ +
--------------------------- xd
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SOLUTION: (a) We begin by molding    into a form
that contains a perfect square:

Then:

(b) It would be nice if the numerator in the integral 

were a , for we could then let 
and then go on from there. But it isn’t. So we first focus on getting

the  of  into the numerator: ; and then

squeeze in the : . Breaking the integral into two

integrals we have:

No problem with the first integral:

The second integral takes a bit more work: 

x2– 10x 21–+

x2– 10x 21–+ 1x2 10x– – 21– x2 10x– 25+ – 21– 25+= =

coefficient of x2 must be 1

add the square of one-half the coefficient of x
since we subtracted 25, we added it back

x 5– 2–= 4+

xd

x2– 10x 21–+
----------------------------------------- xd

x 5– 2– 4+
------------------------------------- xd

4 x 5– 2

4
-------------------– 1+

----------------------------------------------= =

sin
1–
u C+=

sin
1– x 5–

2
----------- 
  C+=

u x 5–
2

-----------=

du dx
2

------=

Theorem 6.17(a), page 255:

1
2
--- xd

1
x 5–

2
----------- 
  2

–

---------------------------------=

ud

1 u2–
------------------=

motivated by xd

1 x2–
------------------ sin

1–
x C+=

x 5–
x2 2x 2+ +
--------------------------- xd

2x 2+ u x2 2x 2 du+ + 2x 2+= =

2x 2x 2+
1
2
--- 2x 10–

x2 2x 2+ +
--------------------------- xd

2+
1
2
--- 2x 2 12–+

x2 2x 2+ +
--------------------------- xd

x 5–
x2 2x 2+ +
--------------------------- xd

1
2
--- 2x 2 12–+

x2 2x 2+ +
--------------------------- xd=

1
2
--- 2x 2+

x2 2x 2+ +
--------------------------- x

1
2
--- 12

x2 2x 2+ +
--------------------------- xd–d=

1
2
--- 2x 2+

x2 2x 2+ +
--------------------------- xd

1
2
--- ud

u
------

1
2
--- u C+ln

1
2
--- x2 2x 2+ +  C+ln= = =

 u x2 2x 2 du+ + 2x 2+ dx= = note that x2 2x 2 0 for all x+ +
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Putting it all together we have:

 

As you know, to perform the sum  you first find the least

common denominator, and then go on from there: 

In this section you will need to go the other way: 

          Go from the rational expression 

to its so-called partial fractions form .

The first step toward obtaining a partial fraction decomposition of a
rational expression (with the degree of the numerator LESS than that of
the denominator) is to factor its denominator into a product of powers
of distinct linear factors, , and powers of irreducible quadratic

polynomials, . Next, obtain the general decomposition of
the given rational expression by writing it as a sum of rational expres-
sions of the form: 

where A and B denote real numbers. 

1
2
--- 12

x2 2x 2+ +
--------------------------- xd 6 xd

x2 2x 1+ +  2 1–+
--------------------------------------------------=

6 xd
1 x 1+ 2+
----------------------------=

6 ud
1 u2+
-------------- 6tan

1–
u C+ 6tan

1–
x 1+  C+= = =

u x 1+=

du dx=

x 5–
x2 2x 2+ +
--------------------------- xd

1
2
--- x2 2x 2+ +  6tan

1–
x 1+  C+–ln=

Answer: 

sin
1– 2

3
---x 1– 
  C+

CHECK YOUR UNDERSTANDING 7.6

Evaluate:

PARTIAL FRACTIONS

xd

3x x2–
---------------------

2
x 3+
------------ 1

x 2–
-----------+

2
x 3+
------------ 1

x 2–
-----------+ 2x 4– x 3+ +

x 3+  x 2– 
--------------------------------- 3x 1–

x 3+  x 2– 
---------------------------------= =

3x 1–
x 3+  x 2– 

---------------------------------

3x 1–
x 3+  x 2– 

--------------------------------- 2
x 3+
------------ 1

x 2–
-----------+=

 is irreducible
if it cannot be expressed as
a product of linear factors
with real coefficients;
equivalently:

if its discriminant
 is negative.

ax2 bx c+ +

b2 4ac–

ax b+

ax2 bx c+ +

A
ax b+ n

----------------------  or  
Ax B+

ax2 bx c+ + n
-------------------------------------
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The following table reveals the terms to be included in the general
decomposition to accommodate each factor in the denominator of the
given expression:

Figure 7.1    
To illustrate:

The following example illustrates a technique that can be used to find
the final partial fraction decomposition of a rational expression.

Powers of linear factors Terms in the decomposition

(i)          

(ii)        

(iii)       

Powers of Irreducible 
quadratic factors                    

 Terms in the decomposition

(iv)     

(v)     

(vi)    

ax b+ A
ax b+
---------------

ax b+ 2 A
ax b+
--------------- B

ax b+ 2
----------------------+

ax b+ 3 A
ax b+
--------------- B

ax b+ 2
---------------------- C

ax b+ 3
----------------------+ +

ax2 bx c+ + Ax B+
ax2 bx c+ +
------------------------------

ax2 bx c+ + 2 Ax B+
ax2 bx c+ +
------------------------------ Cx D+

ax2 bx c+ + 2
-------------------------------------+

ax2 bx c+ + 3 Ax B+
ax2 bx c+ +
------------------------------ Cx D+

ax2 bx c+ + 2
------------------------------------- Ex F+

ax2 bx c+ + 3
-------------------------------------+ +

1
2x 1– 2 x2 3+ 

------------------------------------------ A
2x 1–
--------------- B

2x 1– 2
----------------------+= Cx D+

x2 3+
-----------------+

irreducible—see (iv) 

see (ii) in above table

Answer:
A

x 3–
----------- B

2x 1+
--------------- C

2x 1+ 2
----------------------+ +

Dx E+
x2 5+
----------------- Fx G+

x2 5+ 2
----------------------+ +

CHECK YOUR UNDERSTANDING 7.7

Find the general decomposition for:

EXAMPLE 7.7 Find the partial fraction decomposition of:

(a)                    (b)      

(c) 

x 4–
x 3–  2x 1+ 2 x2 5+ 2

--------------------------------------------------------------

4x– 9+
2x2 5x 3–+
----------------------------- 2x2 3+

x x 1– 2
----------------------

x2 2x– 1+
x2 1+ 2

--------------------------
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SOLUTION: (a) Express the rational expression in general decomposi-
tion form:

Clear denominators by multiplying both sides of the equation: 

by :

Here are two methods that can be used to find the values of A and B:

Decomposition: 

(b) 

Clear denominators: 

Setting : 

Setting : 

We still have to find the value of B and could do it in many ways.

One way is to replace A with 3 and C with 5 in (*):

Then substitute any value for x other than 0 and 1, say , and
solve for B:

Decomposition: 

4x– 9+
2x2 5x 3–+
----------------------------- 4x– 9+

2x 1–  x 3+ 
------------------------------------- A

2x 1–
--------------- B

x 3+
------------+= =

Figure 7.1(i)

4x– 9+
2x2 5x 3–+
----------------------------- A

2x 1–
--------------- B

x 3+
------------+=

2x 1–  x 3+ 
4x– 9+ A x 3+  B 2x 1– += (*)

By setting x equal to  in (*), the term
 in (*) will drop out, and this will

enable us to easily find the value of B:

By setting x equal to  in (*), the term

 in (*) will drop out, and we can
solve for A:

Rewrite the right side of (*) in polynomial
form:

Equate the like coefficients of the polynomi-
als on the left and right sides of the equation:

You can the solve the above system of equa-
tions; and, if you do, you will again find that:

Note: Unlike the “easier” method on the left, this
method can be used to find the final partial fraction
decomposition of any rational expression.

3–
A x 3+ 

4 3– – 9+ A 3– 3+  B 2 3–  1– +=

21 7B B– 3–= =
1
2
---

B 2x 1– 

4
1
2
--- 
 – 9+ A 1

2
--- 3+ 
  7 7

2
---A A 2= = =

4x– 9+ A 2B+ x 3A B– +=

4– A 2B+=

9 3A B–=

A 2 B 3–= =

4x– 9+
2x2 5x 3–+
----------------------------- 2

2x 1–
--------------- 3–

x 3+
------------+ 2

2x 1–
--------------- 3

x 3+
------------–= =

2x2 3+
x x 1– 2
---------------------- A

x
--- B

x 1–
-----------+= C

x 1– 2
-------------------+

Figure 7.1 (i) and (iii)

2x2 3+ A x 1– 2= Bx x 1–  Cx+ + (*)

x 1= 2 1 2 3+ A 0 B 0 C 1++= C 5=

x 0= 2 0 2 3+ A B 0+= C 0+ A 3=

2x2 3+ 3 x 1– 2= Bx x 1–  5x+ +
x 2=

2 22 3+ 3 2 1– 2= B 2 2 1–  5 2+ +

11 3 2B 10+ +=

B 1–=

2x2 3+
x x 1– 2
---------------------- 3

x
--- 1

x 1–
-----------–= 5

x 1– 2
-------------------+



7.2    Completing the Square and Partial Fractions       275
(c) 

Clear denominators: .

Since no value of x will make a term drop out, we proceed by expand-
ing the right side (details omitted) to come to:

  (*)

Equating the coefficients of like powers of x we have:

Decomposition: 

 

Back to the calculus:

SOLUTION: 

(a) 

(b) 

x2 2x– 1+
x2 1+ 2

-------------------------- Ax B+
x2 1+
----------------= Cx D+

x2 1+ 2
----------------------+

Figure 7.1(v)

x2 2x– 1+ Ax B+  x2 1+  Cx D+ +=

x2 2x– 1+ Ax3 Bx2 A C+ x B D+ + + +=

A 0            B 1            A C+ 2            B– D+ 1= = = =
x3 -coefficients x2 -coefficients x -coefficients constant coefficient

C 2–= D 0=

x2 2x– 1+
x2 1+ 2

--------------------------- 1
x2 1+
-------------- 2x

x2 1+ 2
----------------------–=

Answer: 1
x
--- x 1+

x2 x 1+ +
-----------------------–

CHECK YOUR UNDERSTANDING 7.8

Find the partial fraction decomposition of:

        
1

x x2 x 1+ + 
-------------------------------

2 xd
2x 1–
--------------- 2

1
2
--- ud

u
------=

u C+ln=

2x 1–ln C+=

u 2x 1 du– 2dx= =

5 xd
x 1– 2

------------------- 5 ud
u2
------=

5 u 2– du=

5u 1–– C+=

5
x 1–
-----------– C+=

u x 1 du– dx= =

EXAMPLE 7.8
Evaluate: (a)      

(b)         (c) 

4x– 9+
2x2 5x 3–+
----------------------------- xd

2x2 3+
x x 1– 2
---------------------- xd

x2 2x– 1+
x2 1+ 2

-------------------------- xd

4x– 9+
2x2 5x 3–+
----------------------------- xd 2

2x 1–
--------------- 3

x 3+
------------– 

  xd=

2 xd
2x 1–
--------------- 3 xd

x 3+
------------–=

2x 1–ln 3 x 3+ C+ln–=

see margin

Example 7.6(a)

2x2 3+
x x 1– 2
---------------------- xd 3

x
--- 1

x 1–
-----------– 5

x 1– 2
-------------------+ 

  xd=

3 xd
x
----- xd

x 1–
----------- 5 xd

x 1– 2
-------------------+–=

3 x x 1– 5
x 1–
-----------– C+ln–ln=

see margin

Example 7.6(b)
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(c) 

 

We remind you that the decomposition procedure summarized in Fig-
ure 7.1 can only be invoked when the degree of the numerator of the
given rational expression is LESS than the degree of the denominator.
What if that is not the case? The answer surfaces in the next example.

SOLUTION: Since the degree of the polynomial in the numerator is not
less than that in the denominator, we divide (see margin) to arrive at:

Observing that 1 is a zero of  we apply Theorem 1.4, page
19, to arrive at a factorization of the cubic polynomial (see margin):

Bringing us to:

Referring to Figure 7.1, we have 

2x
x2 1+ 2

---------------------- xd ud
u2
------=

u 2– ud=

1
u
---– C+=

1
x2 1+
-------------- C+–=

u x2 1 du+ 2xdx= =
x2 2x– 1+

x2 1+ 2
-------------------------- xd 1

x2 1+
-------------- 2x

x2 1+ 2
----------------------– 

  xd=

xd
1 x2+
--------------

2x
x2 1+ 2

---------------------- xd–=

tan
1–
x 1

x2 1+
-------------- C+ +=

Example 7.6(c)

Theorem 6.17(b), page 255       see margin

Answer:

x
1
2
--- x2 x 1+ + ln–ln

1

3
-------tan

1– 2

3
-------x 1

3
-------+ 

  C+–

CHECK YOUR UNDERSTANDING 7.9

Evaluate:

EXAMPLE 7.9 Evaluate:
     

xd
x x2 x 1+ + 
-------------------------------

x3

x3 3x– 2+
-------------------------- xd

x3 3x– 2  x3+
1

x3 3x– 2+
3x 2–_:

x3

x3 3x– 2+
-------------------------- 1 3x 2–

x3 3x– 2+
--------------------------+=

x 1  x3 0x2 3x– 2+ +–
x2 x 2–+

x3 x2–

x2 3x– 2+

x2 x–
2x– 2+
2x– 2+

0

_:

_:

_:

x3 3x– 2+

x3 3x– 2+ x 1–  x2 x 2–+  x 1–  x 1–  x 2+ = =

x3

x3 3x– 2+
-------------------------- xd 1 3x 2–

x 1– 2 x 2+ 
------------------------------------+ 

  xd=

x
3x 2–

x 1– 2 x 2+ 
------------------------------------ xd+d= (*)

3x 2–
x 1– 2 x 2+ 

------------------------------------ A
x 1–
----------- B

x 1– 2
------------------- C

x 2+
------------+ +=

3x 2– A x 1–  x 2+  B x 2+  C x 1– 2+ +=

Setting x 1: 1 3B B 1
3
---= = =

Setting x 2– : 8– 9C C 8
9
---–= = =

Equating the x2 coefficients: 0 A C A+ C A– 8
9
---= = =
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Returning to (*):

Answer:

8 9
x 1–
-----------

8
9
--- ud

u
------

8
9
--- u C+ln= =

8
9
--- x 1– C+ln=u x 1–=

du dx=

1 3
x 1– 2

-------------------
1
3
--- ud

u2
------=

1
3
--- u 2– ud=

1
3u
------– C+=

1
3 x 1– 
-------------------– C+=

2x 4 x 2– 3
x 2–
-----------– C+ln+

CHECK YOUR UNDERSTANDING 7.10

Evaluate:

x3

x3 3x– 2+
-------------------------- xd x

8
9
---

x 1–
-----------

1
3
---

x 1– 2
-------------------

8
9
---

x 2+
------------–+

 
 
 
 

xd+d=

x
8
9
--- x 1– 1

3 x 1– 
-------------------–

8
9
--- x 2+ C+ln–ln+=margin:

2x2 4x– 3+
x2 4x– 4+

----------------------------- xd
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Exercise 1-16. (Completing the Square) Evaluate.

Exercise 17-52. (Partial Fractions) Evaluate.

EXERCISES

1. 2. 3.

4. 5. 6.

7. 8. 9.

10. 11.  12.

13.
14. 15.

16.  Suggestion: Multiply top and bottom by .

17.  18. 19.  

20. 21.  22.

23.  24. 25.  

26. 27.  28.

29.  30. 31.   

32. 33.   34. 

35.  36.  37.  

38. 39.  40.

xd
x2 2x 5+ +
--------------------------- xd

x2 4x 5+ +
--------------------------- xd

x2 6x 25+ +
------------------------------

xd
x2 8x– 17+
----------------------------- xd

6x x2–
--------------------- xd

10x x2–
------------------------

xd
4x2 8x 29+ +
--------------------------------- xd

9 2x– x2–
-------------------------- xd

x2 3x 5+ +
---------------------------

xd

6x2 24x– 32+
---------------------------------------- x

3 2x x2–+
------------------------------ xd xd

x2 4x 5+ +
---------------------------

0

1



xd
5– 8x 4x2–+

----------------------------------
3
2
---

1 3
2

-------+


4x x2– xd

0

1

 xd

4x x2–
---------------------

1

2



x a+
x b+
------------ xd x a+

xd
x2 x– 2–
---------------------- xd

x2 3x 4–+
--------------------------

x
x2 3x– 2+
-------------------------- xd

2x
x2 2x– 8–
-------------------------- xd x2

x 1– 2 x 1+ 
------------------------------------ xd

x3 1–
x4 3x3–
------------------- xd

x
6x2 x– 2–
-------------------------- xd

x2 x 2+ +
x2 1+ 2

----------------------- xd
7x 3+

x3 2x2– 3x–
------------------------------- xd

1
x2 x 3– 2
------------------------ xd 5x2 18x 1–+

x 4+ 2 x 3– 
------------------------------------ xd

1
x 1– 2 x 2– 3

-------------------------------------- xd

4x2 x 2+ +
x3 x 2+ 

--------------------------- xd
x 1–

x4 x2+
---------------- xd x3 x–

x2 1+ 2
---------------------- xd

x2 2x+
x2 1+ 2

---------------------- xd
x 1–

x x2 1+ 
---------------------- xd

x2 2+
x4 x2+
---------------- xd

7x3 3x2– 9x 6–+
x4 3x2 2+ +

-------------------------------------------- xd x3 2+
x3 3x2– 2x+
-------------------------------- xd

x2 2+
x2 2x+
----------------- xd

x3 8+
x x2 4+ 
---------------------- xd

x3 3x2– 2x 3–+
x2 1+

----------------------------------------- xd
x5

x2 1+ 2
---------------------- xd
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Exercise 53-54. (Differential Equation) Solve the given differential equation.

55. (Area) Find the area of the region below the graph of  that lies above the 

interval . 

56. (Area) Find the area of the region below the graph of  tat lies above the 

interval .

57. (Volume) Find the volume obtained by generating, about the x-axis, the region bounded by the 

graph of the function  above the interval . 

58. (Volume) Find the volume obtained by generating, about the x-axis, the finite region bounded 

by the graph of the function  and the lines .

Exercise 59-60. (Formulas) Derive the given integral formula.

41.  42. 43.  

44.  45. 46.

47.  48.  49.

50.  51.  52.  

53.  if . 54.   if 

59. 60.  

xcos

sin
2
x xsin 6–+

-------------------------------------- xd
xcos

sin
2
x 5 x  6+sin–

---------------------------------------------- xd ex

e2x 1–
---------------- xd

ex

e2x 3ex 2+ +
------------------------------- xd xd

x2 9–
--------------

0

1

 xd
16 x2–
-----------------

1

2


22

6x2 5x 4–+
----------------------------- xd

1

2

 2x 1+
x2 x+
--------------- xd

1

2


2x3 4x2 2x 3–+ +

x2 x2 1+ 
-------------------------------------------- xd

3–

1



2x3 x2– 2x 1+ +
x4 1–

-----------------------------------------
2

3


2x2 x– 2+

x3 x+
-------------------------- xd

1

2


x2 3+

x4 3x2 2+ +
----------------------------- xd

0

1



f  x  1
x2 3x– 2+
--------------------------= f 3  0= f  x  1

x3 x+
--------------= f 2  2=

f x  7x 5–
4x2 7x– 2–
-----------------------------=

3 5 

f x  1
x3 3x2– 2x+
--------------------------------=

3 5 

f x  x
x2 4–
--------------= 3 5 

f x  3

3x x2–
---------------------= y 0 x 1

2
---= = x 5

2
---=

xd
x2 a2–
----------------

1
2a
------ x a–

x a+
------------ln= C+   a 0 xd

a2 x2–
----------------

1
2a
------ x a+

x a–
------------ln= C+   a 0
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 7

The Pythagorean identity  can be employed to

evaluate integrals of the form  when at least one of the

positive integer exponents, n and m, is odd. Consider the following
example. 

SOLUTION: (a) We could use a reduction formula, Theorem 7.2 (page

266) to evaluate  (see CYU 7.5). Here is another approach: 

 

 

(b) 

§3. POWERS OF TRIGONOMETRIC FUNCTIONS 
AND TRIGONOMETRIC SUBSTITUTION

Note that we “saved”
one of the three sines to
accommodate the subse-
quent u-substitution.

EXAMPLE 7.10 Evaluate:

     (a)           (b) 

sin
2
x cos

2
x+ 1=

sin
n
xcos

m
x xd

sin
3
x xd sin

2
xcos

5
x xd

sin
3
x xd

sin
3
x xd xsinsin

2
x xd x 1 cos

2
x–  xdsin= =

x xcos
2
xsin xd–sin=

x xcos
2
xsin xd–cos–=

x u2 ud– –cos–=

x u3

3
-----+cos– C+=

x cos
3
x

3
------------- C+ +cos–=

u xcos=

du xdx:sin–=

see margin

Note how the reserved
 serves us well in

the subsequent u-substi-
tution.
Why would this method

fail had we used 

rather than ?

xcos

cos
6
x

cos
5
x

Check: x cos
3
x

3
-------------+cos– 

  x 3cos
2
x xsin– 
3

------------------------------------+sin x 1 sin
2
x–  xsin– +sin sin

3
x= = =

sin
2
xcos

5
x xd sin

2
x xcoscos

4
x xd=

sin
2
x x cos

2
x 2

cos xd=

sin
2
x x 1 sin

2
x– 2

cos xd=

sin
2
x x 1 2sin

2
x sin

4
x+– cos xd=

sin
2
x xcos x 2 xsin

4
xcos x xsin

6
xcos xd+d–d=

u2 u 2 u4 ud–d u6 ud+ u3

3
----- 2u5

5
--------– u7

7
----- C+ += =

sin
3
x

3
------------ 2sin

5
x

5
---------------–= sin

7
x

7
------------ C+ +

u xsin=

du xdxcos=
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The above method for evaluating  will not work when

n and m are both even. In that case, you can turn to the identities:

SOLUTION: (a) We could use a reduction formula, Theorem 7.2 (page
266), to evaluate  (see Example 7.5, page 267). Here is a
direct approach: 

 

(b)

Answers: (a) 

(b) 

See Theorem 1.5, page 37

2
3
---

cos
3
x

3
-------------– cos

5
x

5
------------- C+ +

CHECK YOUR UNDERSTANDING 7.11

Evaluate:     (a)                       (b) 

EXAMPLE 7.11 Evaluate:

     (a)           (b) 

cos
3

0


2
---

 xdx sin
3
xcos

2
x xd

sin
n
xcos

m
x xd

sin
2
x

1 2xcos–
2

-----------------------         (**) cos
2
x 1 2xcos+

2
------------------------= =(*)

cos
4
x xd sin

2
xcos

2
x xd

cos
4
x xd

cos
4
x xd cos

2
x 2

xd
1 2xcos+

2
------------------------ 
  2

xd= =

1
4
--- 2 2cos x

4
------------------ cos

2
2x

4
----------------+ + 

  xd=

xd
4
-----

1
2
--- 2xcos x

1
4
--- cos

2
2x xd+d+=

x
4
---

1
2
--- 2xsin

2
------------- 1

4
--- 1 4xcos+

2
------------------------ xd+ +=

x
4
---

1
4
--- 2xsin

1
8
--- x 4xsin

4
-------------+ 

  C+ + +=

3
8
---x

1
4
--- 2x

1
32
------ 4x C+sin+sin+=

(**)

(**)

sin
2
xcos

2
x xd

1 2xcos–
2

----------------------- 1 2xcos+
2

------------------------ xd
1
4
--- 1 cos

2
2x–  xd= =

1
4
--- 1 1 4xcos+

2
------------------------– 

  xd=

1
8
--- 1 4xcos–  xd=

1
8
--- x 4xsin

4
-------------– 

  C+=

1
8
---x

1
32
------ 4xsin– C+=
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Integrals of the above form can be evaluated with the help of the
identities:

SOLUTION: (a) Motivated by  we have:

(b) Motivated by  we have:

Answers: (a) 

                (b) 

3
16
------

x
2

16
------ 4xsin

64
-------------– C+

CHECK YOUR UNDERSTANDING 7.12

Evaluate:

           (a)                       (b) 

INTEGRALS OF THE FORM  AND 

Which follow directly from the Pythagorean identity:

EXAMPLE 7.12 Evaluate:

(a)    (b)     (c) 

sin
4

0


2
---

 xdx xsin
2
x2  cos

2
x2  xd

tan
n
xsec

m
x xd cot

n
xcsc

m
x xd

sec
2
x 1 tan+

2
x  and  csc

2
x 1 cot

2
x+= =

sin
2
x cos

2
x+ 1

sin
2
x

cos
2
x

------------- cos
2
x

cos
2
x

-------------+ 1

cos
2
x

-------------= tan
2
x 1+ sec

2
x=

sin
2
x

sin
2
x

------------ cos
2
x

sin
2
x

-------------+
1

sin
2
x

------------ 1 cot
2
x+ csc

2
x= =









=

tan
3
xsec

3
x xd cot

3
x xd tan

6
x xd

xsec  x xtansec=

tan
3
xsec

3
x xd tan

2
xsec

2
x x xtansec xd=

sec
2
x 1– sec

2
x x xtansec xd=

sec
4
x x xtansec x sec

2
x x xtansec xd–d=

u4 u u2 ud–d u5

5
----- u3

3
-----– C+ sec

5
x

5
------------- sec

3
x

3
-------------– C+= = =

u xsec=

du secx xdxtan=

xcot  csc–
2
x=

cot
3
x xd xcot

2
xcot xd x csc

2
x 1– cot xd= =

xcsc
2
xcot x xcot xd–d=

u u
xcos
xsin

----------- xd–d–=

u2

2
-----– vd

v
-----–=

cot
2
x

2
------------– v C+ln–=

cot
2
x

2
------------– xsin C+ln–=

u xcot=

du csc
2
xdx–=

v xsin=

dv xdxcos=
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(c) Motivated by  we have 

Here is some good advice:

Figure 7.2

Answer:

2

xtan
--------------- 2 xtan  3 2

3
--------------------------- C+ +–

CHECK YOUR UNDERSTANDING 7.13

Evaluate:

xtan  sec
2
x=

tan
6
x xd tan

4
x tan

2
x xd tan

4
x sec

2
x 1–  xd= =

tan
4
xsec

2
x tan

4
x–  xd=

tan
4
xsec

2
x tan

2
xtan

2
x–  xd=

tan
4
xsec

2
x tan

2
x sec

2
x 1– –  xd=

tan
4
xsec

2
x tan

2
xsec

2
x tan

2
x+–  xd=

tan
4
xsec

2
x tan

2
xsec

2
x sec

2
x 1–+–  xd=

u4 u u2 u sec
2
x x 1 xd–d+d–d=

u5

5
----- u3

3
----- x x– C+tan+–=

tan
5
x

5
------------ tan

3
x

3
------------– x x– C+tan+=

u xtan=

du sec
2
xdx=

xtan  3 2– sec
4
x xd

INTEGRALS INVOLVING a2 x2– x2 a2+  and x2 a2– 

If the integral involves use the substitution and the identity to replace

(1)       
 with 

(2)       with 

(3)       with 

a2 x2– x a   

2
---  

2
--- –sin= cos

2 1 sin
2–=

a2 x2– a2cos
2

Note that  is positivecos
in the specified range.

x2 a2+ x a   

2
---  

2
--- –tan= sec

2 1 tan
2+= x2 a2+ a2sec

2
Note that  is positivesec
in the specified range.

x2 a2– x a   
0  

2
---

  3
2

------





sec= or tan
2 sec

2 1–=
x2 a2– a2tan

2
Note that  is positivetan
in the specified range.
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Consider the following example.

                                              SOLUTION: (a) 

                             

(b) 

(c) 

EXAMPLE 7.13 Evaluate:

(a)       (b)        (c) 4 x2– xd xd

x2 4+
------------------ xd

x2 x2 4–
------------------------

x 2  with 

2
---  

2
--- –sin=

dx 2 dcos=

sin
x
2
---  sin

1– x
2
---==


x

2

4 x2–


cos

4
x

2
–2

------------------
=

Note that  0 whencos


2
---  

2
--- –

4 x2– xd 4cos
22  dcos= 4cos

2 d=

See (1) of Figure 7.2, and margin
4

1 2cos+
2

------------------------ d=

2 1 2cos+  d=

2  2sin
2

--------------+ C+=

2 2 C+sin+=

2 2   C+cossin+=

2 sin
1– x
2
--- 

  2
x
2
--- 4 x2–

2
------------------ C+ +=

2sin
1– x
2
--- x 4 x2–

2
--------------------- C+ +=

2

4 x2+


sec

4
x

2
+2

------------------
=


x

x 2 , with 

2
---  

2
--- –tan=

dx 2sec
2d=

 tan
1– x
2
--- tan x

2
---= =

x 2 sec  with 0  
2
--- =

dx 2  dtansec=

 sec
1– x
2
--- sec x

2
---= =



x

2

x
2

4
–

sin x2 4–
x

------------------=

xd

x2 4+
------------------ xd

2sec
2

4sec
2

--------------------- d=  dsec=

sec tan+ C+ln=

4 x2+
2

------------------ x
2
---+ C+ln=

x 4 x2++
2

--------------------------- C+ln=

x 4 x2++ C+ln=

See (2) of Figure 7.2, and margin

Theorem 6.4(c), page 227:

See the triangle in the margin:

(where did
the 2 go?)

xd

x2 x2 4–
------------------------

2  tansec

2 sec 2 4tan
2

------------------------------------------- d=

2  tansec

4sec
2 2 tan

-------------------------------- d
1
4
--- 1

sec
----------- d= =

1
4
--- cos d

1
4
---  C+sin= =

4 x2–
4x

------------------ C+=See the triangle in the margin:

See (3) of Figure 7.2, and margin
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We offer some additional examples for your consideration:

SOLUTION: 

(a) 

(b) Our first step is to mold the  into the form  and
then hope for the best:

Answer:

9 x2–
x

------------------– sin
1– x

3
--- 
 – C+

CHECK YOUR UNDERSTANDING 7.14

Evaluate:

EXAMPLE 7.14 Evaluate: 

(a)             (b) 

9 x2–
x2

------------------ xd

xd

x2 4 x2–
------------------------ xd

x x4 4–
---------------------

xd

x2 4 x2–
------------------------ 2 cos d

4sin
2  2 cos 

----------------------------------------- d

4sin
2

----------------= =

x 2  
2
---  

2
--- –sin=

dx 2 dcos=

4 x2– 4 4sin
2–=

2 1 sin
2–=

2 cos=

1
4
--- csc

2 d=

1
4
---  C+cot–=

From x 2 : sinsin x
2
---= = 

x
2

4 x2–

1
4
--- 4 x2–

x
------------------– C+=

x4 4– u2 4–

xd

x x4 4–
--------------------- ud

u u2 4– 2 u
-----------------------------------------=

u x2= x u    du 2xdx= dx du
2x
------ du

2 u
----------= ==

1
2
--- ud

u u2 4–
----------------------

1
2
--- 2  tansec

2  4tan
2sec

------------------------------------ d= =

(3) Figure 7.2
1
4
--- d 

4
--- C+= =

u 2   dusec 2  dtansec= =

sec u
2
---=  sec

1– u
2
---=

1
4
---sec

1– u
2
--- C+=

1
4
---sec

1– x2

2
----- C+=
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Operating under the illusion that one cannot have enough of a good
thing:

SOLUTION: (a) Turning to the completing the square method of the
previous section we have:

Motivated by the identity :

Turning to the Integration by parts technique of Section 1:

Focusing on the start and end of the above development we have:

Conclusion:

Answer:

 x2 8–  x2 4+
3

-------------------------------------- C+

CHECK YOUR UNDERSTANDING 7.15

Evaluate: 

EXAMPLE 7.15 Evaluate: 

(a)            (b) 

x3

x2 4+
------------------ xd

x2 2x 2+ + xd
x3 1+
x2 4+ 2

---------------------- xd

x2 2x 2+ + xd x2 2x 1+ +  2 1– + xd x 1+ 2 1+ xd= =

x 1+ tan=



x 1+

1

x 1+ 2 1+


1

x2 2x 2+ +

x 1+

sec x2 2x 2+ +=

tan
2 1+ sec

2=

x 1+ 2 1+ xd tan
2 1+ sec

2 d sec
3 d= =

x 1+  xtan  1 dx–tan sec
2 d= = =

  tan
2sec d–tansec=

   sec
2 1– sec d–tansec=

  sec  sec
3 d–d+tansec=

sec
3 d secsec

2 d u vd uv v du–= = =

u sec=

du  dtansec=

dv sec
2d=

v tan=

sec
3 d   sec  sec

3 d–d+tansec=

2 sec
3 d   sec d+tansec    tan+sec C+ln+tansec= =

sec
3 d

1
2
---    tan+secln+tansec  C+=

Theorem 6.4(c), page 227)

1
2
--- x 1+  x2 2x 2+ + x2 2x 2+ + x 1+ +ln+  C+=see margin:

x2 2x 2+ + xd
1
2
--- x 1+  x2 2x 2+ + x2 2x 2+ + x 1+ +ln+  C+=

1
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(b) Turning to Figure 7.1(v) of page 273 we have:

Equating coefficients of like powers of x:

 
Bringing us to:

Then: 

A well-earned conclusion: 

x3 1+

x2 4+ 2
---------------------- Ax B+

x2 4+
---------------- Cx D+

x2 4+ 2
-----------------------+=

x3 1+ Ax B+  x2 4+  Cx D+ + Ax3 Bx2 4A C+ x 4B D+ + + += =

A 1        B 0   = = 4A C+ 0=

4 C+ 0 C 4–= =

x3 1+
x2 4+ 2

---------------------- xd
x

x2 4+
-------------- x

4x– 1+
x2 4+ 2

---------------------- xd+d=

x
x2 4+
-------------- x

4x
x2 4+ 2

---------------------- x
1

x2 4+ 2
---------------------- xd+d–d=

x

x2 4+
--------------- xd

1
2
--- ud

u
------=

1
2
--- u C+ln=

1
2
--- x2 4+  C+ln=

4x
x2 4+ 2

---------------------- xd– 2 ud
u2
------–=

2
u
--- C+=

2
x2 4+
-------------- C+=

u x2 4+=

du 2xdx=

and

xd
x2 4+ 2

----------------------
2sec

2

16sec
4

------------------- d=

1
8
--- cos

2 d=

1
8
--- 1 2cos+

2
------------------------ d=

1
16
------ d 2cos d+ =

1
16
------  1

2
--- 2sin+ 

  C+=

1
16
------   cossin+  C+=

1
16
------ tan

1– x
2
--- x

x2 4+
------------------ 2

x2 4+
------------------+ 

  C+=

1
16
------tan

1– x
2
--- 1

8
--- x

x2 4+
-------------- 
  C+ +=

x 2 tan=

dx 2sec
2d=

Theorem 1.5(ix):
(page 37)

Theorem 1.5(iv):
(page 37)


x

2

x2 4+

Answer: 

3x2 2x 1+ + ln

9

2
-------tan

1– 3x 1+

2
--------------- 
  C+ +

CHECK YOUR UNDERSTANDING 7.16

Evaluate: 

x3 1+
x2 4+ 2

---------------------- xd
1
2
--- x2 4+  2

x2 4+
--------------

1
16
------tan

1– x
2
--- 1

8
--- x

x2 4+
-------------- 
  C+ + + +ln=

6x 11+
3x2 2x 1+ +
------------------------------ xd

4B D+ 1=

D 1=
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Exercise 1-35. Evaluate.

Exercise 36-68. (Trigonometric Substitution) Evaluate.

EXERCISES

1.  2. 3.  

4.
5. 6.

7.  8.  9.  

10. 11.  12.

13.  
14.  15.

16.  17. 18.  

19. 20.  21.

22.  
23.

24.  

25. 26.  
27.

28.  29. 30.  

31. 32.  33.

34.  35.  

36. 37.  38.

sin
2
x xd cos

2
x xd sin

3
3x xd

cos
3
x

sin
2
x

------------- xd
cos

4
2x xd sin

2
2x  cos

2
2x  xd

sin
2
xcos

4
x xd sin

4
xcos

2
x xd tan

3
x xd

sec
3
4x xd csc

4
2x xd tan

4
x xd

sec
4
x

cot
3
x

------------- xd
5xsec

3
tan 5x xd 5xsec

4
tan 5x xd

3xcsc
5
3x xdcot x x xtansec xd tan

6
xsec

4
x xd

tan
5
x

cosx
------------ xd xsec xtan xd cot

3
xcsc

3
x xd

sin
3
x xcos xd 1 tan

2
x–

sec
2
x

--------------------- xd
xsin

3
x2cos

2
x2 xd

xtan sec
4
x xd x x

2
---cossin xd cos

3
x xd

0


4
---



cos
2
2x xd

0



 sin
4
3xcos

3
3x xd

0


3
---

 tan
5
xsec

6
x xd

0


3
---



cot
2
x xd

6
---


2
---

 tan
2
3x xd

0


12
------

 cos
4
x xd

0

2



xsin
4
2x2cos

3
2x2 xd

0


3
---

 10sec
6
x xd

0


3
---



xd

4 x2–
------------------ x2

1 x2–
------------------ xd

xd

x2 16+
---------------------
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69. (Area) Find the area enclosed by the graph of the function . 

70. (Area) Find the area of the region enclosed by the ellipse . 

71. (Area) Find the area of the region between  and  for . 

72. (Volume) Find the volume of the solid obtained by rotating the finite region bounded by the

graph of the function  and the x-axis about the line .

73. (Volume) Find the volume of the solid obtained by rotating the region bounded by the graph of

the function  over the interval  about the x-axis. 

74. (Volume) Find the volume of the torus obtained by rotating the region bounded by the circle
 about the x-axis.

75. (Volume) Show that the volume of the torus obtained by rotating the region bounded by the
circle  about the x-axis is given by , where .

39.  40. 41.  

42. 43.  44.

45.  46. 47.  

48. 49.   50.

51.   52. 53.  

54. 55.  56.

57.  58. 59.  

60.  61.  62.

63.  64. 65.  

66. 67.  68. 

x

9 x2–
------------------ xd

x3 xd

x2 1+
------------------ xd

x2 25 x2–
---------------------------

x2 1–
x2

------------------ xd
xd

x 4x2 9+
------------------------- xd

16 x2–
---------------------

xd

x2 4x2 9–
--------------------------- xd

x2 x2 9–
------------------------ xd

9x2 1– 3 2/
-----------------------------

1 4x2– xd x3

2 x2–
------------------ xd x2 4–

x
------------------ xd

x2 16+
x4

--------------------- xd
xd

x 5 x2–
--------------------- 1 4x2– xd

4 x 2+ 2– dx e2x 1 e2x– dx xd

x 2–  x 2– 2 9+
-------------------------------------------------

21 4x x2–+ xd xd

x2 6x– 13+
--------------------------------- x

x2 x 1+ +
--------------------------- xd

x2

x2 1+  x2 4+ 2
----------------------------------------- xd

2x3 8x2– 20x 5–+
x2 4x– 8+

----------------------------------------------- xd
x4 x3 8x2 15+ + +

x x2 4+ 2
-------------------------------------------- xd

4

x2 4–
------------------ xd

2 2

4

 x 1 x2– xd
0

1


3

16 9x2+
------------------------- xd

0

1



xd
2x2 3+
-----------------

0

1

 10
25x2 16– 3 2/

----------------------------------- xd
1

4
3
---


2

x2 1– 3 2/
-------------------------- xd

5

10



f x  9 x2–
3

------------------=

x2

a2
----- y2

b2
-----+ 1=

y xsin= y sin
2
x= 0 x 2 

f x  x 1 x2–= x 1=

f x  4
x2 4+
--------------= 0 2 

x2 y 4– 2+ 4=

x2 y R– 2+ r2= 22Rr2 r R
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Exercise 76-77. (Theory) Establish the given integral formula.

76. For m a positive even integer:   

(Note that since , and since the above integral is of the form

 for a polynomial p, that integral can always be evaluated.)

77. For n a positive odd integer and :

  

(Note that since , and since the above integral is of the form

 for a polynomial p, that integral can always be evaluated.)

tan
n
xsec

m
x xd 1 tan

2
x+ 

m 2–
2

-------------
tan

n
x sec

2
x xd=

xtan  sec
2
x=

p xtan sec
2
x xd

m 1

tan
n
xsec

m
x xd sec

m 1–
x sec

2
x 1– 

n 1–
2

------------
x xtansec xd=

xsec  x xtansec=

p xsec  x xtansec xd
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 7

While we offer a few additional integral examples in this section, the
primary reason for its inclusion is the exercises. In each case we suggest
that you take a good look at the integral and ask yourself:

 Is it a straight forward integral, like ? 

Will a u-substitution crack the case, as with ?

How about integration by parts: ?

Completing the square: ?

Partial fractions: ?

Will a trig-identity help: ?

How about a trig-substitution: ?

And what if none of the above help? 

Answer: GIVE IT YOUR BEST SHOT!

SOLUTION: 

§4. A HODGEPODGE OF INTEGRALS

5 x xtansec xd
5 xsin

3cos
5
x

--------------------- xd

x2e3x xd
xd

x2 6x 25+ +
------------------------------

x 2+
x4 2x3 3x2–+
---------------------------------- xd

sin
2
xcos

4
x xd

x2 4– xd

u 1 2u   +
2u 2+

2

2–

EXAMPLE 7.16 Evaluate:

EXAMPLE 7.17 Evaluate:

xd

1 x+
----------------

xd

1 x+
----------------

2u
1 u+
------------ ud 2 2

u 1+
------------– 

  ud= =

2 u ud
1 u+
------------+d 

 =

2u 2 1 u+ln+ C+=

2 x 2 1 x+ ln+ C+=

u x1 2/=

du
1

2x1 2/
-------------dx= dx 2x1 2/ du=

2udu=

margin

x1 2/

x1 3/ 4+
------------------- xd
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SOLUTION: Our initial substitution  will take us to an expres-
sion involving only integer exponents: 

SOLUTION: Try partial fractions: 

But that’s as far as it goes, since  is irreducible. 

So: 

And then complete the square: 

Conclusion:  

Note that  and 
are powers of .

x1 2/ x1 3/

x1 6/

u2 4  u8+
u6 4u4– 16u2 64–+

u8 4u6+

4u6–

4u6– 16u4–
16u4

16u4 64u2+
64u2–

64u2– 256–

256

EXAMPLE 7.18 Evaluate:

x u6=

x1 2/

x1 3/ 4+
------------------- xd 6

u3u5

u2 4+
-------------- ud=

6
u8

u2 4+
-------------- ud=

6 u6 4u4– 16u2 64– 256
u2 4+
--------------+ + 

  ud=

x u6= x1 2/ u3and  x1 3/ u2= =

dx 6u5du=

see margin:

6 u7

7
----- 4

u5

5
-----– 16

u3

3
----- 64u–+ 

  6 256 
4

----------------- ud

u
2
--- 
  2

1+

--------------------+=

6 u7

7
----- 4

u5

5
-----– 16

u3

3
----- 64u–+ 

  384tan
1– u

2
--- 
  C+ +=

6 x7 6/

7
--------- 4x5 6/

5
-------------– 16x

1 2

3
---------------- 64x1 6/–+ 

  384tan
1– x1 6/

2
--------- 
  C+ +=

x2 4x– 6+
x2 4x– 5+
-------------------------- xd

Or, more simply:

x2 4x– 5 x2 4x– 6+ +
1

x2 4x– 5+

1

x2 4x– 6+
x2 4x– 5+
-------------------------- x2 4x– 5+  1+

x2 4x– 5+
----------------------------------------=

If you try: , you will just find that  and .

x2 4x– 6+
x2 4x– 5+
-------------------------- 1 1

x2 4x– 5+
--------------------------+= (see margin)

x2 4x– 5+

1
x2 4x– 5+
-------------------------- Ax B+

x2 4x– 5+
--------------------------= A 0= B 1=

x2 4x– 6+
x2 4x– 5+
-------------------------- xd 1 1

x2 4x– 5+
--------------------------+ 

  xd x xd
x2 4x– 5+
--------------------------+= =

xd
x2 4x– 5+
-------------------------- xd

x2 4x– 4+  1+
---------------------------------------- xd

x 2– 2 1+
----------------------------= =

u x 2–= du dx:=
ud

u2 1+
-------------- tan

1–
u C+= =

tan
1–

x 2–  C+=
x2 4x– 6+
x2 4x– 5+
-------------------------- xd x tan

1–
x 2–  C+ +=
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SOLUTION:

SOLUTION: While one can use the integration-by-parts method, an
easier procedure for this (and other integrals) is available; namely:   

In particular:

 

  

EXAMPLE 7.19 Evaluate:

EXAMPLE 7.20 Evaluate:

To evaluate integrals of type:

 

use the identities (Exercise 63):

 

EXAMPLE 7.21 Evaluate:

xd

x 3+  x 1+
---------------------------------

xd

x 3+  x 1+
--------------------------------- 2

u
u2 1– 3+ u

-------------------------------- ud 2 ud
u2 2+
--------------= =

2
2
--- ud

u

2
------- 
  2

1+
------------------------=

2 wd
w2 1+
---------------=

2tan
1–
w C+=

2tan
1– u

2
------- C+=

2tan
1– x 1+

2
---------------- C+=

w u

2
-------=  dw du

2
-------:=

u x 1+ u2 x 1+==

x u2 1–=

dx 2udu=

3x 2xsinsin xd

mx  nxsinsin x         mx  nxcossin x         mcos x  nxcos xddd

2 A Bsinsin A B–  A B+ cos–cos=

2 A Bcossin A B+ sin A B– sin+=

2 A Bcoscos A B–  A B+ cos+cos=

3x 2xsinsin xd
1
2
--- x 5xcos–cos  xd

1
2
--- xsin

1
10
------ 5x C+sin–= =

xd
x xcos+sin

----------------------------
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SOLUTION: This one also calls for a helping hand:

Summarizing: 

In particular: 

We now set our sights on obtaining a partial fraction decomposition
of the rational expression (*). Applying the quadratic formula to the

polynomial  we see that it has two zeros: . From
Theorem 1.4, page 19 (see margin), we conclude that

. An so we have:

Clearing denominators:

The integral of a rational function of  or  (or both) can be turned into

a rational function of u via the substitution . How? Like this:

If  then: , , and 

xsin xcos

u x
2
---tan=

x
2
---

u

1

u2 1+

From: x
2
---tan u

1
---=

x
2
---sin

u

u2 1+
------------------- and x

2
---cos 1

u2 1+
-------------------= =

From Theorem 1.5(ii) and (iii), page 37:

xsin x
2
--- x

2
---+ 

 sin
x
2
--- x

2
---cossin

x
2
--- x

2
---sincos+ 2u

u2 1+
---------------= = =

xcos x
2
--- x

2
---+ 

 cos x
2
---cos x

2
---cos x

2
---sin– x

2
---sin 1 u2–

u2 1+
---------------= = =

Also: u x
2
--- dutan 1

2
---sec

2 x
2
--- 
  dx dx 2du

sec
2 x

2
--- 
 

------------------- 2du
u2 1+
---------------= = = =

u x
2
---tan= xsin 2u

u2 1+
--------------= xcos 1 u2–

u2 1+
--------------= dx 2du

u2 1+
--------------=

xd
x xcos+sin

----------------------------
2du

u2 1+
--------------

2u
u2 1+
-------------- 1 u2–

u2 1+
--------------+

------------------------------------
2

u2 2u– 1–
-------------------------- ud–= =

u x
2
---tan=

(*)

If c is a zero of a poly-
nomial , then 
is a factor.

p x  x c– u2 2u– 1– 1 2

u2 2u– 1– u 1– 2–  u 1– 2+ =
2

u2 2u– 1–
--------------------------- 2

u 1– 2–  u 1– 2+ 
------------------------------------------------------------ A

u 1– 2– 
------------------------------ B

u 1– 2+ 
------------------------------+= =

2 A u 1– 2+  B u 1– 2– +=

2 A 2 2  A 1

2
-------= =

2 B 2– 2  B 1

2
-------–= =

letting u 1 2:  2+ A 1 2 1– 2+ + = =

letting u 1 2:  2– B 1 2– 1– 2– = =
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Putting it all together, we have:

SOME CLOSING REMARKS

xd
x xcos+sin

----------------------------
2

u2 2u– 1–
-------------------------- ud–=

1 2
u 1– 2– 

--------------------------- u
1 2

u 1– 2+ 
---------------------------- ud–d–=

1

2
------- u 1– 2+

1

2
------- u 1– 2– C+ln–ln=

1

2
------- u 1– 2+

u 1– 2–
----------------------- C+ln

1

2
-------

x
2
--- 
 tan 1– 2+

x
2
--- 
 tan 1– 2–

------------------------------------- C+ln= =

u x
2
---tan=

1. Though  exists for every f that is continuous on , an antiderivative of f need not exist. 

A case in point: 

If , then  (Exercise 59. page 188). However, since 

is not continuous, it has no antiderivative (Theorem 3.1, page 73).

2. While the Principal Theorem of Calculus (page 178) assures us that every continuous function f  has

an antiderivative,  it does not guarantee that the antiderivative has to be “nice.” 

A case in point:
Up to this point we have dealt exclusively with elementary functions: functions that can
be expressed as a sum/difference, product/quotient, and composition of polynomials,
rational, trigonometric, inverse trigonometric, exponential, and logarithmic functions
(along with a few others). As it turns out, while the relatively nice continuous function

 has an antiderivative, that antiderivative is not an elementary function. Later,
we will see how its antiderivative can be represented by an infinite series.

3. In the not-too distant past, every calculus book contained an extensive list of Integral Formulas (some
still do). Before then, there were also trigonometric tables, and even square-root tables. Now they are
gone. We’ve become digitalized, and rely more and more on graphing calculators or other instruments
to perform many routine tasks. A case in point:  

Note that the above TI-89 integral looks quite different than the one we arrived at in Example 7.21:

Appearances aside, unless we or the calculator made a mistake (not as likely), the two expressions can,
at most, differ by a constant (why?).

f x  xd
a

b

 a b 

g x 
1  if  x 1 
2  if  x 1=




= g x 
0

2

 2= g x 

f t  td
a

x

 
 
  

f x =

f x  ex2=

TI-89 through TI-voyage TI-83 through TI-84+

1

2
-------

x
2
--- 
 tan 1– 2+

x
2
--- 
 tan 1– 2–

-------------------------------------------- C     versus    2
2 1+  x x  2 1+ +sin–cos
2 1–  x x  2 1–+sin–cos

------------------------------------------------------------------------------------- 
 ln–+ln
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Exercise 1-62. Evaluate by any method.

EXERCISES

1.  2. 3.   

4. 5.  6.

7.  8. 9.  

10. 11.  12.

13.  14.  15.  

16. 17.  18.

19.  20. 21.  

22. 23.  24.

25.  26. 27.  

28.  29.  30.  

31.  32.  33.  

34.  35.  36.  

37.  38.  39.  

40.  41.  42.  

x2 3x– 2+
x2

-------------------------- xd
x2

x2 3x– 2+
-------------------------- xd

x2

x2 2x 5+ +
--------------------------- xd

xd
x4 1+
-------------- xd

1 3x2+
----------------- e2x 3xcos xd

x5e x3– dx e2x

ex 1+
-------------- xd

ex

1 e2x–
-------------------- xd

x3e x– xd 2xln sin xd xtan
1–
x xd

ex

e2x ex 2–+
--------------------------- xd 2x2 1+ ex2 xd x 2+  x 5– dx

x
1 x1 3/+
------------------- xd

x
1 x1 3/–
------------------ xd

xd

x x 1++
-----------------------------

xd

3x x2–
--------------------- x2 1–

x2
------------------ xd

x2 1–
x

------------------ xd
xd

x2 2x– 10+
--------------------------------- x2

x2 9+ 3 2/
-------------------------- xd

xd
4 9x2+ 5 2/

-----------------------------

xd
x2 2x– 10+ 3 2/

----------------------------------------- xd
9x2 36x– 52+
------------------------------------ xd

4x2 8x 29+ +
---------------------------------

xcos

sin
2
x x 6–sin+

-------------------------------------- xd tan
1–
x

x2
--------------- xd

sin
2
x

1 xcos+ 2
---------------------------- xd

sec
3
x xd xcos

5 4 xcos+ 2
------------------------------- xd 1 xsin+

1 xsin–
-------------------- xd

xd
2x xsin–sin

------------------------------ x 2xcossin
xsin xsec+

---------------------------- xd
dx

sin
3
x

------------

xsec
2 xtan xsec 1–+
----------------------------------------- xd xcos

1 sin
2
x+

-------------------------- xd
0



 xd

x 1 xln 2+
--------------------------------

1

e



3x2 x 4+ +
x3 x+

--------------------------- xd
1

3


xd

x3 x2 x 1+ + +
-----------------------------------

0

1

 xcos
x x xsin+cossin

--------------------------------------- xd
2
---

2
3

------
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63. Establish the given identity:

43.  44.  45.  

46.  47.  48.  

49.  50.  51.  

52.  53.  54.  

55.  
56. 57.  

58. 59. 60.

61. 62.

xd
2 xcos+
---------------------

0


2
---

 x 3+ ln xd
2–

2

 xe2x xd
0

2



sin
1–
x xd

0

1
2
---

 x 4xsin xd
0


2
---

 cos
2
5x xd

–





tan
2
2x xd

0


6
---

 sec
3
x xtan xd

0


6
---


xd

x2 x2 1–
------------------------

2

2



xd

4x x2–
---------------------

1

2

 xd
1 xcos–
--------------------

2
---

3
4

------

 5x 3xsinsin xd
0


4
---



2x 3xcossin xd
10
------–

0

 xsec
2
x2 xd

0


2

-------

 sin
3
3x xd

0


3
---



sec
2
x

1 3 xtan+
---------------------------

0


4
---

 dx x x 1+ 
1
3
---

xd
1–

0


x

x4 1+
---------------- xd

1

16



xcos
2 xcos–
--------------------

0


2
---

 dx xd
3 2 xcos+
------------------------

0


2
---



2 A Bsinsin A B–  A B+ cos–cos=

2 A Bcossin A B+ sin A B– sin+=

2 A Bcoscos A B–  A B+ cos+cos=

(a)

(b)

(c)
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CHAPTER SUMMARY

INTEGRATION BY PARTS

Basically, the integration by parts formula should be invoked
when: 

THEOREM

REDUCTION FORMULAS

COMPLETING THE SQUARE

PARTIAL FRACTIONS To evaluate an integral of the form  it may be neces-

sary to represent the rational expression  as a sum of a

polynomial and rational expressions of the form:

If the degree of the numerator, , is not less than that of

the denominator, , then you should divide  into

; after which you can express the remainder in terms of
partial fractions of the form:

(See Figure 7.1, page 273, for details)

u vd uv= v ud–

f x g x  xd
u vd

g x f  x  xd

You can’t perform:

But you can this:

v ud

xln dx x x x– C+ln=

sin
n
xdx

xcos
n

----------- sin
n 1–

x
n 1–

n
------------ sin

n 2–
x dx+–=

cos
n
xdx

xsin
n

---------- cos
n 1–

x
n 1–

n
------------ cos

n 2–
x dx+=

x2 ax ?+ +To turn: into a perfect square:

this has to be the square of one-half
 
the coefficient of x: a

2
--- 
  2

p x 
q x 
---------- xd

p x 
q x 
----------

A
ax b+ n

----------------------  or  
Ax B+

ax2 bx c+ + n
-------------------------------------

p x 
q x  q x 

p x 

ax b+ n  generates  
A1

ax b+
--------------- 

An

ax b+ n
----------------------+ +

ax2 bx c+ + n  generates  
A1x B1+

ax2 bx c+ +
------------------------------ 

Anx Bn+

ax2 bx c+ + n
-------------------------------------+ +
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POWERS OF TRIGONOMETRIC

FUNCTIONS
The Pythagorean identity  can be

employed to evaluate integrals of the form 

when at least one of the positive integer exponents, n and m,
is odd.

In the event that both exponents are even, consider the iden-
tities:

For integrals of the form

  and 

consider the identities:

To evaluate integrals of type:

 use the identities:

 

The integral of a rational function of  or  (or both)
can be turned into a rational function of u via the substitution

.

TRIGONOMETRIC SUBSTITUTION

The following table can be used to evaluate certain integrals that involve expressions of the form 

(1)       
 with 

(2)       with 

(3)       with 

sin
2
x cos

2
x+ 1=

sin
n
xcos

m
x xd

sin
2
x

1 2xcos–
2

-----------------------     and           cos
2
x 1 2xcos+

2
------------------------= =

tan
n
xsec

m
x xd cot

n
xcsc

m
x xd

sec
2
x 1 tan+

2
x      and      csc

2
x 1 cot

2
x+= =

mx nxsinsin x mx nxcossin x mcos x nx cos  xddd

2 A Bsinsin A B–  A B+ cos–cos=

2 A Bcossin A B+ sin A B– sin+=

2 A Bcoscos A B–  A B+ cos+cos=

xsin xcos

u x
2
---tan=

a2 x2– x2 a2+  and x2 a2– 

a2 x2– x a   

2
---  

2
--- –sin= cos

2 1 sin
2–=

a2 x2– a2cos
2

Note that  is positivecos
in the specified range.

x2 a2+ x a   

2
---  

2
--- –tan= sec

2 1 tan
2+= x2 a2+ a2sec

2
Note that  is positivesec
in the specified range.

x2 a2– x a   
0  

2
---

  3
2

------





sec= or tan
2 sec

2 1–=
x2 a2– a2tan

2
Note that  is positivetan
in the specified range.
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 8

CHAPTER 8
L’Hôpital’s Rule and Improper Integrals

A limit such as  can be evaluated by direct substitution:

   

More interesting limits have previously been encountered and deter-
mined. For example:

     (Example 2.1, page 44) 

     (Theorem 3.5, page 90)

The above two limits are said to be limits of indeterminate form of

type “ .” The following method, established in Appendix B, page B-1,

may be used to address such limits:

For example:

 

(Compare with the proof of Theorem 3.5, page 90.)

Before turning to other examples, we want to emphasize that:

 (1) When applying l’Hôpital’s Rule to a limit, , of

indeterminate form, you differentiate f and g sepa-
rately, you do NOT use the quotient rule. 

§1 L’HÔPITAL’S RULE

2x 5+
x 4+

---------------
x 3
lim

2x 5+
x 4+

---------------
x 3
lim 2 3 5+

3 4+
-------------------

x 3
lim 11

7
------= =

x3 2x2– 3x–
x2 2x 15–+
-------------------------------

x 3
lim 3

2
---=

xsin
x

----------
x 0
lim 1=

Guillaume Francois De
l’Hôpital (1661-1704).

THEOREM 8.1

L’HôPITAL’S RULE:
 “ ” TYPE

Let c be a real number, or . Assume that,
apart from c, f and g are differentiable on an
open interval containing c with . If:

and if:

where L is a real number or , Then:

0
0
---

0 0



g x  0
f x 

x c
lim g x 

x c
lim 0= =

f  x 
g x 
------------

x c
lim L=


f x 
g x 
----------

x c
lim L=

xsin
x

----------
x 0
lim xsin 

x 
-----------------

x 0
lim xcos

1
-----------

x 0
lim xcos

x 0
lim 1= = = =

f x 
g x 
----------

x c
lim
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(2) L’Hôpital’s Rule only applies to limits of indeterminate

form. In particular, — IT IS NOT

EQUAL TO .

SOLUTION: Noting that, in each of the above we are dealing with an

indeterminate form of type “ ,” we apply l’Hôpital’s rule:

(a) 

 (b) 

(c) 

EXAMPLE 8.1 Use l’Hôpital’s Rule to find:

 (a)          (b) 

(c)  

xsin
x 1+
------------

x 0
lim 0

1
--- 0= =

xsin 
x 1+ 

------------------
x 0
lim xcos

1
-----------

x 0
lim 1= =

x 1
2
---–cos

x 
3
---–

--------------------
x


3
---

lim ex 1–
x3

-------------
x 0
lim

x 4 3/–

1
x
--- 
 sin

----------------
x 
lim

0
0
---

x 1
2
---–cos

x 
3
---–

--------------------
x


3
---

lim
x 1

2
---–cos 

  

x 
3
---– 

  
----------------------------

x

3
---

lim xsin–
1

-------------
x


3
---

lim 
3
---sin– 3

2
-------–= = = =

0

0

ex 1–
x3

-------------
x 0
lim ex 1– 

x3 
--------------------

x 0
lim ex

3x2
--------

x 0
lim += = =

0

0 since ex

x 0
lim 1 and 3x2

x 0
lim 0= =

and 
ex

3x2
-------- 0 for x 0

x 4 3/–

1
x
--- 
 sin

----------------
x 
lim x 4 3/– 

1
x
--- 
 sin 

-----------------------
x 
lim

4
3
---x 7 3/––

1
x
--- 
  x 2–– cos

-------------------------------------
x 
lim= =

4
3
---x

1 3/–

1
x
--- 
 cos

-----------------
x 
lim 0

1
--- 0= = =

0

0

Answers: (a)    (b) 

                (c) 1

1
12
------ 3

2
---

CHECK YOUR UNDERSTANDING 8.1

Evaluate:

 (a)         (b)      (c) 8 x+ 
1
3
---

2–
x

----------------------------
x 0
lim 3x 3– tan

2x 2– sin
----------------------------

x 1
lim x 1 2/–

x 1 2/– tan
-------------------------

x 
lim
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L’Hôpital’s rule may have to be employed more than once in an eval-
uation process. Consider the following example:   

SOLUTION: Observing that we are dealing with an indeterminate form

of type “ ” we have:

L’Hôpital’s Rule also holds for one-sided limits. Consider the following
example:

SOLUTION: Observing that we are dealing with indeterminate forms of

type “ ” we have:

EXAMPLE 8.2 Evaluate:
x xsin–

2 2x x2 2ex–+ +
-----------------------------------------

x 0
lim

Answer: 2
5
---

CHECK YOUR UNDERSTANDING 8.2

Evaluate:

EXAMPLE 8.3 Evaluate:

 

0
0
---

x xsin–
2 2x x2 2ex–+ +
-----------------------------------------

x 0
lim x xsin– 

2 2x x2 2ex–+ + 
------------------------------------------------

x 0
lim=

1 xcos–
2 2x 2ex–+
-----------------------------

x 0
lim=

1 xcos– 
2 2x 2ex–+ 

------------------------------------
x 0
lim=

xsin
2 2ex–
-----------------

x 0
lim xsin 

2 2ex– 
------------------------

x 0
lim= =

still indeterminate:

xcos
2ex–

-----------
x 0
lim 1

2
---–= =still indeterminate:

1 2xcos–
5x2

-----------------------
x 0
lim

xcos


2
--- x–

----------------
x  2 

_


lim

0
0
---

xcos


2
--- x–

----------------
x  2 

_


lim xcos 

2
--- x– 

  
-----------------------

x  2 
_


lim=

xsin–
1

2 
2
--- x–

-------------------–
-----------------------

x  2 
_


lim=

2 xsin  
2
--- x–

x  2 
_


lim 2 1 0  0= = =
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We offer, without proof, the “ ” variation of Theorem 8.1:

SOLUTION: Observing that we are dealing with indeterminate forms of
type “ ” we have:

(a) 

(b) 

(c) 

Answers:  –

CHECK YOUR UNDERSTANDING 8.3

Evaluate:

                                       xtan
x2

----------
x 0–
lim

The theorem also holds
for one-sided limits.

THEOREM 8.2

L’HôPITAL’S RULE:
“ ” TYPE

Let c be a real number, or . Assume that,
apart from c, f and g are differentiable on an
open interval containing c with . If:

and if:

where L is a real number or , Then:

EXAMPLE 8.4 Determine:

     (a)             (b)    

     (c) 



----

 



g x  0
f x 

x c
lim g x 

x c
lim = =

f  x 
g x 
------------

x c
lim L=


f x 
g x 
----------

x c
lim L=

xln
1
x
---

--------
x 0+
lim xsec

xsecln
----------------

x  2 
_


lim

x3

ex
-----

x 
lim



----

xln
1
x
---

--------
x 0+
lim xln 

x 1– 
---------------

x 0+
lim

1
x
---

1

x2
-----–

---------
x 0+
lim x2

x
-----– 

 
x 0+
lim= = =

x– 
x 0+
lim 0= =

xsec
xsecln

----------------
x  2 

_


lim xsec 
xsecln 

-----------------------
x  2 

_


lim     x xtansec   
x xtansec

xsec
----------------------

---------------------------------
x  2 

_


lim= =

xsec
x  2 

_


lim = =

x3

ex
-----

x 
lim 3x2

ex
--------

x 
lim 6x

ex
------

x 
lim 6

ex
----

x 
lim 0= = = =
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At times, these indeterminate forms can be evaluated by first rewriting

them as indeterminate forms of type “ ” or “ ,” and then applying

l’Hôpital’s Rule. Consider the following examples.

SOLUTION: (a)   of type “ ” can be converted into

a “ ” type:

(b)  of type “ ” can be converted into a “ ” type:

Answers:  (a) 5     (b)  

CHECK YOUR UNDERSTANDING 8.4

Determine:

         (a)                                  (b)         

OTHER INDETERMINATE FORMS: “ ”

EXAMPLE 8.5 Determine:

 (a)             (b) 

5x2 1+
x2 3–

-----------------
x 
lim 1 x

x– ln
----------------

x 0–
lim

0   – 00 0 1   

0
0
---



----

x xlnsin
x 0+
lim 1

x
--- 1

xsin
----------– 

 
x 0
lim

x xlnsin
x 0+
lim 0 



----

x xlnsin
x 0+
lim xln

xcsc
-----------

x 0+
lim

1
x
---

x xcotcsc–
-------------------------

x 0+
lim= =

x xtansin–
x

-------------------------
x 0+
lim=

xsin–
x

-------------
x 0+
lim 

  xtan
x 0+
lim =

1–  0  0= =



----

invert and multiply:

L’Hôpital’s Rule

Answers: (a) 1      (b) 0

CHECK YOUR UNDERSTANDING 8.5

Determine:

    (a)                 (b) 

1
x
--- 1

xsin
----------– 

 
x 0
lim  –

0
0
---

1
x
--- 1

xsin
----------– 

 
x 0
lim

x x–sin
x xsin

------------------- 
 

x 0
lim

x 1–cos
x xcos xsin+
-------------------------------- 
 

x 0
lim= =

xsin–
x x x xcos+cos+sin–

------------------------------------------------------ 
 

x 0
lim=

0
2
--- 0= =

0
0
---

L’Hôpital’s Rule

1 xtan+  2xsec 
x 

4
---–

lim 1
x
--- 1

xtan
----------– 

 
x 0
lim
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Limits of the form  and  may give rise to

indeterminate forms of types , which can often be
resolved by invoking the natural logarithmic function. Consider the fol-
lowing example.

SOLUTION: (a) To evaluate , an indeterminate form of type

, we proceed as follows:

(b) To evaluate  (an indeterminate form of type

) we let  (see margin). Then:

EXAMPLE 8.6 Determine:
 (a)               (b) 

f x g x 

x c
lim f x g x 

x 
lim

00 0  and  1 

x1 x/

x 
lim 1 xcos+  xtan

x

2
---

–


lim

Exercise 41, page 62:
If f  is continuous at b and
if  , then:

 

g x 
x a
lim b=

f g x  
x a
lim f g x 

x a
lim =

x1 x/

x 
lim

0

x1 x/

x 
lim e x1 x/ ln

x 
lim e

x1 x/ ln
x 
lim

e
1
x
--- xln

x 
lim

= = =

e
xln 

x
--------------

x 
lim

=

e

 
1
x
--- 

1
------

x 
lim

e0 1= = =

See margin

1 xcos+  xtan

x

2
---

–


lim

1 y 1 xcos+  xtan=

yln
x


2
---

–


lim 1 xcos+  xtanln
x


2
---

–


lim x 1 xcos+ lntan
x


2
---

–


lim= =

1 xcos+ ln
xcot

-------------------------------
x


2
---

–


lim=

1 xcos+ ln 
xcot 

--------------------------------------
x


2
---

–


lim=

  
xsin–

1 xcos+
---------------------

csc
2
x–

------------------------
x


2
---

–


lim=

  sin
3
x

1 xcos+
---------------------

x

2
---

–


lim 1
1
--- 1= = =

0
0
---
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From  we have: 

But . So: 

yln
x


2
---

–


lim 1= e yln

x

2
---

–


lim e1=

y
x


2
---

–


lim e=

y 1 xcos+  xtan= 1 xcos+  xtan

x

2
---

–


lim e=

Answers: (a)      (b) 11
e2
-----

CHECK YOUR UNDERSTANDING 8.6

Determine:

             (a)                          (b) ex 1+ 
2
x
---–

x 
lim xcos 

1
x
---

x 0
lim
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Exercise 1-56. Use L’Hôpital’s rule to determine the given limit. 

EXERCISES

1.  2. 3.  

4. 5.  6.

7.  

8. 9.  

10.
11.  

12.

13.  

14.

15.  

16.

17.  18.

19.  
20. 21.  

22. 23.  24.

25.  26. 27.  

28. 29.  30.

x3 5x– 2+
x4 6x2 40–+
--------------------------------

x 2
lim ex 1–

x
-------------

x 0
lim x2 5x– 2+

x4 6x2 40–+
--------------------------------

x 
lim

ex 1–
xsin

-------------
x 0
lim

1 xcos–
x

--------------------
x 0
lim xsin

ex e x––
------------------

x 0
lim

1 1
x
---+ 

 ln

1
x
---

-----------------------
x 
lim

xsin
ex e x––
------------------

x 0
lim xln

x
--------

x 
lim

xln

1 x–
---------------

x 1–
lim

1
x 1–
-----------

1
xln

--------
-----------

x 1
lim

xln ln
x

------------------
x 
lim

xln
1
x
---

--------
x 0+
lim 1 1

x
---+ 

 ln

1
x
---sin

-----------------------
x –
lim

2xsin
 2x–
---------------

x

2
---

lim

x 
2
---– 

 ln

xtan
-----------------------

x

2
---

+


lim

1 2xcos+
1 xsin–

------------------------
x


2
---

lim 1 xcos–
x2

--------------------
x 0
lim

3
x
---sin

9
x
---sin

-----------
x 
lim

2xcosln
 x– 2

--------------------
x 
lim x2 2x 2ex– 2+ +

x x–sin
-----------------------------------------

x 0
lim

ex e x–– 2x–
x xsin–

------------------------------
x 0
lim

x xsin–tan
x3

---------------------------
x 0
lim x x 1+sin–cos

x x 1–sin+cos
-------------------------------------

x

2
---

lim

x x xcos–sin
x xsin–

-------------------------------
x 0
lim xtan ln

2xtan ln
------------------------

x 0+
lim 1 x– ln

xcos
----------------------

x 1-
lim

xx x–
1 x– xln+
--------------------------

x 1
lim

ax bx–
x

----------------
x 0
lim sec

2
x 2 xtan–

1 4xcos+
---------------------------------

x

4
---

lim
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Exercise 57-59. Use l’Hôpital’s Rule to evaluate the limit of: 

Exercise 60-62. Use l’Hôpital’s Rule to evaluate the limit  of:

63. Find all values of a for which . 

64. Find all values a and b for which .

65. (Theory) Verify that for every positive integer n  

31.  32. 33.  

34. 35.  36. 

37.  38. 39.

40. 
41.  42. 

43.  44.
45.  

46.
47. 48.

49. 50.
51.

52. 53. 54. 

55.  and 56.  and 

57. Example 2.1, page 44 58. Example 2.2, page 45 59. Example 2.3, page 45

60. Example 3.2, page 67 61. Example 3.3, page 68 62. CYU 3.1, page 69

x sin
1–
x–

sin
3
x

-----------------------
x 0
lim

xcsc ln
xcot ln

---------------------
x 0+
lim x xtan–

x x–sin
-------------------

x 0
lim

1 xln–
e1 x/

-----------------
x 0+
lim xln ln

xln
------------------

x 
lim 1 2x– ln

xtan
-------------------------

x
1
2
---

–


lim

x2 x+ ln
xln

------------------------
x 0+
lim

x x 2– lncos
ex e2– ln

----------------------------------
x 2+
lim x3e x2–

x 
lim

1 x+
xsin

------------ 1
x
---– 

 
x 0
lim

x xsin lntan
x


2
---

lim 1

sin
2
x

------------ 1
x2
-----– 

 
x 0
lim

1
xln

-------- 1
x 1–
-----------– 

 
x 1
lim x

x 1–
----------- 1

xln
--------– 

 
x 1
lim

2xln x 1+ ln– 
x 
lim

ex x+ 1 x/

x 
lim

xsin  xsin

x 0+
lim x 2x+ 1 x/

x 0
lim

1 1
x
---+ 

  x

x 
lim e3x 2x–  3 x/–

x 0
lim

xcos 
1
x2
----

x 0
lim

t2sin td
0

x


x2

----------------------
x 0
lim

et2 td
0

x


x

----------------
x 
lim

et2 td
0

x


ex

----------------
x 
lim

ex x+
xex

--------------
x 
lim ex x+

xex
--------------

x –
lim

x2 1+ ln
x3 1+ ln

-------------------------
x 
lim x2 1+ ln

x3 1+ ln
-------------------------

x –
lim

f  c  f c h+  f c –
h

----------------------------------
h 0
lim=

axcos 1–
x2

-----------------------
x 0
lim 8–=

2xsin ax3 bx+ +
x3

-----------------------------------------
x 0
lim 0=

ex

xn
-----

x 
lim =
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 8

Up to this point we have only considered definite integrals of the

form , with f continuous throughout the closed interval .

 What if the interval is not finite — as is the case with the

expressions: , , and ? 

What if f is discontinuous within the interval of integration

— as is the case with the expression ? 

Unencumbered by any sense of political correctness, such integrals
continue to be called improper integrals. Let’s “properize” them,
starting with:

§2 IMPROPER INTEGRALS

f x  xd
a

b

 a b 

xex xd
0



 xex xd
–

0

 xex xd
–





xd
x 1–
-----------

0

4



DEFINITION 8.1
IMPROPER INTEGRALS

(INFINITE INTERVAL)

Any number c can replace the

“0” in  and 

Let f be continuous on . If  exists, then

we say that  converges to that (finite) limit.

 

Let f be continuous on . If  exists,

then we say that  converges to that (finite) limit.

Let f be continuous on . If both  and

 exist, then we say that  converges

to .    

In the above situations, if the integral does not converge,
then it is said to diverge. 

f x  xd
t

0

 f x  xd
0

t



a  f x  xd
a

t

t 
lim

f x  xd
a





– a  f x  xd
t

a

t –
lim

f x  xd
–

a



–   f x  xd
t

0

t –
lim

f x  xd
0

t

t 
lim f x  xd

–





f x  xd
t

0

t –
lim f x  xd

0

t

t 
lim+
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SOLUTION: (a) Since:

 diverges, as the limit is not finite (see margin).

(b) Since: 

 converges to 1 (see margin).

(c) First: . Since  diverges:

 

so does . (See margin.)

(d) . 

EXAMPLE 8.7 Determine if the given integral converges. If it
does, find its value. 

    (a)                    (b)        

    (c)                (d) 

1
x
--- xd

1



 ex xd
–

0


x3 xd

–




1

x2 1+
-------------- xd

–





1

f x  1
x
---=

Infinite area

1
x
--- xd

1




1
x
--- xd

1

t

t 
lim xln

1
t

t 
lim t 1ln–ln 

t 
lim= = =

tln
t 
lim = =

1
x
--- xd

1





f x  ex=

Area 1=

ex xd
–

0

 ex xd
t

0

t –
lim ex

t

0

t –
lim 1 et

t –
lim– 1= = = =

ex xd
–

0



In Definition 8.1 

is not defined to be

, which turns

out to be 0 (verify). Rather,

 is the sum of two

integrals, both of which need
to converge in order for

 to converge. 

f x  xd
–





x3 xd
t–

t

t 
lim

f x  xd
–





f x  xd
–





x3 xd
–



 x3 xd
–

0

 x3 xd
0



+= x3 xd
–

0



x3 xd
–

0

 x3 xd
t

0

t –
lim x4

4
-----

t

0

t –
lim

1
4
--- t– 4

t –
lim –= = = =

x3 xd
–





1
x2 1+
-------------- xd

–




1

x2 1+
-------------- xd

–

0


1

x2 1+
-------------- xd

0



+=

1
x2 1+
-------------- xd

t

0

t –
lim

1
x2 1+
-------------- xd

0

t

t 
lim+=

2
1

x2 1+
-------------- xd

0

t

t 
lim=

2 tan
1–
x

0

t

t 
lim 2 tan

1–
t tan

1–
0– 

t 
lim= =

2 
2
--- 0– 
  = =

Since f x  1
x2 1+
--------------=

is an even function:

Theorem 6.17(e):

Figure 6.6(b), page 251:
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SOLUTION:

(a)  

(b) 

We have seen that  diverges [Example 8.7(a)], and that

 converges [see Solution of Example 8.8(a)]. In general:

Answer: Yes, 1

CHECK YOUR UNDERSTANDING 8.7

Does  converge? If so, find its value.

EXAMPLE 8.8 (a) Determine the area of the region bounded
on the left by the line , below by the x-
axis, and above by the graph of the function

.

(b) Find the volume obtained by revolving the
above area about the x axis.

xe x– xd
0





y x=

f x  1
x2
-----=

1

y x=
f x  1

x2
-----=

x 1
x2
-----=

x3 1=

x 1=

A x xd
0

1


1
x2
----- xd

1



+=

x2

2
-----

0

1

x 2–

1

t

t 
lim dx+=

1
2
--- 1

x
---

1

t

–
 
 
 

t 
lim+=

1
2
--- 1

t
---– 1+ 

 
t 
lim+ 3

2
---= =

Answer: 

CHECK YOUR UNDERSTANDING 8.8

While the area of the region lying to the right of  that is
bounded below by the x-axis and above by the graph of the function

 is infinite [see Example 8.7(a)], the volume obtained by

revolving that region about the x-axis is finite. Find that volume. 

V  x2 xd
0

1

  1
x4
----- xd

1



+ x3

3
-----

0

1

 x 4–

1

t

t 
lim dx+= =


3
---


3
--- 1

t3
----– 1+ 

 
t 
lim+ 2

3
------= =

x 1=

f x  1
x
---=

1
x
--- xd

1




1
x2
----- xd

1
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PROOF: We already know that the integral diverges if . 

For : 

If , then . So:

 , and the integral converges.

If , then  and  diverges.

Here is the -story when f is not continuous throughout :

THEOREM 8.3
The integral  converges if  and

diverges if .

1
xp
----- xd

1



 p 1

p 1

p 1=

p 1
1
xp
----- xd

1



 x p– xd
1

t

t 
lim x p– 1+

p– 1+
----------------

t 
lim

1

t

= =

1
p– 1+

---------------- t
p– 1+

1– 
t 
lim=

p 1 t
p– 1+

1– 
t 
lim 1

t p 1–---------- 1– 
 

t 
lim 1–= =

0

1
xp
----- xd

1




1

p– 1+
---------------- 
  1–  1

p 1–
------------= =

p 1 t
p– 1+

1– 
t 
lim =



1
xp
----- xd

1





Answers: 
(a) 
(b) 
(c) 

p 1 and q 1
p q 1+
p q 1–

CHECK YOUR UNDERSTANDING 8.9

For what values of p and q does the indicated integral converge?

      (a)           (b)         (c) 1
xp
----- 1

xq
-----+ 

  xd
1




1
xp
----- 1

xq
----- 

  xd
1




1 xp
1 xq
------------ xd

1





f x  xd
a

b

 a b 

DEFINITION 8.2
IMPROPER INTEGRALS 

(DISCONTINUITY)

Let f be continuous on  and discontinuous at b. If

 exists, then we say that  converges

to that (finite) limit. 

Let f be continuous on  and discontinuous at a. If

 exists, then we say that  converges to

that (finite) limit.

Let f be continuous at every point in  other than

. If both    and  converge, then

we say that  converges to .

In the above situations, if the integral does not converge, then
it is said to diverge. 

a b 

f x  xd
a

t

t b–
lim f x  xd

a

b



a b 

f x  xd
t

b

t a+
lim f x  xd

a

b



a b 

c a b  f x  xd
a

c

 f x  xd
c

b



f x  xd
a

b

 f x  xd
a

c

 f x  xd
c

b

+
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SOLUTION: 

(a) . Turning to  we have:

   And so:  (converges)

   

(b) 

    And so:  diverges. (See margin.)

(c) 

Since :

 

EXAMPLE 8.9 Determine if the given integral converges. If if
does, find its value.

    (a)                     (b)                       

  (c) 

xd

x– 1+
--------------------

0

1

 xd
x4
-----

2–

2


xd

x 2– 2 3/
-----------------------

1

4



xd

x– 1+
--------------------

0

1

 xd

x– 1+
--------------------

0

t

t 1–
lim= xd

x– 1+
--------------------

0

t


xd

x– 1+
--------------------

0

t

 u 1 2/– ud
1

t– 1+

– 2u1 2/
1

t– 1+
–= =

2 t– 1+ 1– –=
u x– 1+=

du dx–=

xd

x– 1+
--------------------

0

1

 2 t– 1+ 1– –
t 1–
lim 2= =

If one does not spot the
discontinuity at 0, then one
might do this:

 

WRONG — note graph:

xd
x4
-----

2–

2

 1
x3
-----

2–

2
– 0= =

xd
x4
-----

2–

2

 xd
x4
-----

2–

0

 xd
x4
-----

0

2

+ 2 xd
x4
-----

0

2

 2 x 4– xd
t

2

t 0+
lim= = =

2
1

3x3
--------–

t 0+
lim

t

2

= =f x  1
x4
----- is an even function:  f x–  f x = =

xd
x4
-----

2–

2



xd
x 2– 2 3/

-----------------------
1

4

 xd
x 2– 2 3/

-----------------------
1

2

 xd
x 2– 2 3/

-----------------------
2

4

+=

xd
x 2– 2 3/

-----------------------
1

t

 xd
x 2– 2 3/

-----------------------
t

4

t 2+
lim+

t 2–
lim= (*)

xd
x 2– 2 3/

----------------------- u
2
3
---–

ud 3u

1
3
---

C+ 3 x 2– 1 3/ C+= = =

u x 2–=

du dx=

xd
x 2– 2 3/

-----------------------
1

4

 3 x 2– 1 3/
1

t
3 x 2– 1 3/

t

4

t 2+
lim+

t 2–
lim=

3 t 2– 1 3/ 1+  3 21 3/ t 2– 1 3/– 
t 2+
lim+

t 2–
lim=

3 3 2 1 3/+ 3 1 21 3/+ = = (converges)
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Answers: 
(a) Diverges.
(b) Converges:

5
4
--- 34 5/ 24 5/– 

CHECK YOUR UNDERSTANDING 8.10

Determine if the given integral converges. If if does, find its value.

     (a)                             (b) xd
x 3– 2

-------------------
1

3

 xd
x 1+ 1 5/

-----------------------
3–

2
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Exercise 1-42. Determine if the given integral converges. If if does, find its value. 

EXERCISES

1. 2.  3.    

4. 5.   6.

7.  8. 9.

10.  11.    12.

13.  14.     15.    

16. 17. 18.  

19. 20. 21.    

22. 23. 24.  

25.    26.   27.   

28. 29.   30.    

31.  32. 33.     

34. 35. 36.

37.    38. 39.     

40. 41.     42.    

1
x2
----- xd

1



 e x– xd
1



 xex xd
–

0



1

x
------ xd

1




1

2x 1– 3
---------------------- xd

–

0

 xsin xd
0





1
4 x2+
-------------- xd

0




xln

x2
-------- xd

1



 cos x xd
0





x
x2 4+ 2

---------------------- xd
–




x

1 x2+ 2
---------------------- xd

0



 xe 3x2– xd
1





xe x2– xd
–




ex

ex 1+ 3
--------------------- xd

0




6x2 8+

x2 1+  x2 2+ 
--------------------------------------- xd

0





epx x   p 0d
0




xln

x
-------- xd

e




1

4 x2+
-------------- xd

–





x 1 3/– xd
0

8


1

1 x–
----------- xd

1

2


16

9x4 10x2 1+ +
----------------------------------- xd

–





1 x+

x
------------ xd

0

3

 x xdtan
0


2
---

 x xdln
0

1



8 x 1+  1 5/– xd
3–

1–

 1
x 1 x– 1 3/
-------------------------- xd

0

1
2
---

 3 x 3+  2 5/– xd
5–

1–



1
x 2– 2

------------------- xd
1

4


x 3+

x 1–  x2 1+ 
------------------------------------ xd

2



 1

1 x2–
------------------ xd

1–

1



1

x
------ xd

0

1


1

x 2–
----------- xd

0

3


1

x 2–3
---------------- xd

1

2



1
x
--- xd

0

1

 xsec xd
0


2
---


1
x2
----- xd

0





1

x x 4+ 
------------------------ xd

0




1

x2 3/
--------- xd

0

8

 x x xdln
0

1



x
1 x2+ 1 4/

-------------------------- xd
1–

1


1

x
------ 1

2 x–
--------------- 
  1 3/

xd
1

16


1

1 x+ 4 x–
-------------------------------- xd

1–

4
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Exercise 43-45. For what values of a does the given integral converge?

Exercise 46-48. For what values of n does the given integral converge?

49. Show that  and  diverge, and that .

50. Find the area of the region to the right of the origin that is bounded below by the x-axis, and 

above by the graph of the function .    

51. Find the area of the region to the right of the origin that is bounded below by the x-axis, and 
above by the graph of the function . 

52.  Find the area of the region bounded above by , below by , and to the 
left by .

53. Find the area of the region above  and below the graph of the function . 

54. Find the volume obtained by rotating about the x-axis the region to the right of the origin that 
is bounded below by the x-axis, and above by the graph of the function . 

55. Find the volume obtained by rotating about the y-axis the region to the right of the origin that 
is bounded below by the x-axis, and above by the graph of the function . 

56. Find the volume obtained by rotating about the x-axis the region lying above  and 
below the graph of the function . 

57. Find the volume obtained by rotating about the y-axis the region lying above  and 
below the graph of the function . 

43.     44. 45.    

46.    47. 48.

xa xd
0

1

 xa xd
1




x

x2 1+
-------------- a

3x 1+
---------------– 

  xd
0





xn x xdln
0

1

 xn xln 2 xd
0

1


xln

xn
-------- xd

1





xsin xd
0



 xsin xd
–

0

 xsin xd

t–

t

t 
lim 0=

f x  1
1 x+ 2

-------------------=

f x  e x–=

xy 1= y x2 1+  x=
x 1=

0 1  f x  x 1 4/–=

f x  e x–=

f x  e x–=

0 1 
f x  x 1 4/–=

0 1 
f x  x 1 4/–=



318     Chapter 8   L’Hôpital’s Rule and Improper Integrals
CHAPTER SUMMARY

L’HÔPITAL’S RULE Let f and g be differentiable with  in an open inter-
val containing c (except possibly at c). If:

then: 

if the limit on the right exists (or is ).

The above also holds if “ ” is replaced by ,
, , or .

IMPROPER INTEGRALS

(INFINITE INTERVAL) Let f be continuous on . If  exists, then

we say that  converges to that (finite) limit.

 

Let f be continuous on . If  exists,

then we say that  converges to that (finite) limit.

Let f be continuous on . If both  and

 exist, then we say that  converges

to .    

In the above situations, if the integral does not converge, 
then it is said to diverge.

THEOREM
The integral  converges if  and diverges if 

.

g c  0

f x 
x c
lim 0          and          g x 

x c
lim 0= =

OR

f x 
x c
lim            and          g x 

x c
lim = =

f x 
g x 
----------

x c
lim f  c 

g c 
------------=



x c x c-
x c+ x – x 

a  f x  xd
a

t

t 
lim

f x  xd
a





– a  f x  xd
t

a

t –
lim

f x  xd
–

a



–   f x  xd
t

0

t –
lim

f x  xd
0

t

t 
lim f x  xd

–





f x  xd
t

0

t –
lim f x  xd

0

t

t 
lim+

1
xp
----- xd

1



 p 1

p 1
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IMPROPER INTEGRALS

             (DISCONTINUITY)
Let f be continuous on  and discontinuous at b. If

 exists, then we say that  converges

to that (finite) limit. 

Let f be continuous on  and discontinuous at a. If

 exists, then we say that  converges

to that (finite) limit.

Let f be continuous at every point in  other than

. If both    and  converge, then

we say that  converges to

.

In the above situations, if the integral does not converge,
then it is said to diverge. 

a b 

f x  xd
a

t

t b–
lim f x  xd

a

b



a b 

f x  xd
t

b

t a+
lim f x  xd

a

b



a b 

c a b  f x  xd
a

c

 f x  xd
c

b



f x  xd
a

b



f x  xd
a

c

 f x  xd
c

b

+
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 9

CHAPTER 9
SEQUENCES AND SERIES

Formally:

Formality aside, one seldom represents a sequence in function-form
but rather as an infinite string of numbers, or terms:

with  representing the function value .

Consider the three sequences:

(a)       (b)  and (c) 

While the sequence in (a) appears to be heading to 0 and that of (b) to 1,
the one in (c) does not look to be going anywhere in particular, as its
terms keep jumping back and forth between 1 and 2. Appearances are
well and good, but mathematics demands precision, bringing us to:

Note that in the above definition we speak of the limit of a sequence,
as opposed to “a limit.” That is as it should be, for:.

§1.  SEQUENCES

DEFINITION 9.1
SEQUENCE

A sequence of real numbers is a real-valued
function with domain the set of positive inte-

gers: .f: Z+ 

a1 a2 a3      or  an n 1=


  or simply  an 

an f n 

1
1
2
--- 1

3
---    

  n 1+
n

------------ 
 

n 1=


1 2 1 2 1 2       

We remind you that 
represents the distance on the
number line between the
numbers a and b. For exam-
ple:  is the distance
between 2 and 7, while

 is the
distance between 3 and .

Compare with the spirit of
Definition 2.2, page 53

 :

 gets arbitrarily close
to L (within  units of L),
providing x is close enough
to c: i.e.  for
some .

a b–

2 7– 5=

3 4+ 3 4– – 7= =
4–

f x 
x c
lim L= 

f x 


0 x c–  
 0

DEFINITION 9.2
CONVERGENT

 SEQUENCE

A sequence  converges to the num-

ber  if for any given  there exists a
positive integer  (which depends on )
such that:

In the event that  converges to L we

write , or , or

, and call L the limit of the sequence. 
A sequence that converges is said to be a
convergent sequence. A sequence that does
not converge is said to diverge.

In spirit:  if the ’s get arbitrarily close to L (within 

units of L), providing they are far enough in the sequence ( )

THEOREM 9.1 If a sequence  converges, then it has a
unique limit. 

an n 1=


L  0
N 

n N an L– 

an 
an

n 
lim L= anlim L=

an L

an
n 
lim L= an 

n N

an 
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PROOF: Assume that  and  with 

(we will arrive at a contradiction):

Let  (see margin). Since , there exists

 such that . By the same token, since

, there exists  such that .

Choosing  to be any integer greater than both  and , we

are led to the conclusion that  and ;

but this cannot be, since no number lies both within  units of L
and  units of M (see margin again).

SOLUTION: (a) Let  be given. We are to find  such that

. Let’s do it:

 So, to find an N such that  is to find an N such

that . Easy: let N be the first integer greater than . 

.     .
L                   M

(            )(            )
 

an
n 
lim L= an

n 
lim M= L M

 L M–
2

-----------------= an
n 
lim L=

N1 n N1 an L– 
an

n 
lim M= N2 n N2 an M– 

n0 N1 N2

an0
L–  an0

M– 




Answer: See page A-48.

CHECK YOUR UNDERSTANDING 9.1

Prove that for any constant c the sequence  converges
to c. 

EXAMPLE 9.1
(a) Prove that 

(b) Show that the sequence 
 diverges.

c c c c     

n 1+
n

------------
n 
lim 1=

an  1 0 1 0 1      =

Note how N is dependent
on  — the smaller the
given , the larger the N.




 0 N

n N n 1+
n

------------ 1– 

n N n 1+
n

------------ 1– 

n N n 1 n–+
n

--------------------- 

n N 1
n
--- 

n N
1
n
--- 

n N n
1

---

Let’s rewrite our goal:

again:

and again:

and finally:

We want:

n N n 1+
n

------------ 1– 

n N n
1

--- 1


---
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(b) We show that  diverges by demonstrat-
ing that no fixed number c  can be the limit of the sequence:

Let . For any N, both  and  cannot fall

within  units of c, for the simple reason that the distance
between any two adjacent elements of  is 1,

 and any two numbers within  unit of c are less than 1 unit

apart (see margin). So, no N “works” for .

When it comes to sums, differences, products, and quotients,
sequences behave nicely:

PROOF: We establish (a) and the (sum-part) of (b). Proofs of (c) and
(d) appear in Appendix B, page B-2.

an  1 0 1 0 1      =

(          |          )
c

1
2
---1

2
---

 1
2
---= aN 1+ aN 2+


1 0 1 0 1      

1
2
---

 1
2
---=

Answers: (a-i) See page A-48.

(a-ii) 

(a-iii) 

(b) and (c) See page A-48.

N 1010=

N 10,100=

CHECK YOUR UNDERSTANDING 9.2

(a) Let .

(i) Prove that .

(ii) Find the smallest positive integer N such that

(iii) Find the smallest positive integer N such that

.

(b) Prove that  if and only if .

(c) Find  for which .

THE ALGEBRA OF SEQUENCES

an  7 101
n

---------– 
 =

an
n 
lim 7=

n N an 7–
1
10
------

n N an 7–
1

100
---------

an
n 
lim 0= an

n 
lim 0=

an  an
n 
lim an

n 
lim

Compare with Theorem
2.3, page 55.

Actually, we need only
require that “eventually” no

; which is to say that

for some integer N 

for all . After all,
whether a sequence con-
verges or not has nothing to
do with the start of the
sequence, but only on what
happens as .

bn 0=

bn 0

n N

n 

THEOREM 9.2 If  and , then:

(a) , for any .

(b)
(The limit of a sum (or difference) equals the sum (or differ-
ence) of the limits)

(c)
(The limit of a product equals the product of the limits)

(d) , providing no  (see mar-

gin) and .
(The limit of a quotient equals the quotient of the limits)

lim an A= lim bn B=

lim can cA= c 

lim an bn  A B=

lim anbn  AB=

lim 
an

bn
----- A

B
---= bn 0=

B 0
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 (a) Case 1. .   If , then each entry of the sequence
 is 0. Consequently: .

      Case 2. . For given  we will exhibit an N such that:

 

Since , we know that for any  there exists an N

such that . In particular, for  we can

choose N such that , and we are done.

(b) Let  be given. We are to find N such that 

 
Note that: 

So, if we can arrange things so that both  and  are

less than , then (*) will hold. Let’s arrange things:

Since , there exists  such that:

 

Since , there exists  such that: 

Letting  (the larger of  and ), we find that

for : .  

A similar argument can be used to show that .  

The next result is reminiscent of the Pinching Theorem of page 89: 

PROOF: Let  be given. We are to find N such that
, which is equivalent to finding N such that

 (why?). Let’s do it:

       Since : (*)

THEOREM 9.3
PINCHING THEOREM 

FOR SEQUENCES

If the sequences  are such

that (eventually) , and if

, then .

c 0= c 0=
can  can

n 
lim 0 0A c an

n 
lim= = =

c 0  0
n N can cA– 

n N c an A– 

n N an A–

c
-----

i.e:

i.e:

lim an A=  0
n N an A–   

c
-----=

n N an A–

c
-----

 0
n N an bn+  A B+ –  (*)

an bn+  A B+ – an A–  bn B– + an A–  bn B– +=

triangle inequality

an A–  bn B– 

2
---

an A NA

n NA an A–

2
---

bn B NB n NB bn B–

2
---

N max NA NB = NA NB

n N an bn+  A B+ – an A– bn B– 
2
--- 

2
---++ =

lim an bn–  A B–=

an  cn   and bn  
an cn bn 

lim an lim bn L= = lim cn L=

 0
n N cn L– 
n N  cn L–  –

an cn bn  an L– cn L– bn L– 



                                                                                                                                  9.1  Sequences     325
Since , we can choose N such that

 implies that both  and , which is

to say that both  and .

Returning to (*) we have: 

The following result offers a link between continuity and sequence
convergence. 

PROOF: Given  we are to find  such that
. Let’s do it:

Since f is continuous at L, we can choose  such that:

  (*)

We are given that . Letting  play the role of

 in Definition 9.2, page 321, we choose N such that:
 (**)

Putting (*) and (**) together we have:

SOLUTION: Since the sine function is continuous, we set our sights

on determining . Taking advantage of Theorem 9.2,

we take the easy way out:

lim an lim bn L= =

n N an L–  bn L– 
 an L–  –  bn L–  –

n N  an L– cn L– bn L – –

n N  cn L–  –trimming the above we have:

Answers: See page A-48

CHECK YOUR UNDERSTANDING 9.3

(a) Let  and  be such that, eventually, . Show that if

 and , then .

(b) Give an example of two sequences  and  with 

such that . 

an  bn  an bn
an A bn B A B

an  bn  an bn
lim an lim bn=

To put it succinctly:

lim f an  f lim an =

THEOREM 9.4 Let  be a sequence, and let the set

 be contained in the domain of a

function f. If  and, if f is continu-

ous at L, then .

EXAMPLE 9.2
Show that .

an n 1=


an n 1=


an
n 
lim L=

f an 
n 
lim f L =

 0 N
n N f an  f L – 

 0
x L–  f x  f L –  

an
n 
lim L=  0


n N an L– 

n N an L–  f an  f L – 

(**)                        (*)

n2 10n+
2n2

------------------------ 
 sin

n 
lim 1=

lim 
n2 10n+

2n2
------------------------ 
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Applying Theorem 9.4 we have:

L’Hôpital’s rule can be a useful tool in determining the limit of cer-
tain sequences. Consider the following example. 

SOLUTION: (a) L’Hôpital’s rule deals with differentiable functions

and not sequences. But once we verify that , we will be

able to conclude that , for we can let x “walk to infinity

by stepping only on integer values.” Let’s verify:

(b) Since , we first show that

 :

lim 
n2 10n+

2n2
------------------------ 
  lim 

n2

2n2
--------- lim 

10n
2n2
---------+=

lim 

2
--- lim 

5
n
---+ 

2
--- 0+ 

2
---= = =

lim 
n2 10n+

2n2
------------------------ 
 sin  lim

n2 10n+
2n2

------------------------ 
 sin 

2
---sin 1= = =

Answers: (a) 1       (b) 0

CHECK YOUR UNDERSTANDING 9.4

Evaluate: 

       (a)                             (b) 

L’HôPITAL’S RULE AND SEQUENCES.

EXAMPLE 9.3 Verify that 

 (a)       (b) 

n 1+
n

------------
n 
lim

n 1+
n

------------ 
 ln

n 
lim

nln
n

--------
n 
lim 0= 1 1

n
---+ 

  n

n 
lim e=

xln
x

--------
x 
lim 0=

nln
n

--------
n 
lim 0=

xln
x

--------
x 
lim xln 

x
--------------

x 
lim

1
x
---

1
---

 
 
 
 

x 
lim 1

x
---

x 
lim 0= = = =

Theorem 8.2, page 304

1 1
x
---+ 

  x
e

1 1
x
---+ 

  x
ln

=

1 1
x
---+ 

  x
ln

x 
lim x 1 1

x
---+ 

 ln
x 
lim 1= =

x 1 1
x
---+ 

 ln
x 
lim

1 1
x
---+ 

 ln 

1
x
--- 
  

-------------------------------
x 
lim

x 2––

1 1
x
---+

------------

x 2––
------------

x 
lim 1

1 1
x
---+

------------
x 
lim 1= = = =
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SOLUTION: (a) To get a feeling for the sequence , we look at

a few of its initial terms: . It certainly appears that the

sequence is (strictly) increasing. Let’s prove it:

In the exercises you are
invited to show that

 

for every .

1 a
n
---+ 

  n

n 
lim ea=

a 

n 1 1
n
---+ 

 ln
n 
lim 1=

e
n 1 1

n
---+ 

 ln

n 
lim e1=

e
1 1

n
---+ 

  n
ln

n 
lim e=

1 1
n
---+ 

  n

n 
lim e=

Theorem 9.4:

In particular:

(see margin)

Answers: See page A-50

CHECK YOUR UNDERSTANDING 9.5

Verify:

         (a)                 (b) 

MONOTONE SEQUENCES

n1 n/

n 
lim 1=

n 1+
n 1–
------------ 
  n

n 
lim e2=

Note that an increasing
sequence is bounded below
by its first element while a
decreasing sequence is
bounded above by its first
element.

DEFINITION 9.3

INCREASING

DECREASING

MONOTONE

BOUNDED

A sequence  is:

Increasing if there exists an integer N such that
  for all .

Decreasing if there exists an integer N such that
  for all .

Monotone if it is either increasing or decreasing.

Bounded if there exists a number M, called a
bound of , such that  for all n.

EXAMPLE 9.4 Show that the given sequence is monotone and 
bounded.

      (a)                (b) 

an 

an an 1+ n N

an an 1+ n N

an  an M

n
n 1+
------------ 
  n

en
----- 
 

n
n 1+
------------ 
 

1
2
--- 2

3
--- 3

4
--- 4

5
---  

n
n 1+
------------ n 1+

n 2+
------------ n n 2+  n 1+  n 1+ 

n2 2n+ n2 2n 1+ +
2n 2n 1+ Yes!
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Since ,  is bounded. 

(b) To determine if  is monotone, we turn to the derivative of the

function : . Since

 for , the positive sequence  is (strictly) decreas-

ing. Consequently , and the sequence is bounded.

In Example 9.4 we showed that the sequences  and  are 

monotone and bounded. As such, they must converge; for: 

A proof of the above result appears in Appendix B, page B-4. 

Roughly speaking, to generate a subsequence of  simply pluck,
in order of appearance, some of its elements. Formally:

For example,  is a subsequence of .

0
n

n 1+
------------ 1  n

n 1+
------------ 
 

Why the derivative?
Because the sign of the
derivative can shed
light on whether the
function is increasing
or decreasing.

n
en
----- 
 

f x  x
ex
----= f  x  x

ex
---- 
   ex xex–

e2x
------------------ 1 x–

ex
-----------= = =

f  x  0 x 1 n
en
----- 
 

0
n
en
----- 1

e1
----- 

Answers: See page A-49.

CHECK YOUR UNDERSTANDING 9.6

(a) Show that a sequence  with each  is:

        (i) Increasing if .

        (ii) Strictly decreasing if .

(b) Use (a) to show that the sequence  is strictly decreasing for

. 

THEOREM 9.5 Every bounded monotone sequence converges.

an  an 0
an 1+

an
------------ 1

an 1+

an
------------ 1

en

n!
----- 
 

n 1

n
n 1+
------------ 
  n

en
----- 
 

Answers: See page A-49.

CHECK YOUR UNDERSTANDING 9.7

Prove that if a sequence converges, then it is bounded.

SUBSEQUENCES

In terms of Definition 9.1:
A subsequence of the
sequence  is a com-
posite function 

where  is a strictly
increasing function.

f: Z+ 
fh: Z+ 

h: Z+ Z+

DEFINITION 9.4
SUBSEQUENCE

 is a subsequence

of  if each  is a term of , and

.

an 

ank
  an1

an2
an3

   =

an  ani
an 

n1 n2 n3
  

1 3 5 7 9       1 2 3 4     



                                                                                                                                  9.1  Sequences     329
PROOF: Let  be a subsequence of . We are to show that for

any  there exists N such that . Let’s do it:

Since  converges to L, we can choose N such that

. It follows that .

 

PROOF: Assume, first, that . Since ,

 is monotone and bounded. As such,  converges to some

number L (Theorem 9.5), as must the subsequence  (Theorem
9.6). We then have:

But if , then:  or 

We can eliminate the  possibility, since .

To see that  for , use the above result and the

fact that for any sequence :

  if and only if   [CYU 9.2(b)]. 

Finally, if , then surely . 

 

THEOREM 9.6 If the sequence  converges to L, then

every subsequence of  converges to L.

an 

an 

ank
  an 

 0 nk N ank
L– 

an 

n N an L–  nk N ank
L– 

Answers: See page A-51

CHECK YOUR UNDERSTANDING 9.8

Construct a sequence  with a subsequence converging to 0 and

another subsequence converging to 1. 

THEOREM 9.7 If , then .

an 

r 1 r
n

n 
lim 0=

0 r 1  r r2 r3  0   
rn  rn 

r2n 

L r2n

n 
lim r

n
r

n 
n 
lim r

n 
n 
lim r

n 
n 
lim L2= = = =

L L2= L 0= L 1=

L 1= 1 r r2 r3   

r
n

n 
lim 0= 1– r 0 

an 

an
n 
lim 0= an

n 
lim 0=

r 0= r
n

n 
lim 0=

Answers: See page A-50

CHECK YOUR UNDERSTANDING 9.9

Show that  diverges if  or , and that it converges

for .

rn  r 1 r 1–=

1 r 1–
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Exercises 1-3. Find a formula for the general  term of the sequence , assuming that
the indicated pattern continues. 

Exercises 4-8. (a) Determine the limit  of the given sequence . 

(b) Find the smallest integer N for which .

(c) Find the smallest integer N for which . 

(d) Find the smallest integer N for which , for . 

Exercises 9-12. Show that the given sequence  diverges.

Exercise 13-28. Establish whether or not the given sequence  converges. If it does, deter-
mine its limit. 

Exercises 29-35.  Employ the Pinching Theorem to find the limit of the given sequence .

EXERCISES

1.  2. 3.  

4. 5.  6. 7. 8.

9. 10. 11. 12.  

13.  14. 15.  16.

17.  18. 19.  20.

21.  22. 23.  
24.

25.  
26.

27.  28.

29.  30. 31.  32.

33.  34.

35.  

nth an n 1=


1
2
--- 2

3
--- 3

4
--- 4

5
---     

  2
3
--- 3

9
---–

4
27
------ 5

81
------–     

  1
2
--- 4

5
--- 9

8
--- 16

11
------– –

25
14
------ 36

17
------–   

 

L an 

n N an L–
1
10
------

n N an L–
1

100
---------

n N an L–   0

1
n
--- 
  1 1

2n
----------+ 

  100
5n 3+
--------------- 
  2n 1+

5n
--------------- 
  2n 5+

n 1–
--------------- 
 

an 

an
n

10100
-------------= an

n2

n 100+
------------------= an

n

n 100+
----------------------= 1

1
2
--- 1

1
3
--- 1

1
4
--- 1

1
5
---         

 

an 

an
4
n
---= an

n
4
---= an 5 1

n
---–= an 1 1– n

n
-------------+=

an 1 1– n+= an
n

n 1+
------------= an

1– nn
n 1+

----------------= an
1– nn

n2 1+
----------------=

an
n

n2 1+
--------------= an

n 1– !
n

------------------= an
n 1+ !

n!
-------------------=

an nsin=

an ncos=
an

nsin

n
----------=

an

n
3

------sin

n
3

------cos
---------------= an

n
3

------sin

n
3

------cos
---------------

 
 
 
 
  2

=

an 

an 5 1
2
---– 

  n
+= an

1– n

n
-------------= an

n ncos+
n

------------------------= an
nsin

n
----------=

an 4
1
n
--- 
  2

+= an 2 1– n

n
-------------+=

an

3n 1
3
---– 

  n
+

5n
---------------------------=
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Exercises 36-43. Employ Theorem 9.4 to find the limit of the given sequence .

Exercises 44-51. Employ l’Hôspital’s Rule to determine if the given sequence  converges.

Exercises 52-59. Determine if the given sequence  is increasing, decreasing, or neither.  

Exercises 60-62. Apply Theorem 9.5 to show that the given sequence  converges. 

36. 37.  38. 39.  

40. 41.  42. 43.  

44.  45.  46.  47.  

48. 49.  50. 51.  

52. 53.  54. 55.  

56. 57. 58. 59.

60. 61.  62.

63. Prove that the constant sequence  diverges.

64. (a) Exhibit two convergent sequences  and  such that .

(b) Exhibit two divergent sequences  and  such that 

65. Construct a sequence that contains two convergent subsequences with different limits.  

66. Construct a sequence that contains infinitely many convergent subsequences no two of which 
converge to the same value. 

67. Prove that if , then  converges to .

68. Prove that if  and if  is bounded, then .

69. Prove that if  then .

70. Prove that  for any .

an 

an

n
---sin= an

5n
4n 1–
---------------sin= an

n 1+
n

------------ 
 ln= an

en 1+
n 1–

--------------- 
 ln=

an e
3n

n 1+
------------

= an n2ln 5n2ln–= an
n 2 8–

16n2
-----------------------tan= an

4n

n2 1+
-------------------=

an 

an
n3

en
-----= an

en

n3
-----= an 1 2

n
---+ 

  n
= an

nln 2

n
----------------=

an n 1
n
---sin= an

n2 1
n
---sin

2n 1–
-----------------= an n 1 1

n
---cos– 

 = an n n2 n––=

an 

an
5n

100n 51+
-------------------------= an

n
2n 1+
---------------= an

4n

n!
-----= an

n
2n
-----=

an
n 2+ !

5n
-------------------= an

n–
2n 1+
---------------= an

en

n2
-----= an

n 1+ ln
n 1+

----------------------=

an 

an
2n

n!
-----= an

nln
n

--------= an
n2

n 1–
------------ n2

n 1+
------------–=

1– 1 1– 1    

an  bn  an bn+ 
n 
lim 5=

an  bn  an bn+ 
n 
lim 5=

r 0 n
rn 1+
--------------- 
  1

r
---

an
n 
lim 0= bn  an

n 
lim bn 0=

an
n 
lim L= an

n 
lim L=

1 a
n
---+ 

  n

n 
lim ea= a 
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 9

We can certainly add the first three (or 3000) numbers of a given
sequence :

 . 

But what about ? Can we perform an infinite sum? Sometimes,

and in the following sense:

As you can see, there is a small step that takes us from the concept of
a convergent sequence to that of a convergent series; namely: 

§2. SERIES

an n 1=


a1 a2 a3   and   an

n 1=

3000

+ + a1 a2 a3
 a3000+ + + +=

One need not, of course,
choose the letter n as the
indexer of a series, nor start
the sum at ; e.g:

 and  

Note, also that:

 

In general: 
A change in the start of the
index from  to 
requires a change from  to

:

 and  

for any integer k.

n 1=

ai

i 1=



 an

n 0=





ai

n 0=



 an 1–

n 1=



=

n i= n i k+=
an

an k–

an

n i=



 an k–

n i k+=





DEFINITION 9.5
INFINITE SERIES

TERMS

PARTIAL SUMS

CONVERGING SERIES

An infinite series is an expression of the
form:

The numbers  are called the terms
of the series.

For any  the number

is called the  partial sum of the series.

The series  is said to converge to the

number L, written , if the

sequence of its partial sums  con-
verges to L.
A series that converges is said to be a con-
vergent series. A series that does not con-
verge is said to diverge or to be a divergent
series.

an

n 1=





ai

i 1=



 a1 a2
 ak

+ + + +=

a1 a2  

n Z+

sn ai

i 1=

n

 a1 a2
 an+ + += =

nth

ai

i 1=





ai

i 1=



 L=

sn n 1=


ai

i 1=



 L   if and only if   sn
n 
lim L= =

partial sums
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SOLUTION: (a) Focusing on the sequence  of partial sums we have:

Since , .

(b) A direct consequence of the fact that the sequence of partial sums 

of , ; 

namely: 1, 0, 1, 0,..., diverges [Example 9.1(b), page 322].

You can also appeal to the following fact to conclude that  
diverges:

PROOF: (By contradiction) If  converges to L then, since

:

 

The above theorem tells us that in order for a series to converge, it is nec-
essary that its terms tend to zero. Necessary, yes; but not sufficient:

A geometrical approach for (a).
Start off with a square of length
1, and divide it into two equal

pieces, each of area :

Divide one of the two smaller
regions again into two equal

pieces, each of area . Con-

tinuing this process indefi-
nitely we arrive at a
decomposition of the original
square of area 1 into boxes of

area , , , etc.; bringing us

to: .

1
2
---

1 unit

1 unit

1
2
---

1
4
---

1
8
---

1
16
------



1
4
---

1
2
--- 1

4
--- 1

8
---

1
2
--- 1

4
--- 1

8
--- + + + 1=

EXAMPLE 9.5
(a) Show that .

(b) Show that  diverges.

THEOREM 9.8
DIVERGENCE TEST If , then  diverges.

1
2n
-----

n 1=



 1=

1– n

n 0=





sn 

s1
1
2
---=

s2
1
2
--- 1

4
---+ 3

4
--- 1 1

4
---–= = =

s3
1
2
--- 1

4
--- 1

8
---+ + 7

8
--- 1 1

8
---–= = =

sn 1 1
2n
-----– 1

1
2
--- 
  n

–= =



1 1
2n
-----– 

 
n 
lim 1=

Theorem 9.7, page 329

1
2n
-----

n 1=



 1=

1– n

n 0=



 s0 1 s1 1 1– 0 s2 1 1– 1+ 1 = = = = =

1– n

n 0=





an
n 
lim 0 an

n 1=





an

n 1=




an sn sn 1––=

an
n 
lim sn sn 1–– 

n 
lim sn

n 
lim sn 1–

n 
lim– L L– 0= = = =

Theorem 9.2(b), page 323
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SOLUTION: Grouping the terms of the series as follows:  

we see that the sum of the entries in any of the above -blocks of terms

exceeds . As there are infinitely many such blocks, the series diverges

[despite the fact that ].

A geometric series is a series of the form , with . 

Here is the whole geometric-series story:

EXAMPLE 9.6 Show that the so-called harmonic series:

diverges.

1
n
---

n 1=



 1 1
2
--- 1

3
--- 1

4
--- + + + +=

1 1
2
--- 1

3
--- 1

4
---+ 

  1
5
--- 1

6
--- 1

7
--- 1

8
---+ + + 

  1
9
---  1

16
------+ + 

  1
17
------  1

32
------+ + 

  + + + + + +

2 terms                  4 terms                         8 terms                       16 terms             

2
14 ---



12 ---

=

4
18 ---



12 ---

=

8
116 ------




12 ---
=

16
132 ------




12 ---
=

2n

1
2
---

an
1
n
--- 0=

Answers: (a)   (b) 

                (c) 1

4
5
--- 1 1

n 1+
------------–

CHECK YOUR UNDERSTANDING 9.10

(a) Find the fourth partial sum  of the series .

(b) Find an expression for the  partial sum of the series.

(c) Does the series converge? If so, what is its sum.

GEOMETRIC SERIES

s4
1
n
--- 1

n 1+
------------– 

 

n 1=





nth

As previously noted, we can
rewrite

 .ar n 1–

n 1=



   as  arn

n 0=





THEOREM 9.9 The geometric series

 

is convergent if , with sum:

The geometric series diverges if .

ar n 1–

n 1=



 a 0

ar n 1–

n 1=



 a ar ar2 + + +=

r 1

ar n 1–

n 1=



 a
1 r–
-----------=

r 1
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PROOF: The Divergence Test tells us that  diverges if

, because . 
In the event that , we turn to the  partial sum:

                          

multiply by r:  

and subtract: 

Recalling that for any ,  (Theorem 9.7, page
329), we have:

 

SOLUTION: (a) Since , the series  converges:

 

(b) Since , the series  diverges.

(c) While the series  is not exactly in the form , it 

can be molded into that form: .

ar n 1–

n 1=




r 1 ar n 1– 0

r 1 nth

sn a ar ar2  arn 1–+ + + +=

rsn ar ar2 ar3  arn 1– arn+ + + + +=

sn rsn– a arn–=

sn 1 r–  a 1 rn– =

sn
a 1 rn– 

1 r–
----------------------= (*)

1 r 1 – rn

n 
lim 0=

sn
n 
lim a 1 rn– 

1 r–
----------------------

n 
lim

a 1 rn

n 
lim– 

1 r–
---------------------------------- a

1 r–
-----------= = =

Theorem 9.2, page 323

0=

(*)

EXAMPLE 9.7 Determine if the given series converges. If it does, 
find its sum.

(a)       (b)         (c) 5
2
3
--- 
  n 1–

n 1=



 5
3
2
--- 
  n 1–

n 1=



 1
3n
-----

n 1=





r
2
3
--- 1= 5

2
3
--- 
  n 1–

n 1=





5
2
3
--- 
  n 1–

n 1=



 5

1 2
3
---–

------------ 15= =

ar n 1–

n 1=



 a
1 r–
-----------=

r
3
2
--- 1= 5

3
2
--- 
  n 1–

n 1=





1
3n
-----

n 1=



 ar n 1–

n 1=





1
3n
-----

n 1=




1
3
--- 1

3
--- 
  n 1–

n 1=




1
3
---

1 1
3
---–

------------ 1
2
---= = =
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PROOF: We establish the sum part of the theorem and relegate the
remaining two parts to the exercises.

Let ,   and  denote the partial sums of , , and

, respectively. Since

:

SOLUTION: From Example 9.5(a) and Example 9.7(a):

  and 

Answers: (a)     

                (b) See page A-50

1
2
---–

CHECK YOUR UNDERSTANDING 9.11

(a) Determine the sum of the series .

(b) Use the fact that 

is a convergent geometric series to show that .

1– n 2
3n
-----

n 1=





0.232323 0.23 0.0023 0.000023 + + +=

0.232323 23
99
------=

THEOREM 9.10
If  and  converge, then, for any : 

,  , and  

converge; moreover:

  and 

an

n 1=



 bn

n 1=



 c 

an bn+ 

n 1=



 an bn– 

n 1=



 can

n 1=





an bn 

n 1=



 an

n 1=



 bn

n 1=



= can

n 1=



 c an

n 1=



=

EXAMPLE 9.8
Evaluate 

sna
snb

sn an

n 1=



 bn

n 1=





an bn+ 

n 1=




sn a1 b1+  a2 b2+   an bn+ + + +=

a1 a2
 an+ + +  b1 b2

 bn+ + + + sna
snb

+= =

an bn+ 

n 1=



 sn 
n 
lim sna

 
na 
lim snb

 
nb 
lim+ an

n 1=



 bn

n 1=



+= = =

Theorem 9.2(b), page 322

9
2n
----- 5

2
3
--- 
  n 1–

–

n 1=





1
2n
-----

n 1=



 1= 5
2
3
--- 
  n 1–

n 1=



 15=
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Thus:

An alternating series is a series whose terms are alternately positive
and negative; as is the case with the so-called alternating harmonic
series:

While the harmonic series of Example 9.6 diverges, its alternating
cousin converges, by virtue of the following result:

PROOF: We first consider partial sums with an even number of terms:

The condition  assures us that the difference within each

pair of parentheses is nonnegative. Consequently: 
 

Pairing off the partial sums with an odd number of terms as follows:

and noting that the difference within each pair of parentheses is non-
negative, we conclude that: 

Moreover, since :

9
2n
----- 5

2
3
--- 
  n 1–

–

n 1=



 9 1
2n
-----

n 1=



 5
2
3
--- 
  n 1–

n 1=



– 9 15– 6–= = =

Answers: 4

CHECK YOUR UNDERSTANDING 9.12

Evaluate: 

ALTERNATING SERIES

2
3n
----- 3

2n
-----+

n 1=





1– n 1–

n 1=




1
n
--- 1 1

2
---– 1

3
--- 1

4
---– 1

5
--- 1

6
---– + + +=

No mention of a specific
limit appears in this theo-
rem. That’s okay, since in
many applications one need
only know whether or not a
given series converges. 

THEOREM 9.11
ALTERNATING SERIES 

TEST

If the alternating series

is such that:
  for all n, and 

then the series converges.

1– n 1–

n 1=



 an a1 a2– a3 a4– + +=
each an 0 

an 1+ an an
n 
lim 0=

s2n a1 a2–  a3 a4–  a5 a6–   a2n 1– a2n– + + + +=

an 1+ an

s2 s4 s6 s8
    (*)

s2n 1+ a1 a2 a3– – a4 a5– – – a2n a2n 1+– –=

s1 s3 s5 s7     (**)

s2n 1+ s2n– a2n 1+ 0=

s2n s2n 1+ (***)
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Combining (*), (**), and (***) brings us to:

Since  and  are monotone and bounded,
both sequences must converge (Theorem 9.5, page 328):

From: 

we see that . Consequently , and the alternating

series converges.

SOLUTION: (a) Since  and , the alternating

series  converges by the Alternating Series Test.

(b) Since , the series , regardless

of its alternating nature, diverges by the Divergence Test.

(c) For  does ? Is

it true that ? For both questions we turn to the function

. Applying l’Hôpital’s rule we find that:

a1 a2– s2 s4 s6
 s2n s2n 1+ s2n 1–  s5 s3 s1        a1= =

lower bound                                                                                                                                                                         upper bound

s2 s4 s6     s1 s3 s5    

s2n 1+
n 
lim L     and     s2n

n 
lim M= =

L M– s2n 1+
n 
lim s2n

n 
lim–=

s2n 1+ s2n– 
n 
lim a2n 1+

n 
lim 0= = =

L M= sn
n 
lim L=

EXAMPLE 9.9 Determine if the given alternating series converges.

(a) 

(b) 

(c) 

(d) 

1– n 1–

n 1=




1
n!
----- 1 1

1!
-----– 1

2!
----- 1

3!
-----– + +=

1– n 1–

n 1=




n

2n 1–
--------------- 1 2

3
---– 3

5
--- 4

7
---– + +=

1– n 1–

n 1=




n 3–

n2 n– 19–
--------------------------

1 1
2
---– 1

2
--- 1

4
---– 1

3
--- 1

8
---– 1

4
--- 1

16
------– 1

5
--- 1

32
------– + + + + +

1
n 1+ !

------------------- 1
n!
----- 1

n!
-----

n 
lim 0=

1– n 1–

n 1=




1
n!
-----

n
2n 1–
---------------

n 
lim 1

2
---= 1– n 1–

n 1=




n

2n 1–
---------------

1– n 1– an

n 1=



 1– n 1–

n 1=




n 3–

n2 n– 19–
--------------------------= an 0

an 1+ an

f x  x 3–
x2 x– 19–
-------------------------=
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Consequently: .

To see if  (eventually -- see margin), we consider :

 

           Noting that the denominator of  is never neg-

ative and that its numerator is negative to the right of 8 (mar-

gin), we find that  for  and conclude that the

terms  decrease for all . 

Conclusion:  converges by the Alternat-

ing Series Test.

(d) Although

 

is an alternating series with  there is no assurance that it

converges, as the condition  of Theorem 9.11 does not
hold for all n, rendering it useless for this series. Indeed, the series
diverges:

Consider the positive and negative terms in the partial sum:

The sum of its negative terms  are

bounded below by  (see margin), while the sum of its posi-

tive terms  tend to  (partial sums of the

harmonic series of Example 9.6). It follows that 

and that the series therefore diverges.

x 3–
x2 x– 19–
-------------------------

x 
lim x 3– 

x2 x– 19– 
--------------------------------

x 
lim 1

2x 1–
---------------

x 
lim 0= = =

n 3–
n2 n– 19–
--------------------------

n 
lim 0=

While the initial terms of
a series might affect its
value, they have no
affect on whether or not
the series converges.
Think about it!

an 1+ an f  x 

x 3–
x2 x– 19+
-------------------------- 
  x2 x– 19+  1  x 3–  2x 1– –

x2 x– 19+ 2
----------------------------------------------------------------------------------=

x2– 6x 16+ +
x2 x– 19+ 2

---------------------------------- x– 2–  x 8– 
x2 x– 19+ 2

-------------------------------------= =

2                8–
.    .c              c_                        _+

SIGN  x– 2–  x 8– 

x– 2–  x 8– 
x2 x– 19+ 2

-------------------------------------

f  x  0 x 8

an
n 3–

n2 n– 19+
--------------------------= n 8

1– n 1–

n 1=




n 3–

n2 n– 19–
--------------------------

an

n 1=



 1 1
2
---– 1

2
--- 1

4
---– 1

3
--- 1

8
---– 1

4
--- 1

16
------– 1

5
--- 1

32
------– + + + + +=

an
n 
lim 0=

an 1+ an

 1
2
--- 1

2
--- 
  n 1–

n 1=




1
2
---

1 1
2
---–

------------ 1= =

Theorem 9.9

1 1
2
---– 1

2
--- 1

4
---– 1

3
--- 1

8
---– 1

4
--- 1

16
------–  1

n
--- 1

2n
-----–+ + + + +

1
2
--- 1

4
--- 1

8
---  1

2n
-----+ + + + 

 –

1–

1 1
2
--- 1

3
---  1

n
---+ + + + 

sn
n 
lim =
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Here is a useful addition to Theorem 9.11: 

PROOF: By the Alternating Series Test, the series converges. Let

. We observe that L lies between any two consec-

utive sums  and : 

Consequently: 

Answers: (a) Converges.
                (b) Converges.

CHECK YOUR UNDERSTANDING 9.13

Determine if the given alternating series converges.

         (a)                          (b) 

APPROXIMATING THE SUM OF AN ALTERNATING SERIES

THEOREM 9.12
ALTERNATING SERIES 

ERROR ESTIMATE

If the alternating series

is such that:
  for all n, and 

then the error  resulting by only summing

the first N terms of the series is less than the

 term of the series:

1– n 2
3n
-----

n 1=



 1– n 1–

n 1=




n 3+
n2 n+
--------------

1– n 1–

n 1=



 an a1 a2– a3 a4– + +=
where each an 0

an 1+ an an
n 
lim 0=

EN

N 1+ th

EN aN 1+

1– n 1–

n 1=



 an L=

sn sn 1+

s1 a1=

s3 a1 a2– a3+=

s2 a1 a2–=

s4 s3 a4–=

s5 s4 a5+=.
s

seven L sodd 

EN L sN– sN 1+ sN– aN 1+= =
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SOLUTION: (a) Theorem 9.12 assures us that:

 

(b) From the above we know that we will need to sum more that the first
three terms of the series to be within 0.00001 units of L. Four terms,
however, will certainly do the trick: 

EXAMPLE 9.10 Consider the convergent alternating series 

(a) Use Theorem 9.12 to find an upper bound for

 

(b) How many terms need to be added to insure
that their sum falls within 0.00001 units of L?

1– n 1
2n 1+ !

----------------------

n 0=



 1 1
3!
-----– 1

5!
----- 1

7!
-----– + + L= =

L 1 1
3!
-----– 1

5!
-----+ 

 –

In a subsequent section we
will show that:

 

As it turns out:

Answers: (a) See page A51.
                (b) 0.368

xsin x x3

3!
-----– x5

5!
----- x7

7!
-----– + +=

1sin  1 1
3!
-----– 1

5!
----- 1

7!
-----–+ 

 –

0.0000027

CHECK YOUR UNDERSTANDING 9.14

(a) Show that  converges.

(b) Approximate the sum  to three decimal

places.

L 1 1
3!
-----– 1

5!
-----+ 

 –
1
7!
----- 0.000198

L 1 1
3!
-----– 1

5!
----- 1

7!
-----–+ 

 –
1
9!
----- 0.000003

1– n 1
n!
-----

n 0=



 1 1
1!
-----– 1

2!
----- 1

3!
-----– + +=

1 1
1!
-----– 1

2!
----- 1

3!
-----– + +
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Exercises 1-6. Express the given sum using the sigma notation: . Do this in two ways — one

with the index n starting at 1, and the other with n starting at 0. 

Exercises 7-8. Find the sum of the given series.

Exercises 9-23. Determine if the series converges. If it does, find its sum.

Exercises 24-32. Determine if the given alternating series converges. 

EXERCISES

1.  2.
3.  

4. 5.  6.

7. (a)                        (b)                         (c)  

8. (a)                        (b)                         (c) 

9.  10. 11.  

12. 13.  14.

15.  16. 17.

18. 19.  20.

21.  22.
23.  

24. 25.  26.

n =


1
3
--- 1

5
--- 1

7
--- 1

9
---+ + + 1

2
--- 1

4
---– 1

6
--- 1

8
---– 1

10
------+ +

1 10 100 1000 10000+ + + +

2 4
3
--- 8

9
--- 16

27
------ + + + + 5

2
---– 10

4
------ 15

8
------– 20

16
------ –+ + x2

5
----- x3

10
------– x4

15
------ x5

20
------– + +

1
5
--- 
  n 1–

n 1=




1
5
--- 
  n

n 1=




1
5
--- 
  n

n 0=





2
3
--- 
  n 1–

n 1=




2
3
--- 
  n

n 1=




2
3
--- 
  n

n 0=





5
7
--- 
  n 1–

n 1=



 5
7n
-----

n 1=



 5
100n
-----------

n 0=





1
2n 1–
------------

n 1=



 2
3n 1–
------------

n 1=



 3n 1–

2n
------------

n 1=





nn

n!
-----

n 1=



 nsin

n 1=



 1
n
4

------sin
--------------

n 0=





2n

3n 1–
------------

n 0=



 3n 1–

9n
------------

n 1=



 3n 1–

52n 1+
---------------

n 1=





3
2n
-----

1
4
--- 
  n

+

n 1=



 5
2n
----- 1

4
---– 

  n
+

n 0=




1
3
--- 3

2
---– 1

9
--- 3

4
---– 1

27
------ 3

8
---– 1

34
----- 3

24
-----– + + + +

1– n 1– n2

n2 1–
--------------

n 2=



 1– n 1– n
n2 1+
--------------

n 0=



 1– n 1

n
-------

n 1=
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Exercises 33-38. Determine the number of terms that need to be added to insure that their sum
falls within 0.0001 units of the value of the given convergent alternating series  .

Exercises 39-44. Find the fourth partial sum  of the given series, and an expression for its 

 partial sum. Determine the sum of the series.

45. Let  and  be convergent series. Prove that:

(a) The series  converges, and 

(b) For any constant c,  converges, and 

27.  28. 29.

30. 31. 32.

33.  34.  35.  

36. 37.  38.

39.   40. 41.  

42. 43.  44.

 Suggestion: Use partial fractions     Suggestion: Use partial fractions        Suggestion: Use partial fractions

1– n 1
nln

--------

n 2=



 1– n nln
n

--------

n 1=



 1– n n
nln

--------

n 2=





1– n en

n10
-------

n 1=



 1– n 1

sin
2
n

------------

n 1=



 1– ne1 n/

n
---------

n 0=





1– n1
n
---

n 1=



 1– n 1
2n
-----

n 1=



 1– n 1
2n !

-------------

n 1=





1– n 1
n2n
--------

n 0=



 1– n 1

n
-------

n 1=



 1– n 1
2nn!
----------

n 0=





s4

nth

1

n
------- 1

n 1+
----------------– 

 

n 1=



 1
n 2+
------------ 1

n 3+
------------– 

 

n 1=



 1
n 2+ ln

---------------------- 1
n 1+ ln

----------------------– 
 

n 1=





1
4n 3–  4n 1+ 

-----------------------------------------

n 1=



 3
2n 1–  2n 1+ 

-----------------------------------------

n 1=



 2n 1+
n2 n 1+ 2
-------------------------

n 1=





an

n 1=



 bn

n 1=





an bn– 

n 1=



 an bn– 

n 1=



 an

n 1=



 bn

n 1=



–=

can

n 1=



 can

n 1=



 c an

n 1=



=
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46. (a) If  converges, need both of the series  and  converge? Justify 

your answer.

(b) If  and  converge, can  diverge? Justify your answer.

47. (a) Prove that if  converges and  diverges then  diverges.

(b) Show, by means of an example, that  may converge or may diverge when

both  and  diverge.

48. Show that both the series consisting of the positive terms and the series of the negative terms 

(in order) of the convergent series  diverge.

49. A ball is dropped from a height of 60 feet. Each times it strikes the ground it bounces back two 
-thirds of the previous height. Determine the total vertical distance traveled by the ball before 
it comes to rest. 

50. Find the sum of the bases, of the heights, and of the hypote-
nuses of the nested sequence of triangles depicted in the 
adjacent figure. 

51. Find the sum of the areas of the nested sequence of 
squares depicted in the adjacent figure, wherein each 
square gives rise to the included square obtained by join-
ing the midpoint of the sides of that square. 

52. (Cantor Set) From the closed unit interval  remove 

the open interval  to arrive at . Remove the middle third of each of 

those two resulting closed intervals to arrive at . Remove 

the middle third of each of those four resulting intervals, and then the middle third of the 
resulting eight intervals, and continue the procedure indefinitely. Show that the sum of the 
lengths of all removed intervals equals 1, even though infinitely many numbers in  
remain.

an bn+ 

n 1=



 an

n 1=



 bn

n 1=





an bn+ 

n 1=



 an

n 1=



 bn

n 1=





an bn an bn+ 
an bn+ 

an bn

1– n 1–

n 1=




1
n
--- 1 1

2
---– 1

3
--- 1

4
---– 1

5
--- 1

6
---– + + +=



60
h

a
a 2

2 ft                   2 ft

0 1 
1
3
--- 2

3
--- 

  0
1
3
--- 2

3
--- 1

0
1
9
--- 2

9
--- 1

3
--- 2

3
--- 7

9
--- 8

9
--- 1  

0 1 
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 9

We will say that  is a positive series if there exists N such that

 for every .

Consider a positive series . Since, eventually, each term is posi-

tive, the sequence of partial sums  is (eventually) increasing and
bounded from below by its first term. That being the case we have:

PROOF: Clearly if  is not bounded, then the series diverges to .

On the other hand, if the monotonic sequence  is bounded from
above, then it is bounded and must converge (Theorem 9.5, page 328).

Here is a particularly important consequence of the above theorem: 

PROOF: Suppose  converges with . We show

that the partial sums  of  are bounded from above:

Since, for , :  for any n.

Since f is decreasing:

§3. SERIES OF POSITIVE TERMS

While the sum of the first N terms of a convergent series may effect its value,
it will have no bearing whatsoever on whether or not the series converges. That
being the case, when concerned solely on whether or not a series converges,

we will let  represent the series, without indicating its starting point. 

THEOREM 9.13 A positive series converges if and only if its
sequence  of partial sums is bounded from
above.

an
an 0 n N

an

an
sn 

sn 

sn  
sn 

THEOREM 9.14
INTEGRAL TEST

Note: The “1” in  and
throughout can be replaced
by any positive integer c.

Let the continuous function f be such that:

(i)  for all 

(ii)  if  (decreasing)

Let  for all . Then:

 converges if and only if  converges.

x 1

f x  0 x 1

f x  f y  1 x y 

an f n = n 1

an f x  xd
1





1    2  3   4    5       

n
1

– n

f 2 
f 3 

f n 

This Area:  f 2  1 f 3  1  f n  1+ ++
a2 a3  an+ + +=

... ...

is less than This Area : f x  xd
1



 L=

f x  xd
1



 f x  xd
1



 L=

sn an
x 1 f x  0 f x  x Ld

1

n



f 2  f 3   f n  f x  x Ld
1

n

+ + +

f 1  f 2  f 3   f n  f 1  L++ + + + (*)

see margin

Consequently:
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Since  we have:

The convergence of  now follows from Theorem 9.13.

 Now suppose that . A glance at the figure in the margin

should convince you that .

SOLUTION: (a) The continuous function  is certainly pos-

itive for all . Moreover, since

 

is negative for , f decreases over that interval. 

Having observed that the hypotheses of the Integral Test are met, we

turn to the improper integral .

From  we have:

               

Since  converges, so then does , by the Integral Test.

(b) We first note that the positive continuous function  is

decreasing for :

   .

From  we have: 

1    2  3   4    5       

n
1

– n

f 1 
f 2 

n 1– 

This Area:  f 1  f 2  f 3   f n 1– + + + +

is greater than This Area: f x  xd
1



 =

a1 a2  an 1–+ + +=

... ...

EXAMPLE 9.11 Determine if the given series converges.

    (a)                 (b) 

a1 f 1 = a2 f 2 =  an f n =  
sn a1 a2 a3  an+ + + +=

f 1  f 2  f 3   f n  f 1  L++ + + + a1 L+= =

(*)

an
f x  xd

1



 =

an

n 1=



 =

n
en2
------ nln

n
--------

f x  x
ex2
------=

x 1

f  x  x
ex2
------ 
  ex2 x ex2 2x –

ex2 2
------------------------------------- 1 2x2–

ex2
-----------------= = =

x 1

x
ex2
------ xd

1




x

ex2
------ xd

1
2
--- e u– ud

1
2
---e

u–
– C+ 1

2ex2
----------– C+= = =

u x2=

du 2xdx=

x
ex2
------ xd

1



 1
2ex2
----------–

t 
lim

1

t 1
2
--- 1

et2
----- 1

e
---– 

 
t 
lim– 1

2e
------= = =

For :n 5+
n n 4+ 
--------------------

x
ex2
------ xd

1



 n
en2
------

f x  xln
x

--------=

x e

f  x  xln
x

-------- 
  x xln  xln–

x2
-------------------------------- 1 xln–

x2
-----------------= = = 0

xln
x

-------- xd u ud u2

2
----- C+ xln 2

2
--------------- C+= = =

u x du
1
x
---dx=ln=
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Since  diverges, so does , by the Integral Test.

Series of the form  are called p-series, and here is their story:

PROOF: A direct consequence of Theorem 8.3, page 313, and Theorem
9.14.

The following result is a direct consequence of Theorem 9.13:

SOLUTION: (a) Since  for all x:

xln
x

-------- xd
1



 xln 2

2
---------------

t 
lim

1

t
1
2
--- tln 2

t 
lim = = =

xln
x

-------- xd
1



 nln
n

--------

Answers: See page A-52

CHECK YOUR UNDERSTANDING 9.15

Use the Integral Test to show that the harmonic series  diverges.

 (Compare your solution with that of Example 9.6, page 334.)

P-SERIES

THEOREM 9.15

CONVERGENCE OF 
P-SERIES 

 

converges if  and diverges if .

THEOREM 9.16
  COMPARISON TEST

If the positive series  converges and if

 is such that (eventually) ,

then  converges.

If the positive series diverges, and if

, then  diverges.

EXAMPLE 9.12
(a) Show that  converges.

(b) Show that  diverges.

1
n
---

1
np
-----

1
np
-----

n 1=



 1 1
2p
----- 1

3p
----- 1

4p
----- + + + +=

p 1 p 1

an
bn 0 bn an 

bn
an

an bn bn

sin
2
n

2n n+
--------------

n 5+
n n 4+ 
--------------------

0 sin
2
x 1 

0
sin

2
n

2n n+
-------------- 1

2n n+
-------------- 1

2n
----- 
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Since the geometric series  converges (Theorem 9.9, page

334), so must , by the Comparison Test.

(b) Since  and since the harmonic series

 diverges, so must , by the Comparison Test.

Since the terms of the series  are less than the corresponding

terms of the convergent series ,  must also converge, by

the Comparison Test. But what about the series  whose terms

 are greater than ? In a sense, “close enough is good enough:”

PROOF: If , then there exists  such that:

                                for all .

Leading us to:  for all  (*).

1
2
--- 
  n


sin

2
n

2n n+
--------------

For :

Answers: (a) Converges.
                 (b) Diverges.

n 5+
n n 4+ 
--------------------

CHECK YOUR UNDERSTANDING 9.16

Determine if the given series converges.

           (a)                                  (b) 

n 5+
n n 4+ 
--------------------

n 5+
n 4+
------------ 
  1

n
--- 1

n
---=

1
n
--- n 5+

n n 4+ 
--------------------

1
n2 n+
-------------- n

n 1–
------------

1
n2 n+
--------------
1
n2
----- 1

n2 n+
--------------

1
n2 n–
--------------

1
n2 n–
-------------- 1

n2
-----

In the EXERCISES you are
asked to verify that: 

If  and  con-

verges, then  converges.

If  and 

diverges, then  diverges.

an

bn
-----

n 
lim 0= bn

an
an

bn
-----

n 
lim = bn

an

THEOREM 9.17
LIMIT COMPARISON 

TEST

If  and  are positive series and if

then both series converge or both series diverge.

an bn
an

bn
-----

n 
lim L 0=

an

bn
-----

n 
lim L 0= N

L
2
---

an

bn
----- 3L

2
------  n N

L
2
---bn an

3L
2

------bn  n N
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If  converges then so does  by the Comparison Test (The-

orem 9.16), as well as  (see Theorem 9.10, page

336). 

Similarly, if  converges, then so does , as well as ,

by the Comparison Test.
It follows, from the above argument, that if one of the series diverges,
then so must the other (think about it).

SOLUTION: (a) Recalling that as , the graph of the rational

function  resembles, in shape,

that of  (see page 138), we might very well suspect that

 will behave like the convergent p-series .

Invoking the Limit Comparison Test, we find that it does:

   
(b) We compare  and :

            

Since the harmonic series  diverges, so does , by the

Limit Comparison Test.

EXAMPLE 9.13 Determine if the given series converges.

 (a)            (b) 

an
L
2
---bn

2
L
--- L

2
---bn bn=

bn
3L
2

------bn an

n2 2n– 1+
3n4 5n+

--------------------------- 2n2 500–
n3 50+

-----------------------

x 

f x 
anx

n
an 1– x

n 1–  a1x a0+ + + +

bmxm bm 1– xm 1–  b0+ + +
-------------------------------------------------------------------------------------------=

g x 
anx

n

bmxm
----------------=

n2 2n– 1+
3n4 5n+

--------------------------- 1
n2
-----

n2 2n– 1+
3n4 5n+

---------------------------

1
n2
-----

---------------------------
n 
lim n4 2n3– n2+

3n4 5n+
--------------------------------

n 
lim

1 2
n
---– 1

n2
-----+

3 5
n3
-----+

------------------------
n 
lim

1
3
--- 0= = =

invert and multiply divide numerator and

denominator by n
4

For :2n2 500–
n3 50+

------------------------
2n2 500–
n3 50+

----------------------- n2

n3
----- 1

n
---=

2n2 500–
n3 50+

-----------------------

1
n
---

------------------------
n 
lim 2n3 500n–

n3 50+
---------------------------

n 
lim

2 500
n2

---------–

1 50
n3
------+

------------------
n 
lim 2 0= = =

Answers: (a) Converges
                (b) Diverges

CHECK YOUR UNDERSTANDING 9.17

Determine if the given series converges.

    (a)                           (b) 

1
n
--- 2n2 500–

n3 50+
-----------------------

1
3n 100–
-------------------- 5 n 100+

n3 3n– 1+
-------------------------------
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Comparing a positive series with a geometric series leads us to the
following important result: 

PROOF: Assume that , and let  be small enough so that:

 

Since , we can choose N such that:

 if 

We then have:

 

Since , the geometric series  converges. By

the Comparison Test, so must  converge, since eventually

. 

As for the rest of the proof:

THE RATIO TEST

THEOREM 9.18
RATIO TEST

(FOR POSITIVE SERIES)

Let  be a positive series withan
an 1+

an
------------

n 
lim L=

If 

L 1  then the series converges
L 1 or L   then the series diverges=

L 1 then the test is inconclusive=





L 1  0
L  1+

an 1+

an
------------ L

an 1+

an
------------ L + n N

aN 1+ aN L + 

aN 2+ aN 1+ L +  aN L +  L +  aN L + 2=

aN 3+ aN 2+ L +  aN L + 2 L +  aN L + 3=

aN k+ aN L + k



L + 1 aN L + k
an

an aN L + k

Answers: See page A-53

CHECK YOUR UNDERSTANDING 9.18

Referring to Theorem 9.18:

(a) Verify that the series  diverges if  or .

(b) Show that  for both the divergent series  and the con-

vergent series .

an L 1 L =

L 1= 1
n
---

1
n2
-----



                                                                                                                                9.3  Series of Positive Terms     351
SOLUTION: (a) Since:

 

 converges, by the Ratio Test.

(b) Since:

 
the series  diverges, by the Ratio Test.

Here is another powerful convergence test: 

EXAMPLE 9.14 Determine if the given series converges or 
diverges.

(a)               (b) 1
n!
----- 2n

n10
-------

an 1+

an
------------

n 
lim

1
n 1+ !

-------------------

1
n!
-----

-------------------
n 
lim n!

n 1+ !
-------------------

n 
lim= =

n!
n! n 1+ 
----------------------

n 
lim 1

n 1+
------------

n 
lim 0 1= = =

1
n!
-----

For :2n

n10
------- an 1+

an
------------

n 
lim

2n 1+

n 1+ 10
----------------------

2n

n10
-------

----------------------
n 
lim

2n 1+

n 1+ 10
---------------------- n10

2n
-------

n 
lim= =

2
n

n 1+
------------ 
  10

n 
lim 2 110 2 1= = =

2n

n10
-------

Answers: (a) Converges
                (b) Diverges

CHECK YOUR UNDERSTANDING 9.19

Determine if the given series converges.

            (a)                                  (b) 

THE ROOT TEST

THEOREM 9.19
  ROOT TEST

Let  be a positive series with

n3

5n
----- 2n !

n! 2
-------------

an
an

n
n 
lim L=

If 

L 1  then the series converges
L 1 or L   then the series diverges=

L 1 then the test is inconclusive=
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PROOF: Assume that , and let  be small enough so that:

 

Since , we can choose N such that:

 or  for .

Since , the geometric series  converges. By

the Comparison Test, so must , since eventually . 

As for the rest of the proof:

SOLUTION: (a) Applying the Root Test we find that  

converges: 

(b) Applying the Root Test we find that  diverges:

 

L 1  0
L  1+

an
n L

an
n L + an L + n n N

Answers: See page A-54

CHECK YOUR UNDERSTANDING 9.20

(a) Referring to Theorem 9.19, verify that the series  diverges if
 or .

(b) Show that  for any . 

(c) Establish the claim that the Root Test is inconclusive if .

EXAMPLE 9.15 Determine if the given series converges.

    (a)               (b) 

L  1+ L + n

n N 1+=


an an L + n

an
L 1 L =

1
np
-----n

n 
lim 1= p 0

L 1=

n
n2 6+ n

---------------------- 2n

n3
-----

n
n2 6+ n

----------------------

n
n2 6+ n

----------------------n
n 
lim n1 n/

n2 6+
--------------

n 
lim 0 1= =

1 (CYU 9.5(a), page 327



2n

n3
-----

2n

n3
-----n

n 
lim 2

n1 n/ 3
-----------------

n 
lim 2

n1 n/

n 
lim 3

----------------------------- 2
13
----- 2 1= = = =

1 (CYU 9.5(a), page 327

Answers: (a) Diverges
                (b) Converges

CHECK YOUR UNDERSTANDING 9.21

Determine if the given series converges.

           (a)                             (b) 
3n 2+
2n 1+
--------------- 
  n

 1
nln n

----------------
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We’ve presented several methods which may enable you to
determine if a series converges. Which should you use? Well,
one that works is certainly a priority. That said, we hasten to
point out that more than one of the methods might do the
trick. If you addressed the series in (a) of the above CYU,
chances are that you probably attacked it using the Root Test

as the “n-exponent” stands out in the expression .

That’s fine, for the Root Test will certainly do the job. But

you could have simply observed that  rather

dramatically does not approach 0 as , and be done
with it, by the Divergence Test. 

3n 2+
2n 1+
--------------- 
  n

an
3n 2+
2n 1+
--------------- 
  n

=

n 
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Exercises 1-3. Use the Integral Test to determine if the given series converges. 

Exercises 4-6. Use the Comparison Test to determine if the given series converges. 

Exercises 7-9. Use the Limit Comparison Test to determine if the given series converges.

Exercises 10-12. Use the Ratio Test to determine if the given series converges.

Exercises 13-15. Use the Root Test to determine if the given series converges. 

Exercises 16-57. Determine if the given series converges. 

EXERCISES

1.  2.  3.  

4.  5.  6.

7.  8.  9.  

10. 11.  12.  

13.   14.  15.

16.  17.  18.   

19.  20.   
21.  

22.  23.  24.  

25.  26.  27.   

28.  29.  
30.   

31. 32.  33.   

34.  35.  36.  

37. 38.  39.  

n
n2 1+
--------------

1
50n nln
------------------ n

en
-----

n 1+
n2

------------ 6
6n 3+
-------------- 1

n 3+ 5 4/
------------------------

1
n2 5n+
------------------ n

n 3–
------------ 5 n 9+

2n2 3+
-------------------

n
3n
----- 2n

n!
----- nn

n!
-----

3n 5+ n

2n 1– n
----------------------- n

5n
----- 3n

n10
-------

1

n2 1+
------------------- 1

n n 1– 
------------------------ n 5+

n2
----------------

1

n n2 1–
---------------------- 1

n
---sin

1
n nln
-----------

3n 7+
n2n

---------------

n 1=




1

n n 1+ ln
-------------------------- nln

n 1+
------------

2n

n4
----- n2

5n
----- 5n

n!
-----

en

1 en+ 2
---------------------- ne 2n– n

2
3
--- 
  n


n! 2

2n !
-------------

n2

2n
-----

nln
n2

--------
1

1 n+
---------------- nln

en
-------- k 3+ !

3kk!
------------------

n2 1+
n2

-------------- 
 ln

1
3n 1– 2+
--------------------- n 1+

n 2+ 2n
-----------------------
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58. Prove that (a) If and converges, then converges.

                      (b) If  and diverges, then diverges.

59. Prove that  converges if and only if .

60. For what values of p does the series  converge?

61. Let . Note that f is positive and continuous for . Show that  

diverges while  converges. Does this violate the Integral Test?

Exercise 62-67. Indicate True or False.

40.  41.  42.

43.  44.  45.  

46. 47.  48.  

49. 50.  51.

52.  53.  54.  

55.  56.  57.  

62. If  and  converges then  converges.

63. If  and  converges then  converges.

64. If  and  converges then  converges.

65. If  and  converges then  converges.

66. If  converges then so does  for any polynomial p. 

n50

en
------- n!

n2n
-------- 2n n

4n
-------------

2n 1–
2n

--------------- 1 1
n
---+ 

  n


n2 10n+
2n2 5+
--------------------- 
  n


2n !
3n !

------------- 2n !
n!2n
------------- 2nn!

nn
----------

2n

1 nln 2+
------------------------- tan

1–
n

1 n2+
---------------

1
n 1+  n 1+ ln 2

-----------------------------------------------

1
n2
----- n2

n3 1+
--------------+ 

 
1

n nln 2
------------------- 1

n2
-----– 

  n3

3n4 1+
------------------ 1

n3 2/
----------+ 

 
1

n3 2/
---------- en

1 en+ 2
----------------------+ 

  1
n
--- 1

n 1+
------------– 

  n 5+
n2

---------------- 3n 1+
n2n

---------------+ 
 

an

bn
-----

n 
lim 0= bn an

an

bn
-----

n 
lim = bn an

1
n nln p
-------------------

n 2=



 p 1

n
n2 1+
-------------- 
  p



f x  sin
2x 1

x2
-----+= x 1 f x  xd

1





f n 

n 1=





an 0 an 1 an+ ln
an 0 1 an+ ln an
an 0 an ansin
an 0 an an

2
an p n an
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 9

As it turns out, it is “easier” for a series  to converge than it is for

 to converge: 

PROOF: Adding  across the inequalities  we have:

Since  converges, so does . Employing the Comparison

Test (page 348) we find that  also converges [see (*)].

Noting that:

we conclude that  converges [see Theorem 9.10, page 336]. 

Does the converse of Theorem 9.20 hold? No:

The alternating series  converges, while the series

 does not (it is the harmonic series). 

Bringing us to:

Note that if  diverges, no conclusion can be drawn about the

convergence or divergence of . For example:

 diverges while  converges, and

 diverges while  diverges.

§4. ABSOLUTE AND CONDITIONAL CONVERGENCE

THEOREM 9.20 If  converges, then  converges. 

DEFINITION 9.6

ABSOLUTELY AND 
CONDITIONALLY 

CONVERGENT SERIES

A series  is absolutely convergent if 

 converges.

A convergent series  is conditionally 

convergent if  diverges.

an
an

an an
an an an an –

0 an an+ 2 an  (*)

an 2 an
an an+

an an an+  an–=

an

1– n1
n
---

1– n1
n
--- 1

n
---=

an
an

an
an

an
an

1– n 1
n
--- 1– n1

n
---

1
n
---– 1

n
---– 1

n
---–=



                                                                                                                                9.4  Absolute and Conditional Convergence     357
SOLUTION: (a) Since  and since the p-series  converges,

the positive series  converges by the Comparison Theorem.

Thus,  converges absolutely.

(b) The convergence of the alternating series  has

already been established [see Example 9.9(c), page 338]. Does it converge
absolutely? No:

Comparing the positive series 

with the divergent series  we have:

     

Since  diverges by the Limit Comparison Test,

 is conditionally convergent.

EXAMPLE 9.16 Does the given series converge absolutely? If
not, does it converge conditionally? 

  (a)            (b) nsin
n2

---------- 1– n 1–
n 3–

n2 n– 19–
--------------------------

nsin
n2

----------
1
n2
----- 1

n2
-----

nsin
n2

----------
nsin

n2
----------

1– n 1–
n 3–

n2 n– 19–
--------------------------

1– n 1– n 3–
n2 n– 19–
-------------------------- n 3–

n2 n– 19–
--------------------------=

1
n
---

n 3–
n2 n– 19–
--------------------------

1
n
---

--------------------------
n 
lim n2 3n–

n2 n– 19–
--------------------------

n 
lim

1 3
n
---–

1 1
n
---– 19

n2
------–

------------------------
n 
lim 1 0= = =

1– n n 3–
n2 n– 19–
--------------------------

1– n
n 3–

n2 n– 19–
--------------------------

Answers: 
   (a) Converges Absolutely
   (b) Diverges

CHECK YOUR UNDERSTANDING 9.22

Does the given series converge absolutely? If not, does it converge
conditionally? 

        (a)                                   (b) 

THEOREM 9.21 If  is such that the series of its positive 

terms and the series of its negative terms both 
converge, then  converges absolutely.

n2 ncos
3n

----------------- 1– nnn

n!
-----

an

an
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PROOF: Plucking the positive elements (in order of appearance) of
 we arrive at the positive series . Let .

Let  denote the series of the remaining (negative) elements of

. Clearly, if , then . 

Since the sequence of partial sums of the series  is increasing

and bounded above by ,  converges (Theorem 9.13,
page 345).

SOLUTION: Since both p-series  and  converge, the given

series converges absolutely and therefore converges.

The convergence theorems of the previous section can be used to test
a series  for absolute convergence — just apply the test to the pos-

itive series . In particular, we have: 

PROOF: For : Apply the Ratio Test of page 350, to the positive
series .

For : Assume that .

Let N be such that  for . Since  for

Why not use the Alternat-
ing Series Test of page 337? 

Because  does
not hold here.

an 1+ an

EXAMPLE 9.17 Does the alternating series

 

converge?

an pn pn P=

qn
an qn Q= qn Q–=

an
P Q– an

1
2
--- 1

3
---– 1

4
--- 1

9
---– 1

8
--- 1

27
------–  1

2n
----- 1

3n
-----– + + + + +

Answers: 
  (a) Converges (absolutely)
 (b) Diverges

CHECK YOUR UNDERSTANDING 9.23

Does the given series converge?

(a) 

(b) 

THEOREM 9.22
  RATIO TEST

For a given series  (not necessarily posi-

tive), with .

1
2n
----- 1

3n
-----

1
2
--- 1

4
--- 1

8
---– 1

16
------–  1

2n
----- 1

2n 1+
------------ 1

2n 2+
------------– 1

2n 3+
------------– + + + + +

1
3
--- 1– 1

32
----- 1

2
---– 1

33
----- 1

3
---–  1

3n
----- 1

n
---– + + + + +

an
an

an
an 1+

an
------------

n 
lim L=

If 

L 1: an   converges absolutely.

L 1 or L : an   diverges.=

L 1  the test is inconclusive=







L 1
an

L 1 or L =
an 1+

an
------------ L 1 or 

an 1+

an
------------ 

an 1+

an
------------ 1 n N an 1+ an 0
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,  which implies that . That being the

case,  diverges by the Divergence Test. 

As for the inconclusive part of the Ratio Test, you can easily show that

 for both the convergent series 

and the divergent series .

SOLUTION: (a) Since, for :

the series  converges absolutely and therefore converges.

(b) For :

Conclusion:  diverges.

EXAMPLE 9.18 Use The Ratio Test to determine if the given 
series converges.

    (a)         (b) 

n N an
n 
lim 0 an

n 
lim 0

an
an 1+

an
------------

n 
lim 1= an 1– n1

n
---=

an 1
n
---=

100– n

n!
------------------- 1

n
---– 

  n 2n !
n!

-------------

an 100– n

n!
-------------------=

 an 1+  

an
----------------

n 
lim

 
100 n 1+

n 1+ !
----------------------- 

100 n

n!
----------------

---------------------------
n 
lim  

100 n 1+

n 1+ !
----------------------- n!

100 n
----------------

n 
lim= =

 
100

n 1+
------------

n 
lim 0 1= =

100– n

n!
-------------------

As :

As :

n 

2n 1+  2n 2+ 
n 1+  n 1+ 

----------------------------------------- 4n2

n2
-------- 4 

n 

n
n 1+
------------ 
  n 1

1 1
n
---+ 

  n
-------------------- 1

e
---=

Example 9.3(b), page 326

an 1
n
---– 

  n 2n !
n!

-------------=

 an 1+  

an
----------------

n 
lim

1
n 1+
------------ 
  n 1+ 2 n 1+  !

n 1+ !
--------------------------- 

1
n
--- 
  n 2n !

n!
-------------

---------------------------------------------------------
n 
lim=

 
2n 2+ !

n 1+ n 1+ n 1+ !
---------------------------------------------- nn n !

2n !
---------------

n 
lim=

 
2n 2+ !n!

2n ! n 1+ !
--------------------------------

n 
lim

nn

n 1+ n 1+
--------------------------=

 
2n 1+  2n 2+ 

n 1+ 
-----------------------------------------

n 
lim

nn

n 1+  n 1+ n
--------------------------------------=

 
4n2

n2
-------- n

n 1+
------------ 
  n

n 
lim

4
e
--- 1= =(see margin):

1
n
---– 

  n 2n !
n!

-------------
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Surely , and so it is with any finite sum. But
how about rearranging the terms of an infinite sum ? Here is the
surprising answer [at least for part (b)]:

You are invited to consider proofs of the above claims in Appendix B,
page B-5. Here, we will content ourselves by showing that:

 (a) If  converges absolutely then any series  obtained

by rearranging the terms of  also converges absolutely.

(b) Let  be the conditionally convergent series .

For any given L, the terms of the series can be rearranged so that
the resulting series converges to L. The terms can also be rear-
ranged so that the resulting series diverges.

 For (a): If , then the partial sums of the series  are
bounded above by L, and the series therefore converges (The-
orem 9.13, page 345), as must  (Theorem 9.20).

                   (The argument does not establish the fact that .) 

For (b): We consider the two series consisting of the positive terms
and of the negative terms of the alternating harmonic series: 

(i)          (ii)  

Answers: 
  (a) Diverges
  (b) Converges (absolutely)

CHECK YOUR UNDERSTANDING 9.24

Determine if the given series converges.

       (a)                       (b) 

REARRANGING THE TERMS OF A SERIES

THEOREM 9.23 (a) If  converges absolutely to L, then

any series  obtained by rearranging the

terms of  also converges to L.

(b) If  converges conditionally then, for

any given L, the terms of the series can be
rearranged so that the resulting series con-
verges to L. The terms can also be rearranged
so that the resulting series diverges.

1– n 22n 50–

2n 100–
--------------------- 1– nn2

2n
-----

2 9 7+ + 9 7 2+ +=
an

an
bn

an
an

an bn
an

an 1– n1
n
---

an L= bn
bn

an bn=

1 1
3
--- 1

5
--- 1

7
--- + + + + 1

2
---– 1

4
---– 1

6
---– –
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Since (i) diverges to  (Exercise 48, page 344), starting at
any point in that series, we can add enough subsequent terms
to surpass any given positive number. Similarly, starting at
any point in (ii), we can add enough subsequent terms to
arrive at a number smaller than any given negative number.
That being the case:

For given L, we add enough of (i)’s elements to just get us
to the right of L on the number line (none of them if ).
We then add enough of (ii)’s elements to just get us to the
left of L. 

Starting with the unused elements of (i) we again add
enough of them to just get us again to the right of L, and
then pick up enough of the unused elements of (ii) to just
get us back to the left of L. 

The above process can be continued indefinitely, with each
element of the original series appearing in the rearrange-
ment. Since both the elements of (i) and (ii) approach 0 as

, the amount by which the partial sums of the rear-
ranged series differ from L must also approach 0.



L 0

Answers: See page A-66

CHECK YOUR UNDERSTANDING 9.25

Find a rearrangement of  which diverges to .

n 

1– n1
n
--- 
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Exercises 1-33. Determine whether the series is absolutely convergent, conditionally convergent,
or divergent 

34. Show that the series  converges for every real number x. 

35. Prove that if  diverges, then  diverges.

36. (a) Prove that if  converges absolutely, then so does .

(b) Does the convergence of  imply the convergence of ?

EXERCISES

1. 2.  3.  

4.  5. 6.  

7. 8. 9.  

10.  11. 12.

13.  14.  15.

16.  17. 18.  

19. 20. 21.

22.  23. 24.  

25.  26. 27.  

28. 29. 30.

31. 32.  33.  

1– n 1

n
------- 1– n n

n3 1+
-------------- 1– n 1

nln
--------

1– n 1.1 n

n4
-------------- 1– nn50

n!
------- 1– n 1

n1 3/
----------

1– n1 n+
n2

------------ 1– n 1
2n
------ 1– n 1

n nln 2
-------------------

1– n 1

n n 1+
------------------- 1– n 1 n sin

n
---------------------- 1– n3 n+

4 n+
------------

1– n n2 1+
2n2 1+
------------------ 
  n


500– n

n!
------------------- 1– nen

n
-----

10n

n32n 1+
------------------ 1– ntan

1–
n

n2
--------------- 1– n 1

n n 1+ 
--------------------

1– n31 n/ 1– n nsin
n2 1+
-------------- 1– n 1

n nln
-----------

1– n nln
n

-------- 1– n nln
n

-------- n2 1+
2n2 1+
------------------ 
  n


n 4 cos
n!

--------------------------- 1– n n
n2 1+
-------------- 1– n 1

n nln
----------------

1– n 2n !
n2nn!
-------------- 1– nn nln+

n3 2/
------------------ 1– n 1 1

n
---– 

  n



1– n 2n !
n2nn!
-------------- 1– n n 1+ n–  1– n n n+ n– 

xn

n!
-----

an an
an an

2
an

2 an
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37. (a) Prove that if  and  converge absolutely, then so does .

(b) Does the absolute convergence of  imply the absolute convergence of both

 and ?

(c) Does the absolute convergence of  imply that either  or  con-

verges?

(d) Does the absolute convergence of  and  imply the absolute convergence of

?

(e) Does the absolute convergence of  imply the absolute convergence of both 

and ?

(f) Does the absolute convergence of  imply that either  or  converges?

38. (a) Prove that for any  the series  converges absolutely. 

(b) Prove that for any  and any y the series  converges absolutely.

39. (a) Prove that if  converges absolutely and the sequence  is bounded, then  
converges absolutely.

(b) Give an example of a convergent series  and a bounded sequence  for which

 does not converge.

an bn an bn+ 
an bn+ 

an bn
an bn+  an bn

an bn
anbn

anbn an
bn

anbn an bn
x 1 xn nsin
x 1 xn nycos

an yn  anyn
an yn 

anyn
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 9

A power series centered at 0, is a series of the form:

A power series centered at a, is a series of the form: 

Here is a particularly important result concerning power series:

PROOF: If  converges, then  (Theorem

9.8, page 333). In particular we can find N such that:

 for .

So, for any x and :

It follows that the series  converges absolutely for any x

such that , as the terms of  are (eventu-

ally) smaller than those of the convergent geometric series 

(note that ).

Now suppose that  diverges. Can  con-

verge at some x such that ? No, for by the previous

argument the convergence of  would imply convergence

of .

§5. POWER SERIES

cnxn

n 0=



 c0 c1x c2x2 c3x3 + + + +=

cn x a– n

n 0=



 c0 c1 x a–  c2 x a– 2 c3 x a– 3 + + + +=

In the event that :

If  converges at ,

then it converges absolutely
for all x such that .

If  diverges at , then

it diverges for all x such that
.

a 0=

cnxn x0 0

x x0

cnxn x0

x x0

THEOREM 9.24 If  converges at , then it

converges absolutely for all x such that
.

If  diverges at , then it

diverges for all x such that .

cn x a– n x0 a

x a– x0 a–

cn x a– n x x0=

x a– x0 a–

cn x0 a– n cn x0 a– n 0

cn x0 a– n 1 cn
1

x0 a– n
------------------- n N

n N

cn x a– n x a–
x0 a–
--------------

n

cn x a– n
x a– x0 a– cn x a– n

x a–
x0 a–
--------------

n


x a–
x0 a–
-------------- 1

cn x0 a– n cn x a– n
x a– x0 a–

cn x a– n
cn x0 a– n
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One additional step is required to take us from the above theorem to the
one below — a proof of which appears in Appendix B, page B-6.

As is illustrated in the following examples, one generally employs the
Ratio Test (or the Root Test) to find the radius of convergence of a power
series.

SOLUTION: (a) Applying the Ratio Test to  we consider:

Since, for any , , the series  converges

(absolutely) for all x. 

Conclusion:  has radius of convergence  and

interval of convergence .

}| ||
a a

R
+

a
R

–

converges

divergesdiverges

THEOREM 9.25
CONVERGENCE 
THEOREM FOR 
POWER SERIES

For a given power series  there 
are only three possibilities:

(i) The series converges absolutely for all x.

(ii) The series converges only at .

(iii)There exists  such that the series 

converges absolutely if  and 

diverges if .

The number R in (iii) is called the radius of convergence of
. Moreover, in (i) and (ii) we write  and ,

respectively. 
The interval of convergence of a power series consists of those  x for
which the series converges:

 In (i):                     In (ii): 
   In (iii):

 with the possible addition of one or both endpoints.

cn x a– n

x a=

R 0
x a– R

x a– R

cn x a– n R = R 0=

–   a 

a R a R+– 

The Ratio Test for :

 If  then:

an
an 1+

an
------------

n 
lim L=

L 1: an converges (abs.)

L 1: an diverges

L 1: Test is inconclusive.=

EXAMPLE 9.19 Find the radius of convergence and the interval
of convergence of the given power series.

(a)        (b)       (c) xn

n!
----- n! x 2– n x 4– n

n
-------------------

xn

n!
-----

an 1+

an
------------

xn 1+

n 1+ !
-------------------

xn

n!
-----

----------------------
x n 1+

n 1+ !
------------------- n!

x n
-------- x

n 1+
------------= = =

x x
n 1+
------------

n 
lim 0 1= xn

n!
-----

xn

n!
----- R =

–  
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(b) Turning to :

Since, for any ,  as , the series
 converges only at  (see margin).

Conclusion:  has radius of convergence 

and interval of convergence .

(c) For  we turn to:

Bringing us to: 

The Ratio Test assures us that  converges (absolutely) when

 and diverges when . It follows that the series

 has radius of convergence .

Since the Ratio Test is inconclusive when , we need to con-

sider the situation at  and at  separately. Let’s do it:

At : 

At : 

It follows that the power series  has interval of convergence

.

In general, 

will certainly converge if
, as all of the terms

are 0, for .

cn x a– n

x a=
n 1

n! x 2– n
an 1+

an
------------

n 1+ ! x 2– n 1+

n! x 2– n
------------------------------------------------ n 1+  x 2–==

x 2 n 1+  x 2–  n 
n! x 2– n x 2=

n! x 2– n R 0=

2 

x 4– n

n
-------------------

an 1+

an
------------

x 4– n 1+

n 1+ 
--------------------------

x 4– n

n
-------------------

-----------------------------
x 4– n 1+

n 1+ 
------------------------ n

x 4– n
----------------- x 4– n

n 1+
-----------------= ==

an 1+

an
------------

n 
lim x 4–

n 
lim

n
n 1+
------------ x 4–= =

We remind you that 
denotes the distance between
x and 4 on the number line. 

   So: 

x 4–

.   ..(                  )
3          4           5

{{ 1          1.

x 4– n

n
-------------------

x 4– 1 x 4– 1
x 4– n

n
------------------- R 1=

x 4– 1=

x 3= x 5=

x 3= x 4– n

n
------------------- 1– n1

n
---= Converges

  (alternating harmonic series)

x 5= x 4– n

n
------------------- 1

n
---= Diverges

  (harmonic series)

x 4– n

n
-------------------

3 5 

Answers: (a) ,    

                (b) , 

                (c) , 

R 1= 1– 1 

R 0= 0 

R 1= 4– 2 –

CHECK YOUR UNDERSTANDING 9.26

Find the radius of convergence and the interval of convergence of:             

       (a)                     (b)              (c) xn

n
----- n!xn x 3+ n

n 2–
-------------------
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Just as the algebraic expression  serves to define the function

 with domain , so then does the power series

 lead us to a function  with its inter-
val of convergence as its domain. 

 Power series functions  behaves nicely when it
comes to differentiation and integration. Specifically (proof omitted):

POWER SERIES FUNCTIONS

x 5–

f x  x 5–= 5 

cn x a– n f x  cn x a– n=

It follows, from (i) and (iii),
that the function

 

has derivatives of all orders
on the interval .

f x  cn x a– n=

a R– a R+ 

THEOREM 9.26 If the power series  has radius of 

convergence , then:

(i)  is differentiable (and 

therefore continuous) on , with:

(ii) 

(iii) The power series in (i) and (ii) also have 
radius of convergence R.

f x  cn x a– n=

cn x a– n
R 0

f x  cn x a– n=

a R– a R+ 

f  x  cn x a– n  =

cn x a– n  ncn x a– n 1–= =

f x  xd cn x a– n  xd=

c n
x a– ndx=

cn
x a– n 1+

n 1+
-------------------------- C+=

EXAMPLE 9.20
(a) Verify that  for .

(b) Find a power series representation of , 

centered at 0, for ; and centered at 1, for 
.

(c) Use Theorem 9.26(i) and (a) to find a power series

representation of , centered at 

for .

(d) Use Theorem 9.26(ii) and (a) to find a power series
representation of , centered at

 for .

1
1 x a– –
------------------------- x a– n

n 0=



= x a– 1

f x  1
x 3+
------------=

x 1
x 1– 4

f x  1
1 x– 2

-------------------= x 0=

x 1

f x  1 x– ln=
x 0= x 1
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    SOLUTION: (a) Employing Theorem 9.9, page 334 (margin):

For : 

Replacing x with  yields the desired result: 

For : 

b) [Centered at 0] The trick is to mold  into the form ,

and then take advantage of (*) in (a):

The above holds for .

[Centered at 1] We now mold  into the form  and then

take advantage of (**) in (a):

The above holds for 

(c) On the one hand, for  we have:

On the other hand, from (a) and Theorem 9.26 we have:

 Consequently, for :

For :

 

In a more general form:

For :

 

r 1

a
1 r–
----------- arn

n 0=



=

1

a
1    –
------------- a

n 0=



= n

x 1 1
1 x–
----------- xn

n 0=



= (*)

x a–

x a– 1 1
1 x a– –
------------------------- x a– n

n 0=



= (**)

1
x 3+
------------ 1

1 –
------------

x

1
x 3+
------------ 1 3

1 x
3
---– 

 –

--------------------
1
3
--- 1

1 x
3
---– 

 –

-------------------- 1
3
--- x

3
---– 

  n
 

n 0=



= = =

1
3
---– 

  n 1+
xn 

n 0=



=

x
3
---– 1 i.e: x 3

A point of interest:
If you “physically multiply”
the infinite polynomial

 

with itself you will also get

:

This is no fluke, for the above
“product of two series” result
does hold in general.

1
1 x–
----------- 1 x x2 x3 + + + +=

1
1 x– 2

------------------- 1 2x 3x2+ += +

1 x x2 x3 + + + +

1 x x2 x3 + + + +

     x x2 x3 + + +

     x x2 x3 + + +

         x2 x3 x4+ +  

1 2x 3x2 + + +

1
x 3+
------------

1
1 –
------------

x 1–

f x  1
x 3+
------------ 1

x 1–  4+
-------------------------

1
4
--- 1

1
x 1–

4
-----------– 

 –

-----------------------------= = =

1
4
--- x 1–

4
-----------– 

  n

n 0=



 1
4
---– 

  n 1+
x 1– n

n 0=



= =

x 1–
4

-----------– 
  1 i.e: x 1– 4

f x  1
1 x–
-----------=

f  x  1
1 x–
----------- 
  1 x–  1–  1

1 x– 2
-------------------= = =

f  x  xn 

n 0=



 nxn 1–

n 1=



 0 1 2x 3x2 + + + += = =

x 1

f  x  1
1 x– 2

------------------- nxn 1–

n 1=



 1 2x 3x2 4x3 + + + += = =
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(d) For : 

Evaluating  at  we find that

. 

Consequently, for : .

SOLUTION: Recalling that , we set our sights on

finding a power series representation for , and will then integrate

it to arrive at a power series representation for :

Note that if you differentiate the above power series representation of
, term by term, you end up with the negative of the power series

representation of  in (a). Not surprising, as .

x 1

1 x– ln xd
1 x–
-----------–=

xn

n 0=




 
 
 
 

xd–=

x
n
dx

n 0=



– xn 1+

n 1+
------------

n 0=



–
 
 
 
 

C+ xn

n
-----

n 1=



–
 
 
 
 

C+= = =

From (a):

Theorem 9.26(ii):

1 x– ln xn

n
-----

n 1=



–
 
 
 
 

C+= x 0=

C 0=

x 1 1 x– ln xn

n
-----

n 1=



–=

1 x– ln
1

1 x–
----------- 1 x– ln  1

1 x–
-----------–=

Answer:

 2
1 x– 3

------------------- n n 1– xn 2–

n 2=



=

CHECK YOUR UNDERSTANDING 9.27

Find the second derivative of  along with a power series

representation centered at  for .

EXAMPLE 9.21 Find a power series representation for

, for .

f x  1
1 x–
-----------=

x 0= x 1

f x  tan
1–
x= x 1

tan
1–
x  1

1 x2+
--------------=

1
1 x2+
--------------

f x  tan
1–
x=
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Replacing x with  in Example 9.20(a), we conclude that, for

 (or ):

So, for :

Evaluating  at  we find

that  (recall that ). 

Consequently, for :

 

x– 2

x– 2 1 x 1

1
1 x2+
-------------- 1

1 x2– –
---------------------- x2– n

n 0=



= =

1– nx2n

n 0=



 1 x2– x4 x6– x8 –+ += =

x 1

tan
1–
x xd

1 x2+
-------------- 1– nx2n

n 0=




 
 
 
 

xd= =

1– n x
2n

dx

n 0=



=

1– n x2n 1+

2n 1+
---------------

n 0=



 C+=

x x3

3
-----– x5

5
----- x7

7
-----– x9

9
----- –+ + 

  C+=

tan
1–
x 1– n x2n 1+

2n 1+
---------------

n 0=




 
 
 
 

C+= x 0=

C 0= tan
1–
0 0=

x 1

tan
1–
x 1– n x2n 1+

2n 1+
---------------

n 0=



 x x3

3
-----– x5

5
----- x7

7
-----– x9

9
----- –+ += =

Answers:

(a) 

(b) 

1
x
--- 1– n x 1– n

n 0=



=

1– n n 1+  x 1– n

n 0=





CHECK YOUR UNDERSTANDING 9.28

(a) Represent  as a power series centered at 1, for

. Suggestion: Consider Example 9.20(a).

(b)Represent  as a power series centered at 1, for

.

f x  1
x
---=

x 1– 1

f x  1
x2
-----=

x 1– 1
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Exercises 1-15. Determine the radius of convergence and interval of convergence of the given
power series. 

Exercises 16-24. Express the given function as a power series centered at 0 and denote both its
radius and interval of convergence. 

Exercises 25-26. Represent the given function in partial fractions form, and then express it as a
sum of power series centered at 0. Denote both its radius and interval of convergence. 

Exercises 27-29. Use Theorem 9.26 to obtain a power series centered at 0 and denote both its
radius and interval of convergence. [See Example 9.20]

EXERCISES

1.  2.   3.   

4.  5.   6.  

7.  8.  9.  

10.  11.  12.  

13.  14.  15.  

16. 17. 18.

19. 20. 21.

22.
23. 24.

25. 26.

27. 28. 29.

xn

n 1+
------------ nxn

n 1+
------------ nxn

2n
--------

1– nxn

n2n
------------------- n n 1+ xn

5n
-------------------------- n2 x 2– n

x 4+ n

2n
------------------- 1– n x2n

2n !
------------- n2n x 1– n

n 1+
----------------------------

x 1+ n

nn
------------------- x 4+ n

n n 1+ 
-------------------- x 4+ n

2nn2
-------------------

1– n 1– xn

n
------- 1– n x2n 1+

2n 1+ !
---------------------- xn

1 n2+
--------------

f x  1
1 2x–
---------------= f x  1

1 x+
------------= f x  1

2 x–
-----------=

f x  2
3 x–
-----------= f x  x

1 x+
------------= f x  x

9 x2+
--------------=

f x  x2

9 x2+
--------------=

f x  5 x– ln= f x  tan
1– x
2
---=

f x  3
x2 x– 2–
----------------------= f x  x

x2 3x 2+ +
---------------------------=

f x  1 2x– ln= f x  1
2x 3+ 2

----------------------= f x  1 x2– ln=
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Exercises 30-32. Represent the given function as a power series centered at 0 and denote both its
radius and interval of convergence. 

33. Show that  is a solution of the differentiable equation .

34. Show that  is a solution of the differentiable equation .

35. Determine the radius of convergence of the power series , where s and t are 

positive integers. 

36. Prove that if the power series  has a finite radius of convergence R, then  

has radius of convergence .

37. Show that if , then the power series  has radius of convergence 

.

38. Use the Root Test to find the interval of convergence of . 

30. 31. 32.f x  tan
1–
2x= f x  tan

1–
x2= f x  tan

1–
t td

0

x

=

f x  xn

n!
-----

n 0=



= f  x  f x – 0=

f x  1– n

2n !
-------------x2n

n 0=



= f  x  f x + 0=

n s+ !
n! n t+ !
-----------------------xn

n 0=





cnxn

n 0=



 cnx2n

n 0=





R

cn
1 n/

n 
lim L 0= cnxn

n 0=




1
L
---

f x  xn

nln n
----------------

n 2=



=
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 9

We know that if a power series  has radius of conver-

gence , then the function  has derivatives of

all orders on  (Theorem 9.26, page 367). As it turns out,
those derivatives can be used to find the coefficients  of

: 

You are invited to establish the above result in the exercises. For now:

 We know, from the previous section, that  has a power

series representation over the interval  [CYU 9.28(b), page 370],

and that  has a power series representation over

 [Example 9.20(c), page 368]. That being the case, we should
be able to arrive at those power series via Theorem 9.27; and so we
shall: 

§6. TAYLOR SERIES

cn x a– n
R 0 f x  cn x a– n=

a R– a R+ 
cn

cn x a– n
THEOREM 9.27

If  for , then:f x  cn x a– n

n 0=



= x a– R

cn
f n  a 

n!
----------------=

Where, for any positive integer n f
n 
 denotes the nth derivative

of  f, and where f 0  is used to represent the function f.

f x  c0= c1 x a–  c2 x a– 2 c3 x a– 3 + + + + c0 f a  f a 
0!

----------= =

f  x  c1 2c2 x a–  3c3 x a– 2+ += 4c4 x a– 3  c1+ + f  a  f  a 
1!

------------= =

f  x  2c2 2 3c3 x a–  3 4c4 x a– 2 4 5c5 x a– 3  c2++++ f  a 
2

------------ f  a 
2!

-------------= = =

f
3 

x  2 3c3 2 3 4c4 x a–  3 4 5c5 x a– 2 4 5 6c6 x a– 3  c3+ + + + f
3 

a 
3!

----------------= =

f
4 

x  2 3 4c4  2 3 4 5c5 x a–  3 4 5 6c6 x a– 2 4 5 6 7c8 x a– 3  c4+ + + + f
4 

a 
4!

----------------= =

EXAMPLE 9.22
(a) Express the function  as a

power series, centered at 1, for . 

(b) Express the function  as a

power series, centered at 0, for .

f x  1
x2
-----=

0 2 

f x  1
1 x– 2

-------------------=

1– 1 

f x  1
x2
-----=

x 1– 1

f x  1
1 x– 2

-------------------=

x 1



374     Chapter 9    Sequences and Series                                           
 

SOLUTION: 

(a) We are to find  such that  for

. Theorem 9.27 tells us that . Grinding away,

with the hope of spotting a pattern, we find that:

Pattern: . Thus:

 

(b) We are to find  such that . Let’s do it:

Pattern: . Thus:

cn f x  1
x2
----- cn x 1– n

n 0=



= =

x 1– 1 cn
f n  1 

n!
----------------=

f x  x 2–= c0
f 1 
0!

--------- 1
0!
----- 1= = =

f  x  2x 3––= c1
f  1 

1!
----------- 2–

1!
------ 2–= = =

f  x  2 3x 4–=
c2

f  1 
2!

------------ 2 3
2!

---------- 3= = =

f
3 

x  2 3– 4x 5–= c3
f

3 
1 

3!
-------------- 2 3 4 –

3!
--------------------- 4–= = =

f
4 

x  2 3 4 5x 6–  =
c4

f
4 

1 
4!

-------------- 2 3 4 5  
4!

------------------------- 5= = =

We know from CYU 9.28
that this power series has
radius of convergence 1, a
fact that could also be
addressed at this point.

cn 1– n n 1+ =

f x  1
x2
----- 1– n n 1+  x 1– n

n 0=



= =

We know from Example 9.20,
that this power series has
radius of convergence 1, a
fact that could also be
addressed at this point.

cn f x  1
1 x– 2

------------------- cnxn

n 0=



= =

f x  1 x–  2–= c0
f 0 
0!

--------- 1= =

f  x  2 1 x–  3–= c1
f  0 

1!
----------- 2

1!
----- 2= = =

f  x  2 3 1 x–  4–=
c2

f  0 
2!

------------ 2 3
2!

---------- 3= = =

f
3 

x  2 3 4 1 x–  5– =
c3

f
3 

0 
3!

-------------- 2 3 4 
3!

------------------ 4= = =

f
4 

x  2 3 4 5 1 x–  6–  =
c4

f
4 

0 
4!

-------------- 5= =

cn n 1+=

f x  1
1 x– 2

------------------- n 1+ xn

n 0=



 nxn 1–

n 1=



= = =
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At this point we know that if f  has derivatives of all orders at a, and IF

it can be represented by a power series centered at a with radius of
convergence R (as we knew to be the case with the functions of Example
9.22) then:

  for .

Turning things around we ask the following question:
If f has derivatives of all orders at a, and if

 has radius of convergence R, need

that power series converge back to  for

? The answer is, NOT ALWAYS — but first:

To illustrate, let’s find the Maclaurin series for , as well as its
Taylor series centered at 2. 

Since , we have:

Using the Ratio Test, we can easily show that both of the above power
series have radius of convergence :

Answer:

 1 x– ln xn

n
-----

n 1=



–=

CHECK YOUR UNDERSTANDING 9.29

Use Theorem 9.27 to find a power series representation for
 over . [See Example 9.20(d), page 367.]f x  1 x– ln= 1 1– 

f x  f n  a 
n!

---------------- x a– n

n 0=



= x a– R

The bad news is that the
Taylor series of f need not
represent f. The good news
is that it will for all “reason-
able” functions.

DEFINITION 9.7
TAYLOR

AND 

MACLAURIN SERIES

If f has derivatives of all orders at a, then the
Taylor series for f about a is the power series

A Taylor series for f about 0 has a special name
— it is called the Maclaurin series for f.

f n  a 
n!

---------------- x a– n

n 0=





f x 
x a– R

f n  a 
n!

---------------- x a– n

n 0=





f x  ex=

f x  f  x  f x  f
3 

x   ex= = = = =

Maclaurin series: Taylor series about 2:

f n  0  e0 1 for all n= = f n  2  e2  for all n= =

f n  0 
n!

----------------xn

n 0=




1
n!
-----xn

n 0=



=
f n  2 

n!
---------------- x 2– n

n 0=




e2

n!
----- x 2– n

n 0=



=

R =

an 1+

an
------------

xn 1+

n 1+ !
-------------------

xn

n!
-----

-------------------
x

n 1+
------------ 0 1= =

for all x

an 1+

an
------------

e2 x 2– n 1+

n 1+ !
-------------------------------

e2 x 2– n

n!
------------------------

-------------------------------
x 2–
n 1+
-------------- 0 1= =

for all x
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Yes, both the Maclaurin and Taylor series of  converge

throughout , but the question remains as to whether or not they
converge to . Generalizing our concern, we turn to the follow-
ing question:

For a given function f with derivatives of all orders, when will

?   

There is an easy answer: 

PROOF: For any x in : 

Unfortunately, the above limit is often difficult to evaluate. Fortu-
nately, help is on the way:

With reference to the Taylor series: 

the partial sum

  

is called the Taylor polynomial of f of degree N. 

THEOREM 9.28 If the Taylor series of f has a radius of con-
vergence R, then

 for 

if and only if

f x  ex=

–  
f x  ex=

f x  f n  a 
n!

---------------- x a– n

n 0=



=

f x  f n  a 
n!

---------------- x a– n

n 0=



= x a– R

f x  f n  a 
n!

---------------- x a– n

n 0=

N

–
 
 
 
 

N 
lim 0=

x a– R

f x  f n  a 
n!

---------------- x a– n

n 0=



= f x  f n  a 
n!

---------------- x a– n

n 0=

N

N 
lim=

f x  f n  a 
n!

---------------- x a– n

n 0=

N

–
 
 
 
 

N 
lim 0=

sequence of partial sums converge to f x  (see Definition 9.5, page 332)

f n  a 
n!

---------------- x a– n

n 0=





pN x  f n  a 
n!

---------------- x a– n

n 0=

N

=
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Note that the difference  is a measure of how

well the Taylor polynomial of degree N of f approximates the function
value at x. Focusing on that error, or remainder expression we have: 

PROOF: Offered in Appendix B, page B-7.

Observe that the above expression for :

 

looks like the term preceding it in the Taylor series for f:

 

with one notable exception:

The a in the derivative is being replaced by some
number c that lies somewhere between a and x.

That being the case, we often have to be content with finding a worst
case scenario for ; specifically:

PROOF: 

Joseph Louis Lagrange
(1736, 1813).

THEOREM 9.29
LAGRANGE’S
REMAINDER
THEOREM

If  f has derivatives of all orders in an open
interval I containing a, then for each positive
integer N and for each  there exists c
between a and x such that

 

EN x  f x  pN x –=

x I

EN x  f N 1+  c 
N 1+ !

---------------------- x a– N 1+=

When choosing the center a
for the Taylor series of f one
should take into account that
the magnitude of 
increases as one moves away
from a. 

x a– N 1+

THEOREM 9.30
TAYLOR’S 

INEQUALITY

If  f has derivatives of all orders in an open

interval I containing a, and if 
for every c between x and a, then for each posi-
tive integer N and for each : 

 

EN x 

f N 1+  c 
N 1+ !

---------------------- x a– N 1+

f N  a 
N!

--------------- x a– N

EN x 

f N 1+  c  M

x I

EN x  M
N 1+ !

-------------------- x a– N 1+

EN x  f N 1+  c 
N 1+ !

---------------------- x a– N 1+ f N 1+  c 
N 1+ !

----------------------- x a– N 1+= =

M
N 1+ !

-------------------- x a– N 1+Theorem 9.29
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Putting this all together we come to:

PROOF: Theorem 9.30 and the given conditions assure us that for
:

 

Since  converges absolutely for all x [Example 9.19(a), page

365],  must also converge for all x. It follows, from the

Divergence Theorem (page 333), that  as  and

that therefore as .

At this point we know that the Taylor series of f converges to  on
 for any . To see that it converges on
 simply note that for any  there exists

 such that .

THEOREM 9.31
TAYLOR’S 

CONVERGENCE
 THEOREM

If has a radius of conver-

gence R, and if, for every , there
exists M (which depends on d) such that

 for all n, and  in 
then:

   for .

f n  a 
n!

---------------- x a– n

n 0=




0 d R 

f n  x  M x x a– d

f x  f n  a 
n!

---------------- x a– n

n 0=



= x a– R

x a– d R 

EN x  M
N 1+ !

-------------------- x a– N 1+

xn

n!
-----
M x a– n

n!
----------------------

M x a– n

n!
---------------------- 0 n 

EN x  0 n 

f x 
a d– a d+  d R
a R– a R+  x a R– a R+ 

d R x a d– a d+ 

THEOREM 9.32

THREE IMPORTANT 
MACLAURIN SERIES

For all x:

(i)

(ii)

(iii)

ex xn

n!
-----

n 0=



 1 x x2

2!
----- x3

3!
----- x4

4!
----- + + + + += =

xsin 1– n x2n 1+

2n 1+ !
----------------------

n 0=



 x x3

3!
-----– x5

5!
----- x7

7!
-----– + += =

xcos 1– n x2n

2n !
-------------

n 0=



 1 x2

2!
-----– x4

4!
----- x6

6!
-----– + += =
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PROOF: (i) We already know, from page 375, that  is the

Maclaurin series for  and that it converges everywhere. 

Since  for every n, and since  is an increasing
function, for any : 

Conclusion:  for all x.

(ii) For  we have:

(Note that  for all n)

Since , the above value-pattern of 0, 1, 0, 
will keep repeating:

 

Bringing us to the Maclaurin series of the sine function:

Which is seen to converge (absolutely) for all x:

Since, for all x and n :

  

xn

n!
-----

n 0=





f x  ex=

f n  x  ex= f x  ex=
d 0

f n  x  ed for x d
the M in Theorem 9.31

ex xn

n!
-----

n 0=



=

f x  xsin=

f x  xsin= f 0  0 sin 0= =

f  x  xcos= f  0  0 cos 1= =

f  x  xsin–= f  0  0 sin– 0= =

f 3  x  xcos–= f 3  0  0 cos– 1–= =

f n  0  1

f 4  x  xsin f x = = 1–

f 4  0  0= f 5  0  1 f 6  0  0 f 7  0  1 f 8  0  0=  –===

f n  0 
n!

----------------x
n

n 0=




0
0!
-----x0 1

1!
-----x1 0

2!
-----x2 1–

3!
------x3 0

4!
-----x4 + + + + +=

x x3

3!
-----– x5

5!
----- x7

7!
-----– + + 1– n x2n 1+

2n 1+ !
----------------------

n 0=



= =

an 1+

an
------------

x2 n 1+  1+

2 n 1+  1+ !
------------------------------------

x2n 1+

2n 1+ !
----------------------

-------------------------------------
2n 1+ !
2n 3+ !

---------------------- x2n 3+

x2n 1+
--------------= =

1
2n 2+  2n 3+ 

----------------------------------------- x2 0 1 as n =
for all x 

f n  x  1

the M in Theorem 9.31

xsin 1– n x2n 1+

2n 1+ !
----------------------

n 0=



=
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As for (iii) (and beyond):

SOLUTION: From , we have:

Consequently (see margin):

Answer: (a) and (c):
 See Page A-59

(b) 1– n

x 
2
---– 

  2n

2n !
-----------------------

n 0=





CHECK YOUR UNDERSTANDING 9.30

(a) As in the proof of Theorem 9.32(ii), show that, for all x:

 

(b) Find the Taylor series representation of , centered at .

(c) Show that the term-by-term differentiation of the sine series yields
the cosine series.

EXAMPLE 9.23 Determine the Maclaurin series of:

  

xcos 1– n x2n

2n !
-------------

n 0=



 1 x2

2!
-----– x4

4!
----- x6

6!
-----– + += =

xsin

2
---

f x  x3 x
2
--- 
 sin=

In the exercises you are
invited to verify that if

, then, for

any positive integer m:

Answer: 

f x  cnxn

n 0=



=

xmf x  cnxn m+

n 0=



=

2n 1+ 1+ xn

n!
--------------------------------

n 0=





CHECK YOUR UNDERSTANDING 9.31

Determine the Mclaurin series of: 

xsin 1– n x2n 1+

2n 1+ !
----------------------

n 0=



=

x
2
---sin 1– n

x
2
--- 
  2n 1+

2n 1+ !
----------------------

n 0=



 1– n x2n 1+

22n 1+ 2n 1+ !
--------------------------------------

n 0=



= =

x3 x
2
---sin 1– n x3 x2n 1+ 

22n 1+ 2n 1+ !
--------------------------------------

n 0=



 1– n x2n 4+

22n 1+ 2n 1+ !
--------------------------------------

n 0=



= =

f x  ex 2e2x+=

THEOREM 9.33

BINOMIAL SERIES

For any real number r, and any :

   where:

x 1

f x  1 x+ r r
k 
  xk

k 0=



= =

r
k 
  r r 1–  r 2–  r k– 1+ 

k!
-------------------------------------------------------------------=

I.e: 1 x+ r r
k 
  xk

k 0=



 1 rx
r r 1– 

2!
------------------x2+ += =

r r 1–  r 2– 
3!

-----------------------------------x3 + +
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PROOF: For  we have:

The Mclaurin series of  is therefore:

In the exercises you are invited to show that the above power series
does indeed converges to f  for .

SOLUTION: The first step is to express  in a form that displays

the “ ” appearing in the Theorem 9.33; namely:

Applying the theorem with  and with x replaced by  we have:

f x  1 x+ r=

f x  1 x+ r= f 0  1=

f  x  r 1 x+ r 1–= f  0  r=

f  x  r r 1–  1 x+ r 2–= f  0  r r 1– =

f  x  r r 1–  r 2–  1 x+ r 3–= f  0  r r 1–  r 2– =

 

f k  x  r r 1–  r k– 1+  1 x+ r k–= f n  0  r r 1–  r k– 1+ =

EXAMPLE 9.24
Find the Mclaurin series of 

and its radius of convergence.

f x  1 x+ r=

r r 1–  r k– 1+ 
k!

-------------------------------------------------- xn

k 0=




r
k 
  xk

n 0=



=

x 1

f x  1

9 x–
---------------=

1

9 x–
---------------

1 x+ r

1

9 x–
--------------- 1

3 1 x
9
---–

-------------------
1
3
--- 1 x

9
---– 

 + 
  1 2/–

= =

1 x+ r

r 1
2
---–= x

9
---–

1

9 x–
---------------

1
3
--- 1 x

9
---– 

 + 
  1 2/– 1

3
---

1
2
---–

n 
 
 
 

x
9
---– 

  n

n 0=



= =

1
3
--- 1 1

2
---– 

  x
9
---– 

 

1
2
---– 

  3
2
---– 

 

2!
------------------------ x

9
---– 

  2

1
2
---– 

  3
2
---– 

  5
2
---– 

 

3!
------------------------------------ x

9
---– 

  3
+ + +=



1
2
---– 

  3
2
---– 

  5
2
---– 

  1
2
---– n– 1+ 

 

n!
-------------------------------------------------------------------------- x

9
---– 

  n ]+ ++

1
3
--- 1 x

18
------

1 3  22
2!92

------------------------x2 3 5  23
3!93

------------------------x3  1 3 5  2n 1–      2n
n!9n

-------------------------------------------------------------------xn ]+ + + + + +=
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Returning to Theorem 3.33 we find that the radius of convergence of

the above series is 9, for  when . 

If  over an interval I, then we know that for

any  we can get as close as we want to  by summing enough
terms of the given power series (Definition 9.5, page 332). Our concern
here is to see how many terms need to be added in order to accommodate
all elements of I simultaneously. Consider the following example. 

SOLUTION: Noting that for :  and that ,
we invoke Taylor’s Inequality (margin) and set our sights on finding
the smallest N for which:

  

Being faced with a somewhat unmanageable inequality, we turned to a

calculator to evaluate  for increasing values of N and

found that while  for ; at :

x
9
---– 1 x 9

Answer: See page A-61

CHECK YOUR UNDERSTANDING 9.32

Let n be a positive integer. Use Theorem 9.33 to show that for any a
and b distinct from zero:

 

APPROXIMATING FUNCTION VALUES

EXAMPLE 9.25 Find the minimum number of terms in the
series 

that can be used to approximate  on the

interval  with an error no greater than

a b+ n n
k 
  an k– bk

k 0=

n

=

f x  f n  a 
n!

---------------- x a– n

n 0=



=

x I f x 

ex xn

n!
-----

n 0=



 1 x x2

2!
----- x3

3!
----- x4

4!
----- + + + + += =

ex

0 x 4 
0.0001

EN x  M
N 1+ !

-------------------- x a– N 1+

e4

x 0– 4

0 x 4  0 ex e4  x 0– 4

EN x  e4

N 1+ !
--------------------4N 1+ 0.0001 

e4

N 1+ !
--------------------4N 1+

e4

N 1+ !
--------------------4N 1+ 0.0001 N 18 N 19=

e4

19 1+ !
----------------------419 1+ 0.00002 0.0001
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Conclusion: Twenty terms are needed. Then:

 for .

Yes, if f has a power series representation, then f has derivatives
of all orders within its radius of convergence, and, moreover:

Though somewhat of an anomaly, there do exist functions f for

which the Taylor series  converges to some func-

tion other than f. Here is an example of such a function:

Let 

Accepting the fact that  for all n
(a fact that is typically established in an Analysis course)

we see that the Maclaurin series of f converges to 0 everywhere:

Conclusion: The Maclaurin series of f converges to  only at .

Answer: 13

CHECK YOUR UNDERSTANDING 9.33

Find the minimum number of terms in the Taylor series of  cen-

tered at 2 that can be used to approximate  on the interval

 with an error no greater than . 

ex 1 x x2

2!
----- x3

3!
-----  x19

19!
--------+ + + + + 

 – 0.0001 0 x 4 

ex

ex

0 x 4  0.0001

Truth be told:
MATHEMATICS THRIVES 

ON ANOMALIES.

EPILOGUE

f x  f n  a 
n!

---------------- x a– n

n 0=



=

f n  a 
n!

---------------- x a– n

n 0=





f x  e
1
x2
----–

for x 0
0 for x 0=






=

f
n 

0  0=

f 0  f  0 x f  0 x2 f 3  0 x3 + + + + 0 0 0 0 + + + + 0= =

f x  x 0=
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Exercises 1-10. Use the definition of a Maclaurin series to find the Maclaurin series of f  and its
radius of convergence. [Do not verify that .]

Exercises 11-20. Use the definition of a Taylor series to find the Taylor series of f  and its radius
of convergence. [Do not verify that .]

Exercises 21-35. Find the Taylor or Maclaurin series of f and the radius of convergence, using the

Maclaurin series of , , , and .

EXERCISES

1.  2. 3.  

4. 5.   6.

7.  8. 9.  

10.

11. ,  12. , 13. ,  

14. , 
15.  ,  16. , 

17. ,   18. , 19.  ,  

20. , 

21. ,  22. , 23. ,  

24. , 25. , 26. ,  

EN x  0

f x  1 x+ ln= f x  e x–= f x  1
1 x+
------------=

f x  1
1 x–
-----------= f x  1

1 3x–
---------------= f x  e 4x–=

f x  x
ex
----= f x  x2ex= f x  100 xcos=

f x  x 4+=

EN x  0

f x  ex= a 1= f x  x3 2x 1–+= a 2= f x  xcos= a 
6
---=

f x  3
x
---= a 3=

f x  xln= a 1= f x  xcos= a =

f x  xsin= a 1
2
---= f x  x3 2/= a 1= f x  1

x
------= a 9=

f x  1
b x+
------------= a b–

ex xsin xcos
1

1 x–
-----------

f x  ex= a 1= f x  3
x
---= a 3= f x  1

x2 1+
--------------= a 0=

f x  xsin= a 1
2
---= f x  tan

1–
x= a 0= f x  xln= a 1=
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Exercises 36-38. Use the binomial series to expand f  as a power series. State the radius of con-
vergence.

Exercises 39-42. Find the minimum number of terms in the Taylor series of f centered at a that
can be used to approximate f on the interval I with an error no greater than .

Exercises 43-46. [GC]. Instruct your graphing calculator to sketch, on the same screen, the graph
of f  over the interval I along with the first N terms of its Maclaurin series for .

47. (a) Find the Maclaurin series for .   

(b) Express  as a power series. 

(c) Use (b) to estimate  with an error of less that 0.001.

(d) Find a polynomial that will approximate  with an error of less that 0.001, for

any . 

27. , 28. , 29. , 

30. , 31. , 32. , 

33. ,  34. ,  35. ,  

36. 37. 38.

39. , ,  40. , , 

41.  , ,  42. , , 

43. , 44. , 

45.  , 46. , 

f x  1
b x+
------------= a b– f x  1 x+ ln= a 0= f x  1

1 x+
------------= a 0=

f x  1
1 3x–
---------------= a 0= f x  x

ex
----= a 0= f x  x2ex= a 0=

f x  xcos= a = f x  x2 xcos= a = f x  x2 xsin= a 0=

f x  1

4 x–
---------------= f x  1

2 x+ 3
-------------------= f x  1 x– 2 3/=

0.0001

f x  xsin= a 0= I 0  = f x  xcos= a 0= I 0  =

f x  1
x2 1+
--------------= a 0= I

1
2
--- 1

2
---–= f x  1

x2 1+
--------------= a 2= I

1
2
--- 1

2
---–=

N 1 2 3 and 4  =

f x  xsin= I 0  = f x  xcos= I 0  =

f x  ex= I 1– 2 = f x  xln= I 1 e =

f x  x2sin=

x2sin xd

x2sin xd
0

1



x2sin xd
0

t


t 0 1 
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48. (a) Find the Maclaurin series for .   

(b) Express  as a power series. 

(c) Use (b) to estimate  with an error of less that 0.001.

(d) Find a polynomial that will approximate  with an error of less that 0.001, for any

. 

49. Prove Theorem 9.27. 

Suggestion: First show that: 

And then consider the decomposition:

 

50. Prove that if  with radius of convergence R, then  

with radius of convergence R.

51. Verify that the power series  converges to 

 for .

f x  e x2–=

e x2– xd
e x2– xd

0

1



e x2– xd
0

t


t 0 1 

d
k

dxk
-------- x a– n

0 if n k
k! if n k=

n n 1–  n k– 1+  x a– n k– if n k





=

f x  cn x a– n

n 0=



 cn x a– n

n 0=

k 1–

 ck x a– k cn x a– n

n k 1+=



+ += =

f x  cnxn

n 0=



= xmf x  cnxn m+

n 0=



=

r r 1–  r k– 1+ 
k!

-------------------------------------------------- xk

k 0=




r
k 
  xk

k 0=



=

f x  1 x+ r= x 1
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CHAPTER SUMMARY

DEFINITION A sequence  converges to the number  if for any

given  there exists a positive integer  (which depends
on ) such that:

In the event that  converges to L we write ,

or , or , and call L the limit of the

sequence. 

ALGEBRA OF SEQUENCES If  and , then:

(a) , for any .

(b) .

(c) .

(d) , providing no  and .

PINCHING THEOREM If the sequences  are such that (eventu-

ally) , and if , then

.

SEQUENCES AND 
CONTINUOUS FUNCTIONS

Let  be a sequence, and let the set  be

contained in the domain of a function f. If  and,

if f is continuous at L, then .

SERIES

DEFINITION
The series  is said to converge to the number L, writ-

ten , if the sequence of its partial sums 

(where ) converges to L.

an n 1=


L

 0 N


n N an L– 

an  an
n 
lim L=

anlim L= an L

lim an A= lim bn B=

lim can cA= c 

lim an bn  A B=

lim anbn  AB=

lim 
an

bn
----- A

B
---= bn 0= B 0

an  cn   and bn  
an cn bn  lim an lim bn L= =

lim cn L=

an n 1=


an n 1=


an
n 
lim L=

f an 
n 
lim f L =

ai

i 1=





ai

i 1=



 L= sn n 1=


sn ai

i 1=

n

=
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DIVERGENCE TEST
If , then  diverges.

GEOMETRIC SERIES The geometric series

 

is convergent if , with sum:

The geometric series diverges if .

ALGEBRA OF SERIES
If  and  converge, then, for any : 

  and 

ALTERNATING SERIES 
TEST

If the alternating series

is such that:
  for all n, and 

then the series converges.

SERIES OF POSITIVE TERMS

CONVERGENCE THEOREM A positive series converges if and only if its sequence 
of partial sums is bounded from above.

INTEGRAL TEST Let the continuous function f be such that:

(i)  for all 

(ii)  if 

Let  for all . Then:

 converges if and only if  converges.

an
n 
lim 0 an

n 1=





ar n 1–

n 1=



 a ar ar2 + + + arn

n 0=



= =

r 1

ar n 1–

n 1=



 a
1 r–
-----------=

r 1

an

n 1=



 bn

n 1=



 c 

an bn 

n 1=



 an

n 1=



 bn

n 1=



= can

n 1=



 c an

n 1=



=

1– n 1–

n 1=



 an a1 a2– a3 a4– + +=
each an 0 

an 1+ an an
n 
lim 0=

sn 

f x  0 x 1

f x  f y  1 x y 

an f n = n 1

an f x  xd
1
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P-SERIES
 

converges if  and diverges if .

COMPARISON TEST If the positive series  converges and if  is such

that , then  converges.

If the positive series diverges, and if , then

 diverges.

LIMIT COMPARISON TEST If  and  are positive series and if

then both series converge or both series diverge.

RATIO TEST

(FOR POSITIVE SERIES)
Let  be a positive series with

ROOT TEST Let  be a positive series with

ABSOLUTE AND CONDITIONAL CONVERGENCE

DEFINITION A series  is absolutely convergent if  con-

verges.

A convergent series  is conditionally convergent if 

 diverges.

1
np
-----

n 1=



 1 1
2p
----- 1

3p
----- 1

4p
----- + + + +=

p 1 p 1

an bn
0 bn an  bn

an an bn

bn
an bn

an

bn
-----

n 
lim L 0=

an
an 1+

an
------------

n 
lim L=

If 

L 1  then the series converges
L 1 or L   then the series diverges=

L 1 then the test is inconclusive=





an
an

n
n 
lim L=

If 

L 1  then the series converges
L 1 or L   then the series diverges=

L 1 then the test is inconclusive=





an an

an
an
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RATIO TEST For a given series  (not necessarily positive), with

.

POWER SERIES AND TAYLOR SERIES

DEFINITION A power series centered at a, is a series of the form

 

CONVERGENCE THEOREM For a given power series  there are only three 
possibilities:

(i) The series converges absolutely for all x.

(ii) The series converges only at .

(iii)There exists  (called the radius of convergence) 

such that the series converges absolutely if  

and diverges if .

DERIVATIVE AND 
INTEGRAL THEOREM

If the power series  has radius of convergence 

, then:

(i)  is differentiable (and therefore 

continuous) on , with:

(ii) 

(iii) The power series in (i) and (ii) also have radius of con-
vergence R.

an
an 1+

an
------------

n 
lim L=

If 

L 1: an   converges absolutely.

L 1 or L : an   diverges.=

L 1  the test is inconclusive=







cn x a– n

n 0=



 c0 c1 x a–  c2 x a– 2 + + +=

cn x a– n

x a=

R 0
x a– R

x a– R

cn x a– n
R 0

f x  cn x a– n=

a R– a R+ 
f  x  cn x a– n  =

cn x a– n  ncn x a– n 1–= =

f x  xd cn x a– n  xd=

c n
x a– ndx=

cn
x a– n 1+

n 1+
-------------------------- C+=
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THEOREM
If  on , then:

DEFINITION If f has derivatives of all orders at a, then the Taylor series
for f about a is the power series:

A Taylor series for f about 0 has a special name — it is
called the Maclaurin series for f.

LAGRANGE’S REMAINDER 
THEOREM

If  f has derivatives of all orders in an open interval I con-
taining a, then for each positive integer N and for each 
there exists c between a and x such that:

 

TAYLOR’S INEQUALITY If  f has derivatives of all orders in an open interval I con-

taining a, and if  for every c between x and

a, then for each positive integer N and for each : 

 

TAYLOR’S CONVERGENCE 
THEOREM If has a radius of convergence R, and if,

for every , there exist M (which depends on d)

such that  for  then:

  for .

f x  cn x a– n

n 0=



= a R– a R+ 

cn
f n  a 

n!
----------------=

f n  a 
n!

---------------- x a– n

n 0=





x I

EN x  f N 1+  c 
N 1+ !

---------------------- x a– N 1+=

f N 1+  c  M
x I

EN x  M
N 1+ !

-------------------- x a– N 1+

f n  a 
n!

---------------- x a– n

n 0=





0 d R 
f n  x  M x a– d

f x  f n  a 
n!

---------------- x a– n

n 0=



= x a– R
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 10

CHAPTER 10
PARAMETRIZATION OF CURVES 
AND POLAR COORDINATES

As you know, no vertical line can intersect the graph of a function
 in more than one point. Some curves that fail the above “ver-

tical-line test” may be described by means of a pair of functions, 
and , where the variable t assumes values in some specified inter-
val I. Basically, the idea is to choose I, , and , in such a way
that as t traverses the interval I, the points  trace out the
curve of interest. To illustrate:

One way of tracing out the points  on the unit circle C in Figure
10.1, is to let  and , where

. How so? Like so:

To say that  is to say that  is one unit from the ori-

gin, which is to say that . Since:

  

each point  lies on C. Indeed, Definition 1.8, page 32,
should convince you of the fact that as t runs from 0 to  the cor-
responding points  start at  (when ) and
move along the unit circle in a counterclockwise direction ending
up, once again, at the point  when .

Figure 10.1
In general:

§1.  PARAMETRIZATION OF CURVES

y f x =
x t 

y t 
x t  y t 

x t  y t  

x y 
x x t  tcos= = y y t  tsin= =

0 t 2 

Curves in three-dimensional
space can also be accommo-
dated with the introduction of
a third parameter: .z t 

Let  and  be a pair of functions defined on an interval I.
To each t in I we associate the point  in the plane.   As
t ranges over I, the point  traces out a path (curve) in
the plane. Such a curve is said to be a parametrized curve, and
the variable t is said to be a parameter. 

If , then  and  are said to be
the initial point and terminal point of the curve, respectively,

x y  C x y 
x2 y2+ 1=

x t  2 y t  2+ cos
2
t sin

2
t+ 1= =

Theorem 1.5(i), page 37

x t  y t  
2

x t  y t   1 0  t 0=

1 0  t 2=

x

y

0                          2
| |.

t

.
1

x2 y2+ 1=
tcos tsin 

x t  y t 
x t  y t  

x t  y t  

I a b = x a  y a   x b  y b  
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An equation such as  is said to be in rectangular form. As
is illustrated in the following example, one may be able to go from a
parametric representation of a curve to its rectangular form by eliminat-
ing the parameter t:

SOLUTION: From : . Substituting  in

 we come to the rectangular equation: 

The above equation represents a parabola,
opening to the right, with y-intercepts at 3 and
at 1, and vertex at:

Note that as t increases from  to  the y-values,  will
also increase — in harmony with the above displayed orientation.

Returning to the curve of the previous example
we see that the slope of the tangent line at 

is positive, and that it is negative at . We
could proceed as we did with the unit circle on
page 103 to find those slopes, but choose,
instead, to turn directly to the fact that the curve

is parametrized by the equations  and :

EXAMPLE 10.1 Find the rectangular equation of the curve
defined by the parametric equations: 

 and  for .

Sketch the curve, utilizing arrows to indicate
the direction, or orientation, of the curve for
increasing values of the parameter t. 

x2 y2+ 1=

x t2 2t–= y t 1+=  t  –

y t 1+= t y 1–= t y 1–=

x t2 2t–=

x y 1– 2= 2 y 1– –

y2 4y– 3+ y 3–  y 1– = =

..
3

.1

3
x

y.
y b

2a
------–

4–
2

------– 2= = =

x 22 4 2 3+– 1–= =

Answer: x2

9
----- y2

4
-----+ 1=

3– 3

2–

2

x

y

CHECK YOUR UNDERSTANDING 10.1

Find the rectangular equation of the curve defined by the parametric
equations: 

Sketch the curve, indicating the orientation.

DERIVATIVES OF PARAMETRIZED CURVES

–  y t 1+=

x 3 t  ycos 2 t     0 t 2 sin= =

..
3

.1

3
x

y.0 3 
3 0 

x t2 2t–= y t 1+=
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Applying the chain rule (see margin), we have:

To find the slope at , we consider the equation  and
observe that  only at . Turning to (*) we can calculate the

slope of the tangent line to the curve at : . 

Setting y to 0 in , we find that the point  is encoun-

tered at . Turning to (*), we then have: .

The lower part of the curve in question (see margin) appears to be
concave up, and its upper part: concave down. To formally address the

concavity issue we turn to the second derivative , which, being the

derivative of the first derivative, brings us to:

 From the above, we see that the curve is concave up for 
(the bottom part of the curve) and concave down for  (the top part
of the curve), with the curve reaching the point  at . 

Let’s underline two of the above observations:.

Leibniz form of the chain rule
(Theorem 3.8, page 94): 

 If y f x  and x g t = =

then 
dy
dt
------ dy

dx
------ dx

dt
------=

dy
dx
------

  
dy
dt
------  

dx
dt
------

------------ 1
2t 2–
--------------= = (*)

0 3  y t 1+=
y 3= t 2=

0 3  dy
dx
------ 1

2 2  2–
-------------------- 1

2
---= =

Note that  is NOT 

It is:

.
x

y

1– 2 

d 2y
dx2
--------

   
d 2y
dt2
--------   

d 2x
dt2
--------

------------------

d 2y
dx2
--------

d
dx
------ dy

dx
------ 
 

d
dt
----- dy

dx
------ 
 

dx
dt
------

-----------------= =

For a given point  on a parametrized curve with 
and :

Providing, of course, that the indicated expressions are defined. 

y t 1+= 3 0 

t 1–= dy
dx
------ 1

2 1–  2–
----------------------- 1

4
---–= =

d
2
y

dx2
--------

d 2y
dx2
--------

d
dt
----- dy

dx
------ 
 

dx
dt
------

-----------------

d
dt
-----

dy
dt
------

dx
dt
------
------

 
 
 
 
 

d
dt
----- t2 2t– 
-------------------------

  
d
dt
----- 1

2t 2–
-------------- 
    

2t 2–
--------------------------------= = =

2t 2–  1– 
2t 2–

------------------------------=

2 2t 2–  2––
2t 2–

------------------------------=

2
2t 2– 3

---------------------–= tSIGN: +
1

_

 t 1 –
t 1

1 2–  t 1=

x y  x x t =
y y t =

dy
dx
------

  
dy
dt
------  

dx
dt
------

------------  and   d
2y

dx2
--------

d
dt
-----

  
dy
dt
------  

dx
dt
------

------------

 
 
 
 
 

dx
dt
------

------------------------==
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SOLUTION: In order for the curve to pass through the point ,
 must be 3. Solving for t we have:

 

As it turns out,  is 0 for both values of t:

Consequently, the curve crosses the point  twice: once when

 and again when . Turning to:

we see that when the curve crosses the point  at  the
tangent line has slope:

 

When it crosses again, at , the tangent line has slope

SOLUTION: (a) From : . 

Substituting in  we have: 

                (1)  

             and (2) 

EXAMPLE 10.2 Determine the slope of the tangent line to the
curve with parametric equations

at the point .

x t  t2,  y t  t3 3t   t  ––= =

3 0 

3 0 
x t 

x t  t2 3 0 t 3= = = =

y t  t3 3t–=

31 2/ 3 3 31 2/– 0  and  3– 1 2/ 3 3 3– 1 2/ – 0= =

In CYU 10.3 you are asked to
sketch the curve of this example.
Here is the end product:

Note that the tangent line at
 when the point is crossed

for the first time from right to left

[at ] has negative slope,
while its slope is positive when
the point is crossed for the second
time from left to right [at

].

Answer: Horizontal tangent
line at . Vertical tan-
gent line at .

See page A-61 for the concav-
ity issue.

..
x

y

3
|

3 0 

t 3–=

t 3=

1 2 
0 0 

CHECK YOUR UNDERSTANDING 10.2

Referring to Example 10.2, find the points on the curve where hori-
zontal or vertical tangent lines occur.
Verify that the curve is concave down for  and concave up

for .

EXAMPLE 10.3 Sketch the curve with parametrization: 

    for .

3 0 
t 3–= t 3=

dy
dx
------

  
dy
dt
------  

dx
dt
------

------------ 3t2 3–
2t

----------------= =

3 0  t 3–=

dy
dx
------ 3 3– 2 3–

2 3– 
------------------------------ 3

3
-------– 3–= = =

t 3=

dy
dx
------ 3 3 2 3–

2 3 
-------------------------- 3

3
------- 3= = =

 t 0 –

t 0

x t2 4–= ,  y t2 t+=  t  –

x t2 4–= t x 4+=

y t2 t+=

y x 4+ 2 x 4++ x 4 x 4++ += =

y x 4+– 2 x 4+– x 4 x 4+–+= =



                                                                                                                                  10.1  Parametrization of Curves     397
Both (1) and (2) represent functions with domain . 

Turning to (1): At ,  assumes the value of
0. Moreover, as  increases the function values clearly increase, lead-
ing us to the anticipated graph in Figure 10.2 (a) below. 

Turning to (2): At ,  also assumes the
value of 0. The values of y are negative immediately to the right of

 [see margin (1)] and then are eventually positive [see margin
(2)], bringing us to the anticipated graph in Figure 10.2(b).

We merged (a) and (b) to arrive at the curve in Figure 10.2 (c), which
also displays the traversed direction as t progresses from  to .
Why that particular direction? Because:

Figure 10.2

The lower portion of the curve in (c) corresponding to  appears

to show a minimum just to the right of  ( ). While we
could certainly investigate the first derivative situation for the func-
tion of x depicted in (b) to verify this, we choose instead (see margin)
to focus on the curve in (c).

We see that  when  (at ), and if you look at

the above SIGN information you may conclude (incorrectly) that the

graph achieves a maximum when    (at ). 

4– 

x 4    vs    x 4++} }

c c
(1)  0 c 1 c c 

(2)  c 1 c c

x 4–= y x 4 x 4++ +=
x

x 4–= y x 4 x 4+–+=

x 4–=

– 

dy
dt
------ 2t 1      SIGN: += .c +_ t

as t increases, from

 to 
1
2
--- y––  decreases

as t increases from
1
2
---–  to , y increases

y t2 t +=
1
2
---–

(a) (b) (c)

y x 4 x 4++ +=

x

y

.

.

4–

6

y x 4 x 4+–+=

x

y

.
4–

.2
x t2= 4– y t2 t+=

x

y

.
4–

.

.
6

2

Such an option need not be
available for other parame-
trized curves. (See Exam-
ple 10.4).

t 0
x 4–= t 0=

dy
dx
------

  
dy
dt
------  

dx
dt
------

------------
2t 1+

2t
--------------     SIGN:           = =

0
t.

1
2
---–

c                  c+                                 +_

x t2= 4:– x 15
4

------–= x 4–=

dy
dx
------ 0= t 1

2
---–= x 15

4
------–=

t 1
2
---–= x 15

4
------–=
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The problem, you see, is that  is negative for , which

tells us that x and t are heading in different directions: as t increases,
x decreases; and as t decreases, x increases. It follows that a positive
slope in one direction turns into a negative slope in the other direction
(see margin). FORTUNATELY, concavity is direction-insensitive: 

And so we turn to the second derivative:

We already know that there is a horizontal tangent line when .

Noting that  falls in a concave up region, we conclude that a

minimum occurs at .

(Consider, also, Theorem 4.8, page 137) 

SOLUTION: Turning to the first derivative, we have:

At this point we know that a horizontal tangent line occurs when

; which is to say, at the point:

up

down

dx
dt
------ 2t= t 0

looking in this direction

curve is falling and then rising

looking in this direction

curve is falling and then rising

either way we see a concave up curve

y

.
15
5
------ 1

4
---–– 

 

x

d 2y
dx2
--------

d
dt
----- dy

dx
------ 
 

dx
dt
------

-----------------

d
dt
-----

dy
dt
------

dx
dt
------
------

 
 
 
 
 

2t
-----------------

  
d
dt
----- 2t 1+

2t
-------------- 
    

2t
--------------------------------= = =

2t 2  2t 1+  2–
4t2

----------------------------------------------

2t
---------------------------------------------- 1

4t3
-------–= =

         

0     
 +                 

concave up       down  
 

tSIGN:
_

t 1
2
---–=

t 1
2
---–=

x 1
2
---–  y 1

2
---–   15

4
------– 1

4
---– =

Answer: See page A-62.

CHECK YOUR UNDERSTANDING 10.3

Follow the procedure of Example 10.3 to sketch the curve with
parametrization  for  of Example 10.2.

EXAMPLE 10.4 Determine the points on the parametrized curve: 

    ( )

where local maxima/minima and inflection
points occur.

x t2 y t3 3t–= =  t  –

x t3 t2– 1+= ,  y t3 t2 1–+=  t  –

dy
dx
------

  
dy
dt
------  

dx
dt
------

------------ 3t2 2t+
3t2 2t–
------------------ 3t 2+

3t 2–
--------------= = =

t 2
3
---–=
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Turning to the second derivative, we have:

Since the second derivative is negative at , a local maximum

occurs at  (Theorem 4.8, page 137). We also see that con-

cavity changes about  and , and even though the second

derivative does not exist at those points, they do correspond to two

inflection points on the curve; namely:  and ,

respectively (see margin).

x y  2
3
---– 

  3 2
3
---– 

  2
– 1 2

3
---– 

  3 2
3
---– 

  2
1–++

7
27
------ 23

27
------– 

 = =

d2y
dx2
--------

d
dt
-----

  
dy
dt
------  

dx
dt
------

------------

 
 
 
 
 

dx
dt
------

------------------------

d
dt
----- 3t 2+

3t 2–
-------------- 
 

3t2 2t–
-------------------------

3 3t 2–  3 3t 2+ –
3t 2– 2

--------------------------------------------------

t 3t 2– 
---------------------------------------------------= = =

12
t 3t 2– 3
-----------------------–=

2
3
---0

_                                _
+. c            c

tSIGN:

t 2
3
---–=

Recall that:

x t  y t  

t3 t2– 1+ t3 t2 1–+ =

t 2
3
---–=

7
27
------ 23

27
------– 

 

t 0= t 2
3
---=

1 1–  23
27
------ 7

27
------– 

 

The TI 84 has parametric graphing capabilities: 

We instructed the unit to position

 the cursor at the maximum point
which we know occurs at   t 2 3.–=

We zoomed in to get
a better view. 

max point
We then zoomed in on the two inflection points: when t 0 and when t 2

3
---= =
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We previously developed a formula for the length of the graph of a
function  from a to b (margin). That formula cannot be
applied directly to curves which are not graphs of functions. We now
develop a formula for the arc length of parametrically defined curves. 

Consider a curve C defined by the parametric equations
 for 

for which  and  exist and are continuous on . Partition the

closed interval  into n subintervals  as is indicated below.

Corresponding to the numbers , are the

points , ,..., 

on the curve C. Here is the length, , of the line segment joining

 to :

The sum of the lengths of those n line segments serves to approximate
the length, L, of the curve, C, in question: 

Answers: Local maximum at

. See page A-63

for inflection points.

12– 4
e2
----- 3+ 

 

CHECK YOUR UNDERSTANDING 10.4

Determine the points on the parametrized curve: 

    ( )

where local maxima/minima and inflection points occur.

x t3 t2–= ,  y t2et 3+=  t  –

(Definition 5.7, page 209)

L 1 dy
dx
------ 
 2

+
a

b

 dx=

ARC LENGTH

y f x =

x x t = ,  y y t = a t b 
dx
dt
------ dy

dt
------ a b 

a b  t
i

.
. .

.. ..
x

y

C

t| | | | | | |
a bt1 t2 ti 1– ti

tn 1–

t
i

Pa P0=

P1
P2

Pi 1–

Pi

Pn 1–

Pb Pn=

x x t = ,  y y t =

length li

a t1  ti 1– ti  tn 1– b      

Pa x a  y a  = P1 x t1  y t1  = Pb x b  y b  =

li

Pi 1– x ti 1–  y ti 1–  = Pi x ti  y ti  =

li x ti  x ti 1– – 2 y ti  y ti 1– – 2+=

L x ti  x ti 1– – 2 y ti  y ti 1– – 2+

i 1=

n



x ti  x ti 1– –
t

i
----------------------------------

2 y ti  y ti 1– –
t

i
----------------------------------

2
+ t

i

i 1=

n

=
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To make the approximation better and better, we simply let the ’s
get smaller and smaller; bringing us to:

It may come as no surprise to find that the above limit can be expressed

in the following integral form  (see margin);

bringing us to: 

SOLUTION: We begin with a circle of radius r and P a point on the cir-
cle. Let the line on which the circle rolls be the x axis, with P at the
origin [Figure 10.3(a)]. 

The problem is that the
above sum is not quite a Rie-
mann sum, a difficulty that is
typically circumvented in an
analysis course.

DEFINITION 10.1 Let  and  have continuous deriva-
tives on a closed interval . The
length L of the parametrized curve

 for  

that is traversed exactly once as t increases
from a to b is given by:

Note: When you apply the above formula:
   THE LENGTH YOU SEE MAY NOT BE THE LENGTH YOU GET.

It will be, as long as no part of the curve in question is traced out more than
once as t goes from a to b. A case in point:

The parametrization  for  traces out
the unit circle centered at the origin (see Figure 10.1). The parametri-
zation  for  will also trace out the unit
circle, but twice! Applying the formula of Definition 10.1 we have:

(the circumference of the circle)
 On the other hand:

(not too surprising since we traced out the circle twice)
While we’re at it, we also point out that the formula of Definition 10.1 yields
the same result for any two parametrizations of the curve, as long as neither
traces out any part of the curve more than once in the process. 

t
i

L
x ti  x ti 1– –

t
i

----------------------------------
2 y ti  y ti 1– –

t
i

----------------------------------
2

+ t
i

i 1=

n

t
i 0

lim=

L
xd

dt
----- 
  2 yd

dt
----- 
  2

+ td
a

b

=

x t  y t 
a t b 

x x t = ,  y y t = a t b 

L
xd

dt
----- 
  2 yd

dt
----- 
  2

+ td
a

b

=

x tcos= ,  y tsin= 0 t 2

x tcos= ,  y tsin= 0 t 4

xd
dt
----- 
  2 xd

dt
----- 
  2

+ td
0

2

 tsin– 2 tcos 2+ td
0

2

 td
0

2

 2= = =

xd
dt
----- 
  2 xd

dt
----- 
  2

+ td
0

4

 tsin– 2 tcos 2+ td
0

4

 td
0

4

 4= = =

.P

arch EXAMPLE 10.5 As a circle rolls along a line in a plane, the 
curve described by a fixed point P on the cir-
cle is called a cycloid (see margin). Find a 
parametrization for the curve and the length of 
one arch.
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Figure 10.3
Figure 10.3(b) depicts the position of the point P after the circle has
rolled a bit, and where  denotes the angle through which it has
rolled. Since the length of the arc on the circle joining P to A, namely

, equals the distance between the point A and 0 on the x-axis, we
have: . Referring to Figure 10.3(b) we then have:

Bringing us to the following parametric equations for the cycloid:

Noting that one arch of the cycloid comes from a complete rotation of
the circle: , we appeal to Definition 10.1 to find the length,
L, of one arch:

.
.

P

r 

A

A
. P

(a)                                       (b)

r

x

y
k

h
r



r
A r=

x A k– r r sin– r  sin– = = =

y r h– r r cos– r 1 cos– = = =and:

x r  sin– ,   y r 1 cos–   for    –= =

Theorem 1.5(vi), page 37:

Since ,  cannot

be negative. Thus:

, or:

Answer: 12.


2
---sin 1 cos–

2
---------------------=

0

2
---   

2
---sin


2
---sin 1 cos–

2
---------------------=

1 cos– 2 
2
---sin=

CHECK YOUR UNDERSTANDING 10.5

Determine the length of the curve:
, , 

0  2 

L
xd

d
------ 
  2 yd

d
------ 
  2

+ d
0

2

 r 1 cos–  2 r sin 2+ d
0

2

= =

r2 1 2  cos
2 sin

2+ +cos–  d
0

2

=

r 2 2 cos– d
0

2

=

2r 1 cos– d
0

2

=

2r

2
--- dsin

0

2

=

2r 2 
2
---cos– 

 

0

2

2r 2 2+  8r= = =

(see margin)

x 3 t 3tcos–cos= y 3 t 3tsin–sin= 0 t  
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Exercises 1-12. Find the rectangular equation of the curve defined by the given parametric equa-
tions. Sketch the curve showing its orientation. 

Exercises 13-18. Find the tangent to the given curve at the indicated point,

Exercises 19-24. Find the points on the given curve where the tangent line is horizontal or verti-
cal.

Exercises 25-28. Find the values of t for which the curve is increasing, and the values of t for
which the curve is concave up.

Exercises 29-32. Sketch the graph of the given parametrized curve. Label its (local) max/min
points and its inflection points.

EXERCISES

1. , , 2. , , 

3. , , 4. , , 

5. , , 6. , , 

7. , , 8. , , 

9. , , 10. , , 

11. , , 12. , , 

13. , , 14. , , 

15. , , 16. , , 

17. , , 18. , , 

19. ,  20. , 

21. ,  22. , 

23. ,  24. , 

25. , 26. , 

27. ,  28. , 

29. , , 30. , , 

31. ,  32. , , 

x t 1+= y t3 2/= t 1 x 2t2= y 2t3= 0 t 3 

x tsec= y ttan= 
2
---– t


2
---  x 2et= y 1 et–= t 0

x 3 t 2–sin= y 2 tcos= 0 t 2  x 1 2 tsin+= y 2 tcos–= 0 t 2 

x t3= y t2=  t  – x et= y tsin=  t  –

x t2= y t4 1+= t 0 x t 1+= y t= t 0

x 2tcos= y tsin= 
2
---– t


2
---  x t2= y 2 tln= t 0

x t4 1+= y t3 t+= t 1–= x 3t= y 2t2 1–= t 1=

x 3 tcos= y 4 tsin= t 
4
---= x t3 1–= y 2et= t 2=

x t2 1–= y 2et= t 2= x sec
2
t 1–= y ttan= t 

4
---–=

x 3t2= y t3 4t–= x 2t3 3t2 12t–+= y 2t3 3t2 1+ +=

x 2 tcos= y 2tsin= x 1
t
---= y 2t=

x 1
t
---= y t2 3+= x 2 3 tsin+= y 3 2 tcos–=

x t2 4+= y t3 t2+= x t3 12t–= y t2 1–=

x t et–= y t e t–+= x t tln+= y t tln–=

x 3t2 1+= y 2t2 4+=  t  – x 3t2 t+= y 2t2 t–=  t  –

x t2

2
----=  y t3

2
---- 6t–= 0 t 4  x et t–= y 2et=  t  –
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Exercises 33-36. Determine the length of the given curve

Exercises 37-39. Express the length of the given curve in integral form.

33. , , 

34. , , 

35. , , 

36. , , 

37. , , 38. , , 

39. , , 40. , , 

x 3t2 1+= y 2t3 4+= 0 t 1 

x et e t–+= y 5 2t–= 0 t 3 

x 3 t 3tcos–cos= y 3 t 3tsin–sin= 0 t  

x 2 t 1–sin= y 2 tcos 1+= 0 t 2 

x t t2–= y 3t3 2/= 0 t 2  x tln= y t 1+= 1 t 2 

x 2 tcos= y tsin= 0 t 2  x 4e2t= y t2= 1– t 1 
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 10

In the familiar Cartesian (or rectangular) coordinate system, points in
the plane are represented by ordered pairs of numbers  (see mar-
gin. In the polar coordinate system, a point P in the plane is again rep-
resented by an ordered pair, , where r is the directed distance
from the origin to P, and  is an angle in standard position, with termi-
nal side the line segment connecting the origin to P [see Figure

10.4(a)]. In particular,  and  are displayed in Fig-

ure10.4(b). The origin’s coordinates are , for any angle .  

Figure 10.4
Just as the angle  can assume both positive and negative values, it is

also convenient to allow r to assume both positive and negative values.
In general if r is positive, then the point  is obtained by reflect-
ing the point  about the origin, or, equivalently by plotting the
point  [to put it roughly: walk r units in the “opposite direc-

tion.”]. In particular, the point  appears in Figure 10.4(c).

The adjacent figure reveals relations
between the rectangular coordinates

 and the polar coordinates 
of a point P in the plane; namely:   

..
.

1– 21

2

1

2–

2–

1–

2 2 

1 2– 

1– 1 

§2.  POLAR COORDINATES

x y 

r  


3
3
4

------ 
  2 

2
---– 

 

0   



.P
r r   .

3 3
4

------

.2 
2
---–

3
3
4

------ 
 

2 
2
---– 

 
3

3
4

------

3– 3
4

------ 
 .

(a)                                           (b)                                (c) 

Note that while in the rect-
angular coordinate system
each point has exactly one
pair of coordinates, that is
not the case in the polar sys-
tem. A case in point: 

Observe that these rela-
tions hold independently
of the quadrant in which
P resides. In the second
quadrant, for example:

x and  are both negative,
y and  are both positive,

 and  are both negative. 

.
1

4
--- 

  1 
4
--- 2+ 

  1  
4
---+– 

  

 4
1

cos

sin
y
x
-- tan

RECTANGULAR TO POLAR AND VICE VERSA

EXAMPLE 10.6 (a) Find the rectangular coordinates of the
point P with polar coordinates:

            (i)           (ii) 

(b) Find all possible polar coordinates of the
point P with rectangular coordinates

.



r–  
r  

r  + 

3–
3
4

------ 
 



.P x y  r  = =

x

y
x

y

rx y  r  

x r              ycos r sin= =

r2 x2 y2+= tan y
x
--=

2
3
4

------ 
  3


3
---– 

 

1 3– 
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SOLUTION: (a) We need the equations .

(i) For :

 Conclusion: The point P has rectangular coordinates .

(ii) For :

Conclusion: The point P has rectangular coordinates .

(b) Let . Turning to  we have:

 .

There are infinitely many  that can accommodate

. We know that we are dealing

with a  reference angle (see margin). Since we

can arrive at the above terminal side by rotating any multiple of  we

have:  for any integer k. It follows that P has infinitely

many polar coordinate representations:

And if that isn’t enough (see comments directly below Figure 10.4): 

x r   ycos r sin= =

P r   2
3
4

------ 
 = =

x 2 3
4

------cos 2 
4
---cos– 

  2
1

2
------- 
 – 2–= = = =

y 2 3
4

------sin 2 
4
---sin 

  2
1

2
------- 
  2= = = =  4

1

1

2

2– 2 

Note also that:

 
and that:

,

         

P 3

3
---– 

  3  
3
---+ 

 = =

3
4
3

------ 
 =

3 4
3

------cos 3
2
---–=

3 4
3

------sin 3 3
2

----------–=

P r   3

3
---– 

 = =

x 3– 
3
---cos 3–  1

2
--- 
  3

2
---–= = =

y 3– 
3
---sin 3–

3
2

------- 
  3 3

2
----------–= = =  3

2

1

3

3
2
---– 3 3

2
----------– 

 

P 1 3– = r2 x2 y2  tan y
x
--=+=

30

602
1

3

r2 1– 2 31 2/ 2+= 4, or r 2 ,    and   tan 3
1–

------- 3–= == =

 3

1– 3 .
2
3

------



tan 3
1–

------- 3–= =

60
2

 2
3

------ 2k+=

P 2 2
3

------ 2k+ 
   for any integer k=

Answers: (a) 

(b)  and

       for any

     integer k.

3– 1 

2 
4
---– 2k+ 

 

2– 3
4

------ 2k+ 
 

CHECK YOUR UNDERSTANDING 10.6

(a) Find the rectangular coordinates of the point with polar coordi-

nates .

(b) Find all possible polar coordinates of the point with rectangular
coordinates .

P 2– 2
3

------ + 
  2k+ 

 =

2– 5
3

------ 2k+ 
   for any integer k=

2 
6
---–– 

 

1 1– 
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In the rectangular coordinate system, the curve in the plane associ-
ated with the equation  is the vertical line with x-intercept 5,

while  is the horizontal line with y-intercept 3 (see margin). 
In the polar setting, the curve in the plane associated with the equation

 is the circle of radius 2 centered at the origin, while  is the

line of slope 1 passing through the origin (see margin). In general:

When graphing a function  in the rectangular coordinate
system, one generally “observes” what happens to y as x assumes dif-
ferent values. The same can be said about graphing a curve ,
except that now one tries to “observe” what happens to the radius r as

 assumes different values. Consider the following example.

SOLUTION: (a) The graph of  appears in Figure 10.5(a)
(note the labeling of the axis in that figure). The key that will enable
us to transform that graph to the rectangular coordinate system is to
realize that , for , is associated with the point  in the

Cartesian plane that lies on the terminal side of  and is r units from
the origin. 
Let’s position an adjustable ruler, with one end at the origin and a pen-
cil at its other end. We start off with  and with a ruler of length

 to arrive at the point a in the margin [and in Figure

10.5(b)]. We then swing the ruler through an angle , diminishing its

length in accordance with the formula . In particular,

when , the ruler is of length  [see

point b in margin and in Figure 10.5(b)]. Rotating further we get to

, at which time the ruler is of length 0 [see point c in margin

and in Figure 10.5(b)]. 

3

5
x

y

x

y

 4
2

r 2= 
4
---=

POLAR CURVES

Equation Graph

Circle of radius  centered at the origin.

Line containing the terminal side of the
angle  in standard position.

EXAMPLE 10.7 Sketch, in the Cartesian plane, the curve with 
polar equation .

x 5=

y 3=

r 2=  
4
---=

r a=

 0=

a

0

y f x =

r g  =



r 2 cos=

2 .
.

a .
a

b1


3
---

.
.
a

b

.c

r 2 cos=

r   r 0 x y 


 0=

r 2 0cos 2= =


r 2 cos=

 
3
---= r 2 

3
---cos 2

1
2
--- 1= = =

 
2
---=
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Figure 10.5

Rotating further to the angle  we are confronted with

a ruler of “negative length,” namely: .

Not to worry:

To find the polar-point  in the Cartesian plane

we mark off 1 unit in the “opposite direction” of 
[see d in Figure 10.5(c)]. 

Continuing the good fight, we come to the polar point , which
brings us back to the point  in the Cartesian plane [see e in Figure
10.5(c)]. 

The polar curve  of the previous example turned out to be

the circle of radius 1 centered at  [Figure 10.5(c)]. As such, it has

a nice Cartesian representation; namely: . Not all
polar curves are that fortunate. Consider the following example. 

.. a

b

c

.
x

y

.. a and e
x

y

c and f

d

 20

_



r. .
.

b

2–

2


3
---

1

1

|

.
(a)

(b) (c)

 3

a

c

. ... .d
e

.
1

1

2
3

------

2
3

------

2 2

Note that while the point

 lies on the curve

in Figure 10.5(c), it fails to
satisfy the equation

:

  (and not 1).

Your turn: Find a polar point

 satisfying 

that corresponds to the point d
in Figure 10.5(c).

d 1
4
3

------ 
 =

r 2 cos=

2 4
3

------cos 1–=

1 –  r 2 cos=

Note that the circle in Figure 10.5(c) will be retraced, over and
over again, as  runs over intervals of length . In particular, if 
runs from 0 to , then the circle will be traced out twice.   

EXAMPLE 10.8 Sketch, in the Cartesian plane, the curve with 
given polar equation.

(a)  (cardioid).

(b)  (four-leaved rose).

(c)  (lemniscate).

 
2
--- 

6
---+ 2

3
------= =

r 2 2
3

------cos 2 1
2
---– 

  1–= = =

1–
2
3

------ 
 

 2
3

------=

2 – 
2 0 

  
2

r 2 cos=

1 0 
x 1– 2 y2+ 1=

r 1 cos–=

r 2sin=

r2 4 2cos=
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SOLUTION: (a) Focusing on the graph of  in Figure

10.6(a) we observe that  throughout the interval . Conse-
quently, as you can see in Figure 10.6(c), the distance r associated
with any  is measured along the terminal side of that angle (as
opposed to its “opposite direction”). To help us construct that heart-
shaped curve (called a cardioid), we first plotted a few points [see
table in Figure 10.6(b)].          

Figure 10.6

(b) The graph of , for , appears in Figure
10.7(a).

As  sweeps from 0 to : r starts at 0, reaches a maximum length

of 1 at , and then decreases back to 0 at  [see (b) in figure].

As  goes from  to : r starts at 0 and again returns to 0, but now

r assumes negative values. As such, the length  is measured in
the opposite direction of the terminal side of  [see (c) in figure].

For : r again goes from 0 to 0. Since r is nonnegative, it

is now measured along the terminal side of  [see (d) in figure].

For  (in the fourth quadrant), r is again negative. As

such, its magnitude is measured in the opposite direction of the ter-
minal side of  (appearing in the second quadrant) [see (e) in fig-
ure].

r 1 cos–=

r 0 0 2 



2

 2

r



r 1 cos–=

2

(a) 

(c)

   r

0   0


2
---   1

2
3

------   
3
2
---

   2

5
3

------   
3
2
---

3
2

------   1

2   0

.
3 2

2
3

------

(b)

The cardioid r 1 cos–=

r 2sin= 0  2 

 
2
---


4
--- 

2
---

 
2
--- 

r


  3
2

------ 


3
2

------  2 
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Figure 10.7 

(c) Turning to , we first note that r is undefined when

 is negative; namely, for  [see Figure 10.8(a)].

As  sweeps from 0 to :  decreases from 4 to 0. This will give

rise to two branches of the curve: one corresponding to r increasing
from  to 0, and the other for r increasing from 0 to 2 (see mar-
gin). These two branches are represented in Figure 10.8(b). You can
see how the “r-positive-ruler” decreases from 2 to 0 as  sweeps

from 0 to ; as does the “r-negative-ruler,” but now along the

opposite direction of the terminal side of  [see Figure 10.8(b)]. 

Figure 10.8
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2
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r

 4

1
1

1

(a)

(b)
(c)

1

(d)

(e)
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y
y

y

x

x

y

x

The four-leaved rose r 2sin=
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3
4
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5
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7
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------

r 2:sin=

 
4
---=

 
4
---=

 3
4

------=

 5
4

------=  7
4

------=

We point out that the graph of     or  is a rose with 2n leaves if n is even and n leaves if n is odd.r nsin= r ncos=

r2 4 2cos=

4 2cos

4
---  3

4
------ 

0 r2 4 
2 r 2 –

 
4
--- r2

2–



4
---



4


4
--- 3

4
------ 

2
---



r2 4 2cos=

r2 x
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4
---=

.
. 2

r

if r is positive
r

if r is negative

x

y
 

4
---=

2

(a)

(b)

(c)
The lemniscate r2 4 2cos=

 3
4

------=
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As  sweeps from  to :  increases from 0 to 4. This will

again give rise to two branches of the curve: one for  (sec-
ond quadrant of Figure 10.8(c)] and the other for  (fourth
quadrant).

To find  for  you would proceed in the usual manner (see

margin). But this is of no help if you are interested in finding the slope
of a tangent line to the graph of  in the x,y-plane. For that pur-

pose, we need , which we determine as follows:

The graph of  in the rectangular coordinate system can be
defined by the following parametric equations (with parameter ): 

As such:

 3
4

------  r2

0 r 2 
2 r 0 –

The TI84 has polar graphing capabilities:

Answer: See page A-64.

CHECK YOUR UNDERSTANDING 10.7

Sketch, in the Cartesian plane, the spiral  for .r =  0

If  then: r 1 sin+=
dr
d
------ cos=

DERIVATIVES IN POLAR COORDINATES

EXAMPLE 10.9 Sketch, in the Cartesian plane, the curve with
polar equation , labeling its
(local) maxima and minima points.

dr
d
------ r f  =

r f  =
dy
dx
------

r f  =


x r cos f        ycos r sin f   sin= = = =
see page 405

dy
dx
------

  
dy
d
------  

dx
d
------

------------- f   sin 
f   cos 

----------------------------- f     f   cos+sin
f     f   sin–cos
----------------------------------------------------= = =

r 1 sin+=



412     Chapter 10    Parametrization of Curves and Polar Coordinates                                                                                           
SOLUTION: The graph:

Glancing at the above cardioid we observe that a (local) maximum

occurs at  (when ) and at  (when

). We also see that a minimum occurs at some x between

points c and d (when  is somewhere between  and ) and at

some x between d and a (when  is somewhere between  and ).

Let’s find them:
For :

The numerator, , is zero if either  or

; which, for , occurs at:

We already spotted the maximum points on the 

cardioid associated with  and , 

namely  and . We now know that 

the two minimum points occur when  

and , with corresponding lengths: 

 and . 


2
---

r
2

23
2

------


a

b

c

a and e

b

.
.

.
.

.1

.

.

. .
d

e

c
d

2

1                     1

 The cardioid r 1 sin+=

x

y

r 1 sin+=

b 0 2 =  
2
---= d 0 0 =

 3
2

------=

  3
2

------

 3
2

------ 2

Note that while a maximum
occurs at the origin, the deriv-
ative is not zero at that point.
Indeed, a vertical tangent line

occurs when , as well

as when with  and

 — a consequence of

the fact that the denominator of

 is 0 for those values of : 

 3
2

------=

 
6
---=

 5
6

------=

dy
dx
------ 

cos
2 sin– sin

2– 0=

1 sin
2–   sin

2–sin– 0=

2sin 1–   1+sin  0=

sin 1
2
---=

 
6
---=  5

6
------=

 3
2

------=

see figure

r f   1 sin+= =

dy
dx
------ f     f   cos+sin

f     f   sin–cos
----------------------------------------------------  sincos 1 sin+  cos+

  1 sin+  sin–coscos
-------------------------------------------------------------------= =

 2  1+sin cos

cos
2 sin– sin

2–
--------------------------------------------------=

 2  1+sin cos cos 0=

sin 1
2
---–= 0  2

 
2
---=  3

2
------=  7

6
------  11

6
---------= =

x

y
2

. .1 2

7
6

------

 
2
---=  3

2
------=

0 2  0 0 

 7
6

------=

 11
6

---------=

r 1 sin+ 1 7
6

------sin+ 1
2
---= = = r 1 11

6
---------sin+ 1

2
---= =
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You can get to the rectangular coordinates associated with those min-
imum points by using the bridges:

. 

In particular,  is associated with : 

and  is associated with :

 

x r     and   ycos r sin= =

3
4

-------– 1
4
---– 

   7
6

------=

x
1
2
--- 7

6
------cos

1
2
--- 3

2
-------– 

  3
4

-------–= = =

y
1
2
--- 7

6
------sin

1
2
--- 1

2
---– 

  1
4
---–= = =

Answer: Local maximum:

 

Local minimum:

x y  3
4
---–

3 3
4

---------- 
 =

x y  3
4
---– 3 3

4
----------– 

 =

CHECK YOUR UNDERSTANDING 10.8

Find the rectangular coordinates of the (local) maxima and minima
points of the cardioid  of Example 10.8(a).

3
4

------- 1
4
---– 

   11
6

---------=

x
1
2
--- 11

6
---------cos

1
2
--- 3

2
------- 
  3

4
-------= = =

y
1
2
--- 11

6
---------sin

1
2
--- 1

2
---– 

  1
4
---–= = =

r 1 cos–=
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Exercises 1-8. Find the rectangular coordinates of the point with given polar coordinates.

Exercises 9-12. Find the polar coordinates , with , of the point with give rectan-
gular coordinates. 

Exercises 13-16. Find all possible polar coordinates of the point with given polar coordinates. 

Exercises 17-22. Find a polar equation for the curve represented by the give rectangular equation.

Exercises 23-28. Find a rectangular equation for the curve represented by the give polar equation.

Exercises 29-40. Sketch, in the Cartesian plane, the curve with the given polar equation.

Exercises 47-52. Find, at the given point, the slope of the tangent line to the curve in the Cartesian
plane with the given polar equation.

EXERCISES

1.      2.      3.      
4.       

5.   6.   7. 8.

9.  10.  11.  12.

13.  14. 15. 16.

17.  18. 19.

20. 21.  22.

23.  24. 25.  

26. 27.  28.

29. 30. 31. 32.  

33. 34. 35. 36.

37. 38.  39.  40.

41. 42. 43. 44.

45. 46.  

47. , 48. ,  49. , 

50. , 51. , 52. , 

2 0  2 0–  3–  
2

3
--- 

 

2– 
3
---– 

  2
2
3

------ 
  2–

3
4

------ 
  5 tan

1– 4
3
--- 

 

r   0  2

4 4–  2 2–  0 1  1 0 

1– 3  3 1–  4 3 4  3 3 3– 

x2 y2+ 9= x 5= x y2–=

y2 8x= x2 y2 4x+ + 0= x2 4y2+ 4=

r 4=  
4
---= r 3 sin=

r  1–cos 0= r csc= r  sectan=

r 4=  3
4

------= r 6 sin= r 1
2
--- cos+=

r 2 2 cos–= r 4 4 cos+= r 4 3sin= r 1
2
--- sin+=

r 2 4 cos+= r 1 2 sin–= r 3
2
--- cos+= r 3cos=

r 2 tan= r 2 sec= r2 9 2sin= r2 9 2cos=

r 2 for 0  3 = r 1 2 for 0  3 +=

r 2 sin=  
6
---= r 

2
---cos=  

3
---= r 2cos=  

4
---=

r 1 sin–=  = r 1

---=  = r 1 2 cos+=  

3
---=
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Exercises 53-58. Determine the local maxima or minima points of the curve in the Cartesian
plane with the given polar equation.

Exercises 59-62. Find the intersection points of the given polar equations in the Cartesian plane.

63. Prove that the polar equation  represents a circle,

64. Give a polar coordinate formula for the distance between two point in the Cartesian plane 
with polar coordinates  and .         

65. Show that the graphs of  and  intersect at right angles.

66. Prove that the area of a triangle with polar vertex coordinates , and  is 

.

53. 54. 55.

56. 57. 58.

59.  60.

61.    62.  

r 4 4 cos+= r 1 sin–= r cos
2=

r sin
2= r 1 2 cos+= r 2 3 sin–=

r   rsin cos–= = r 1    rcos+ 1 cos–= =

r 1    rcos– cos= = r 2 sin   r 2 2sin= =

r a sin b cos+=

r1 1  r2 2 

r cos= r sin=

0 0  r1 1  r2 2 

A
1
2
---r1r2 2 1– sin=
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The procedure for finding the area of a region enclosed by the graph
of a polar equation  that lies between the terminal sides of two

angles  and , is very similar to that discussed in Section 5.2 for
finding the area of a region bounded above by the graph of a positive
function  over an interval . The main difference is that

in the -case one approximates the desired area by summing

areas of rectangles [see Figure 10.9(a)], while in the -case one
sums areas of sectors [see margin and Figure 10.9(b)].

Figure 10.9

And just as the area of the region in Figure 10.9(a) for a continuous

function f is given by , so then: 

§3.  AREA AND LENGTH

A sector is a portion of a circle
bounded by two rays:

Noting that the area A of the
sector is to the angle  as the
area of the circle is to a com-
plete revolution brings us to:

 or: 

r


A



A

--- r2

2
--------= A

1
2
---r2=

(a)

(b)

THEOREM 10.1 If  is continuous and nonnegative

for , then the area A of the region
enclosed by the polar curve lying between
the terminal sides of  and  is given by:

    

r f  =

 

y f x = a b 
y f x =

r f  =

                                   xia b

Area of rectangle f x x=

.
x

y

y f x =A

x

y

r f  =

Area of sector
1
2
--- f   2=





A

A f x  xd
a

 b

 f x  x

a

b

x 0
lim= =

r f  =

   

 

A
1
2
---r

2
d



 


1
2
--- f   2





 0
lim= =
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                    A point of comparison:

SOLUTION: The graph of  was constructed in Example
10.8, page 408(a) (margin). By virtue of symmetry, we double the
area of the top half of the cardioid (the area obtained by letting  run

from 0 to ):
 

Finding the area of a circle of radius r

Rectangular Approach Polar Approach

Clearly the above polar approach
is the better choice, but that is due
to the circular nature of the region
in question. If you want a contest
that dramatically favors the rectan-
gular approach, just try to find the
area of a rectangle using the polar
approach.

r

x2 y2+ r2=

Area: yx r2 x2– x=

A 4 r2 x2– xd
0

r

=

4 r2 r2sin
2– r cos d

0


2
---

=

4r2 1 sin
2–  cos d

0


2
---

=

4r2 cos
2 d

0


2
---

=

4r2 1 2cos+
2

------------------------ d
0


2
---

=

2r2  2sin
2

--------------
0


2
---

+
 
 
 
 

=

2r2 
2
--- 
  r2= =

x r sin=

dx r dcos=

Theorem 1.5(ix), page 37:

by symmetry

0 x r 0  
2
---  

f   r=
a constant function

r

Area: 
1
2
---r2

A
1
2
---r

2
d

0

 2

=

1
2
---r2 d

0

 2

=

1
2
---r2 

0
2 =

1
2
---r2 2 =

r2=

EXAMPLE 10.10 Find the area of the region in the plane
enclosed by the cardioid .r 1 cos–=

x

y

r 1 cos–=

r 1 cos–=
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The procedure for finding the area of a region enclosed by the graphs
of two polar equations is very similar to that for finding the area of a
region enclosed by the graphs of two functions. The main difference is
that instead of summing the enclosed areas of rectangles [see Figure
10.10(a)], we sum the enclosed areas of sectors [see Figure 10.10(b)].

Figure 10.10

Just as the limits of integration in Figure 10.10(a) are the x-coordi-
nates of the points of intersection of the curves  and

, so then are those of Figure (b) the -coordinates of the

points of intersection of the curves  and . 

A 2
1
2
--- 1 cos– 

2
d

0

 

 1 2 cos– cos
2+  d

0

 

= =

 2 sin– 
0


cos
2 d

0

 

+=

 1 2cos+
2

------------------------ d
0

 

+=

 
2
--- 2sin

4
--------------+ 

 

0



+=

 
2
---+ 3

2
------= =

Theorem 1.5(ix), page 37

Answer: (a)  (b) 
2
---  3 3

2
----------–

CHECK YOUR UNDERSTANDING 10.9

(a) Find the area of the four-leaved rose  of Example
10.8(b), page 408.

(b) Find the area within the inner loop of the (limacon)
.

(a) (b)

r 2sin=

r 2  1+cos=

y f x =

y g x =

a                            b

Area f x  g x – x=

A

x

y

A f x  g x –  xd
a

b

=

x

y

r g  =

r f  =

Area
1
2
--- f   2 g   2– =




 A

A
1
2
--- f   2 g   2–  d





=

y f x =

y g x = 
r f  = r g  =
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Please note that while both points of intersection in Figure 10.10(a)
satisfy the equation , not all points of intersection of two

polar equations  and  need satisfy the correspond-

ing equation . This is because every point in the plane has
infinitely many pairs of polar coordinates, and a point of intersection
may have no single pair of polar coordinates satisfying both equations.
Consider the following example:

SOLUTION: Equating the two r-expressions we have:

 
Though the above solution does reveal two
points of intersection of the cardioids, it
fails to reveal the third intersection point:
the origin! Why was that point missed?
Because the origin is not on the two curves
for a common value of . Specifically,

with respect to the curve , the origin is reached when

, while it is reached when  on the curve

 (see margin).

SOLUTION: We want to find the area of the
shaded region in the adjacent figure. Here is
how we found the  values of the indicated
points of intersections of the curves: 

Taking advantage of symmetry, we calculate the area lying above the
x-axis and multiply by two:

EXAMPLE 10.11 Find the points of intersection of the two car-
dioids  and  

f x  g x =

r f  = r g  =

f   g  =

r 1 cos+= r 1 cos–=

2



2



r 1 cos+=




r

r

r 1 cos–=

Moral: When determining the intersection points of polar coor-
dinate curves, sketch the curves to spot their anticipated number.   

EXAMPLE 10.12 Find the area of the region that lies inside the
circle  and outside the cardioid

.

1 cos+ 1  cos  cos 0=cos–=cos–=

 
2
--- k+=

(for any integer k)

y r 1 cos+=

r 1 cos–=


r 1 cos+=

  2k+=  2k=

r 1 cos–=

r 3 cos=
r 1 cos+=

x

y


3
---


3
---–

r 3 cos=

2 3

r 1 cos+=



3 cos 1 cos+=

2 cos 1=

cos
1
2
---  

3
---= =
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A polar curve  is but a parametrized curve with parameter
, and parametric equations:

As such (Definition 10.1, page 401): 

Applying the product rule in (*) we have:

,  

Leading us to:

A 2
1
2
--- 3 cos 2 1 cos+ 2–  d

0


3
---

=

8cos
2 2 cos– 1–  d

0


3
---

=

8
1 2cos+

2
------------------------ 
  2  1–cos– d

0


3
---

=

4 2 2sin 2  –sin–+ 
0


3
---

4
3

------ 
3
---– = = =

Answer: 2
3

------ 7 3
8

----------–

CHECK YOUR UNDERSTANDING 10.10

Find the area common to the region bounded by the cardioid
 and the circle .

ARC LENGTH

r 1 cos–= r 1
2
---=

r f  =
   

x r cos    y r sin= = (*)

L
xd

d
------ 
  2 yd

d
------ 
  2

+ d




=

dx
d
------ dr

d
------cos r sin–= dy

d
------ sin

dr
d
------ r cos+=

xd
d
------ 
  2 yd

d
------ 
  2

+ dr
d
------cos r sin–

2
sin

dr
d
------ r cos+

2
+=

cos
2 dr

d
------ 
  2

2r  dr
d
------ r2sin

2+cossin–=

sin
2 dr

d
------ 
  2

2r  dr
d
------ r2cos

2+cossin+ +

cos
2 sin

2+  dr
d
------ 
  2

r2 sin
2 cos

2+ +=

dr
d
------ 
  2

r2+=Theorem 1.5(i), page 37:
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Bringing us to:

SOLUTION: 

See Example 10.8, page 408.

x

y

r 1 cos–=

THEOREM 10.2 If the curve  is traced out exactly

once as , and if f has a continuous

first derivative on , then the length L
of the curve is given by: 

EXAMPLE 10.13 Find the total arc length of the cardioid
.

r f  =

   
  

L r2 dr
d
------ 
  2

+ d




=

r 1 cos–=

L 1 cos– 2 sin 2+ d
0

2

=

1 2 cos– cos
2 sin

2+ + d
0

2

=

2 2 cos– d
0

2

 2 1 cos– d
0

2

= =

2 2 sin
2
2
--- 

  d
0

2

=

2 
2
---sin d

0

2

=

2 2 
2
---

0

2
cos–

 
 
 

8= =

1 2xcos– 2sin
2
x=

1 xcos– 2sin
2x
2
---:=

Theorem 1.5(iiiv)
page 37

Note that since  

2
--- 0sin

for 0  2, sin

2
--- 

  2
  

2
---:sin=

Answer:

4 sin22 2 2cos 2+ d
0


2
---



CHECK YOUR UNDERSTANDING 10.11

Express the total length of the four-leaved rose  [Example
10.8(b), page 404] in integral form, and then use a graphing calcula-
tor to approximate its value to two decimal places.

r 2sin=
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Exercises 1-6. Sketch the curve with given polar equation and find the area it encloses.

Exercises 7-12. Sketch the curve with given polar equation and find the specified area.

Exercises 13-20. Sketch the two curves with given polar equations and find the area of the region
common to those curves.

21. Find the area of the region that is inside the cardioid  and outside the circle
.

22. Find the area of the region that is inside the circle  and outside the cardioid
.

23. Find the area within the inner loop of the limacon .

24. Find the area of the region outside the inner loop and inside the limacon . 

25. Find the area of the region that is inside the limacon  and outside the limacon
. 

26. Find the area of the region that is inside the circle  and to the right of the line
. 

27. Find the area of the region that is outside the circle  and inside the cardioid
.

EXERCISES

1. 2. 3.

4. 5. 6.

7. , . 8. , .

9. , . 10. , .

11. , . 12. , .

13. , . 14. , .

15. , . 16. , .

17. , . 18. , .

19. , . 20. , , .

r 1 cos+= r 3 cos= r 2 2cos=

r 2 sec–= r2 4sin
2= r2 sin

2
2=

r 2= 0  
4
---  r 3 sin= 0  

4
--- 

r 2tan= 0  
8
---  r sin= 0   

r 1 cos–=

2
---    r e 2/=   2 

r 2= r 2 1 cos– = r 3 cos= r 1 cos+=

r cos= r sin= r 2 1 cos– = r 2 1 cos+ =

r 4 sin–= r 4 1 cos+ = r 2sin= r 2cos=

r2 2sin= r2 2cos= r a sin= r b cos= a 0 b 0

r 4 1 cos+ =
r 6=

r sin=
r 1 cos+=

r 1 2 sin–=

r 2 4 cos+=

r 4 cos+=
r 2 cos+=

r 8 cos=
r 2 sec=

r 2=
r 4 1 cos+ =
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28. Find the area of the region that is outside the circle  and inside the cardioid
. 

29. Find the area of the region that is inside the lemniscate  and outside the circle

. 

Exercises 30-35. Find the length of the given polar curve.

Exercises 36-37. Use a graphing calculator to approximate the length of the given polar curve to
two decimal places.

30. The circle , . 
31. The cardioid . 

32. The spiral , . 33. The curve , . 

34. The spiral , . 35. The parabolic arc , . 

36. The three-leaved rose . 37. The four-leaved rose 

r 3=
r 2 1 cos+ =

r2 4 2cos=

r 2=

r 3 sin= 0  
3
---  r 1 cos+=

r 2= 0  5  r cos
3 

3
--- 
 = 0  

4
--- 

r e3= 0  2  r 6
1 cos+
---------------------= 0  

2
--- 

r 2 3cos= r 4 2cos=
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CHAPTER SUMMARY

PARAMETRIZED CURVE Let  and  be a pair of functions defined on some
interval I. To each t in I we associate the point  in
the plane.   As t ranges over I, the point  traces out
a path (curve) in the plane. Such a curve is said to be a
parametrized curve, and the variable t is said to be a
parameter. 

FIRST DERIVATIVE

SECOND DERIVATIVE

For the curve :

Providing  exist, and 

Providing  are differentiable, and 

ARC LENGTH Let  and  have continuous derivatives on a closed
interval . The length L of the parametrized curve

 for 
is given by:

POLAR VERSUS RECTAN-
GULAR COORDINATES

x t  y t 
x t  y t  

x t  y t  

C x t  y t   for  a t b  =

dy
dx
------

  
dy
dt
------  

dx
dt
------

------------=

dy
dt
------ and 

dx
dt
------ dx

dt
------ 0

d2y
dx2
--------

d
dt
----- dy

dx
------ 
 

dx
dt
------

-----------------

d
dt
-----

dy
dt
------

dx
dt
------
------

 
 
 
 
 

dx
dt
------

-----------------= =

dy
dt
------ and 

dx
dt
------ dx

dt
------ 0

x t  y t 
a t b 

x x t = ,  y y t = a t b 

L
xd

dt
----- 
  2 yd

dt
----- 
  2

+ td
a

b

=



.P x y  r  = =

x

y
x

y

x r              ycos r sin= =

r2 x2 y2+= tan y
x
--=
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AREA If  is continuous and nonnegative for ,
then the area A of the region enclosed by the polar curve
lying between the terminal sides of  and  is given by:

    

The area of a region enclosed by two continuous polar
curves  and  for  is given by:

ARC LENGTH If the curve  is traced out exactly once as

, and if f has a continuous first derivative on

, then the length L of the curve is given by: 

r f  =    

 

A
1
2
---r

2
d



 

=

r f  = r g  =    

A
1
2
--- f   2 g   2–  d





=

x

y

r f  =

r g  =




 A







A

A
1
2
---r

2
d



 

= A
1
2
--- f   2 g   2–  d





=

r f  =

   
  

L r2 dr
d
------ 
  2

+ d




=



426     Chapter 10  Parametrization of Curves and Polar Coordinates



CYU SOLUTIONS   A-1
 CHECK YOUR UNDERSTANDING SOLUTIONS

CHAPTER 1: PRELIMINARIES

CYU 1.1 (a)      (b) 

(c) 

(d) 

CYU 1.2

CYU 1.3 (a) For  to be defined, , so that the domain is

. The values of the square root are the nonnegative numbers, which

means that the range is .

(b) The function  is defined except at  and 2 where the

denominator is 0. Thus .

CYU 1.4 Since , . 

For  or 5,  and .

For , .

The function f is not defined at .

CYU 1.5 (a)         (b) 

(c)           (d) 

f 2–  3 2–  5– 11–= = f t 1+  3 t 1+  5– 3t 2–= =

f 2x– 1+  3 2x– 1+  5– 6x– 2–= =

f 2
x
---– 

  3 2
x
---– 

  5– 6
x
---– 5– 6– 5x–

x
-------------------= = =

f x h+  f x –
h

----------------------------------

x h+
x h+ 1+
--------------------- x

x 1+
------------–

h
---------------------------------------

x h+  x 1+  x x h 1+ + –
x h 1+ +  x 1+ 

---------------------------------------------------------------------

h
---------------------------------------------------------------------= =

x2 x hx h x2 xh x+ + –+ + +
x h 1+ +  x 1+ h

-------------------------------------------------------------------------=

h
x h 1+ +  x 1+ h

---------------------------------------------- 1
x h 1+ +  x 1+ 

-------------------------------------------= =

f x  x 3+= x 3 0 x 3–+

Df 3– =

Rf Df 0 = =

g x  1
x 1+  x 2– 

---------------------------------= 1–

Dg – 1–  1– 2  2   =

1 0– f x  4x– 1 f 1– + 4 1– – 1+ 5= = =

x 1= f x  x2 f 1  12 1= = = f 5  25=

x 7= f x  2x f 7 – 2 7 – 14–= = =

10

3             7

4 units 3 7– 4 4= =
             7

10 units 3– 7– 10– 10= =
3–

10 units 7– 3– 10– 10= =
37–

4 units
7– 3– – 7– 3+ 4= =

3–7–



A-2   CYU SOLUTIONS   
CYU 1.6 For  and :

 Domain: all numbers except 3: .

   Domain: .

   Domain: .

   Domain: .

   Domain: .

CYU 1.7 (a) For  and :

(i) 

(ii) 

(b) From , we see one possibility: 

                                                    

CYU 1.8  is one-to-one:

f x  x 3–= g x  1
x 3–
-----------=

f g+  x  x 3– 1
x 3–
-----------+ x2 6x– 10+

x 3–
-----------------------------= = – 3  3  

f g–  x  x 3– 1
x 3–
-----------– x2 6x– 8+

x 3–
--------------------------= = – 3  3  

fg  x  x 3–  1
x 3–
----------- 
  1= = – 3  3  

f
g
--- 
  x    x 3  –

1
x 3–
-----------

------------------ x 3– 2= = – 3  3  

5g  x  5
1

x 3–
----------- 5

x 3–
-----------= = – 3  3  

f x  x2 2x 2–+= g x  4x 3+=

f g  2–  f g 2–   f 4 2–  3+  f 5– = = =

52–  2 5–  2–+ 25 12– 13= = =

fg  x  f g x   f 4x 3+  4x 3+ 2 2 4x 3+  2–+= = =

16x2 24x 9 8x 6 2–+ + + + 16x2 32x 13++= =

h x  x2

x2 3+
-------------- gf  x  g f x  = = =

f x  x2   and   g x  x
x 3+
------------= =

f x  x
x 1+
------------=

f a  f b  a
a 1+
------------ b

b 1+
------------= a b 1+  b a 1+  ab a+ ba b a+ b= = ==



CYU SOLUTIONS   A-3
CYU 1.9 For :

CYU 1.10  is one-to-one:

 Finding : 

 and . Consequently, 

and .

The graph of  can be obtained by reflecting the graph of f about

the line : 

CYU 1.11

f x  x
x 1+
------------=

f f 1– x   x=

f t  x=

t
t 1+
----------- x=

t t 1+ x=

t tx x+=
t tx– x=

t 1 x–  x=

t x
1 x–
-----------=

f 1– x  x
1 x–
-----------=

Start with:

For notational
convenience,
substitute t for 

   
f 1– x :

Since f x  x
x 1+
--------------:=

Solve for t:

Substituting  f
1– x 

back for t:

Verifying that  ff 1–  x  x:=

ff 1– x f f 1– x   f
x

1 x–
----------- 
 = =

x
1 x–
-----------

x
1 x–
----------- 1+
--------------------- x

x 1 x– +
------------------------- x= = =

Verifying that  f 1–
f  x  x:=

f 1– f x f 1– f x   f 1– x
x 1+
------------ 
 = =

x
x 1+
------------

1 x
x 1+
------------–

--------------------- x
x 1+  x–

------------------------- x= = =

f x  x 2–=

f a  f b  a 2– b 2–= a b a b= = =

f 1–

f f 1– x   x=

f t  x t 2– x t x 2 t+ x 2+ 2 f 1– x  x 2+ 2= = = = =Let t f 1– x :=

. ..

.
2– 4

4

y

x

f x  x 2–=

f 1– x  x 2+ 2=

y x=

Df 0 = Rf 2– = Df 1– 2– =

Rf 1– 0 =

f 1–

y x=

3x
5
------ 2 5x+

3
---------------– 1– x– 1–

15
----------------=

15 3x
5
------ 2 5x+

3
---------------– 1– 

  15
x– 1–
15

---------------- 
 =

9x 5 2 5x+ – 15– x– 1–=

9x 10– 25x– 15– x– 1–=

15x– 24=

x 24
15
------– 8

5
---–= =

3x
5
------ 2 5x+

3
---------------– 1–

x– 1–
15

----------------

15 3x
5
------ 2 5x+

3
---------------– 1– 

  15
x– 1–
15

---------------- 
 

9x 5 2 5x+ – 15– x– 1–
9x 10– 25x– 15– x– 1–

15x– 24

x 24
15
------– 8

5
---–= 

2–



A-4   CYU SOLUTIONS   
CYU 1.12 (a)    (b) 

 (c) 

CYU 1.13 Since 1 is a zero of the polynomial ,  is a factor.

          Dividing:  reveals the fact that:
 

       Returning to our equation we have: 

CYU 1.14 (a)           (b) 

CYU 1.15

Since the discriminant of the quadratic polynomial  is negative:
, it has no zeros. As such, its signs cannot change, and

since it is positive at , it must be positive everywhere.

  The polynomial  does have zeros:

  

Bringing us to:

2x2 7x 4–+ 0=

2x 1–  x 4+  0=

x
1
2
--- x 4–= =

3x2 4x– 3– 0=

x 4 42 4 3  3– –
2 3

----------------------------------------------- 4 2 13
2 3

---------------------- 2 13
3

-------------------= = =

quadratic formula

x3 x2 16x–+ 16=

x3 x2 16x– 16–+ 0=

x2 x 1+  16 x 1+ – 0 x2 16–  x 1+  0 x 4+  x 4–  x 1+ = 0= =

Solution: x 4 x 1–= =

p x  x3 2x2 7x– 4+ += x 1– 

x 1  x3 2x2 7x– 4+ +–
x2 3x 4–+

x3 2x2 7x– 4+ + x 1–  x2 3x 4–+  x 1–  x 1–  x 4+ = =

x3 2x2 7x– 4+ + 0=

x 1– 2 x 4+  0 x 1 x 4–= = =

SIGN x 3–  x 2+  x– 5+ :. . .
2–  3         5

c                 c       c_                      _+                           +

x 3–  x 2+  x– 5+  0:
2– 3  5  

SIGN x 1+ 2 x 2+ 3 x 4– 2:. .  
x 1+ 2 x 2+ 3 x 4– 2 0:

2– 

.
1–2– 4

c     n                 n_ +          +             +

x
2

x 2–+  x
2

x– 5+  x–
2

x 5+ +  x 2+  x 1–  x
2

x– 5+  x–
2

x 5+ + =

x
2

x– 5+
b2 4ac– 1– 2 4 1  5 –= 

x 0=

x–
2

x 5+ +

x b– b2 4ac–
2a

-------------------------------------- 1– 21
2–

------------------------ 1 21
2

-------------------= = =

SIGN x 2+  x 1–  x
2

x– 5+  x–
2

x 5+ + :. .     .  .
2– 1 21–

2
------------------- 1 1 21+

2
-------------------

c      c                        c             c_                           _                                   _+                                   +

x
2

x 2–+  x
2

x– 5+  x–
2

x 5+ +  0:  – 2  1 21–
2

------------------- 1 1 21+
2

-------------------  
 –



CYU SOLUTIONS   A-5
CYU 1.16 (a) 

      (b) 

CYU 1.17 (a)     (b) 

x 2–

x
2

4–
-------------- 5

4
---– 1

x 3–
-----------= x 2–

x 2+  x 2– 
--------------------------------- 5

4
---–

1
x 3–
----------- 1

x 2+
------------ 5

4
---– 1

x 3–
-----------==

x 2     or    x 1–= =

4 x 3–  5 x 2+  x 3– – 4 x 2+ =

4x 12– 5 x2 x– 6– – 4x 8+=

5x2– 5x 10+ + 0=

x2 x– 2– 0=

x 2–  x 1+  0=

clear denominators:

not a solution:

3
x

x2 1+
-------------- 
  x2 1+

x
-------------- 
 + 4=

3y 1
y
---+ 4 3y2 1+ 4y 3y2 4y– 1+ 0 3y 1–  y 1–  0= = = =Let y

x
x2 1+
--------------:=

y 1
3
---=

x
x2 1+
-------------- 1

3
---=

x
2

1+ 3x=

x2 3x– 1+ 0=

x 3 9 4–
2

------------------------- 3 5
2

----------------= =

y 1=

x
x2 1+
-------------- 1=

x2 1+ x=

x2 x– 1+ 0=

no solution: negative discriminant

both are solutions

.
2–           

          

x 2+
x 3–  x 1+ 

--------------------------------- 0: 2– 1  3  –

x 2+

x
2

2x– 3–
-------------------------- 0

x 2+
x 3–  x 1+ 

--------------------------------- 0

SIGN 
x 2+

x 3–  x 1+ 
---------------------------------:

1– 3

c      c                  c_                     _+                              +

x
1

3x 2+
--------------- x

1
3x 2+
--------------- 0–

3x2 2x 1–+
3x 2+

----------------------------- 0

3x 1–  x 1+ 
3x 2+

------------------------------------- 0

SIGN 
3x 1–  x 1+ 

3x 2+
-------------------------------------:

1      –
2
3
---                    

1
3
---–

. .c       c               c_                     _+                        +

x
1

3x 2+
---------------:  – 1–  2

3
---– 1

3
--- 



A-6   CYU SOLUTIONS   
CYU 1.18

CYU 1.19  (a)           (b) 

CYU 1.20

CYU 1.21 Since ,  is coterminal with  which lies in the fourth

quadrant. Therefore:

          

CYU 1.22 (a) Since ,  is coterminal with . Since the refer-

ence angle of  is , and since  lies in the third quadrant:

.

(b) Since ,  is coterminal with . Since the reference angle of

 is  and since  lies in the second quadrant: 

(c) Since ,  is coterminal with . Since the reference angle

of  is  and since  lies in the fourth quadrant:

                .



30

45

60

sin cos tan csc sec cot

3

1

2
-------

2

1

1
2

45

45

1

2

3

60

30
1
2
---

1
2
---

3
2

-------
1

3
------- 2

3
------- 3

3
2

-------
1

3
-------2

2

3
-------

1

2
------- 1 12 2

 120 120 
180
----------- 2

3
------= = =  

6
---


6
--- 180


----------- 30= = =


degrees   radians

0
90

270

0

    cos    tan     csc        cotsecsin

0         1         0        undef              undef



1

2
--- 1          0      undef       1      undef     0

180 0 1– 0      undef 1– undef
3
2

------ 1– 0      undef 1– undef 0

29
7

---------– 4+ 
7
---–=  29

7
---------–= 

7
---–

 0  0  0 csctancossin
1
sin

----------- 0 sec 1
cos

------------ 0  and cot 1
tan

----------- 0= = =

840– 720+ 120–= 840– 120–

120– 60 120–

840– sin 60sin– 3
2

-------–= =

11
4

--------- 2– 3
4

------=
11

4
--------- 3

4
------

3
4

------ 
4
--- 3

4
------ 11

4
---------cot 3

4
------cot 

4
---cot– 1–= = =

25
6

---------– 4+ 
6
---–= 25

6
---------– 

6
---–


6
---–


6
--- 25

6
---------–

25
6

---------– 
 sec 

6
---– 

 sec

6
--- 
 sec 1


6
--- 
 cos

----------------- 2

3
-------= = = =



CYU SOLUTIONS   A-7
CHAPTER 2: LIMITS AND CONTINUITY

CYU 2.1 (a) As x approaches ,  approaches  ( ). Thus:

(b) As x approaches ,  approaches  and  approaches 4. Thus:

(c) As x approaches ,    approaches . Thus:

CYU 2.2 (a)

(b)

CYU 2.3 (a)

(b)

1– 4x2 x+ 3 4x2 tends to 4,  and  x to -1
4x2 x+ 

x 1–
lim 3=

2 x 3+ 5 x 2+
x 3+
x 2+
------------

x 2
lim 5

4
---=

3 x 3x2 1+  3 3 32 1+  84=
x 3x2 1+  

x 3
lim 84=

x2 3x 4–+
x2 1–

--------------------------
x 1
lim x 4+  x 1– 

x 1+  x 1– 
---------------------------------

x 1
lim x 4+ 

x 1+ 
----------------

x 1
lim 5

2
---= = =

   x3 2x2– 2x 4–+
x2 x– 2–

-----------------------------------------
x 2
lim x2 x 2–  2 x 2– +

x 2–  x 1+ 
------------------------------------------------

x 2
lim=

x 2–  x2 2+ 
x 2–  x 1+ 

------------------------------------
x 2
lim x2 2+ 

x 1+ 
-------------------

x 2
lim 6

3
--- 2= = = =

   1
x
--- 1

x2 x+
--------------– 

 
x 0
lim 1

x
--- 1

x x 1+ 
-------------------– 

 
x 0
lim=

x 1+  1–
x x 1+ 

------------------------- 
 

x 0
lim  

1
x 1+
------------ 
 

x 0
lim 1

0 1+
------------ 1= = = =

x 2+ 2–
x2 4–

-------------------------
x 2
lim x 2+ 2–

x2 4–
-------------------------

x 2
lim

x 2+ 2+

x 2+ 2+
-------------------------=

x 2+ 2 22–

x2 4–  x 2+ 2+ 
-------------------------------------------------

x 2
lim=

x 2 4–+

x 2+  x 2–  x 2+ 2+ 
----------------------------------------------------------------

x 2
lim=

x 2– 
x 2+  x 2–  x 2+ 2+ 

----------------------------------------------------------------
x 2
lim=

1

x 2+  x 2+ 2+ 
-----------------------------------------------

x 2
lim 1

4 4 2+ 
------------------------ 1

16
------= = =



A-8   CYU SOLUTIONS   
CYU 2.4 (a) 

   (b) 

(c) Does not exist:  while 

(d) Since  and , 

CYU 2.5

  (a) As you approach 0 from either side, the function values approach 1. Thus: .

  (b) As you approach 2 from the left, the function values approach 2, but as you approach from
the right, the function values approach 3. Thus:  does not exist.

  (c) As you approach 5 from either side, the function values approach 1 (never mind that the
function is not defined at 5; for the limit does not care what happens there—it is only con-
cerned about what happens as you approach 5. Thus: .

  (d) As you approach 7 from either side, the function values get larger and larger, and cannot
tend to any number. Thus:  does not exist, but we can write .

CYU 2.6 (a) For :  and 

. The limit does not exist at 2 as  f  has a jump dis-

continuity at that point.

(b) For  :  and 

. Hence: . Since  (and not 3),  f 

has a removable discontinuity at 2.

 x2 9–
x 3–
--------------

x 3
lim x 3+  x 3– 

x 3–
---------------------------------

x 3
lim x 3+ 

x 3
lim 6= = =

x 3–
x2 6x– 9+
--------------------------

x 3
lim x 3–

x 3–  x 3– 
---------------------------------

x 3
lim 1

x 3– 
----------------

x 3
lim= = DNE (denominator goes to 0

             while numerator does not)

f x 
x 3

_

lim 5= f x 

x 3+
lim 8=

g x 
x 3

_

lim 2= g x 

x 3+
lim 2= g x 

x 3
lim 2=

o

.
o

2                 5            7

1

3

.2 f

   f x 
x 0
lim 1=

   f x 
x 2
lim

 f x 
x 5
lim 1=

   f x 
x 7
lim f x 

x 5
lim =

f x  x 1+ if x 2
x2 1.001– if x 2




= f x 
x 2

_

lim 2 1+ 3= =

f x 
x 2+
lim 4 1.001– 2.999= =

f x 
x 1+ if x 2

25 if x 2=

x2 1– if x 2





= f x 
x 2

_

lim 2 1+ 3= =

f x 
x 2

_

lim 22 1+ 3= = f x 

x 2
lim 3= f 2  25=



CYU SOLUTIONS   A-9
CYU 2.7 To prove that , for given  we are to find  such that: 

CYU 2.8 To prove that , for given  we are to find  such that:

Since we are interested in what happens near , we decide to
focus on the interval: . Within that interval

. Consequently, within that interval: .

We observe that (*) is satisfied for :

CYU 2.9 Let . To prove that , for given  we are to find 

 such that: . In the event that , then any 

 will surely work, since . If , choose  such that 

. Consequently, for :

 

CYU 2.10

CYU 2.11 For given  we are to find  such that .

Since f is continuous at b, we can find  such that .

Since  there exists  such that .

              Consequently: .

5x 1+
x 4
lim 21=  0  0

0 x 4–  f x  21–  
0 x 4–  5x 1+  21–  
0 x 4–  5x 20–  
0 x 4–  5 x 4–  

0 x 4–  x 4–

5
--- 

sam
e choose  

5
---=

x2 1+ 
x 2
lim 5=  0  0

0 x 2–  x2 1+  5–  
0 x 2–  x 2+  x 2–   
0 x 2–  x 2+ x 2–   (*)

y x 2+=

1               3

5
x 2=

1 3  x x 2– 1 =
x 2+ 5 x 2+ x 2– 5 x 2–

 min 1

5
--- 

 =

0 x 2–  x 2+ x 2– 5 5

5
--- 
    =} }

f x  
x c
lim L= af x  

x c
lim aL=  0

 0 0 x c–  af x  aL–   a 0=

 0 af x  aL– 0= a 0  0

0 x c–  f x  L–

a
-----  0 x c–  

af x  aL– a f x  L–  a f x  L– a

a
----- = = =

f g+  x 
x c
lim f x  g x + 

x c
lim f x  g x 

x c
lim+

x c
lim= =

f c  g c + f g+  c = =

 0  0 0 x a–  f g x   f b –  

1 0 0 y b– 1 f y  f b –  

g x 
x a
lim b=  0 0 x a–  g x  b– 1 

0 x a–  g x  b– 1 f g x   f b –  



A-10   CYU SOLUTIONS   
CYU 2.12 

   (a) : For any given  there exists  such that .

   (b) : For any given  there exists  such that .

   (c) : For any  there exists  such that .

   (d) : For any  there exists  such that .

   (e) : For any  there exists  such that .

   (f) : For any  there exists  such that .

CHAPTER 3: THE DERIVATIVE

CYU 3.1 In Example 3.2 we showed that if , then . 

In particular, the slope of the tangent line to the graph of f at  is

                                         .

To find the y-intercept of our tangent line  we need a point on that line. 
Since the tangent line touches the graph at that point, the point 

 on the graph of f also lies on the tangent line. 

Substituting  for x and 1 for y in the equation  we can determine b: 

. Tangent line: .

CYU 3.2For :

      and: 

f x 
x c-
lim = M 0  0 c  x c – f x  M

f x 
x c+
lim = M 0  0 c x c  f x  M+ 

f x 
x –
lim c=  0 N 0 x N f x  c– 

f x 
x 
lim –= M 0 N 0 x N f x  M

f x 
x –
lim = M 0 N 0 x N f x  M

f x 
x –
lim –= M 0 N 0 x N f x  M

f x  x
2x 1+
---------------= f  x  1

2x 1+ 2
----------------------=

x 1–=

m f  1–  1
2 1–  1+ 2

------------------------------- 1= = =

y 1 x= b+

1 f 1– –  1–
1–

2 1–  1+
----------------------- 

  1 1– = =

1– y x= b+

1 1– b b+ 2= = y x= 2+

y f x  3x2 x– 1+= =

dy
dx
------ f c x+  f c –

x
--------------------------------------

x 0
lim 3 x x+ 2 x x+ – 1 3x2 x– 1+ –+

x
----------------------------------------------------------------------------------------------------

x 0
lim= =

3x2 6xx 3 x 2 x– x 1 3x2–+– x 1–+ + +
x

-------------------------------------------------------------------------------------------------------------------
x 0
lim=

x 3x 6x 1–+ 
x

-------------------------------------------
x 0
lim 3x 6x 1–+ 

x 0
lim 6x 1–= = =

dy
dx
------

x 2=

6 2 1– 11= =
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CYU 3.3     

CYU 3.5 (a) Since the tangent line at every point on the line  equals the line itself, and 

since the line  has slope 1: .

(b) For : .

CYU 3.6 (a) 

(b) 

CYU 3.7 Since horizontal tangent lines have a slope of 0, the points on the graph of the function 

 with horizontal tangent lines occur where : 

Conclusion: Horizontal tangent lines occur at
  

CYU 3.8 For : . Thus:

.

y f x =

y f  x =

.
1          2          3

.
CYU 3.4

y x=

y x= x 1=

f x  x= f  x  f x h+  f x –
h

----------------------------------
h 0
lim x h x–+

h
--------------------

h 0
lim h

h
---

h 0
lim 1= = = =

3x4 2x– 5 5x 4––+  3 4x3  2– 0 5 4x 5–– –+ 12x3 2– 20
x5
------+= =

4x2 525–
x 3+

----------------------- 
   x 3+  4x2 525–  4x2 525–  x 3+ –

x 3+ 2
-----------------------------------------------------------------------------------------------------=

x 3+  8x  4x2 525–  1 –

x 3+ 2
---------------------------------------------------------------------- 4x2 24x 525+ +

x 3+ 2
---------------------------------------= =

f x  2x4 4x2– 1+= f  x  0=

2x4 4x2– 1+  0= 8x3 8x– 0 8x x2 1–  0 x 0 1= = =

0 f 0   1 f 1   1– f 1–  : 0 1  1 1–  1– 1–   

f x  x1 3/= f  x  x1 3/ 
 1

3x2 3/
-------------= =

8.1 2 3
f 8 0.1+  f 8  f  8  0.1 + 81 3/ 0.1

3 82 3/
-----------------+ 2

0.1
12
------- 2.008+= = =
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CYU 3.9 We find an approximation for the area error  resulting from a change of a radius mea-

surement from 50 to  cm, where  cm. 

For : . Thus: .

                             Relative area error: . 

CYU 3.10 If  then  and  also equals 0: .

For ,  where  is a positive integer. Applying the quotient rule and the 

result of Example 3.10 we have:

     

CYU 3.11 (a) 

(b) Looking at , , , , 

and , suggests that: 

(c) Let  be the proposition that .

I. Since , the proposition holds at .

II. Assume  is true; that is: .

III.  We show that  is true, namely that : 

CYU 3.12 Since  and : .

CYU 3.13 .

A

50 r+ r 0.5=

A r  r2= A r  2r= A A  50 r 2 50  0.5  50 cm
2

= =

A
A

------- 50
 50 2
----------------- 1

50
------ 0.02= =

n 0= x0  1 0= = nxn 1– 0 x0 1– 0
x
--- 0= =

n 0 xn 1
x n–
-------= n–

xn  1
x n–
------- 
   x n– 1  1 x n– –

x n– 2
------------------------------------------------- nx n– 1–

x 2n–
------------------ nx n– 1– 2n+ nxn 1–= = = = =

x5  5x4  20x3  60x2= = =

x 1–  x 2––= x 1–  2  2x 3–= x 1–  3  2– 3x 4–= x 1– 
4 

2 3 4x 5– =

x 1–  5 
2– 3 4 5x 6–  = x 1–  n  1– nn!x n– 1–=

P n  x 1–  n  1– nn!x n– 1–=

x 1–  1  x 2–– 1– 11!x 1– 1–= = n 1=

P k  x 1–  k  1– kk!x k– 1–=

P k 1+  x 1–  k 1+  1– k 1+ k 1+ !x k– 2–=

x 1–  k 1+  x 1–  k   1– kk!x k– 1–  1– kk! k– 1– x k– 1– 1–= = =

1– kk! 1–  k 1+ x k– 2–=

1– k 1+ k 1+ !x k– 2–=

by II

1 x2

4
-----– 

 
x 0
lim 1 x2

4
-----+ 

 
x 0
lim 1= = 1 x2

4
-----– h x  1 x2

2
-----+ h x 

x 0
lim 1=

xtan
x 0
lim xsin

xcos
-----------

x 0
lim

xsin
x 0
lim

xcos
x 0
lim
---------------------- 0

1
--- 0= = = =
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CYU 3.14

   

CYU 3.15

CYU 3.16

(a) 

(b) 

(c) 

CYU 3.17 (a) 

(b) 

xcos 1–
x

--------------------
x 0
lim xcos 1–

x
--------------------

x 0
lim

xcos 1+
x 1+cos

---------------------=

cos
2
x 1–

x x 1+ cos
----------------------------

x 0
lim sin–

2
x

x x 1+ cos
----------------------------

x 0
lim xsin

x
----------

x 0
lim– xsin

x 1+ cos
-------------------------

x 0
lim= = =

1–
0sin
1cos

----------- 1–
0

1cos
----------- 0= = =

xcos  x h+ cos xcos–
h

--------------------------------------------
h 0
lim x hcoscos x hsinsin– xcos–

h
-----------------------------------------------------------------------

h 0
lim= =

x hcos 1– cos x hsinsin–
h

-----------------------------------------------------------------
h 0
lim=

x hcos 1–
h

--------------------
h 0
lim 

  x hsin
h

----------
h 0
lim 

 sin–cos=

x 0  x 1 sin–cos xsin–= =
Theorem 3.5, pgae 90
and CYU 3.14, page 91

Theorem 1.5(iii), page 37

xcot  xcos
xsin

----------- 
   x xcos  x xsin cos–sin

sin
2
x

---------------------------------------------------------------- sin–
2
x cos

2
x–

sin
2
x

----------------------------------- 1–

sin
2
x

------------ csc
2
x–= = = = =

xcsc  1
xsin

---------- 
   x 1 sin 1 xsin –

xsin 2
------------------------------------------------------- x 0sin xcos–

xsin 2
-----------------------------------= = =

1
xsin

---------- xcos
xsin

-----------– x xcotcsc–= =

xsec  1
xcos

----------- 
   xcos 1  1 xcos –

xcos 2
--------------------------------------------------------- xcos 0 1 xsin– –

xcos 2
---------------------------------------------------= = =

1
xcos

----------- xsin
xcos

----------- xsec xtan= =

x xsec xtan+  x xsec  sec
2
x+ x x x x sec

2
x+sec+tansec= =

x x x 1 xsec++tan sec=

x xcossin
x2

---------------------- 
   x2 x xcossin  x x x2 cossin–

x4
----------------------------------------------------------------------------=

x2 cos
2
x sin

2
x–  2x x xcossin–
x4

------------------------------------------------------------------------------ x2 2xcos  x 2xsin–
x4

------------------------------------------------= =

Theorem 1.5(iv), page 37

x 2xcos 2xsin–
x3

-------------------------------------=



A-14   CYU SOLUTIONS   
CYU 3.18 (a) 

(b)  

CYU 3.19 (a)                  

(b) 

(c) 

CYU 3.20 With the chain rule: 

 
       Without the chain rule:

 

                Differentiating: 

x
x

x 1+
------------ 
 tan  x x

x 1+
------------ 
  x

x
x 1+
------------ 
 tan +tan=

x
x 1+
------------ 
  xsec

2 x
x 1+
------------ 
  x

x 1+
------------ 
  +tan=

x
x 1+
------------ 
  xsec

2 x
x 1+
------------ 
  x 1 x–+

x 1+ 2
-------------------- 
 +tan=

x
x 1+
------------ 
  x

x 1+ 2
------------------- sec

2 x
x 1+
------------ 
 +tan=

sinx2

xcos
------------ 
   x sinx2  x2 xcos sin–cos

cos
2
x

--------------------------------------------------------------------- x x2 2x x2 xsin– sin–coscos

cos
2
x

--------------------------------------------------------------------------= =

2x x x2 x x2sinsin+coscos

cos
2
x

---------------------------------------------------------------=

x4 xsin+ 
3

  3 x4 xsin+ 2 x4 xsin+  3 x4 xsin+ 2 4x3 xcos+ = =

sin
3
x3  x3sin 3  3 x3sin 2 x3sin = =

3 x3sin 2 x3 3x2cos 9x2sin
2
x3 x3cos= =

x2sin 
1
2
---  1

2
--- x2sin 

1
2
--- 1–

x2sin  1
2
--- x2sin 

1
2
---–

x2cos  x2 = =

1

2 x2sin
-------------------- x2cos  2x  x x2cos

x2sin
-----------------= =

gf  x  g f x   f  x  g 2x2 5–  4x= =

2 2x2 5–  4x 16x3 40x–= =g x  2x= :

gf  x  g f x   g 2x2 5–  2x2 5– 2 2+ 4x4 20x2– 27+= = = =

gf  x  4x4 20x2– 27+  16x3 40x–= =



CYU SOLUTIONS   A-15
CYU 3.21   

       Slope of tangent line at : . Equation: . 

       Slope of tangent line at : . Equation: 

CYU 3.22  

CYU 3.23  .

From . The two points on the curve

with x-coordinate  do have horizontal tangent lines. The y-

coordinate of those points can be found from the equation

: ; specifically: , so the

two points are  and . 

x2 xy 2y2+ + 8                   2x xy y 4yy+ + + 0= =

xy 4yy+ 2x– y y– 2x y+
x 4y+
---------------–= =

differentiate

2 1  m 2 2 1+
2 4 1+
-------------------– 5

6
---–= = y

5
6
---x– b+=

1
5
6
--- 2 b b+– 8

3
---= =

So: y
5
6
---x– 8

3
---+=

2 2–  m 2 2 2– +
2 4 2– +

---------------------------– 1
3
---= = y

1
3
---x b+=

2– 2
3
--- b b+ 8

3
---–= =

So: y
1
3
---x 8

3
---–=

y3 2x+  y = 3y2y 2+ y= 3y2y y– 2 y– 2
3y2 1–
-----------------–= =

y 2
3y2 1–
-----------------– 

  2– 3y2 1–  1–  2 3y2 1–  2– 3y2 1– = = =

2 6yy 
3y2 1– 2

------------------------=

12y 2
3y2 1–
-----------------– 

 

3y2 1– 2
----------------------------------- 24y

3y2 1– 3
------------------------–= =

Then:

Since y 2
3y2 1–
-----------------:–=

2y2 x3– x2– 0                     4yy 3x2– 2x– 0 y 3x2 2x+
4y

--------------------= = =differentiate

x

y

. .
2
3
---–1–

y 3x2 2x+
4y

-------------------- x 3x 2+ 
y

-----------------------= =

2
3
---–

2y2 x3– x2– 0= y x3 x2+
2

----------------= y

2
3
---– 

  3 2
3
---– 

  2
+

2
----------------------------- 2

27
------= =

2
3
---– 2

27
------– 

  2
3
---– 2

27
------ 
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From the above figure you can see that the curve cannot be approximated by a function
near the point , so that the implicit differentiation method is not applicable when

. Moreover, since  is not defined at , a tangent line at any

point on the curve with that y-coordinate (if it exists) must be vertical. Substituting 0 for y

in the equation  we are able to find the corresponding x values:

 .

Conclusion: The tangent line is vertical at .

CYU 3.24 We are given that  and want to find  , where C denotes the cir-

cumference of the circle. From  we have: . It follows that, indepen-

dent of r: .

CYU 3.25 We find a relation between x and y: .
Differentiating both sides with respect to t we have:

 

We are given that , and are asked to find  when . Turning to the

Pythagorean Theorem we find the corresponding value of y:

.

Conclusion: At , ; which is to say that the top of

the ladder is falling at a rate of  feet per second.

CYU 3.26 At 4 PM, ship A has traveled 140 km and will be 20
km west of ship B. That being the case, x will be
increasing with respect to time; specifically:

. A 4 PM: , ,

and . From Step 3 of Example 3.21: 

0 0 

x 0= y 3x2 2x+
4y

--------------------= y 0=

2y2 x3– x2– 0=

0 x3– x2– 0 x3 x2+ 0 x2 x 1+  0 x 0 (irrelevant) and x 1–= = = = =

1 0– 

dr
dt
----- 3

cm
min
---------= dC

dt
-------

r 12=

C 2r= dC
dt
------- 2dr

dt
-----=

dC
dt
------- 2 3 6 cm

min
---------= =

10

x

y dx
dt
------ 2=

dy
dt
------ ?=

x2 y2+ 102=

2x
dx
dt
------ 2y

dy
dt
------+ 0=

dy
dt
------ x

y
-- dx

dt
------–=

dx
dt
------ 2=

dy
dt
------ x 6=

y2 102 62– 64= = y 8=

x 6= dy
dt
------

x
y
-- dx

dt
------–

6
8
--- 2– 3

2
---–= = =

3
2
---

B

A x

y
s

dx
dt
------ 35=

dy
dt
------ 25=

ds
dt
----- ?=

dx
dt
------ 35= x 20= y 25 4 100= =

s 202 1002+ 20 26= =

ds
dt
-----

x
dx
dt
------ y

dy
dt
------+

s
------------------------ 20 35 100 25+

20 26
------------------------------------------

160

26
---------- 31.4

km
hr
-------= = =
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CYU 3.27 We are to find the constant c, given that  and that

 when in. We need to find a relation

between V and h. Turning to the equation , we set

our sight on expressing r in terms of h. From the similar triangles
in the adjacent figure we have:

. Thus: . Differentiating:

 

Substituting  for  and 4 for h we have: . 

Conclusion: Water is leaking out at a rate of  cubic inches per minute. 

CHAPTER 4: THE MEAN-VALUE THEOREM AND APPLICATIONS

CYU 4.1 (a) For : .
Conclusion: The graph of f has horizontal tangent lines at  and at . Note

that all three numbers fall within the interval .

(b) The Mean-Value Theorem assures us that in the interval  there will be at least
one point on the graph of the function  where the tangent line has slope:

Turning to the equation  we have:

 

Note that both of the numbers  are contained in the interval .

CYU 4.2    

32

8

h

8

r

h

r

dV
dt
------- c–=

dh
dt
------ 2

in
min
---------–= h 4=

V
1
3
---r2h=

h
32
------ r

8
---= r h

4
---= V

1
3
---r2h

1
3
--- h

4
--- 
  2

h

48
------h3= = =

dV
dt
-------


48
------ 3h2dh

dt
------=

c–
h2

16
---------dh

dt
------=

2–
dh
dt
------ c–

 42
16

------------- 2–  2–= =

2

f x  x4 2x2–= f  x  0= 4x3 4x– 0 4x x2 1–  0 x 0 1= = =
x 0= x 1=

2– 2 

2– 3 
f x  x3 x2–=

f b  f a –
b a–

------------------------- f 3  f 2– –
3 2– –

---------------------------- 33 32– 2– 3 2– 2– –
5

------------------------------------------------------------- 6= = =

x3 x2–  6=

3x2 2x– 6 3x2 2x– 6– 0 x 2– – 2– 2 4 3  6– –
2 3

-------------------------------------------------------------------- 1 19
3

-------------------= = = =

1 19
3

------------------- 2– 3 

.1
1

1–

x

y

(b) f 1  f 1– –
1 1– –

---------------------------- 1– 1–
2

---------------- 1  and f  c – 1 for any c 0. In particular:–= = =

1–

(a) Since f x 
x 1
lim f 1  , f  is not continuous on 1– 1 , and is not differentiable

at 0 in 1– 1  (Example 3.4, page 71).

f  1
2
---–  f 1  f 1– –

1 1– –
----------------------------=
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CYU 4.3  (Proof by contradiction.) Assume that the function  is not constant
on the open interval I. It follows that there are two points in I, say a and b with ,
such that . The Mean-Value Theorem assures us of the existence of some

 such that  which is not zero since . But

 must be zero throughout I, since we are told that 
in I — a contradiction.

CYU 4.4 Let . Letting  play the role of  in the defini-

tion of the limit, we can find  such that:

 

In particular,  must be negative for any , while 
must be positive for any 

CYU 4.5  Suppose that  has a local minimum at c. Can  be positive? No, for if it were posi-
tive then there would be x’s immediately to the left of c with function values smaller
than  [Theorem 4.4(a)]. Can  be negative? No, for if it were negative then there
would be x’s immediately to the right of c with function values smaller than  [Theo-
rem 4.4(b)]. Since  exists and cannot be positive or negative, it must be 0.

CYU 4.6 (Proof by contradiction.) Assume that  has solutions , with

. Consequently, for : .

By Rolle’s Theorem (applied twice), there must exist  and ,

such that . But this cannot happen since the equation 

has but one solution: .

CYU 4.7 Consider the continuous function . Since 
and , the exists  such that ; which is to say:
that .

CYU 4.8 Assume that f is negative at some point in . Theorem 4.7 assures us that f assumes
its minimum value at some . Indeed, c must be contained in , for f is
assumed to take on negative values in , and . Now proceed, as
before, to show that  cannot be either positive or negative, and that therefore 
must be zero. 

h x  f x  g x –=
a b

h a  h b 

a c b  h  c  h b  h a –
b a–

----------------------------= h a  h b 

h x  f  x  g x –= f  x  g x =

f  c  f c h+  f c –
h

----------------------------------
h 0
lim  <0= f–  c  0 

 0

0 h  f c h+  f c –
h

---------------------------------- f  c – f–  c 

f  c  f c h+  f c –
h

---------------------------------- f  c – f–  c  

2f  c  f c h+  f c –
h

---------------------------------- 0 

f c h+  f c – 0 h   f c h+  f c –
 h 0 –

f f  c 

f c  f  c 
f c 

f  c 

2x4 x– 10+ 0= x1 x2 x3 

x1 x2 x3  p x  2x4 x– 10+= p x1  p x2  p x3  0= = =

x1 y1 x2  x2 y2 x3 
p y1  p y2  0= = p x  0=

p x  0= 8x3 1– 0= x3 1
8
--- x 1

2
---= =

h x  f x  g x –= h a  f a  g a  0–=
h b  f b  g b  0–= a c b  h c  0=
f c  g c =

a b 
c a b  a b 

a b  f a  f b  0= =
f  c  f  c 
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CYU 4.9.  (a) Since the leading term of  is  the graph of f will resemble that of
the cubic polynomial  as .

(b) Since , the graph of f will resem-
ble that of the polynomial  as  (or more simply , for the two polynomials
are the same shape as ).

CYU 4.10. (a) Graphing the function 

Step 1. Factor: 

Step 2.  y-intercept: .

        x-intercepts: : at , .

: 

Step 3. As : The graph resembles the graph of .

Step 4. From the above information, we have a pretty good sense of the graph of the function,
and can sketch its anticipated graph:

Step 5. (a) [Increasing, Decreasing; Maximum and Minimums] Differentiating, we have:

: 

Step 5 (b) [Concavity and Inflection Points] Taking the second derivative, we have:

f x  x
3

x–= x3

x3 x 

f x  2x3 x+  x2 5x– 1+  x 1–  2x6 += =
2x6 x  x6

x 

f x  3x5 5x3–=

f x  3x5 5x3– x3 3x2 5–  x3 3x 5+  3x 5– = = =

f 0  0=

f x  x3 3x 5+  3x 5–  0= = x 0= x 5
3
---=

SIGN f .     ..
5 35 3– 0

c                  c                        c+                                        +_                                     _

x  g x  3x5=

a b0

Anticipated Graph:

5 3– 5 3 0

Graph:

1– 1

1

2
-------

1

2
-------–

2

2–

x

y

.
.

1

2
------- 7 2

8
----------– 

 

1

2
-------–

7 2
8

---------- 
 

f  x  3x5 5x3–  15x4 15x2– 15x2 x2 1–  15x2 x 1+  x 1– = = = =

SIGN f .     ..
11– 0

c                   n                        c   +                                                             +_                  _

max                                                min

Values: f 1–  3 1– 5 5 1– 3– 2= = f 1  3 1 5 5 1 3– 2–= =

horizontal tangent line at 0
inc              dec                 dec                 inc

f  x  15x4 15x2–  60x3 30x– 30x 2x2 1–  30x 2x 1+  2x 1– = = = =
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: 

The above information is reflected in the final graph of the function depicted above.

(b) We can simply take the graph of  and lift it 3 units to arrive at the graph

of :

CYU 4.11. 

(a) Since the graph is falling immediately to the left of 3 and rising to its right, f has a local min-
imum at 3. It also has a local minimum at 8. Since the graph is rising immediately to the left of
5 and falling to its right, f  has a local maximum at 5. The graph is falling immediately to the
right of the endpoint 0, so the graph has an endpoint maximum there. It also has an endpoint
maximum at the 9, since the graph is increasing to the left of that point. 

(b) Since the graph is rising immediately to the left of 11 and falling to its right, f has a local
maximum at 11. A local minimum occurs at 12, since the graph falls to the left of 12 and rises to
its right. The graph is rising immediately to the right of the endpoint 10, so the graph has an
endpoint minimum there. It has a maximum at the endpoint 13, since the graph is increasing to
the left of that point.

CYU 4.12. First derivative test: 

Second derivative test:

SIGN f  .     ..
0

                

1

2
-------–

1

2
-------

c                   c                      c+                                          +_                                      _

Inflection points occur at: 

Concave Down             Up                  Down                  Up

values: f
1

2
-------– 

  7 2
8

----------       f
1

2
------- 
  7 2

8
----------–= =

f x  3x5 5x3–=

g x  3x5 5x3– 3+=

0

Graph of 

1– 1

1

2
-------

1

2
-------–

2

2–

f x  3x5 5x3–=

x

y

.
.

1

2
-------–

7 2
8

---------- 
 

1

2
------- 7 2

8
----------– 

 

0

Graph of 

1– 11

2
-------–

5

g x  3x5 5x3– 3+=

x

y

1

.
.

1

2
------- 3 7 2

8
----------+– 

 
1

2
------- 3 7 2

8
----------– 

 

. .  .  .. . 
0   1       3         5           8    9

_    _                   _+                     +(a) .
10        11                  12

(b)

SIGN f  SIGN f 
L      R                       L                                    R

. . 
13
  .+                    +_

f  x  x 1+  2x  x
2

–
x 1+ 2

--------------------------------------- x2 2x+
x 1+ 2

------------------- x x 2+ 
x 1+ 2

-------------------= = =

SIGN f:
2          – 1–   0

                   
n            cc+ +_             _

max                       min

.        .
function is not
defined at  1–

1

2
-------
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CYU 4.13. (a) As , : a horizontal asymptote, with equation: .

                   (b) As , : a horizontal asymptote, with equation: .

(c) As , the graph of  will resemble, in shape a line of slope 2 ( ).

             The actual oblique asymptote is the line . Why? Because:

 

(d) As , the graph of  will resemble, in shape that of the parabola

.

CYU 4.14. A glance at SIGN f about :   

CYU 4.15 Graphing .

Step 1. Factor: .

Step 2. y-intercept: .

            x-intercepts: : .

Vertical Asymptotes: The lines  and .

f  x  x 1+  2x  x
2

–
x 1+ 2

--------------------------------------- x2 2x+
x 1+ 2

------------------- x x 2+ 
x 1+ 2

-------------------= = =

f x  x 1+ 2 2x 2+  x2 2x+ 2 x 1+ –
x 1+ 4

-----------------------------------------------------------------------------------------=

x 1+  2x 2+  2 x2 2+ –
x 1+ 3

------------------------------------------------------------------ 4x 2–
x 1+ 3

-------------------= =

Critical Points: 0, 2 1––

f  0  2: maximum at 0–=

f  2–  2 12–
1– 3

--------------- 10: minimum at 2–= =

f  1–  is undefined

x  3x4 2x+
6x4 5–

-------------------- 3
6
--- 1

2
---= y 1

2
---=

x  3x4 2x+
6x5 5–

-------------------- 3
6x
------ 0  y 0=

x  f x  4x3 1–
2x2 x+
-----------------= 4x3

2x2
-------- 2x=

y 2x 1–=

2x2 x   4x3+
2x 1–

4x3 2x2+

2x2– x–
x 1–

1–

2x2– 1–

4x3 1–
2x2 x+
----------------- 2x 1– x 1–

2x2 x+
-----------------+=

0 as x 

x  f x  6x6 5–
3x4 2x+
--------------------=

y 6x6

3x4
-------- 2x2= =

1– 1–

_                                                     c                    
+

reveals the nature of the
vertical asymptote at 1–

f x  x2

x2 4–
--------------=

f x  x2

x2 4–
-------------- x2

x 2–  x 2+ 
---------------------------------= =

y f 0  0= =

f x  0= x 0=

x 2–= x 2=
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SIGN

Step 3. As :  is the horizontal asymptote for the graph. 

Step 4. Sketch the anticipated graph:

Step 5: Turning to the calculus: 

CYU 4.16. Graphing .

Step 1. Factor: Already in factored form.

Step 2. y-intercept: .

            x-intercepts: : .

Vertical Asymptotes: None.

SIGN

Step 3. As : 

f x  x2

x 2–  x 2+ 
---------------------------------:=

2– 0            2

+                                   +c         n          c_           _.
x  y x2

x2
----- 1= =

2– 2

1

x

y

f  x  x2

x2 4–
-------------- 
   x2 4–  2x x2 2x –

x2 4– 2
-------------------------------------------------------- 8x–

x 2+ 2 x 2– 2
--------------------------------------= = =

SIGN  f  :
n        c           n. +         +         _            _                                  

inc.     inc.      dec.        dec.
Conforms with
anticipated graph 2             0             2–

f  x  8x–
x2 4– 2

--------------------- 
  x2 4– 2 8–  8– x  2 x2 4–  2x –

x2 4– 4
--------------------------------------------------------------------------------------------= =

SIGN  f  :

8 x2 4–  x2 4– – 4x2+ 
x2 4– 4

------------------------------------------------------------------=

8 3x2 4+ 
x2 4– 3

-------------------------- 8 3x2 4+ 
x 2+ 3 x 2– 3

--------------------------------------= =

2–               2

+                                   +_
Conforms with
anticipated graph

concave up           down                 up
c                      c

pull out the common

factor 8 x2 4– :

f x  x 2– 1 3/=

y f 0  21 3/–= =

f x  0= x 2=

f x  x 2– 1 3/ :=
2            
. +        _
c

x  f x  x1 3/
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Step 4. Sketch the anticipated graph:

Step 5: Turning to the calculus: 

At this point we know that the graph is increasing everywhere (which we anticipated) but now find
that since the derivative is not defined at , a vertical tangent line must occur at that point.
Note also the concavity nature of the indicated graph (as is supported by the second derivative): 

Then: . At this point we know that a maxi-

mum area occurs when . Substituting in (*) we find the maximum area:

.

Anticipated Graph:

.. 2
21 3/–

x

y

  Graph:

.. 2
21 3/–

x

y

f  x  x 2– 1 3/  1
3
--- x 2–  2 3/– 1

3 x 2– 2 3/
--------------------------= = = SIGN  f  :

    

2
+                 +n

 note the 2/3 power

even

x 2=

f  x  1
3
--- x 2–  2 3/–
 
  2

9
--- x 2–  5 3/–– 2

9 x 2– 5 3/
--------------------------–= = = SIGN  f  : + _concave up                down

inflection point
2

CYU 4.17

x

y

$8/ ft

$6/ft $2800

See the Problem: A xy=

8x 6 x 2y+ + 2800=

14x 12y+ 2800=

y 2800 14x–
12

--------------------------- 700
3

---------
7
6
---x–= =

A x 700
3

---------
7
6
---x– 

  700
3

---------x
7
6
---x2–= = (*)So:

700
3

---------x
7
6
---x2– 

  0 700
3

---------
7
3
---x– 0 x 100= = =

x 100=
700
3

--------- 100  7
6
--- 100 2–

35000
3

--------------- ft
2

=

 

CYU 4.18 SEE THE PROBLEM:

x
x

girth

lengthy

length girth 108+

Clearly the greatest volume can only be achieved when we

We want to maximize V x2y= .

allow the sum of length-plus-girth to be as large as is allowed: 

y 4x+ 108= y 108 4x–=
Bringing us to: 

V x2 108 4x–  108x2 4x3–= =

(*)
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Then: .

For maximum volume the length of a side of the square base should be 18 in. and the height [see
(*)]:  in.

Due to symmetry, the area, A, of the triangle at

the left is twice that of the area, , of the adja-
cent right triangle: 

Expressing y in terms of x:  we
can replace  in the above right triangle with  
And this enables us to also express h in terms of x:

 

From (*): , and therefore: .

Then: 

                        Maximum Area:  

         Total time for the trip:  hours.

We will replace both x and y with the indicated variable z:

Bringing us to:

 

V 108x2 4x3–  0 216x 12x2– 0 12x 18 x–  0 x 0 or x 18= = = = = =

y 108 4 18 – 36= =

CYU 4.19 SEE THE PROBLEM:

x2x y+ 12= x

y

h

h
x

y 2

A

A

A
1
2
--- y

2
--- h  yh

4
------= =

one-half base times height

(*)

h
x

6 x–

A

2x y+ 12 y 12 2x–= =
y 2 6 x–

x2 6 x– 2 h2+=

h x2 6 x– 2–=

2 3x 9–=

A 12 2x– 2 3x 9–
4

---------------------------------------------= A 2A 12 2x–  3x 9–= =

A 12 2x–  3x 9–  0 = = 12 2x–  1

2 3x 9–
---------------------- 3 3x 9– 2– +  0=

18 3x–

3x 9–
------------------- 2 3x 9–=

18 3x– 2 3x 9– =

x 4=

12 2 4–  3 4 9– 4 3 in.
2

= =

CYU 4.20 SEE THE PROBLEM:

.3
boat

.
dock

.P
x

y

4
mi
hr
------ 5

mi
hr
------

10

z

T x
4
--- y

5
---+=

y 10 z     and     x– 32 z2+= =

T 32 z2+
4

---------------------
10 z–

5
-------------- 
 + 9 z2+

4
------------------ z

5
---– 2+= =
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Then: 

                 Conclusion: The point P should be  miles from the dock.

(a) We find the time it takes for the object to hit the ground: 

At that point in time: 

                                                                                  
and since  is maximum when : .    

(b)  . Then:

 

         Maximum height: 

By definition:  ( ). Since
Revenue is equal to the number of units sold times the price per

unit: , and since Cost is equal to the cost per

unit times the number of units produced: .

 Bringing us to the profit function .

      Then: .

              Conclusion: To maximize profit for the company, the company should produce 200 units.

T  9 z2+
4

------------------ z
5
---– 2+ 

   0 z

4 9 z2+
--------------------- 1

5
---– 0 5z 4 9 z2+= = = =

25z2 16 9 z2+ =

9z2 16 9 z 4= =

10 z– 10 4– 6= =

x

y

d

x t  y t  .
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 SEE THE PROBLEM:

x t  V0 cos t=

y t  V0 sin t= 16t2–

y t  V0 sin t= 16t2– 0 16t V0  tsin
V0

16
------ sin= = =

x t  V0 cos 
V0

16
------ sin

V0
2

16
------  sincos= =

V0
2

32
------ 2  cossin

V0
2

32
------ 2sin= =

2sin 2 90=  45=

y t  V0 45sin t= 16t2–
V0

2
-------t 16t2–=

V0

2
-------t 16t2– 
   V0

2
------- 32t– 0 t

V0

32 2
-------------= = =

y
V0

32 2
------------- 
  V0

2
-------

V0

32 2
------------- 
  16

V0

32 2
------------- 
 

2
–

V0
2

128
--------- ft= =

CYU 4.22
 
SEE THE PROBLEM:

p 50 x2

6000
------------–=

price per unit
units sold

cost: $30 for each unit 

Profit Revenue Cost–= P R C–=

R x 50 x2

6000
------------– 

 =

C 30x=

P x 50 x2

6000
------------– 

  30x–=

x 50 x2

6000
------------– 

  30x–  0= 20x x3

6000
------------– 

   0 20 x2

2000
------------– 0 x 200= = =
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                                                           So: 

Since the company can only sell complete boats, the number produced to maximize profit will be
either 62 or 63 boats. A direct calculation in (*) shows that the profit is the same for both options.

Combined Pollution Count (P) at a point that is x units from A:

The main task is to express z in terms of x. With this in mind
we turn to:

     (You may choose to invoke the Law of Cosines instead of the Pythagorean Theorem))

Noting that  and that  enables us to solve for y and h:

 and 

On the left we augmented the shaded right triangle in the above figure. We can

now express z in terms of x: , bringing us to:

The constant K has no effect on the value of x which will minimize P. Turning to a graphing calcu-
lator you will find that the minimum solution count occurs at . So, the point is
about 8.8 miles from A.

CYU 4.23  SEE THE PROBLEM:

n 200 p
1000
------------–=

price per unit
units sold

cost: 100,000+75,000 n

P 200p p2

1000
------------– 100,000– 75,000 200 p

1000
------------– 

 –=

200p p2

1000
------------– 100,000– 15,000,000– 75p+=

Then: P 200 p
500
---------– 75+ 0

p
500
--------- 275= = =

p 275 500 =

200 p
1000
------------– 200 275 500 

1000
-----------------------– 125

2
--------- 62.5= = =

CYU 4.24  SEE THE PROBLEM:

. .A B

K
x2 10+
-----------------

K
4 x2 10+ 
-------------------------

5
10

C. K
2 x2 10+ 
-------------------------

.
x

z

12 x–

P K
x2 10+
----------------- K

4 12 x– 2 10+ 
------------------------------------------ K

2 z2 10+ 
-------------------------+ +=

h
y

5
10

z
x y–

12 y–

h2 52 y2–= h2 102 12 y– 2–=

25 y2– 100 144– 24y y2–+= y 69
24
------ 2.9= h 52 y2– 52 2.9 2– 4.1 =

4.1
x 2.9–

Z

z 4.1 2 x 2.9– 2+

P K 1
x2 10+
----------------- 1

4 12 x– 2 10+ 
------------------------------------------ 1

2 4.1 2 x 2.9– 2 10+ + 
-----------------------------------------------------------------+ + 

 

x 8.8



CYU SOLUTIONS   A-27
CHAPTER 5: INTEGRATION

CYU 5.1 The most “obvious” antiderivative of    is . Adding any constant to  will
yield another antiderivative.

CYU 5.2 (a)           (b)        

            (c) 

CYU 5.3 

      (a) 

   (b) 

CYU 5.4 (a) 

(b) 

CYU 5.5 . Since : , or .

Thus: 

CYU 5.6 (a) Differentiating the position function  gives us the velocity
function . Setting velocity to zero we determine the time it takes for the stone to
reach its maximum height: , or . Evaluating the position function at 
yields the maximum height:  feet.

(b) Setting the position function to zero (ground level) we determine the time it takes for the stone
to hit the ground: 

Knowing it takes 5 seconds for the stone to hit the ground, we can determine its velocity at

impact: . Since speed is the magnitude of velocity, we conclude

that the stone hits the ground at a speed of 96 feet per second. 

f x  8x7= x8 x8

5x4 xd 5
x5

5
----- C+ x5 C+= = 4x 5–– xd 4 x 5– 1+

5– 1+
---------------- C+– x 4– C+= =

2x5 4x3 1
3
---x2– 2+ +  xd 2 x6

6
----- 4 x4

4
-----

1
3
--- x3

3
----- 2x C+ +–+ x6

3
----- x4 x3

9
-----– 2x C+ + += =

3x2 2x– 1+  x 5–   xd 3x3 17x2– 11x 5–+  xd
3
4
---x4 17

3
------x3–

11
2
------x2 5x– C+ += =

x4 2x– 6–
x4

--------------------------  dx x4

x4
----- 2

x
x4
-----– 6

x4
-----– 

  xd 1 2x 3–– 6x 4––  xd= =

x 2 x 2–

2–
------- 6 x 3–

3–
------- C+–– x 1

x2
----- 2

x3
----- C+ + += =

xsin 2 xcos+  xd x 2 xsin C+ +cos–=

x2 x xtansec–  xd x3

3
----- x C+sec–=

f x  5x4 2–  xd x5 2x– C+= = f 0  1= 1 05 2 0 C+–= C 1=

f x  x5 2x– 1+=

s t  16t2– 64t 80+ +=
v t  32t– 64+=

32t– 64+ 0= t 2= t 2=
s 2  16 22– 64 2 80+ + 144= =

16t2– 64t 80+ + 0=

16 t2 4t– 5– – 0=

16 t 5–  t 1+ – 0=

t 5     or     t 1–= =

v 5  32 5– 64+ 96
 ft
sec
-------–= =
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CYU 5.7 

First object reaches maximum height when : at second at which

time it is  feet from the ground. We need to find  such

. Answer:  feet per second.

CYU 5.8 Applying the Principal Theorem of Calculus:

CYU 5.9 Choosing  as an antiderivative of , we again have:

 .

CYU 5.10 (a-i) 

                 (a-ii) 

(b) Noting that the graph of the function  lies above the x-axis, we con-

clude that the area A bounded by its graph over the interval  is:

 

CYU 5.11 For F and G antiderivatives of f and g, respectively,  is an antiderivative of

, so:

For any number c, cF is an antiderivative of cf, so:

 

Object-one Object-two

 
v1 t  32t– 32+=

s1 t  16t2– 32t 128+ +=

v2 t  32t– v0+=

s2 t  16t2– v0t+=

v1 t  32t– 32+ 0= = t 1=

s1 1  16– 32 128+ + 144= = v0

s2 1  16– v0+ 144= = v0 144 16+ 160= =

T  x  3t2 2+ 7

3

 x

 dt  3x2 2+ 7= =

g x  x3 2x 100+ += f x  3x2 2+=

3x2 2+  xd
1

 2

 x3 2x 100+ + 
1

2
23 2 2 100++  13 2 1 100++ – 9= = =

x3 x 1–+  xd
0

 1

 x4

4
----- x2

2
----- x

0
1

–+ 1
4
--- 1

2
--- 1–+ 

  0 – 1
4
---–= = =

x xdsin
4
---–

 

2
---

 x 
4
---–


2
---

cos– 
2
---cos 

4
---– 

 cos–– 0 1

2
-------– 

 – 1

2
-------= = = =

f x  x2 1+  x2 3+ =

1– 1 

x2 1+  x2 3+  xd
1–

1

 x4 4x2 3+ +  xd
1–

1

 x5

5
----- 4x3

3
-------- 3x+ +

1–

1

= =

1
5
--- 4

3
--- 3+ + 

  1
5
---– 4

3
---– 3– 

 – 136
15
---------= =

F G–

f g–

f x  g x –  xd
a

 b

 F x  G x – 
a
b

F b  G b –  F a  G a – –= =

F b  F a –  G b  G a – + f x  xd
a

 b

 g x  xd
a

 b

–= =

cf x  xd
a

 b

 cF x  
a
b

cF b  cF a –  c F b  F a –  c f x  xd
a

 b

= = = =
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CYU 5.12 If ,  and , then:

     (a) 

     (b) 

CYU 5.13 Barrels produced: 

                 Income: 

CYU 5.14 (a) 

                 (b) 

CYU 5.15 

CYU 5.16 (a) 

                 (b) 

f x  xd
a

 c

 5= f x  xd
c

 b

 3–= g x  xd
a

b

 7=

2f– x  xd
a

 c

 g x  xd
b

a

+ 2 f x  xd
a

 c

– g x  xd
a

 b

– 2 5 – 7 – 17–= = =

f x  xd
a

 b

 2g x  xd
a

b

+ f x  xd
a

 c

 f x  xd
c

 b

 2 g x  xd
a

b

+ + 5 3–  2 7 + + 16= = =

75 t
2500
------------– 

  td
0

30

 75t t2

5000
------------– 

 

0

30

75 30
302

5000
------------ 2250–= =

$ 85 2250  $191,250=

x
5 x2 10– 5
--------------------------- xd

1
2
--- ud

5u5
--------

1
10
------ u 5– ud

1
10
------ u 4–

4–
------- 
  C+ 1

40u4
-----------– C+= = = =

u x2 10–= du 2xdx= xdx 1
2
---du= 1

40 x2 10– 4
------------------------------– C+=

xcos

sin
2
x

------------ xd ud
u2
------ u 2– ud u 1–

1–
------- C+ 1

u
---–= = = = C+ 1

xsin
----------– C+=

u x dusin xdxcos= =

x x 1+ dx u 1– u
1
2
---

ud u
3
2
---

u
1
2
---

– 
  ud u5 2/

5 2
---------- u3 2/

3 2
----------– C+= = =

u x 1+= du dx=

x u 1–=
2 x 1+ 5 2/

5
--------------------------- 2 x 1+ 3 2/

3
---------------------------– C+=

x x2 1– xd
1

2


1
2
--- u

1
2
---

ud
0

1


1
2
--- u3 2/

3 2
----------

0

1

 1
3
--- 13 2/ 0–  1

3
---= = = =

u x2= 1– du 2xdx xdx 1
2
---du= =

x 1 u 0 and x 2 u 1= = = =

x
x2 1+ 2

---------------------- xd
0

1


1
2
--- ud

u2
------

1

2


1
2
--- u 2– ud

1

2


1
2
--- u 1–

1–
-------

1

2

 1
2
--- 1

u
---

1

2

–
1
2
--- 1

2
--- 1

1
---– 

 – 1
4
---= = = = = =

u x2 1+=

du 2xdx=

xdx
1
2
---du=

x 1 u 2= =

x 0 u 1= =
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CYU 5.17

(a)  

(b) 

CYU 5.18   

CYU 5.19

CYU 5.20 

SIGN f x  x2 2x 3–+ x 3+  x 1– := = .    .
3– 1

c                    c+                               +_

.    .
3– 1

                              _
A x2 2x 3–+ xd

3–

1

 x2 2x 3–+  xd
3–

1

–= =

x3

3
----- x2 3x–+ 
 

3–

1

–=

1
3
--- 1 3–+ 
  33–

3
-------- 9 9+ + 
 –– 32

3
------= =

1          2
..

0
. +_

A x2 2x 3–+ xd
0

2

 x2 2x 3–+  xd
0

1

– x2 2x 3–+  xd
1

2

+= =

x3

3
----- x2 3x–+ 
 

0

1

–= x3

3
----- x2 3x–+ 
 

1

2

+

1
3
--- 1 3–+ 
 – 8

3
--- 4 6–+ 
  1

3
--- 1 3–+ 
 –+ 4= =

2
A x 2+  x2–  xd

1–

2

 x2

2
----- 2x x3

3
-----

1–

2

–+= =

x 2+  x2–

1–

y x2=

y x 2+=

x2 x 2 x2 x– 2–+ 0 x 2–  x 1+  0= = =

2 4 8
3
---–+ 

  1
2
--- 2– 1

3
---+ 

 – 9
2
---= =

x 1 2–=

SIGN f x  g x – x4 x2–  x3 x2+ – x4 x3–= = x3 x 1– :=
1– 0          1              3

c      c+                 +_

f x  g x – xd
1–

3

 x4 x3–  xd
1–

0

 x4 x3–  xd
0

1

– x4 x3–  xd
1

3

+=

x5

5
----- x4

4
-----– 

 

1–

0
x5

5
----- x4

4
-----– 

 

0

1

– x5

5
----- x4

4
-----– 

 

1

3

+=

1
5
---– 1

4
---– 

 – 1
5
--- 1

4
---– 

 – 35

5
----- 34

4
-----– 

  1
5
--- 1

4
---– 

 –+ 289
10
---------= =

A

.  .

V  x3 2 xd
1

2

  x6 xd
1

2

  x7

7
-----

1

2

 
 
 

 27

7
----- 1

7
---– 

  127
7

------------= = = = =



CYU SOLUTIONS   A-31
 CYU 5.21 

CYU 5.22 

CYU 5.23

CYU 5.24 

8

2

V  82 x3 2–  xd
0

2

  64x x7

7
-----–

0

2

 
 
  768

7
---------= = =

x3 8=

x 2=

4

3

1      2

2

V 2 x x2– 4+  2–  xd
0

1

 2 x3– 2x+  xd
0

1

= =

2 x4

4
-----– x2+ 

 

0

1
3
2

------= =

Shell:

V  12 yd
2

3

  4 y– 2 yd
3

4

+  x
2
3   4 y–  yd

3

4

+= =

  4y y2

2
-----–

3

4

 
 
 

+ 3
2

------= =

Washer:

y 2 1 x2–=x2 y2+ 1=

A x 

V A x  xd
1–

1

=

x

The main task is to determine the area of an
equilateral triangle with side of length a:

a a
h

answer

6060

A
1
2
---bh

1
2
---ah= =

60sin h
a
---= h 3a

2
----------= A 3a2

4
-------------=

A x  3
4

------- 2 1 x2– 2 3 1 x2– = =

side of length 2 1 x2–

V A x  xd
1–

1

 3 1 x2–  xd
1–

1

 3 x x3

3
-----

1–

1

–
 
 
  4 3

3
----------= = = =So:

Top half of circle: y 1 x2– , bottom half: y 1 x2––= =
So, side of triangle  has length 1 x2– 1 x2––  2 1 x2–=

b a=

L 1 x 1
x
---+ 

   2
+ xd

1

5

 1 1
2x1 2/
------------- 1

x2
-----– 

  2
+ xd

1

5

 1 1
4x
------ 1

x5 2/
---------– 1

x4
-----+ + xd

1

5

= = =
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CYU 5.25 

CYU 5.26

(a) 

(b) 

CYU 5.27 The bag is lifted a total of . Partition that distance in

 pieces. The weight of the bag when lifted through the indicated distance  is
the original weight of 100 pounds minus the weight of sand that leaked out in reach-

ing that height: . So:

If the bag did not have a hole in it, then the work in lifting the bag would be

. If the bag’s weight were constant and equal to its weight of 92

pounds at the end of its journey, then the work would be . Note that W is

the average (mean) of those two extreme situations: .

CYU 5.28 The work required to lift the shaded water-disk is

approximately equal to .

From the two represented similar triangles we have:               

Consequently:

 

y
4 2

3
----------x3 2/ 1–= dy

dx
------ 2 2x1 2/= 1

dy
dx
------ 
  2

+ 1 8x+= 

Then: L 1  
dy
dx
------   

 2+
0

1

 dx 1 8x+
0

1

 dx= =
1
8
--- u1 2/ ud

1

9


1
8
--- 2

3
---u3 2/

1

9

 
 
 

= =

u 1 8x+= du 8dx= dx 1
8
---du= 1

12
------ 93 2/ 1–  13

6
------= =

x 0= u 1 x 1 u 9= = =

1 k
1
2
--- 
  k 2 

lb
ft
----= =force k displacement :=

W f x  xd
0

1 4

 2x xd
0

1 4

 x2
0

1 4 1
16
------ ft-lb= = = =

W f x  xd
1 4

3 4

 2x xd
1 4

3 4

 x2
1 4
3 4 3

4
--- 
  2 1

4
--- 
  2

–
1
2
--- ft-lb= = = = =

x

32

x

4
 ft
sec
------- 8 sec 32 ft=

x x

100 lb
x ft

4 ft sec
-------------------- 
  1

 lb
sec
------- 

 – 100 x
4
---– 

  lb=

W 100 x
4
---– 

  xd
0

32

 100x x2

8
-----–

0

32

100 32 322

8
--------– 3072 ft-lb= = = =

100 32 3200 ft-lb=
92 32 2944 ft-lb=

3200 2944+
2

------------------------------ 3072 ft-lb=

3

1 1

3

1

r

h
x

r
x x

W r2x  1000  9.8  x 1+ =

force distance

1
3
--- r

h
---= r h

3
---= r 3 x–

3
----------- 1 x

3
---–= =

W 1000 9.8  x 1+ r2 xd
0

3

 9800 x 1+  1 x
3
---– 

  2
xd

0

3

= =

9800 x3

9
----- 5x2

9
--------– x

3
--- 1+ + 

  xd
0

3

 9800 x4

36
------ 5x3

27
--------– x2

6
----- x+ +

0

3

 
 
 

17,150 J= = =
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CHAPTER 6: LOGARITHMIC AND EXPONENTIAL FUNCTIONS

CUY 6.1 (a) 

           (b) 

          (c) 

CYU 6.2 (a) 

(b) 

CYU 6.3

CYU 6.4 (a)  

                 (b)

CYU 6.5  

x3 x2ln  x3 x2ln  x2 x3 ln+ x3 1
x2
----- x2  x2 3x2 ln+= =

x3 2x
x2
------ 
  3x2 x2ln+ 2x2 3x2 x2ln+= =

xtan
2xln

----------- 
   2x xtan  x 2xln tan–ln

2xln 2
-----------------------------------------------------------------

2x sec
2
x  x

2
2x
------ 
 tan–ln

2xln 2
-----------------------------------------------------------= =

2x sec
2
x  xtan

x
----------–ln

2xln 2
----------------------------------------------- xsec

2
x 2x xtan–ln

x 2xln 2
---------------------------------------------= =

xln ln  1
xln

-------- xln  1
xln

-------- 1
x
--- 
  1

x xln
-----------= = =

7
5x 2+
--------------- xd

7
5
--- 1

u
--- ud

7
5
--- u C+ln

7
5
--- 5x 2+ C+ln= = =

u 5x 2+= du 5dx dx 1
5
---du= =

xd
x xln
-----------

e

5

 ud
u
------

1

5ln

 uln
1

5ln
5lnln 1ln– 5ln  0–ln 5ln ln= = = = =

u xln du dx
x

------= =

x e u eln 1 x 5 u 5ln= = = = =

x
y
--ln xy 1–ln x y 1–ln+ln x yln–ln= = =

Theorem 6.4(a)     Theorem 6.4(c)

xcot xd
xcos
xsin

----------- xd
1
u
--- ud u C+ln xsin C+ln xcsc  1– C+ln= = = = =

xcsc 1–ln C+=

xcsc C+ln–=
u xsin=

du xdxcos=

xcsc xd xcsc
xcsc xcot+
xcsc xcot+

---------------------------- xd=

csc
2
x x xcotcsc+

xcsc xcot+
------------------------------------------ xd ud

u
------– u C+ln– xcsc xcot+ C+ln–= = = =

u x xcot+csc=

du x xcotcsc csc
2
x+ dx–=

V  1

x
------ 1+ 
  2

12– xd
1

e

  1
x
--- 2

x
------+ 

  xd
1

e

  xln 4 x+ 
1

e
= = =

 eln 4 e+  1ln 4+ – =

 1 4 e+  0 4+ – =

 4 e 3– =
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CYU 6.6 If , then:

 

     Since : . So: .

CYU 6.7 (a) 

(b) 

              (c) 

CYU 6.8 (a) 

(b) 

CYU 6.9 Since the exponential function only assumes positive values, the function
 also assumes only positive values. We also know that the graph of f  has

y-intercept . Turning to the calculus we find that:

               
                  

               

f  x  1
2x 1+
--------------- 2x 1+ +=

f x  1
2x 1+
--------------- 2x 1+ + 
  xd

1
2
--- 2x 1+ln x2 x C+ + += =

f 0  1= 1
1
2
--- 2 0 1+ln 02 0 C+ + + C= = f x  1

2
--- 2x 1+ln x2 x 1+ + +=

ex

xln
-------- 1+ 
   x ex ln ex xln –

xln 2
----------------------------------------------= 0+

x exln ex

x
----–

xln 2
---------------------------- xex xln ex–

x xln 2
---------------------------= =

ex x x 1–ln 

x xln 2
------------------------------=

xex  xex 
1
2
---  1

2
--- xex 

1
2
---–

xex  1
2 xex 1 2/
----------------------- xex ex+ = = =

ex x 1+ 
2x1 2/ ex 1 2/
------------------------------ ex x 1+ 

2 x
--------------------------= =

xe x  x e x = e x x + x e x x   e x+ xe x

2 x
----------- e x+

1
2
---e

x
x 2+ = = =

ex exsin xd usin ud u C+cos– excos– C+= = =

u ex= du exdx=

xe xsin xdcos
0



 e u ud
0

0

 0= =

u xsin= du xdxcos=

x 0= u 0sin 0 x = u sin 0= == =

f x  ex2 1–=

f 0  e0 1– 1
e
---= =

f  x  ex2 1–  ex2 1– x2 1–  2xex2 1–     SIGN f := = = .c_ +

note that ex2 1–  is always positive

     dec                  inc             

min
0

f x  2xex2 1–  2 x ex2 1–  ex2 1– x +  2 x ex2 1– 2x  ex2 1–+ = = =
always positive

concave up
2ex2 1– 2x2 1+ =
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                         Taking the above into account: 

CYU 6.10  By Theorem 6.4(b), page 226: . 

In addition: . Since  and since the natural logarith-

mic function is one-to-one: .

CYU 6.11 We begin with the exponential decay formula . Since the substance

loses  of its mass in four days,  of the initial amount  will be present when

:

Here, then, is the specific exponential formula for the substance at hand:

. To find the time it will take for the substance to decay to 

of its original mass we solve the following equation for t:

 

CYU 6.12 We consider the exponential growth formula . Since the population

increases from 500 to  in 9 years, we have:

      To find the time it will take for the population to triple we solve the following equation for t:

    

1

.
f x  ex2 1–=

1
e
---

1

x

y

ea

eb
----- 
 ln ea ebln–ln a b–= =

ea b–ln a b–=
ea

eb
----- 
 ln ea b–ln=

ea

eb
----- ea b–=

A t  A0ekt =
1
3
--- 2

3
--- A0

t 4=

2
3
---A0 A0e4k= e4k 2

3
---= 4k 2

3
---ln= k 2 3 ln

4
--------------------=

A t  A0e
2 3 ln
4

-------------------- t
   = 1

10
------

A0

10
------ A0e

2 3 ln
4

-------------------- t
=

1
10
------ e

2 3 ln
4

-------------------- t
= 1

10
------ln 2 3 ln

4
-------------------- t= t 4 1 10 ln

2 3 ln
-------------------------- 22.7 days=

A t  A0ekt =

500
15
100
--------- 500+ 575=

575 500e9k= e9k 23
20
------= 9k 23

20
------ln= k 23 20 ln

9
--------------------------=

1500 500e
23 20 ln

9
-------------------------- t

=

3 e
23 20 ln

9
-------------------------- t

= 3ln 23 20 ln
9

-------------------------- t= t 9 3ln
23 20 ln

-------------------------- 70.75 years=
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CYU 6.13  

CYU 6.14  

CYU 6.15 (a)                                     

(b) 

CYU 6.16 (a) Since  and since  [Theorem

6.10(a)], and since the function  is one-to-one: .

(b) Since  and since , and since the function  is

one-to-one: .

CYU 6.17 (a)

                  (b) 

CYU 6.18

f  x  xe 1+  e 1+ xe 1 1–+ e 1+ xe= = =

f x  e 1+ xe  e 1+ exe 1– e2 e+ xe 1–= = =

x xsin  e x xlnsin  e x xlnsin x xlnsin  x xsin xsin
x

---------- x xcosln+= = =

x xsin

2 x

x
-------- xd 2 2u ud 2

2u

2ln
-------- C+ 2u 1+

2ln
------------ C+ 2 x 1+

2ln
--------------- C+= = = =

u x= du 1

2 x
----------dx

dx

x
------ 2du= =

5 xln

x
---------

1

e

 dx 5u ud
0

1

 5u

5ln
--------

0

1
1
5ln

-------- 51 50–  4
5ln

--------= = = =

u x duln dx
x

------= =

x 1 xln 1 ln 0 x e xln eln 1= = = = = =

alogaxy xy= xy alogaxalogay alogax logay+= =

ax logaxy logax logay+=

aloga x y  x
y
--= x

y
-- alogax

alogay
------------ alogax logay–= = ax

loga
x
y
-- logax logay–=

log3x2  1
3 x2ln

------------------ x2  2x
3 x2ln

------------------ 2
x 3ln
-----------= = =

log5x sin  1
2
--- log5x sin  1 2/– log5x sin =

1

2 log5x sin
--------------------------------- log5x  log5x cos

log5x cos

2 log5x sin
--------------------------------- 1

x 5ln
-----------= =

cos
1–
x cos  x cos

1–
x  cos

1–
x sin– 1= =

cos
1–
x  1

cos
1–
x sin

----------------------------      (*)–=

First:
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CYU 6.19 (a) Since the domain of  is , the domain of  is

. Applying the (increasing) function  we arrive at the domain of f:

.

Employing the chain rule we have: . 

In order for  to be defined we must have:

  

Conclusion:  is the domain of 

(b) Since the domain of  is , the domain of  consists of

those x’s for which , which is to say [see Figure 6.6(b)]: .

Employing the chain rule we have: . 

In order for  to be defined we must have: .

Conclusion:  is the domain of  

CYU 6.20 (a)

(b)

sin
2

cos
1–
x  cos

2
cos

1–
x + 1=

sin
2

cos
1–
x  1 cos cos

1–
x  2

–=

sin
2

cos
1–
x  1 cos cos

1–
x  2

–=

cos
1–
x sin 1 x2–=

Then:

cos
1–
x  1

cos
1–
x sin

----------------------------– 1

1 x2–
------------------–= =

(*)

Finally:

cos
1–
x 1 x 1 – f x  cos

1–
xln =

1 xln 1 – ex

e 1– x e 

cos
1–

xln   1

1 xln 2–
----------------------------–

1
x
---=

1

1 xln 2–
---------------------------- 1

x
---

1 xln 2– 0 and  x 0

xln 2 1
1 x 1ln–

e 1– x e 
1
e
--- e 
  cos

1–
xln  

xln x 0 g x  tan
1–
x ln=

tan
1–
x 0 0  

tan
1–
x ln  1

tan
1–
x

--------------- 1
1 x2+
--------------=

1

tan
1–
x

--------------- 1
1 x2+
-------------- tan

1–
x 0

0   tan
1–
x ln 

1
x2 1+
-------------- xd

0

1
 tan

1–
x

0
1

tan
1–
1 tan

1–
0– 

4
--- 0– 

4
---= = = =

xd

1 2x 1+ 2–
------------------------------------

1
2
--- ud

1 u2–
------------------

1
2
---sin

1–
u C+

1
2
---sin

1–
2x 1+  C+= = =

u 2x 1+=

du 2dx=
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CHAPTER 7: TECHNIQUES OF INTEGRATION

CYU 7.1 :  

                   Then: 

CYU 7.2 (a) 

   (b) 

CYU 7.3 : 

Now: : 

        Returning to (*):

 

x xcos xd u x=

du dx=

dv x dxcos=

v xsin=

x xcos xd uv v ud– x x xsin xd–sin x x x C+cos+sin= = =

x 2x2 1+ ln xd
0

1


1
4
--- uln ud

1

3


1
4
--- u uln u– 

1
3  1

4
--- 3 3ln 3–  1 1 1–ln – = = =

u 2x2 1+=

du 4xdx=

1
4
--- 3 3 3–ln 0 1– – =

3
4
--- 3 1

2
---–ln=

x 0 u 1= =

x 1 u 3= =
Theorem 7.1

u tan
1–
x=

du
1

1 x2+
--------------dx=

dv dx=

v x=

tan
1–
x x:d

tan
1–
x xd uv v ud– xtan

1–
x

x
1 x2+
-------------- xd–= =

u 1 x2+=

du 2xdx=

xtan
1–
x

1
2
--- ud

u
------– xtan

1–
x

1
2
--- u C+ln–= =

xtan
1–
x

1
2
--- 1 x2+  C+ln–=

So:

ex x xdcos u ex=

du exdx=

dv x dxcos=

v xsin=

ex xcos xd uv v ud– ex x ex xsin xd–sin= = (*)So:

ex xsin xd u ex=

du exdx=

dv xsin dx=

v xcos–=

ex xsin xd uv v ud– ex xcos–  ex xcos–  xd– ex x ex xcos xd+cos–= = =So:

ex xcos xd ex x ex x ex xcos xd+cos– –sin ex xsin xcos+  ex xcos xd–= =

2 ex xcos xd ex xsin xcos+  C ex xcos xd+
1
2
---ex xsin xcos+  C+= =
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CYU 7.4 Since  (See CYU 7.1): 

    

CYU 7.5

CYU 7.6

CYU 7.7 Referring to Figure 7.1 we have:

CYU 7.8

x xcos xd x x x C+cos+sin=

x xcos xd
0


2
---

 x xsin xcos+ 
0


2
--- 

2
--- 

2
---sin 

2
---cos+ 

  0 0sin 0cos+ – 
2
--- 1–= = =

sin
3
x xd

xcos
3

-----------sin
2
x–

2
3
--- xsin xd+

1
3
--- xsin

2
x

2
3
--- x C+cos–cos–= =

Theorem 7.2

xd

x2 3x– 9
4
---+ 

 – 9
4
---+

--------------------------------------------------- xd
9
4
--- x 3

2
---– 

  2–
------------------------------------=xd

3x x2–
--------------------- =

xd

9
4
--- 1

x 3
2
---– 

  2

9
4
---

--------------------–

---------------------------------------------   1  
3
2
---

------------ xd

1
x 3

2
---–

3
2
---

-----------

 
 
 
 
  2

–

------------------------------------= =

2
3
--- xd

1
2
3
---x 1– 
  2

–
---------------------------------------=

2
3
--- 3

2
---

ud

1 u2–
-------------------=

sin
1–
u C+ sin

1– 2
3
---x 1– 
  C+= =

u
2
3
---x 1–=

du
2
3
---dx=

xd

1 x2–
------------------ sin

1–
x C+=

we set our sights on turning the 
9
4
--- into a 1

since:

x 4–
x 3–  2x 1+ 2 x2 5+ 2

-------------------------------------------------------------- A
x 3–
----------- B

2x 1+
--------------- C

2x 1+ 2
---------------------- Dx E+

x2 5+
----------------- Fx G+

x2 5+ 2
----------------------+ + + +=

(ii) of Figure 7.1 (v) of Figure 7.1

1
x x2 x 1+ + 
------------------------------- A

x
--- Bx C+

x2 x 1+ +
-----------------------+=

1 A x2 x 1+ +  Bx C+ x+= (*)

Evaluate at x 0 (only A survives:)  1 A= =

Equate the coefficients of x2: 0 A B 0+ 1 B B+ 1–= = =

1 0x2 0x 1+ +=

While it is easy to spot the constant coefficient on the right side of (*) 
it will give us nothing new; namely 1 A.  So:=

Equate the coefficients of x: 0 A C 0+ 1 C C+ 1–= = =

Conclusion:  1
x x2 x 1+ + 
------------------------------- A

x
--- Bx C+

x2 x 1+ +
-----------------------+=

:

1
x
--- x– 1–

x2 x 1+ +
-----------------------+ 1

x
--- x 1+

x2 x 1+ +
-----------------------–= =
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CYU 7.9

To evaluate , we first set our sights on getting  in the numerator:

Continuing the good fight:

                    

Putting it all together we have:

CYU 7.10

xd
x x2 x 1+ + 
------------------------------- 1

x
--- x 1+

x2 x 1+ +
-----------------------– 

  xd xd
x
-----

x 1+
x2 x 1+ +
----------------------- xd– x

x 1+
x2 x 1+ +
----------------------- xd–ln= = =

See the above “Conclusion”

x 1+
x2 x 1+ +
----------------------- xd 2x 1+

x 1+
x2 x 1+ +
----------------------- xd

1
2
--- 2x 2+

x2 x 1+ +
----------------------- xd

1
2
--- 2x 1+  1+

x2 x 1+ +
----------------------------- xd= =

1
2
--- 2x 1+

x2 x 1+ +
----------------------- xd

1
2
--- xd

x2 x 1+ +
-----------------------+=

(*)                         (**)

1
2
--- 2x 1+

x2 x 1+ +
----------------------- xd

1
2
--- ud

u
------

1
2
--- u C+ln

1
2
--- x2 x 1+ +  C+ln= = =

u x2 x 1 du+ + 2x 1+ dx= = note that x2 x 1 0 for all x+ +

(*):

1
2
--- xd

x2 x 1+ +
-----------------------

1
2
--- xd

x2 x 1
4
---+ + 

  1 1
4
---–+

------------------------------------------------
1
2
--- xd

x 1
2
---+ 

  2 3
4
---+

-----------------------------= =

1
2
--- xd

3
4
--- 4

3
--- x 1

2
---+ 

  2
1+ 

 
-----------------------------------------------=

2
3
--- xd

2

3
-------x 1

3
-------+ 

  2
1+

-----------------------------------------=

xd
1 x2+
-------------- tan

1–
x C+=

w
ant

2
3
--- 3

2
------- ud

u2 1+
-------------- 1

3
-------tan

1–
u C+= =

1

3
-------tan

1– 2

3
-------x 1

3
-------+ 

  C+=

u
2

3
-------x 1

3
-------+ du 2

3
-------dx:= =

so pull out
3
4
---

(**):

xd
x x2 x 1+ + 
------------------------------- x

1
2
--- x2 x 1+ +  1

3
-------tan

1– 2

3
-------x 1

3
-------+ 

  C+–ln–ln=

2x2 4x– 3+
x2 4x– 4+

----------------------------- xd 2 4x 5–
x2 4x– 4+
--------------------------+ 

  xd=
x2 4x– 4  2x2 4x– 3++

2

2x2 8x– 8+
4x 5–-:

2 x
4x 5–
x 2– 2

------------------- xd+d 2x
4x 5–
x 2– 2

------------------- xd+= =
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                Turning to :  

               So: 

              Hence: 

CYU 7.11 (a) 

             (b) 

4x 5–
x 2– 2

------------------- xd 4x 5–
x 2– 2

------------------- A
x 2–
----------- B

x 2– 2
-------------------+=

4x 5– A x 2–  B+=

x 2:   8 5– B B 3= = =

equating x-coefficient: A 4=

4x 5–
x 2– 2

------------------- xd
4

x 2–
----------- xd

3
x 2– 2

------------------- xd+ 4 x 2– 3
x 2–
-----------– C+ln= =

u x 2–=

du dx=
3 ud

u2
------ 3 u 2– ud 3

u
---– C+= = =

2x2 4x– 3+
x2 4x– 4+

----------------------------- xd 2x
4x 5–
x 2– 2

------------------- xd+ 2x 4 x 2– 3
x 2–
-----------– C+ln+= =

cos
3

0


2
---

 xdx xcoscos
2

0


2
---

 xdx x 1 sin
2
x– cos xd

0


2
---

= =

xcos xd
0


2
---

 x sin
2
x cos xd

0


2
---

–=

x
0


2
---

sin u2 ud
0

1

–=


2
---sin 0sin– 

  u3

3
-----

0

1

– 1 0–  1
3
--- 0– 
 – 2

3
---= = =

u x dusin xdxcos= =

0sin 0 
2
---sin 1= =

sin
3
xcos

2
x xd sinxsin

2
xcos

2
x xd sinx 1 cos

2
x– cos

2
x xd= =

xcos
2
xsin x xcos

4
xsin xd–d=

u2 u u4 ud+d– u3

3
-----– u5

5
----- C+ += =

cos
3
x

3
-------------– cos

5
x

5
------------- C+ +=

u xcos=

du xdxsin–=
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CYU 7.12 (a)

              (b) 

CYU 7.13

sin
4

0


2
---

 xdx sin
2
x 

2

0


2
---

 dx
1 2xcos–

2
----------------------- 
  2

0


2
---

 dx= =

1
4
--- 2 2cos x

4
------------------– cos

2
2x

4
----------------+ 

  xd
0


2
---

=

xd
4
-----

0


2
---


1
2
--- 2xcos x

1
4
--- cos

2
2x xd

0


2
---

+d
0


2
---

–=

x
4
--- 2xsin

4
-------------– 

 

0


2
---

1
4
--- 1 4xcos+

2
------------------------ xd

0


2
---

+=


8
--- 0– 
 =

1
8
--- x 4xsin

4
-------------+ 

 

0


2
---

+


8
---

1
8
--- 

2
--- 0+ 
 + 3

16
------= =

xsin
2
x2cos

2
x2 xd

1
2
--- sin

2
ucos

2
u ud

1
2
--- 1

8
---u

1
32
------ 4usin– C+ 

  x2

16
------ 4x2sin

64
----------------– C+= = =

u x2=

du 2xdx=
Example 7.11(b) 

xtan  3 2– sec
4
x xd xtan  3 2– 1 tan

2
x+ sec

2
x xd=

xtan  3 2– sec
2
x xtan 1 2 sec

2
x+  xd=

u 3 2– u1 2/+  ud 2u 1 2/––
2
3
---u3 2/ C+ += =

2

xtan
--------------- 2 xtan  3 2

3
------------------------- C+ +–=

u xtan=

du sec
2
xdx=
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CYU 7.14

CYU 7.15 

        

9 x2–
x2

------------------ xd
9 9sin

2–

9sin
2

-----------------------------3 cos d
9cos

2

9sin
2

---------------------3 cos d= =

3 cos

9sin
2

----------------3 cos d=

cot
2 d=

csc
2 1–  d=

 – C+cot–=

9 x2–
x

------------------– sin
1– x

3
--- 
 – C+=

1 sin
2– cos

2=

x 3 sin=

dx 3 dcos=

sin
2 cos

2+ 1 cot
2 csc

2 1:–= =


x

3

9 x2–

and   sin
1– x

3
--- 
  :=

x3

x2 4+
------------------ xd

8tan
3

4tan
2 4+

------------------------------2sec
2d

16sec
2tan

3

4sec
2

--------------------------------- d= =

8 tan
3 dsec=

8 tan
2   dtansec=

8 sec
2 1–   tansec d=

8 u2 1–  ud=

x 2 tan=

dx 2sec
2d=

8 u3

3
----- u– 
  C+=

8 sec
3

3
------------- sec– 
  C+=

8

x2 4+
2

------------------ 
 

3

3
--------------------------- x2 4+

2
------------------– C+=

x2 4+ x2 4+ 
3

-------------------------------------- 4 x2 4+– C+=

x2 8–  x2 4+
3

-------------------------------------- C+=


x

2

x2 4+

u sec=

du  dtansec=
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CYU 7.16  

          Then: 

And: 

             Returning to (*): 

CHAPTER 8: L’Hôpital’s Rule AND IMPROPER INTEGRALS

CYU 8.1 (a)

(b)

(c)

6x 11+
3x2 2x 1+ +
------------------------------ xd

6x 2+  9+
3x2 2x 1+ +
------------------------------ xd

6x 2+
3x2 2x 1+ +
------------------------------ x 9 xd

3x2 2x 1+ +
------------------------------+d= =

noting that 3x2 2x 1+ +  6x 2+=

(*)

6x 2+
3x2 2x 1+ +
------------------------------ xd ud

u
------ u C+ln 3x2 2x 1+ +  C+ln= = =

never negative

xd
3x2 2x 1+ +
------------------------------

1
3
--- xd

x2 2
3
---x 1

3
---+ +

--------------------------
1
3
--- xd

x2 2
3
---x 1

9
---+ +  1

3
--- 1

9
---–+

-------------------------------------------------
1
3
--- xd

x 1
3
---+ 2 2

9
---+

----------------------------= = =

 1 3 
2 9

-------------- xd
3

2
-------x 1

2
-------+ 

  2
1+

---------------------------------------=

3
2
--- 2

3
------- ud

u2 1+
--------------=

1

2
-------tan

1–
u C+=

1

2
-------tan

1– 3x 1+

2
--------------- 
  C+=

u
3

2
-------x 1

2
-------+=

du
3

2
-------dx=

completing the square method

motivated by the 1 in the formula xd
1 x2+
-------------- tan

1–
x C:+=

6x 11+
3x2 2x 1+ +
------------------------------ xd 3x2 2x 1+ + ln

9

2
-------tan

1– 3x 1+

2
--------------- 
  C+ +=

8 x+ 
1
3
---

2–
x

----------------------------
x 0
lim

8 x+ 
1
3
---

2–


x
-----------------------------------

x 0
lim

1
3
--- 8 x+ 

2
3
---–

1
-------------------------

x 0
lim

1
3
--- 8

2
3
---–

 1
12
------= = = =

3x 3– tan
2x 2– sin

----------------------------
x 1
lim 3x 3– tan 

2x 2– sin 
----------------------------------

x 1
lim sec

2
3x 3–  3
2x 2–  2cos

-------------------------------------
x 1
lim 1 3 

1 2 
----------- 3

2
---= = = =

x 1 2/–

x 1 2/– tan
-------------------------

x 
lim x 1 2/– 

x 1 2/– tan 
-------------------------------

x 
lim

1
2
---x 3 2/––

sec
2

x 1 2/–  1
2
---x 3 2/–– 

 
----------------------------------------------------

x 
lim= =

1

sec
2

x 1 2/– 
---------------------------

x 
lim 1= =
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CYU 8.2

CYU 8.3

CYU 8.4 (a)

(b)

CYU 8.5 (a)

(b) 

1 2xcos–
5x2

-----------------------
x 0
lim 1 2xcos– 

5x2 
------------------------------

x 0
lim 2x 2sin

10x
---------------------

x 0
lim 2xsin

5x
-------------

x 0
lim= = =

2xsin 
5x 

--------------------
x 0
lim 2cos x 2

5
----------------------

x 0
lim 2

5
---= = =

xtan
x2

----------
x 0–
lim xtan 

x2 
-----------------

x 0–
lim sec

2
x

2x
-------------

x 0–
lim –= = =

1

0 (from the left)

5x2 1+
x2 3–

-----------------
x 
lim 5x2 1+ 

x2 3– 
------------------------

x 
lim 10x

2x
---------

x 
lim 5

x 
lim 5= = = =

1 x
x– ln

----------------
x 0–
lim x 1– 

x– ln 
-----------------------

x 0–
lim

1
x2
-----–

1
x
---

--------
x 0–
lim 1

x
---–

x 0–
lim = = = =

1 xtan+  2xsec 
x 

4
---–

lim
1 xtan+

2xcos
--------------------

x 
4
---–

lim 1 xtan+ 
2xcos 

---------------------------
x 

4
---–

lim= =

sec
2
x

2 2xsin–
--------------------

x 
4
---–

lim 2 2

2 1– –
----------------- 1= = =

1
x
--- 1

xtan
----------– 

 
x 0
lim x x–tan

x xtan
-------------------

x 0
lim x x–tan 

x xtan 
--------------------------

x 0
lim= =

sec
2
x 1–

xsec
2
x xtan+

---------------------------------
x 0
lim=

1 cos
2
x–

x x xcossin+
-------------------------------

x 0
lim=

1 cos
2
x– 

x x xcossin+ 
--------------------------------------

x 0
lim=

2 x xsincos

1 sin
2
x– cos

2
x+ +

---------------------------------------------------
x 0
lim 0

2
--- 0= = =

multiply by 
cos

2
x

cos
2
x

-------------:
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CYU 8.6 (a) To determine  we set our sights on finding :

Then: 

(b) To determine , we set our sights on finding :

Then: 

CYU 8.7  Noting that: 

We have: 

Invoking l’Hôpital’s rule: 

Conclusion:  converges, with .

ex 1+ 
2
x
---–

x 
lim ex 1+ 

2
x
---–

ln
x 
lim

ex 1+ 
2
x
---–

ln
x 
lim

2
x
--- ex 1+ ln–

x 
lim 2 ex 1+ ln

x
------------------------

x 
lim–= =

2 ex 1+ ln 
x

-------------------------------
x 
lim–=

2 ex

ex 1+
--------------

x 
lim–=

2 ex 
ex 1+ 

---------------------
x 
lim– 2– ex

ex
----

x 
lim 2–= = =

ex 1+ 
2
x
---–

x 
lim e

ex 1+ 
2
x
---–

ln
x 
lim

e 2– 1
e2
-----= = =

xcos 
1
x
---

x 0
lim xcos 1 x/ln

x 0
lim

xcos 1 x/ln
x 0
lim

1
x
--- xcos ln

x 0
lim xcos ln 

x
----------------------------

x 0
lim xtan–

1
--------------

x 0
lim 0= = = =

xcos 
1
x
---

x 0
lim e

xcos 1 x/ln
x 0
lim

e0 1= = =

xe x– xd xe x–– e x– xd+ xe x–– e x–– C+= =

u x=

du dx=

dv e x– dx=

v e x––=

xe x– xd
0



 xe x– xd
0

t

t 
lim xe x–– e x–– 

0

t

t 
lim= =

te t–– e t–– 1+ 
t 
lim=

t
et
---- 1

et
----

t 
lim–

t 
lim– 1+ t

et
----

t 
lim– 1+= =

0

t
et
----

x 
lim t

et 
----------

x 
lim 1

et
----

x 
lim 0= = =

xe x– xd
0



 xe x– xd
0



 1=
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CYU 8.8 Revolving the indicated adjacent region about the x-axis we have:                  

CYU 8.9 By Theorem 8.3:

(a) In order for  to converge, both p and q must be greater than 1.

(b) In order for  to converge,  must be greater than 1.

(c) In order for  to converge,  must be greater than 1

CYU 8.10 (a) . 

The integral diverges.

(b)

The integral converges.

1

f x  1
x
---=

Infinite areaV  1
x
--- 
  2

xd
1

t

t 
lim  x 1–– 

1

t

t 
lim  1

t
---– 1+ 

 
t 
lim = = = =

1
xp
----- 1

xq
-----+ 

  xd
1




1
xp
----- 1

xq
----- 

  xd
1




1

xp q+
------------ 
  xd

1



= p q+

1 xp
1 xq
------------ xd

1




1

xp q–
----------- 
  xd

1



= p q–

xd
x 3– 2

-------------------
1

3

 xd
x 3– 2

-------------------
1

t

t 3–
lim x 3–  1––

t 3–
lim

1

t 1
t 3–
---------- 1

2
---+ 

 
t 3–
lim– = = = =

xd
x 1+ 1 5/

-----------------------
3–

2

 xd
x 1+ 1 5/

-----------------------
3–

t

t 1––
lim xd

x 1+ 1 5/
-----------------------

t

2

t 1+–
lim+=

5
4
--- x 1+ 4 5/

3–

t
5
4
--- x 1+ 4 5/

t

2

t 1+–
lim+

t 1––
lim=

5
4
--- t 1+ 4 5/ 2– 4 5/–  5

4
--- 34 5/ t 1+ 4 5/– 

t 1+–
lim+

t 1––
lim=

5
4
--- 2– 4 5/ 34 5/+ =
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CHAPTER 9: SEQUENCES AND SERIES

CYU 9.1 Let . We show :

                    For given , let . Then: .

CYU 9.2 (a-i) Let   be given. We want to find N such that 

From the above, we see that if N is any integer greater than or equal to , then

.

(a-ii) If , then . It follows, from (i), that  is

the smallest integer for which . 

(a-iii) If , then . It follows, from (i) that

 is the smallest integer for which . 

(b) For given : .  

(c) (One possible answer) The sequence  diverges,

while  converges to 1.

CYU 9.3 (a) Suppose, to the contrary, that . For , let N be such that

 and . 

It follows that :  — a contradiction.

(b) (One possible answer)  and :  and

.  

cn  c c c c     = cn
n 
lim c=

 0 N 1= n N cn c– c c– 0 = =

 0 n N 7 101
n

---------– 
  7– 

101
n

---------  n
101


---------

101


---------

n N 7 101
n

---------– 
  7– 

 1
10
------= 101


---------   101  

1
10
------

--------------- 1010= = N 1010=

n N 7 101
n

---------– 
  7–

1
10
------

 1
100
---------= 101


---------   101  

1
100
---------

--------------- 10,100= =

N 10,100= n N 7 101
n

---------– 
  7–

1
100
---------

 0 an 0–  an  an 0– 

an  1 1 1 1 1 1 – – – =

an  1 1 1 1 1 1    =

A B  B A–
2

-------------=

n N an A–  n N bn B– 

aN 1+ bN 1+
B                     A

(                )(                ).      .   

aN 1+bN 1+

an  0 0 0    = bn  1 1
2
--- 1

3
---    = an bn

lim an lim bn 0= =



CYU SOLUTIONS   A-49
CYU 9.4  Since  (Example 9.1), and since both the square root and the logarith-

mic function are continuous on , we have:

(a)     

(b) 

CYU 9.5 (a) For : From Example 8.6(a), page 306: . Consequently:

.

(b) For : . Applying l’Hôpital’s rule to the indeter-

minate form  we have:

 

It follows that .

CYU 9.6 (a-i)         (a-ii) 

               (b) For :  (for ).

CYU 9.7 Assume that . Taking  in Definition 9.1, we choose N such that

. Then:  for ; which, in turn, implies that

 for . It follows that  is a

bound for . 

CYU 9.8 (One possible answer) .
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CYU 9.9 If  then  and the sequence  diverges. If , then

 diverges (Exercise 63). If , then 
converges (CYU 9.1). 

The above facts, and Theorem 9.7, tell us that  converges if and only if 

CYU 9.10 For  we have:

(a) .

(b) .

(c) . The series converges and its sum is 1.

CYU 9.11 (a) We first mold  into the form of Theorem 9.9  and then go

on from there: 

 (b)  

CYU 9.12 From Example 9.7(c): . Also .

Thus: .

r 1 rn

n 
lim = rn  r 1–=

rn n 1=


1– 1 1 1  –  = r 1= rn  1 1 1   =

rn  1 r 1–

1
n
--- 1

n 1+
------------– 

 

n 1=





s4 1 1
2
---– 

  1
2
--- 1

3
---– 

  1
3
--- 1

4
---– 

  1
4
--- 1

5
---– 

 + + + 1 1
5
---– 4

5
---= = =

sn 1 1
2
---– 

  1
2
--- 1

3
---– 

  1
3
--- 1

4
---– 

   1
n 1–
------------ 1

n
---– 

  1
n
--- 1

n 1+
------------– 

 + + + + + 1 1
n 1+
------------–= =

1
n
--- 1

n 1+
------------– 

 

n 1=



 sn
n 
lim 1 1

n 1+
------------– 

 
n 
lim 1= = =

1– n 2
3n
-----

n 1=



 arn 1–

n 1=





1– n 2
3n
-----

n 1=



 2
3
---– 

  1
3
---– 

  n 1–

n 1=




2
3
---–

1 1
3
---– 

 –

-------------------- 1
2
---–= = =

ar n 1–

n 1=



 a
1 r–
-----------=

0.232323 0.23 0.0023 0.000023 + + +=

23
1

100
--------- 
  23

1
100
--------- 
  2

23
1

100
--------- 
  3

+ + +=

23
100
--------- 1

100
--------- 
  n 1–

n 1=




23
100
---------

1 1
100
---------–

------------------ 23
99
------= = =

1
3n
-----

n 1=



 1
2
---= 1

2n
-----

n 1=




1
2
--- 1

2
--- 
  n 1–

n 1=




1
2
---

1 1
2
---–

------------ 1= = =

2
3n
----- 3

2n
-----+

n 1=



 2 1
3n
-----

n 1=



 3 1
2n
-----

n 1=



+ 2
1
2
--- 
  3 1 + 4= = =



CYU SOLUTIONS   A-51
CYU 9.13 (a) Theorem 9.11 assures us that the alternating series  converges:

, and . Indeed, we were able to show in

CYU 9.11(a) that .

(b) For  we have:

 .

  To see that the condition  is satisfied we consider the derivative of the

function : . 

Noting that the denominator  is never negative and that the numerator has

zeros at , we find that f is

decreasing to the right of : . It follows that

 for all n. Thus the series converges by the Alternating Series Theorem.

CYU 9.14 (a)  satisfies the conditions of Theorem 9.11: 

, and .

(b) You can easily verify that . It follows, from Theorem 9.12, that: 

Noting that , we conclude that, to within three

decimal places: .
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CYU 9.15  As  and decreasing for , the Integral Test applies:

Since ,

 diverges.

CYU 9.16 (a) Since  and since  converges,  converges, by the Com-

parison Test.

(b) Since  and since  is a divergent p-series ( ),

 diverges.

CYU 9.17 (a) As : . Knowing that the geometric series 

converges we anticipate that  will do the same. Let’s make sure: 

                                    

Conclusion:  converges, by the Limit Comparison Test. 

(b) As : . Knowing that the harmonic

series  diverges we anticipate that  will do the same, and it does:
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Conclusion:  diverges, by the Limit Comparison Test.

 CYU 9.18 (a) Assume that . Let N be such that  for

. Since  for ,  and  diverges, by the Diver-

gence Test. 

(b) For the divergent series : .

     For the convergent series : .

CYU 9.19 (a) For : Since , 

 converges, by the Ratio Test.
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(b) For : Since

 

 diverges, by the Ratio Test.

CYU 9.20  (a) Assume that , and let  be small enough so that . Since

, we can choose N such that  or  for .

Since , the geometric series  diverges. By the Comparison

Test, so must , since eventually . 

If , then , and the series diverges by the Divergence Test.

(b) 

(c) Both  [see (b)].  converges while 

diverges.

CYU 9.21  (a) Applying the Root Test we find that  diverges:

(b) Applying the Root Test we find that  converges:
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CYU 9.22  (a) Since , if we can show that  converges, it will then follow that

 converges absolutely; and we can, via the Ratio Test:

(b) We could apply the Ratio Test to  to show that  fails to converge

absolutely. That conclusion, however, follows directly from the fact that 

does not even converge conditionally by the Divergence Test:

CYU 9.23  (a) Observe that the absolute value of each element in the two series composed of the
positive and the negative terms of the given series

            

are elements of the converging p-series . As such both of those positive series

converge. Employing Theorem 9.20 we conclude that the given series converges abso-
lutely, and therefore converges.

(b) The series of positive terms of  is the

convergent p-series . The series of negative terms  diverges (negative of

the harmonic series). That being the case, Theorem 9.20, is of no help to us; but Theo-
rem 9.10, page 336, which tells us that if  and  converge then so must

 converge can save the day. How? like this:

Assume that the given series which we will now label  converges.

Since the series  converges, their difference 

would have to converge. But it doesn’t since . 

Conclusion: the given series diverges.
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CYU 9.24  (a) Since, for :

the series  diverges, by the Ratio Test. 

(b) Since, for :

the series  converges absolutely by the Ratio Test, and therefore converges.

CYU 9.25 Consider: (i)    and      (ii) . Start with  and

add enough of the terms of (i) to arrive at a sum . Add  to  along with

enough of the remaining terms of (i) to arrive at a sum . Add  to  along

with enough of the remaining terms of (i) to arrive at a sum . Continuing in this

manner one arrives at a rearrangement of the original series which diverges to . 
An initial impression might be that we are adding a lot more positive then negative terms of the original
series. Not so. All terms of the original series will show up in the above rearrangement. Think about it. 

CYU 9.26 (a) For : .

It follows, from the Ratio Test, that  converges absolutely for , so

. As for the endpoints, we note that at  the series 

converges (alternating harmonic series), and that it diverges at : 

(harmonic series). Conclusion:  has a radius of convergence of 1 and its interval

of convergence is .
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(b) For :

 

Conclusion:  has a radius of convergence of 0 and its interval of convergence

is .

(c) For :

The Ratio Test assures us that  converges (absolutely) when 

and diverges when . It follows that the series has radius of convergence
. 

Here is the interval . Challenging the endpoints for

convergence we find that  converges at  and diverges at :

 — converging alternating harmonic series.

 — diverging harmonic series.

Conclusion:  has a radius of convergence of 1 and its interval of conver-

gence is .

CYU 9.27 .

   Applying Theorem 9.26 to (*) we have:

 

So, for : .
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CYU 9.28 (a) We know that  for  [Example 9.20(a)]. Replacing  with

 we have:

                           

(b) Starting with , we turn to (a) and Theorem 9.26 to arrive at:

                   

CYU 9.29  For  we have:

Pattern:  for , and  becomes:

  (note that ).

Moreover, since , the Ratio Test tells us that the

above power series representation holds for .
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CYU 9.30 (a) For  we have

Since , the above value-pattern of 1, 0, , 0 will keep repeat-
ing; bringing us to the Mclaurin series of the cosine function:

Which is seen to converge (absolutely) for all x:

Since, for all x and n, : 

(b) For  we have

Since , the above value-pattern of 1, 0, , 0 will keep repeating.

 Bringing us to the Taylor series of the sine function about :
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(c)

CYU 9.31  Starting with , we have . Employing

Theorem 9.10, page 336: .

CYU 9.32 (The binomial Theorem):

  

CYU 9.33  Noting that for :  and that , we invoke Taylor’s Inequal-
ity and set our sights on finding the smallest N for which:

  

xsin
f n   2 

n!
----------------------- x 

2
---– 

  n

n 0=




1
0!
----- x 

2
---– 

  0 0
1!
----- x 

2
---– 

  1 1–
2!
------ x 

2
---– 

  2 0
3!
----- x 

2
---– 

  3 + + + += =

1

x 
2
---– 

  2

2!
--------------------–

x 
2
---– 

  4

4!
-------------------- + + 1– n

x 
2
---– 

  2n

2n !
----------------------

n 0=



= =

Incidently, it follows that: xsin 1– n x2n 1+

2n 1+ !
----------------------

n 0=



 1– n
x 

2
---– 

  2n

2n !
-----------------------

n 0=



= =

Theorem 9.32(ii)                        
follows also from Theorem 9.32(iii) and the fact that xsin x 

2
---– 

 cos=

xsin  1– n x2n 1+

2n 1+ !
----------------------

n 0=






x x3

3!
-----– x5

5!
----- x7

7!
-----– + + 

  = =

1 3x2

3!
--------– 5x4

5!
-------- 7x6

7!
--------– + +=

1 x2

2!
-----– x4

4!
----- x6

6!
-----– + + xcos= =

Theorem 9.26, page 367:

ex xn

n!
-----

n 0=



= e2x 2x n

n!
-------------

n 0=



 2nxn

n!
-----------

n 0=



= =

f x  ex 2e2x+ xn

n!
-----

n 0=



 2 2nxn

n!
-----------

n 0=



+ 2n 1+ 1+ xn

n!
--------------------------------

n 0=



= = =

a b+ n an 1 b
a
---+ 

  n
an n

k 
  b

a
--- 
  k

k 0=




n
k 
  an k– bk

k 0=




n
k 
  an k– bk

k 0=

n

= = = =

n
k 
  n n 1–  n 2–  n n–  n k– 1+ 

k!
---------------------------------------------------------------------------------------------- 0, for k n= =

0

0 x 4  0 ex e4  x 2– 2

EN x  e4

N 1+ !
--------------------2N 1+ 0.0001 
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Turning to a calculator we found that while  for ; at

: .

Conclusion: Thirteen terms are needed. Then:

                     for .

CHAPTER 10: 
PARAMETRIZATION OF CURVES AND POLAR COORDINATES

CYU 10.1 From 

Employing the Pythagorean Identity:  (Theorem 1.5(i), page 37),
we arrive at the rectangular equation:

: 

CYU 10.2  Setting  to 0, we conclude that a horizontal

tangent line occurs when . Turning to , we find the
corresponding points on the curve namely:

Noting that the denominator in the above expression for  is zero at , and the

numerator is not zero at , we conclude that a vertical tangent line occurs at the
point .
As for concavity:

 

e4

N 1+ !
--------------------2N 1+ 0.0001 N 11

N 12=
e4

12 1+ !
----------------------212 1+ 0.00007 0.0001

ex e2 1 x 2–  x 2– 2

2!
------------------- x 2– 3

3!
-------------------  x 2– 12

12!
---------------------+ + + + + 

 – 0.0001 0 x 4 

x 3 t  y 2 t:  tcossin=cos
x
3
---  tsin y

2
---= = = cos

2
t x2

9
-----  sin

2
t y2

4
-----= =

cos
2
t  sin

2
t+ 1=

x2

9
----- y2

4
-----+ 1= x

y

3– 3

2–

2

.
.

at t 0=

at t 
2
---=

dy
dx
------

  
dy
dt
------  

dx
dt
------

------------ 3t2 3–
2t

---------------- 3 t 1+  t 1– 
2t

-----------------------------------= = =

t 1= x t  t2,  y t  t3 3t–= =

1– 2 1– 3 3 1– –  1 2   and  1 2 1 3 3 1 –  1 2– ==

dy
dx
------ t 0=

t 0=
x 0  y 0   0 0 =

d2y
dx2
--------

d
dt
-----

  
dy
dt
------  

dx
dt
------

------------

 
 
 
 
 

dx
dt
------

------------------------

3t2 3–
2t

---------------- 
 

t2 
------------------------

3
2
--- t t 1–– 

2t
------------------------

3 1 1
t2
----+ 

 

4t
---------------------- 3 t2 1+ 

4t3
---------------------= = = = =

0

c
SIGN:

_ + t
Down         Up
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CYU 10.3  From : . Substituting in , one option at a time: 

(1)  For : .

Domain of: : . SIGN f: .   As 

 will resemble, in shape, that of  — all of which brings us to the
anticipated graph in (a) below.

(2) For : . Its graph, which is
simply the “negative” of the one in (a) appears in (b) below.

We merged (a) and (b) to arrive at the curve in (c). As for its indicated direction:

We could use the calculus to challenge the functions in (a) and (b), but choose, instead,
to analyze the directed curve in (c). 

Something “special” happens at ; which is to say, at
. Tracing the curve in (c) we see that a max-

imum occurs when , and a minimum at .
Indeed, from the above SIGN-chart we see that the slope is
positive for t between  and 0, and negative for ,
indicating that a maximum occurs when . Similarly,
the SIGN-chart tells us that between  and  the
slope is negative, and that it is positive for , indicating that a minimum occurs at

.

(a) (b) (c)

x t2= t x= y t3 3t–=

t x1 2/= y x1 2/ 3 3x1 2/– x3 2/ 3x1 2/– x1 2/ x 3– = = =

f x  x1 2/ x 3– = 0  0
. .c +_

x
3 x 

f x  y x3 2/=

t x1 2/–= y x– 1 2/ 3 3 x– 1 2/ – x3 2/– 3x1 2/+= =

y x1 2/ x 3– =

..
x

y

3

y x– 1 2/ x 3– =

..
x

y

3
..

x

y

3

x t2 y t3 3t–= =

.
|

.?

dy
dt
------ 3t2 3– 3 t 1+  t 1– = = SIGN: t

1                 1–
. .+                           +_

as t  increases from  to 1– y increases to 2–

for 1 t 1 y decreases, and then increases again. –

dy
dx
------

  
dy
dt
------  

dx
dt
------

------------
3t2 3–

2t
----------------= 3 t 1+  t 1– 

2t
-----------------------------------= = SIGN: 

0
. t
1

c           c+                        +_.
1–

_ c
dec         inc           dec         inc

x 1=x t2:= x 1=

..
x

y

3

.
|

.1
_

_

2

2–

t 1–=

t 1=

t 0=

t 1=
x 1 2 1= =

t 1–= t 1=

1– t 1–
t 1–=

t 0= t 1=
t 1

t 1=
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CYU 10.4 For : . 

At this point we know that a horizontal tangent line occurs when ; which is to 

say, at . Turning to the second derivative we have:

From the above sign information we conclude that a local maximum occurs when

 [at ], and that inflection points occur

when: 

CYU 10.5 In integral form we have . 

From ,  we have:

 

Bringing us to:

x t3 t2–= ,  y t2et 3+= dy
dx
------

  
dy
dt
------  

dx
dt
------

------------
t2et 2tet+

3t2 2t–
------------------------ tet t 2+ 

t 3t 2– 
---------------------- et t 2+ 

3t 2–
--------------------= = = =

t 2–=

x y  12– 4
e2
----- 3+ 

 =

d2y
dx2
--------

d
dt
-----

  
dy
dt
------   

dx
dt
------

------------

 
 
 
 

dx
dt
------

----------------------

d
dt
----- tet 2et+

3t 2–
--------------------

d
dt
----- t3 t2– 

-------------------------------

3t 2–  tet et 2et+ +  3 tet 2et+ –
3t 2– 2

-----------------------------------------------------------------------------------------

3t2 2t–
------------------------------------------------------------------------------------------------= = =

et 3t2 4t 12–+ 
t 3t 2– 3

----------------------------------------=

2
3
---0

                                c            c
tSIGN:

using the quadratic formula:

t 2– 2 10
3

---------------------------=

c.
2– 2 10–

3
---------------------------

                
+           

 _
              +

_.c+
2– 2 10+

3
-----------------------------

t 2–= x y  12– 4
e2
----- 3+ 

  12 3.54– =

t 0             t
2
3
---             t

2– 2 10–
3

---------------------------              t 2– 2 10+
3

---------------------------= = = =

0 3  0.15– 3.9  29.1– 3.5  0.9 11.8 

L
xd

dt
----- 
  2 yd

dt
----- 
  2

+ td
0



=

x 3 t 3tcos–cos= y 3 t 3tsin–sin=

xd
dt
----- 
  2 yd

dt
----- 
  2

+ 3 t 3 3tsin+sin– 2 3 t 3 3tcos–cos 2+=

9 t 3tsin+sin– 2 t 3tcos–cos 2+ =

9 sin
2
t 2 t 3t sin

2
3t cos

2
t 2 t 3t cos

2
3t+coscos–+ +sinsin– =

9 sin
2
t cos

2
t+  sin

2
3t cos

2
3t+  2 3t t 3t tsinsin+coscos –+ =

9 1 1 2 3t t– cos–+  9 2 2 2tcos–  18 1 2tcos– = = =

L 18 1 2tcos–  td
0



 18 1 cos
2
t sin

2
t– –  td

0



= =

3 2 1 cos
2
t–  sin

2
t+ td

0



=

3 2 2sin
2
t td

0



 6 t tdsin
0



 6 t
0


cos– = = =

6  0cos–cos – 12= =
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CYU 10.6 (a) Let . Turning to the equations : 

we find that P has rectangular coordinates .

(b) Let . From , we have:

                                

Since  for any integer k, all of the follow-

ing are polar representations of the point P:   

In addition (see comments directly below Figure 10.4):

                               

CYU 10.7  The adjacent spiral figure pretty much speaks
for itself. As the angle  gets larger and larger,
so does . In particular: 

When , , and  is on the
curve.

When , , and  lies on the
curve (mark off  units on the terminal side
of the angle  in standard position).

Note that the curve intersects the y-axis when

, with corresponding -values: 

CYU 10.8 The adjacent curve of  displays two
local extreme points. Let’s find them: 

Intent on finding where , we determine where the numerator is 0:

P 2 
6
---–– 

 = x r   ycos r sin= =

x 2– 
6
---– 

 cos 2
3

2
------- 
 – 3–= = =

y 2– 
6
---– 

 sin 2– 1
2
---– 

  1= = = 3
 6

1
2

3 1– 

P 1 1– = r2 x2 y2  tan y
x
--=+=

r2 1 2 1 2+= 2  or  r 2 ,    and  tan 1–
1

------ 1–= = = =

.
1 1– 

 4

2

.
1 1– 

 4

1 1– 

3
4

------

.


4
---– 2k+ 

 tan 1–=

P 2 
4
---– 2k+ 

   for any integer k.=

P 2– 3
4

------ 2k+ 
   for any integer k.=

x

y

... . .

r  for  0=

–3– 2 4


r =

 0= r 0= 0 0 

 = r = 0 – 


 =

 
2
--- 3

2
------ 5

2
------   = y r=


2
--- 3

2
------ 5

2
------   

?

?
x

yr f   1 cos–= =

dy
dx
------ f     f   cos+sin

f     f   sin–cos
----------------------------------------------------  sinsin 1 cos–  cos+

sin  1 cos–  sin–cos
-------------------------------------------------------------------= =

sin
2  cos

2–cos+
2   1–cossin

---------------------------------------------------=

dy
dx
------ 0=
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As for the top question mark
in the above figure:

 with 

The bottom question mark:

 with 

You can use the bridges  to find the rectangular coordinates of

those points. The rectangular coordinates of the local maximum :

By symmetry, we conclude that  are the rectangular coordinates of the

local minimum .

 
CYU 10.9 (a) Taking advantage of symmetry, we quadruple the area of

the leaf in the first quadrant: 

(b) As you can see from the construction of the curve below, the loop in question is

traced out as  runs from  to .

 

sin
2  cos

2–cos+ 0=

1 cos
2–   cos

2–cos+ 0=

2cos
2  1–cos– 0=

2  1+cos  cos 1–  0 cos 1
2
---   and   cos– 1= = =

 0=


3
---


3
---

2

1

3  2
3

------=

 4
3

------=

 2
3

-------=

r 1 2
3

------cos– 3
2
---= =

 4
3

-------=

r 1 4
3

------cos– 3
2
---= =

x r   ycos r sin= =
3
2
--- 2

3
------- 

 

x y  3
2
--- 2

3
------ 3

2
--- 2

3
------sincos 

  3
2
--- 1

2
---– 

  3
2
--- 3

2
------- 
  3

4
---–

3 3
4

---------- 
 = = =

3
4
---– 3 3

4
----------– 

 

3
2
--- 4

3
------ 

 

1

y

x

 
4
---=

A 4
1
2
--- 2sin 

2
d

0

 

2
---

 2 sin
2

2  d
0

 

2
---

= =

sin
2   d

0

 

=

1
2
--- 1 2cos–  d

0

 

=

1
2
---  2sin

2
--------------– 

 

0



2
---= =

Theorem 1.5(iiiv), page 37:

 2=

d 2d=
 0  0  

2
---  := == =

 2
3

------ 4
3

------

3

1–

2
3

------ 4
3

------
2

 2
3

------=

 4
3

------=


x

yr
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Taking advantage of symmetry, we choose to double the area of the inner loop lying

below the x-axis (as  runs from  to ):

CYU 10.10 By symmetry, the area in question is
two times the shaded region in the
adjacent figure: 

          CYU 10.11Taking advantage of symmetry, we quadruple the length of
the leaf in the first quadrant: 

                    

 2
3

------ 

A 2
1
2
--- 2  1+cos 2 d

2
3

------



 4cos
2 4  1+cos+  d

2
3

------



= =

4
1 2cos+

2
------------------------ 4  1+cos+ 

  d
2
3

------



=

2 2 2cos 4  1+cos+ +  d
2
3

------



=

3 2sin 4 sin+ +  2
3

------


=

3 2 3
2

-------– 2 3+ 
 –  3 3

2
----------–= =

y

x

A1

A2

 
3
---=

r 1
2
---=

r 1  [Example 10.8(a)]cos–=

2–

r 1 cos– 1
2
---= =

cos 1
2
---=

 
3
---=

A 2
1
2
--- 1 cos– 2 d

0


3
---


1
2
--- 1

2
--- 
  2

d
3
---



+=

1 2 cos– cos
2+  d

0


3
---


1
4
--- d

3
---



+=

 2 sin– 
0


3
---

 
 
  1 2cos+

2
------------------------ d

0


3
---



4
---


3
---



 
 
 
 

+ +=


3
--- 2 

3
--- 

2
--- 2sin

4
--------------+ 

 

0


3
---

+sin– 
6
---+=


3
--- 3– 

6
--- 3

8
-------+ 

  
6
---+ + 2

3
------ 7 3

8
----------–= =

A2 A1

y

xL 4 r2 dr
d
------ 
  2

+ d
0


2
---

 4 sin22 2 2cos 2+  9.69d
0


2
---

= =
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ADDITIONAL THEORETICAL DEVELOPMENT

The following result will be used in the proof of the above theorem:

PROOF: The Mean Value Theorem assures us that since  on ,
. That being the case, we turn our attention to the function

 

Noting that F satisfies the conditions of Rolle’s Theorem (page 121) we conclude that
 for some . Turning to  we have:

Consequently, for some :

PROOF (of Theorem 8.1): Let us first consider the case where c is a real number. Since the state-
ment of the theorem does not assure us that either f or g is defined at c, we introduce functions F
and G which agree with f and g away from c, and are continuous on :

We now show that  (a similar argument can be used to show that ):

Noting that F and G are continuous on  for , and that they are differentiable on

, we apply the Generalized Mean Value Theorem to find y with  for which:

Theorem 8.1

L’Hôpital’s Rule:

 “ ” type

Let c be a real number, or . Assume that, apart from c, f and g are dif-
ferentiable on an open interval  containing c with . 

If  and if  Then:

GENERALIZED

MEAN VALUE

THEOREM

If f and g are continuous on [a, b] and differentiable on (a, b) and if 

(Reduces to the Mean Value Theorem of page 121 if )

THEOREM 8.1, PAGE 301

0 0


a b  g x  0

f x 
x c
lim g x 

x c
lim 0= = f  x 

g x 
------------

x c
lim L=

f x 
g x 
----------

x c
lim L=

g x  0 for x a b , then there exists d a b  for which:
f  c 
g c 
------------ f b  f a –

g b  g a –
----------------------------=

g x  x=

g x  0 a b 
g b  g a – 0

F x  f x  f a –
f b  f a –
g b  g a –
---------------------------- g x  g a – –=

F  c  0= c a b  F x 

F  x  f x  f a –
f b  f a –
g b  g a –
---------------------------- g x  g a – – 

   f  x  f b  f a –
g b  g a –
----------------------------g x –= =

c a b 

F  c  f  c  f b  f a –
g b  g a –
----------------------------g c – 0; or: 

f  c 
g c 
------------ f b  f a –

g b  g a –
----------------------------= = =

a b 

F x  f x  if x c
0 if x c=

         G x  g x  if x c
0 if x c=




=




=

f x 
g x 
----------

x c+
lim L= f x 

g x 
----------

x c–
lim L=

a x  a x c 

c x  a y x 
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Taking into account the fact that for : , , and that as x
approaches  from the right so must y (since ) we have:

Turning to the case , we introduce a new variable t such that . Then:

A similar argument can be used for the case .

PROOF: (c) Let . We are to find N such that:

 

In order to get  and  into the picture (for we have control over those two expres-

sions), we insert the clever zero  in the expression :

Theorem 9.2 
   (c) and (d)

If  and , then:

(c)

(d) , providing no  and .

F  y 
G y 
-------------- F b  F a –

G b  Ga –
-------------------------------=

x c F x  f x = G x  g x =
c a y x 

f x 
g x 
----------

x c+
lim F x 

G x 
------------

x c+
lim F x 

G x 
------------

y c+
lim f  x 

g x 
------------

y c+
lim L= = = =

c = x 1
t
---=

f x 
g x 
----------

x 
lim

f
1
t
--- 
 

g
1
t
--- 
 

------------
t 0+
lim=

f
1
t
--- 
  

g
1
t
--- 
  

-------------------
t 0+
lim

f  1
t
--- 
  1

t
--- 
  

g 1
t
--- 
  1

t
--- 
  

----------------------------
t 0+
lim

f  1
t
--- 
 

g 1
t
--- 
 

-------------
t 0+
lim= = =

f x 
g x 
------------

x 
lim L= =

by previous argument:

as t 0+, x 

and x 1
t
---=

c –=

THEOREM 9.2 (C) AND (D), PAGE 323

lim an A= lim bn B=

lim anbn  AB=

lim 
an

bn
----- A

B
---= bn 0= B 0

 0

n N anbn – 

an – bn –

an– an+ anbn –

anbn – anbn an– an –+=

anbn an–  an – +=

anbn an– an –+ an bn –  an –+= } }

(i)                      (ii)
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The next step is to find an N such that both (i) and (ii) are less than . 

Focusing on (i): :

The temptation is to let  be such that  (yielding

). No can do. For one thing, if , then the expression  is

undefined. More importantly:  is NOT A CONSTANT! We can, however, take advantage of

the fact that there exists an  such that  for every n (CYU 9.7, page 328), and

choose  such that . Then: .

Focusing on (ii): .

Wanting  to be less than , one might be tempted to choose  such that

. But what if ? To get around this potential problem we choose

 such that .   No problem now:

Letting , we see that, for :

 

(d) Appealing to (c), we establish the fact that , by showing that :

Let  be given. We are to find N such that:

Since , we can choose  such that . Noting that for

:  we see that, for :

 

Since , we can choose  such that: 


2
---

an bn –

N n N bn –


2 an
-----------

an bn – an


2 an
----------- 

2
---= an 0=


2 an
-----------


2 an
-----------

M 0 an M

N n N bn –


2M
-------- n N an bn – M


2M
-------- 

2
---=

 an –

 an –

2
--- N

n N an –


2 
---------  0=

N n N an –


2  1+
------------------

n N  an –  
2  1+
------------------ 

2
---

since 


2  1+
------------------ 

2 
---------

N max N N = n N

anbn – an bn –  an – 
2
--- 

2
---++ =

lim 
an

bn
----- 


---= lim 

1
bn
----- 1


---=

 0

n N 1
bn
----- 1


---–

 bn–

bn 
----------------- = (*)

bn  0 N1 n N1 bn –

2

------

n N1 bn

2

------ n N1

 bn–

bn 
-----------------

1
bn
--------

 bn–


-----------------    1   


2

------
------------

 bn–


----------------- 2

 2
-------- bn –= = (**)

bn  N2 n N2 bn –
 2

2
-------- (***)
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Letting , we find that, for :

thereby establishing (*).

As previously noted axioms are “dictated truths” upon which, with the cement of logic, math-
ematical theories are constructed. One such axiom, called the Principle of Mathematical
Induction, was introduced on page 83. Here, we will need another axiom, the so called Com-
pletion Axiom:

Every nonempty subset S of  that is bounded from above has a least upper bound.

You may be able to anticipate the meaning of the terminology appearing in the above axiom
on your own; but just in case:

      is an upper bound of S if  for every 

and:  is the least upper bound of S, denoted by , if it satisfies 
the following two properties:

(i)  is an upper bound of S, and:

(ii)For any given  there exists some  (which depends on ) such that .
(That is:  is not itself an upper bound.)

                              For example: , and 

PROOF (of Theorem 9.5): Let  be increasing and bounded from above. The completion

axiom assures us that the set  has a least upper bound: . We show that  con-
verges to :

Let  be given. Since  is the least upper bounded of , and since 

lies to the left of , there must exists a term  such that . Since

 is an increasing sequence:  for every , and since

:  for every n. It follows that  for every .

 

A similar argument can be used to show that every decreasing sequence
bounded from below converges.

Theorem 9.5 Every bounded monotone sequence converges.

N max N1 N2 = n N

 bn–

bn 
----------------- 2

 2
-------- bn –

2
 2
--------  2

2
--------  =

By (**)                     By (***)

THEOREM 9.5, PAGE 328



a a s s S
 lub S



 0 s S  s  –
 –

lub 1 2 5   5= lub – 7  lub – 7  7= =

an n 1=


an   an n 1=




 0  an   –

 aN aN  –

an n 1=


an  – n N

 lub an = an  an –  n N
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PROOF (a): Let  and . We show  by showing that for

any given  there exists N such that : 

Let  be such that . Since  converges absolutely, we can

also choose  such that for all : . Consider

. Next, we choose N such that each term  is con-

tained in  (note that ). Putting all of this together we have:

(b) We first show that:

PROOF: Can both  converge? No, for if ,

then the sequence of partial sums of  would be bounded by , indicating

that  converges absolutely (a contradiction).

Can exactly one of the series  diverge? No for if, say,  diverges

to  and that  converges to , then surely  would diverge to  (a contra-

diction).

For any , we now construct a rearrangement  of the terms in the series 

converging to L:

Theorem 9.23 (a) If  converges absolutely to L, then any series  obtained by

rearranging the terms of  also converges to L.

(b) If  converges conditionally then, for any given L, the terms of the
series can be rearranged so that the resulting series converges to L. The
terms can also be rearranged so that the resulting series diverges.

THEOREM 9.23, PAGE 360

an bn
an

an

sn ai

i 1=

n

= tm bi

i 1=

m

= tm
m 
lim L=

 0 m N tm L– 

N1 n N1 sn L–

2
--- an

N2 n m N2  ak

k m=

n



2
---

M max N1 N2 = a1 a2  aN   
b1 b2  bM    N M

n N tm L– tm sn– sn L–+ tm sn– sn L– 
2
--- 

2
---++ = =

If an is a conditionally convergent series, and if  cn and  dn denote
the series composed of the positive and negative terms of  an , respectively, then:

cn diverges to  and dn diverges to .–
cn and  dn cn L and dn K–= =

an L K+

an
cn and  dn cn

 dn K– an 

L 0 bn an
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Let  denote the  positive term, and  the  negative term of the series ,

respectively. Since  converges we know there exists N such that .

It follows that  and  for . 

Since  diverges to  we can choose  such that: 

 

Since  diverges to  we can choose  such that:

The next step is to add just enough of the remaining positive terms to end up to the right of
L, and so on. 

Let  denote the  partial sum of the above constructed rearranged sequence. For n large

enough so that at least N of the  and N of the  appear in  we have .

A similar arguments can be used for  or .

PROOF: We show that if neither (i) nor (ii) is satisfied, then (iii) must hold:

Consider the set . 

Theorem 9.24, and the assumption that (ii) does not hold, assures us that . 

Theorem 9.24, and the assumption that (i) does not hold, assures us that S is
bounded from above.
The Completion Axiom, introduced in the proof of Theorem 9.5 (page B-4),
assures us that S has a least upper bound R.

Can  fail to converge absolutely if ? No, for

R is an upper bound of S.

Can  converge if ? No, for R is the least

upper bound of S.

Theorem 9.25
Convergence Theo-
rem for Power
Series

For a given power series  there are only three possibili-
ties:
(i)The series converges absolutely for all x.

(ii)The series converges only at .

(iii)There exists  such that the series converges absolutely if
 and diverges if .

ck kth dk kth an
an n N an 

ck  dk  k N

cn  n1

c1 c2  cn1
L  but  c1 c2  cn1 1– L+ + ++ + +

(add just enough of the positive terms to end up to the right of L)

dn – n2

c1 c2  cn1
+ + +  d1 d2  dn2

+ + +  L but c1 c2  cn1
+ + +  d1 d2  dn2

+ + +  L++
(add just enough of the negative terms to end up to the left of L)

sn nth

cis dis sn sn L– 
L 0 L 0=

THEOREM 9.25, PAGE 365

cn x a– n

x a=

R 0
x a– R x a– R

S x a cn x a– n converges absolutely
 
 
 

=

S 

cn x0 a– n x0 a– R

cn x0 a– n x0 a– R



Additional Theoretical Development   B-7
PROOF: We want to find an expression for  in

With that in mind we note that for any fixed , there is a number L (which depends on x)
for which:

We now consider the function , given by:

with domain  if  and  . F is differentiable, with: 

From (*) and (**) we have: . Rolle’s Theorem (page 121) tells us that

there exists c between a and x for which :

Setting  and  in (**), we have (recall that ):

Theorem 9.29
Lagrange’s
Remainder
Theorem

If  f has derivatives of all orders in an open interval I containing a,
then for each positive integer N and for each  there exists c
between a and x such that

 

THEOREM 9.29, PAGE 377

x I

EN x  f N 1+  c 
N 1+ !

---------------------- x a– N 1+=

EN x 

f x  f a  f  a  x a–  f a 
2!

------------ x a– 2  f N  a 
N!

--------------- x a– N EN x + + + + +=

x I

f x  f a  f  a  x 4–  f a 
2!

------------ x a– 2  f N  a 
N!

--------------- x a– N L
N 1+ !

-------------------- x a– N 1++ + + + += (*)

F

F t  f x  f t  f  t  x t–  f t 
2!

----------- x t– 2  f N  t 
N!

-------------- x t– N L
N 1+ !

-------------------- x t– N 1++ + + + +–= (**)

a t x  x a x t a  x a

F t  f–  t  f t  f t 
1!

----------- x t– –
f t 

1!
----------- x t–  f  t 

2!
------------ x t– 2– + + +=

f N  t 
n 1– !

------------------ x t– N 1– f N 1+  t 
N!

---------------------- x t– N–
L
N!
------ x t– N+ +

f N 1+  t 
N!

---------------------- x t– N–
L
N!
------ x t– N    for all t  between a and x+=

F a  F x  0= =

F c  0=

f N 1+  c 
N!

----------------------- x c– N–
L
N!
------ x c– N+ 0=

L f N 1+  c =

t a= L f N 1+  c = F a  0=

f x  f a  f  a  x a–  f a 
2!

------------ x a– 2  f N  a 
N!

--------------- x a– N f N 1+  c 
N 1+ !

----------------------- x a– N 1++ + + + +=

EN x 
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ANSWERS   C-1
APPENDIX C
ANSWERS TO ODD EXERCISES

1.1 SETS AND FUNCTIONS (PAGE 9) 
1.          3.          5.          

7. 

9. 

11. 

13. 

15. 

17. 

19. (a)    (b)          21. (a)    (b)          

23. 

25. 

27.         29. 3         31. 

33.     35.     37. 

 –  – 100–  100– 1  1    7– 

f g+  2  6 f g–  2  8 fg  2  7–
f
g
--- 
  2 == 7 2f  2  14 fg  2  1==–= =

gf  2  6–=

f g+  2  6 f g–  2  6 fg  2  0
f
g
--- 
  2  undefined, 2f  2  12 fg  2  0=====

gf  2  4–=

f g+  2  36
7
------ f g–  2  34

7
------– fg  2  5

7
--- f

g
--- 
  2 == 1

35
------ 2f  2  2

7
---= = =

fg  2  1
10
------ gf  2  22

7
------==

f g+  x  x– 4+ f g–  x  3x 2+ fg  x  2x2– 5x– 3+===

f
g
--- 
  x  x 3+

2x– 1+
------------------- 2f  x  2x 6+ fg  x  2x– 4 gf  x  2x– 5–=+===

f g+  x  x2 2x 2+ + f g–  x  x2 4– fg  x  x3 4x2 2x 3–+ +===

f
g
--- 
  x  x2 x 1–+

x 3+
----------------------- 2f  x  2x2 2x 2–+ fg  x  x2 7x 11+ +===

gf  x  x2 x 2+ +=

f g+  x  x3– 2x2 3x– 7+ +
x– 2+

---------------------------------------------- f g–  x  x3 2x2– 3x 5–+
x– 2+

-----------------------------------------==

fg  x  x2 3+
x– 2+

----------------=
f
g
--- 
  x  1

x3– 2x2 3x– 6+ +
----------------------------------------------=

2f  x  2
x– 2+

---------------- fg  x  1
x2– 1–

------------------ gf  x  3x2 12x– 13+
x– 2+ 2

------------------------------------===

6x– 3+ 9– x2 3x 2+ + 12

f 2  15 f 2 h+  3h 15+ f x h+  3x 3h 9+ += = =

f 2  1– f 2 h+  h2– 3h– 1 f x h+ – x2– 1 2h– x h2 x– 1– –+= = =

f 2  4
7
--- f 2 h+  h2 4h 4+ +

2h 7+
--------------------------- f x h+  x2 2xh h2+ +

2x 2h 3+ +
--------------------------------= = = 2– x 1 h–+

2x2 2xh 6x 3h+ + +
2x 2h 3+ +  2x 3+ 

----------------------------------------------------- f 0  0 f 1  2= = f 1–  8 f 1 – 1 f 7  14–= = =

10 is not in the domain of f
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39. Since :

                           

In either case we have: .

41.          43. Odd     45. Even     47. Neither

1.2 ONE-TO-ONE FUNCTIONS AND THEIR INVERSES (PAGE 17) 

1.                    3.                  5.                

7.               9. 

11. No unique answers      13. No unique answer        15.          17. 

19.             21.          23. 

25.                 27. 

 

ab a b  or ab a b–= =

ab a b a b  or  ab a– b a b  = = a b= = =

ab a b=

a a b–  b+ a b– b a b– a b–+=
triangle inequality

5a– 1– 5b– 1–=

5a 5b=

a b=

a3 1+ b3 1+=

a3 b3=

a b=

4
2a 3–
--------------- 4

2b 3–
---------------=

8b 12– 8a 12–=

8b 8a=

b a=

a 1+ 2+ b 1+ 2+=

a 1+ b 1+=

a 1+ b 1+=

a b=

3a
2a 1+
--------------- 3b

2b 1+
---------------=

3a
2a 1+
--------------- 3b

2b 1+
---------------=

6ab 3a+ 6ba 3b+=

3a 3b=

a b=

f
1–

x  1 x–= f
1–

x  5x 3+
2x

---------------=

f
1–

x  3x 2+
x 5–

---------------= f
1–

x  1
4
---x2 3–=

y x=

f

f
1–

y x=

.
.1 2 

2 1 

f

f
1–

.
.

.

2 2–– 

3 4 

2

.
.

4 3 

2

f y x=
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1.3 EQUATIONS AND INEQUALITIES (PAGE 27)

1. (a) 12     (b)     (c)                    3. (a)    (b)  

5. (a)     (b)    (c) 

7. (a)    (b)    (c) 

9. (a)    (b)            11. (a)    (b) 

13. (a)     (b)                   15. (a)  (b) 

17. (a)    (b)    (c)          

19. (a)    (b)    (c)             21. No unique answer 

23. No unique answer           25. No unique answer          27. No unique answer 

1.4 TRIGONOMETRY (PAGE 38)

1.          3.          5.          7.          9.          11.          13.          15. 

17.          19. 0          21.          23. 0         25.          27.          29.          31. 

33.         35. 1         37.           39.           41. 

2.1 LIMITS: AN INTUITIVE INTRODUCTION (PAGE 51)

1.           3. 2        5.         7. Does Not Exist        9.          11. 0          13.          15. 

17.          19. Does Not Exist          21.          23.          25.          27. 0         29. 0

31.  Removable discontinuity          33. Jump discontinuity

35.  Removable discontinuity          37. Jump discontinuity

39. No unique answer          41. No unique answer

 12–  12  4
5
---– –

4
5
---–



0 3 2–  2– 3  – 2–  3  

1
1 5

2
----------------– – 1  1 5–

2
---------------- 1 5+

2
----------------–

 1
1 5–

2
----------------– 

  1 5+
2

----------------  
 

2 3
2
---–– 1 2– 3

2
---– 

  1   2 3
2
---–– 1 1   2– 3

2
---–

 
 
 



3
2
---– 0 1  3

2
---– 1 3

3
------- 5 5– 3

3
-------– 3

3
------- 5

1 1– 0  1   – 1–  0 1 

1 2– 1– 0  2  – 1 – 0 2 


6
--- 

3
--- 2

3
--- 5

6
---–  45 30–  90 210

1 1–
1

2
------- 3–

2

3
------- 1

3
-------

xtan
1
8
---tan

2
x 2 x xtan+sec

2
3
--- 10

7
------ 1

5
--- 2

3
--- 2–

1
4
--- 1

2
--- 1

3
---– 3x2

f x 
x 2
lim 4=

f x 
x 3
lim 5=
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2.2 THE DEFINITION OF A LIMIT (PAGE 61)

1.           3. 1        5.          7. (Largest)          9. (Largest) 

11. (Largest)          13. (One possible answer) 

15. (One possible answer)       17. Let  be given. If  (or any positive

number):  

19. 

21. 

23. 

25.          27. No unique answer         29. No unique answer

31. Suppose that . Let . Choose  and  such that:

 

For  we have:

A contradiction, since .

33. We first show that :

For given  we are to find  such that .

Since , there exist  such that:

 . 

3
2
--- 5 2–  

5
---=  =

 2=  min 1

5
--- 

 =

 min 1

7
--- 

 =  0  1=

0 x c–  f x  d–  d d– 0 = =

3x2

x 2
lim 3 x2

x 2
lim 3 x

x 2
lim x

x 2
lim 3 2 2  12= = = =

2x 1+ 3

x 2–
lim 2x 1+ 

x 2–
lim 3 2 x 1

x 2–
lim+

x 2–
lim 3 2 2–  1+ 3 27–= = = =

x3 25– 3

x 3
lim x3 25– 

x 3
lim 3 x

x 3
lim 3 25

x 3
lim– 3 27 25– 3 8= = = =

Any a b 3
2
---–=

L M  L M–
4

----------------- 0= 1 0 1 0

0 x c– 1  f x  L–  and  0 x c– 2  f x  M– 

 min 1 2 =

0 x c–   L M– L M– f x  f x –+=

f x  M–  f x  L–  ++ 2
L M–

4
----------------- L M–

2
-----------------= =Tiangle Inequality:

L M–
L M–

2
-----------------

1
g x 
----------

x c
lim 1

M
-----=

 0  0 0 x c–   1
g x 
---------- 1

M
-----– M g x –

Mg x 
--------------------- =

g x 
x c
lim M= 1 0

0 x c– 1  g x  M– M
2

-------

M M g x – g x + M g x – g x  M
2

-------- g x ++=

g x  M
2

-------- 1
g x 
------------- 2

M
-------

1
Mg x 
------------------- 1

M g x 
---------------------- 1

M
------- 2

M
------- 2

M2
-------= =
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Since , there exist  such that:

Let . Then, for :

Applying Theorem 2.3(c) we then have:

35. If  and , then, by Theorem 2.3(d):

37. A consequence of the fact that:

 

39. A consequence of Exercise 38 and Theorem 2.4(d).

3.1 TANGENT LINES AND THE DERIVATIVE (PAGE 75)

1. 16           3.            5. 0           7. 1          9.            11.             13. 1           15. 

17.          19.          21.        23.          25. 

27.          29.          31. , 

33. (a) No limit at 3 and 4     (b) Not continuous at 1, 2, 3, and 4

   (c) Not differentiable at 1, 2, 3, and 4.                   35.

37. No unique answer       39. No unique answer 

41.        

43.  

g x 
x c
lim M= 2 0

0 x c– 2  g x  M– M2

2
-------

 min 1 2 = 0 x c–  

1
g x 
---------- 1

M
-----– M g x –

Mg x 
---------------------=

2
M2
------- M2

2
------- =

f x 
g x 
----------

x c
lim f x 

x c
lim  1

g x 
----------

x c
lim L

1
M
----- L

M
-----= = =

f x 
x c
lim f c = g x 

x c
lim g c  0=

f x 
g x 
----------

x c
lim

f x 
x c
lim

g x 
x c
lim
--------------------- f c 

g c 
----------

f
g
--- 
  c = = =

f x  0–  f x   f x   f x  0– 

1–
3

2 7
---------- 1

3
--- 6x

4x– 1+ 1
x 1+ 2

-------------------–
1

2 x 3+
------------------- x2– 1+

x2 1+ 2
---------------------- 2x– 1–

1
2x 3+ 3 2/

---------------------------– y 4x 1–= f  2  1 f  4  f  7  0= =

1     2    3    4    5    6    7    8

1

2

3 f

.
2

2

f 2 h+  f 2 –
h

-----------------------------------
h 0–
lim 1=

f 2 h+  f 2 –
h

-----------------------------------
h 0+
lim 4=

.
1

1

f 1 h+  f 1 –
h

-----------------------------------
h 0–
lim 2=

f 1 h+  f 1 –
h

-----------------------------------
h 0+
lim 2=
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3.2 DIFFERENTIATION FORMULAS (PAGE 86)

1.             3.              5.          7. 

9.         11.         13.       15. 

17.            19. 154             21. 96             23. 8            25.           27. 3          29. 13

31.           33.           35.             37.            39. 

41.         43. The equation :  has no solution. 

45. Slope of tangent line at : . Equation of tangent line at  with :

. Since the point  on the curve must also be a point on the tangent

line, we have . But this equation has no solution:

 

47.     49.    51.    53. 

55. 

57. 

15x4 12x2+ 21x2 10x 4– 4
x5
-----–+ 7x6– 4x 1

x2
----- 2

x3
-----+ + + 3x2 6x+

1

2 x
---------- 3x2 24x 13+ +

x 4+ 2
------------------------------------ 30x–

3x2 1+ 2
------------------------- 28x6 12x5 25x4 24x3 9x2 2x+ + + + +

1

x x 1– 2
------------------------------–

3
2
---

17
6
------ 7

4
--- y 5x 4–= y 5x– 8–= 1

2
---–

31
24
------ 

  1
1
6
--- 

 

1
3
---–

37
54
------ 

  2 1–  3x2 2x+ 4–= 3x2 2x 4+ + 0=

x c=
1

2 c
---------- x c= b 4–=

y
1

2 c
---------- x 4–= c c 2+ 

c 2+
1

2 c
----------c 4–=

c 2+
1

2 c
----------c 4 c 2+–

1
2
--- c 4 c– 6–= = =

No!

3– 3–  p x  3x2 5x 12–+= p x  3x3 2x2– 2x– 1+= y
1
7
---x– 44

7
------+=

f x 
g x 
---------- 

f x h+ 
g x h+ 
-------------------- f x 

g x 
----------–

h
-------------------------------------

h 0
lim g x f x h+  f x g x h+ –

h g x g x h+  
------------------------------------------------------------------

h 0
lim= =

g x f x h+  g x f x – g x f x  f x g x h+ –+
h g x g x h+  

--------------------------------------------------------------------------------------------------------------------------
h 0

lim=

g x  f x h+  f x –  f x  g x h+  g x – –
h g x g x h+  

------------------------------------------------------------------------------------------------------------
h 0

lim=

1
g x g x h+  

------------------------------------ g x  f x h+  f x – 
h

--------------------------------------- f x  g x h+  g x – 
h

------------------------------------------
h 0

lim–
h 0

lim
h 0

lim=

1
g x  2

------------------ g x f  x  f x g x –  g x f  x  f x g x –
g x  2

---------------------------------------------------= =

fgh  x  f x g x  h x   f x g x  h x  h x  f x g x  += =

f x g x  h x  h x  f x g x  g x f  x + +=

f x g x h x  f x g x h x  f  x g x h x + +=
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59. Let  be the proposition that the sum of the first n  integers equals .

I. Since the sum of the first integer is ,  is true.

II. Assume  is true; that is: 

III. We show that , thereby completing the proof: 

61. Let  be the proposition that if the functions  are differentiable, then so is

their sum, and that 

I. Theorem 3.2(d) assures us that the proposition is true for .

II. Assume  is true: 

III. We show that , thereby completing the proof:

 

63. Let  be the proposition that the  derivative of  is , for any positive integer Inte-
ger n.

I.  is the proposition that the derivative of x is 1, which follows from Theorem 3.2(b).

II. Assume that  is true: i.e. 

III. We show  is true: i.e. 

        

P n  n n 1+ 
2

--------------------

1 P 1 

P k  1 2 3  k+ + + + k k 1+ 
2

--------------------=

P k 1+  k 1+  k 2+ 
2

----------------------------------=

1 2 3  k+ + + +  k 1+ + k k 1+ 
2

-------------------- k 1+ + k2 k+  2 k 1+ +
2

---------------------------------------------= =

k2 3k 2+ +
2

--------------------------- k 1+  k 2+ 
2

----------------------------------= =

P n  f1 f2  fn  
f1 x  f2 x   fn x + ++  f1 x  f2 x   fn x + ++=

n 2=

P k  f1 x  f2 x   fk x + ++  f1 x  f2 x   fk x + ++=

P k 1+ 

f1 x  f2 x   fk x + ++ fk 1+ x +  h x  fk 1+ x + =

h x  fk 1+
 x +=

f1 x  f2 x   fk x + ++  fk 1+
 x +=

f1 x  f2 x   fk x + ++ fk 1+
 x +=

where h x  f1 x  f2 x   fk x + ++=

by I:

by II:

P n  nth xn n!

P 1 

P k 
xk

k

d
d xk  k!=

P k 1+  d
k 1+

dxk 1+
--------------- xk 1+  k 1+ !=

d
k 1+

dxk 1+
--------------- xk 1+  d

k

dxk
-------- xk 1+  d

k

dxk
-------- k 1+ xk  k 1+ 

xk

k

d
d xk  k 1+ k! k 1+ != = = = =

Theorem 3.2(c) II
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3.3 DERIVATIVES OF TRIGONOMETRIC FUNCTIONS AND THE CHAIN RULE (PAGE 100)

1.         3.         5.          7. 

9.          11.          13. 

15.          17. 

19.          21. 

23.    25.     27.     29. 4     31. 2     33. 18

35.       37.       39.       41.      43.      45. 0

47. For : . It follows that .

For : . It follows that .

49. For any : . Noting

that , we apply the Pinching Theorem and conclude

that .         

51. 3          53. 3            55.             57. 4            59. 1             61. 0            63. 

65. 

3.4 IMPLICIT DIFFERENTIATION (PAGE 108)

1.                     3.                    5. 

15 x2 3x 10–+ 14 2x 3+  3x2 2+

2 x3 2x+
------------------------- 3x 6+

2 x 1+ 3 2/
--------------------------- 4x 2x2 1+ cos

x xcos cossin– x x xsin  xsin cos+sincos–
2 xcos

2
sin x sin

3
x+

cos
2
x

----------------------------------------------

2x 1+  x2 x 1–+ sec
2

x2 x 1–+ sin cos 2x 3+ sec 2x 3+ tan

2– cos
2
x  x xsincoscos 4x x2 x2cos csc

2
x2cos cotsin

4
3
---x x2 x2cos  x2cos csc 

2
3
---

cotsin 9– 6x 1+
3x2 x 1+ + 2

----------------------------------–

y 20x– 36–= y 1=

6
--- 7

6
------ 2 1  y

1

---x 2 2+

4
---------------+–=

x 0 1
1
x
--- 1 x– x 1

x
---sin x sin– x 1

x
---sin

x 0+
lim 0=

x 0 1
1
x
--- 1 x– x 1

x
---sin x sin– x 1

x
---sin

x 0–
lim 0=

x 1 1
100
x 1– 

---------------- 1sin– x 1– 2– x 1– 2 100
x 1– 

----------------sin x 1– 2 

x 1– 2– 
x 1
lim x 1– 2

x 1
lim 0= =

x 1– 2 100
x 1– 

----------------sin
x 1
lim 0=

7
3
--- 1 r

12
------+ 

  11

hgf  x  hg f  x  hg  f x   f  x  h g f x   g f x   f  x = = =

h gf  x   g f x   f  x =

1 1 

1 1– 

.

.

m 1
2
---=

m 1
2
---–=

.

.

1
2
--- 3

2
------- 

 

1
2
--- 3

2
-------– 

 

m 1

3
-------–=

m 1

3
-------=

.

.

1
3

2
------- 

 

1 3
2

-------– 
 

m 1

2 3
----------–=

m 1

2 3
----------=
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7. 9.    11.    13.

15.       17.        19.        21.        23. 

25.        27.        29.      31. 

33.        35.           37. 4           39.             41. 

43. Finding the points of intersection of  and : . 

Substituting in :

 

When ,  and when , . Points of intersection: .
Differentiating  and  we have:

 and 

It follows that the slopes of the tangent lines at the points  are negative recip-
rocals of each other.

45. Finding the points of intersection of  and :

 . Substituting in :

 

When ,  and when , .

Points of intersection: .

Differentiating  and  we have:

 and 

At :  which is the negative reciprocal of .

At :  which is again the negative reciprocal of .

.

.

.

.

4 3 

4 3– 

4 3– 

4– 3– 

m
1
3

-------–=

m
1
3

-------=

m 1

3
-------=

m
1
3

-------–=

y 2– x 4+= y 4x 8–= y x– 6+=

y 2x– 2+= y 4x– 9+= y
3 2–

2
--------------- x 3

2
------+= y x= y

4
2 –
------------ x 2

 2–
------------+=

0 2  y
23
30
------ x– 113

30
---------+=

y2– 2xy 3+ +
2xy x2– 2+

---------------------------------- y
2x2y 4xy 2y x2– x–+ +
-----------------------------------------------------------

1
y2 y 2y y 1–sin+cos
------------------------------------------------- 25

64
------ 2xy3 2x4–

y5
-------------------------- 4y

9x2
--------

xy 2= x2 y2– 3= xy 2 y 2
x
---= =

x2 y2– 3=

x2 2
x
--- 
  2

– 3= x4 3x2– 4 0 x2 4–  x2 1+  0 x– 2= = =

x 2= y 1= x 2–= y 1–= 2 1  2 1–– 
xy 2= x2 y2– 3=

xy y+ 0= y y
x
--–= 2x 2yy– 0 y x

y
--= =

2 1  2 1–– 

x2 y2+ 4= 2x 3y+ 0=

2x 3y+ 0 y 2
3
---x–= = x2 y2+ 4=

x2 2
3
---x– 

  2
+ 4

13
9
------x2 4 x 6

13
----------= = =

x 6

13
----------= y

2
3
--- 6

13
----------– 4

13
----------–= = x 6

13
----------–= y

2
3
--- 6

13
----------– 

 – 4

13
----------= =

6

13
---------- 4

13
----------– 

  6

13
----------–

4

13
---------- 

 

x2 y2+ 4= 2x 3y+ 0=

2x 2yy+ 0 y x
y
--–= = 2 3y+ 0= y 2

3
---–=

6

13
---------- 4

13
----------– 

  y x
y
--–

6

13
----------

4

13
----------–

----------– 3
2
---= = = 2

3
---–

6

13
----------–

4

13
---------- 

  y x
y
--–

6

13
----------–

4

13
----------
----------– 3

2
---= = = 2

3
---–
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47. Differentiating both sides of the equation  we have

. So, the slope of the tangent line to any point

 on the circle is . Moreover, the slope of the line passing through the center

of the circle  and a point  on the circle (the direction of the radius) is given by

. Since , the tangent line is perpendicular to the radius.

3.5 RELATED RATES (PAGE 115)

1. (a)  (b)   (c)      3. (a)   (b)   (c) 

5.      7. (a)    (b)        9.        11.       13. (a)   (b)   

(c)             15.         17. (a)   (b)          19. 

21. We are told that  for some positive number k. So:  or        

23. (a)   (b)   (c)  and 

25.                    27. (a)      (b) 

29. (a)   (b)                 31. (a)    (b) 

4.1 THE MEAN VALUE THEOREM (PAGE 129)

1.           3.           5.             7.             9. 

11.  is not defined throughout the interval .

13. (a)  (b) No: not differentiable at 2.   (c) No

15. If there exist  with , then, by Rolle’s Theorem there exists

 such that .

x x0– 2 y y0– 2+ r2=

2 x x0–  2 y y0– + y 0 y
x x0–

y y0–
-------------–= =

x y  m
x x0–

y y0–
-------------–=

x0 y0  x y 

mr

y y0–

x x0–
-------------= mr

1
m
----–=

7500
cm

3

min
--------- 600

cm
2

min
--------- 1200

cm
3

min
--------- 10,000–

cm
3

min
--------- 400– cm

2

min
--------- 1600– cm

3

min
---------

40 ft
3

min
---------– 12 ft

2

sec
------- 20


------ ft

sec
------- c 10= 0

in2

sec
------- 3

2
------- in

2

min
--------- 3

in.
min
---------

0
radians

min
----------------- 1

9
---radians

sec
-----------------–

3
2
--- in

2

min
---------–

3
2
--- in

2

min
--------- 1

12
------ radians

min
-----------------–

dV
dt
------- k– S= 4r2dr

dt
----- k4r2–= dr

dt
----- k–=

2

--- ft

min
--------- 1


--- ft

min
--------- dh

dt
------

8
1 3/ 420 2 3/
------------------------------- ft

min
---------= dr

dt
-----

4
1 3/ 420 2 3/
------------------------------- ft

min
---------=

1
160
--------- lb/in.

2

min
-------------- 657,5000

5,822,500
---------------------------- 272

ft
min
--------- 962,500

9,062,500
---------------------------- 320

ft
min
---------

200
3

--------- 3+ 
  in

3

sec
------- 2

in
3

sec
------- 5

ft
min
--------- 5

2
--- ft

min
---------

c 0= c 1
2
---–= c 1

3
-------–= c 5

4
---= c 1– 2+=

f x  1
x2
-----= 2– 2 

2

a x1 x2 b   f x1  f x2  0= =

x1 c x2  f  c  0=
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17. Let . Since  and , by the Intermediate Value The-
orem we know that there exists  such that  (c is a solution of the equation

). Assume, now, that there are two solutions a and b with  (we
will arrive at a contradiction). Since f is differentiable everywhere and since 
there must exist  such that  (Rolle’s Theorem). However:

 is never 0, since the discriminant of  is negative.

19. Let . Since  and , by the Intermediate Vale Theorem we
know that there exists  such that  (c is a solution of the equation

). 
Assume, now, that there are two solutions a and b with  (we will arrive at a contradiction).
Since f is differentiable everywhere and since  there must exist 
such that  (Rolle’s Theorem). However:  is never 0, since

 for all x.

21. Assume that  has three solutions  with  (we will arrive at a

contradiction). Consider the function . 
Since  we can apply Rolle’s Theorem twice to arrive at  with

, , such that . 

But  has but one solution; namely: 

23. If  then surely ; indeed both  and  are 0. Assume,
therefore that . Applying the Mean Value Theorem to the function  we con-

clude that there exists  such that ; or: . Tak-

ing the absolute value of both sides brings us to . Noting that 

for all x, and that  we have: , or:

.

25. Let  and  denote the distances of runner 1 and runner 2 from the starting line t sec-

onds after the start of the race, and suppose the finish line is reached at time . Consider the

function . Since  there must be a  such that

, or that . The desired conclusion now follows from the fact
that the derivative of displacement with respect to time is velocity.

27. The Mean Value Theorem tells us that there exists  for which

. The condition that  for  leads us to the

inequality: ; or: .

29. Consider the function . Being the difference of two differentiable functions,
h is differentiable on . Since , there exists  such that

 (Rolle’s Theorem); which is to say: . 

f x  x3 6x2 15x 23–+ += f 1–  0 f 2  0
1 c 2 – f c  0=

x3 6x2 15x 23–+ + 0= a b
f a  f b  0= =

c a b  f  c  0=
f  x  3x2 12x 15+ += 3x2 12x 15+ +

f x  2x 1– xsin–= f 0  0 f 2  0
0 c 2  f c  0=

2x 1– xsin– 0=
a b

f a  f b  0= = c a b 
f  c  0= f  x  2 xcos–=

xcos 1

x4 50x2 300–+ x1 x2 x3  x1 x2 x3 

f x  x4 50x2 300–+=
f x1  f x2  f x3  0= = = c1 c2

x1 c1 x2  x2 c2 x3  f  c1  f  c2  0= =

f  x  4x3 100x+ x 4x2 100+  0= = = x 0=

a b= b asin–sin b a– b asin–sin b a–
a b f x  xsin=

a c b  f  c  f b  f a –
b a–

-------------------------= ccos bsin asin–
b a–

---------------------------=

ccos bsin asin–
b a–

---------------------------= xcos 1

bsin asin–
b a–

---------------------------
bsin asin–
b a–

------------------------------= 1
bsin asin–
b a–

------------------------------

b asin–sin b a–

s1 t  s2 t 
t0

S t  s1 t  s2 t –= S 0  S t0  0= = 0 tc t0 
S tc  0= s1 tc  s2 tc – 0=

0 c 2 

f  c  f 2  f 0 –
2 0–

------------------------- f 2  6–
2

------------------= = f  x  1 0 x 2 

f 2  6–
2

------------------ 1 f 2  8

h x  f x  g x –=
a b  h a  h b  0= = c a b 

h c  f  c  g c – 0= = f  c  g c =
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4.2 GRAPHING FUNCTIONS (PAGE 146)

1.            3.               5. 

7.       9.        11. 

13.      15.        17. 

19.       21.          23.

25.                           27.     

.. ..
7
4
---– 17

8
------– 

 

4

7– 17
4

------------------------

x

y

. .. .
4
3
---–

32
27
------ 

 

2–

2
3
---–

16
27
------ 

 

x

y

.
2 20

3
------– 

 

..
4 16

3
------– 

 

3 6– 

. .
2 4–– 

.
1
2
---–

1
2
---. x

y

2.
1
2
---–

x

y

. y x=
1–

21 3/ 3
22 3/
---------- 

 

.
x

y

1– 1inflection point

. x

y

3– 3
.1

m
ax

x

y

1.
1– 1 x

y

..
1– 1

x

y

.
1

. 4
3
--- 4 3

9
---------- 

 

x

y

x

y

.
.2 6 21 3/ 

4– .
1– 3– 

. 63 2/– . .
63 2/

.
.

23 2/– 4 2 

23 2/ 4– 2 

x

y

3 27
4

------–– 
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29.          31.

33. Absolute Minimum at , Absolute Maximum at 0.

35. Absolute Minimum at , Absolute Maximum at 3.

37. Absolute Minimum at 2, Absolute Maximum at 3.

39 through 50: No unique answers.          51. 5 weeks            

53. Since  for , the function has a removable discon-

tinuity at 1. Since the denominator is 0 at  and the numerator is not, a vertical asymptote
occurs at that point.

55. (a) The derivative of a cubic polynomial is a quadratic polynomial which cannot have more
than two zeros.
(b) No unique answer.

(c) Suppose that  assumes a (local) minimum at  and at , with

. It follows that the SIGN of  must be positive immediately to the right of both

points, and negative immediately to their left: . But for this to happen, there

must be a sign change between  and at ; which is to say, an additional zero  of 

with . This is not possible since  can have at most two
zeros.

57. (a) The second derivative 

has but one zero: . Concavity will change about that point.   (b) No unique answer.

4.3 OPTIMIZATION (PAGE 160)

1. 200 units             3.  hours                 5. minimum: , maximum: 

7.               9.            11. $725          13. 1           15.              17.          

19. 36 inches wide by 48 inches high.      21. 64 in. by 128 in. by 96 in.

23. 150 ft by 100 ft, with the inner fence parallel to the 100 ft side.

25. 3.38 miles north of A.         27. One hour and 32 minutes.          29.          

x

y

.
.

.
1
2
--- 3

41 3/
----------–– 

 

1 3
2
---– 

 

5
2
---

1
2
--- .

.

.
.

11–

2– 3+ 4 2 3+ 
2– 3– 4 2 3– 

1
2
---–

x

y

1–

3–

x2 1–
x2 x 2–+
----------------------- x 1+  x 1– 

x 2+  x 1– 
--------------------------------- x 1+ 

x 2+ 
----------------= = x 1

2–

f x  ax3 bx2 cx d+ + += x1 x2

x1 x2 f  x 

x1 x2
. ._                  _+                 +

x1 x2 x3 f  x 

x1 x3 x2  f  x  3ax2 2bx c+ +=

f x  ax3 bx2 cx d+ + +  3ax2 2bx c+ +  6ax 2b+= = =

x b
3a
------–=

10
3
------ 475

bacteria

cm
3

------------------- 875
bacteria

cm
3

-------------------

x
1
2
---a= x 10=

32 3
9

------------- 4in.
2

2r
30

4 +
------------ft= h 15

4 +
------------ft=
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31. 4 machines.         33. The strongest beam of depth d and width w is realized when .

35. The perimeter  of a rectangle of length l and width w, subject to the condition

that , is to be minimized. From the given condition we have , and therefore

. Setting the derivative of P to zero and solving we have:

. Then: . 

We want to maximize  (note that xy is the area of the rectangle

lying in the first quadrant). From  we have: ; or

. 

To simplify calculations we find x for which  is greatest:

Since x has to be a positive number (  would yield a minimum area), we conclude that

maximum area occurs when , and that, consequently: .

39. 0.43            41.  0.75           43. 9.3 miles from plant A.

5.1 THE INDEFINITE INTEGRAL (PAGE 175)

1.             3.            5.            7.          

9.       11.       13.        15. 

17.          19.          21.          23. 

25.           27.            29. 

31.    33.       35. 

37.          43.           45          47 

(b) Right: ; left:      (c)                                                           

(d) m                        51.          

d 2w=

P 2l 2w+=

l w A= l A
w
----=

P 2
A
w
---- 2w+=

2Aw 1– 2w+  2– Aw 2– 2+ 0 w2 A w A= = = = l A
w
---- A

A
------- A= = =

37. x2 y2+ r2=

r . x y 

A 4xy=

x2 y2+ r2= y r2 x2–=

A 4x r2 x2–=

A2 16x2 r
2

x2–  16 r2x2 x4– = =

16 r2x2 x4–   0 16 2r2x 4x3–  0 x 0 or x
r

2
-------= = = =

x 0=

x r

2
-------= y r2 r

2
------- 
  2

– r

2
-------= =

3x C+ x6 x5 C+ + x5

25
------ 3

4x4
-------- C+ +

3
5
---x5 4

3x3
-------- 1

2x4
--------– C+ +

x4

2
----- 5x3

3
--------– C+ x4

4
----- x2

2
-----– C+

1
6
---x3 1

2x
------– 1

10x5
-----------+ C+

1
2
---x2 x 1

x
---– 1

2x2
--------– C+ +

5
2
---x

2
5
---

C+
2
7
---x

7
2
--- 2

5
---x

5
2
---

2x
3
2
---

– C+ +
3
13
------x

13
3

------ 6
5
---x

5
3
---

C+ + x x C+tan–sec

x x x C+ +tan–sec f x  3
2
---x2 5x 123

2
---------–+= f x  x3 5

2
---x2 5

2
---–+=

f x  1
4
---x

4 5
2
---x2 2x– 1+ += f x  3

x
---– 5

2x2
--------– 15

2
------+= f x  2

3
---x

3 1
2
---x2 3x– 11

6
------+ +=

f x  1
2
---x3 5

2
---x2 x 3–+ += f x  x3

3
----- 14

3
------+= 320 2

ft
sec
------- 225

4
---------ft

02 3–
9

-------------
at t 1 3=

49. (a) t
1

3
------- 0 t

1

3
------- t

1

3
-------

4 3
9

---------- 120+
1936
15

------------ft
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53. (a)    (b) Time when object reached a height h: 

Velocity at height h when object is going up:

Velocity at height h when object is coming down:

5.2 THE DEFINITE INTEGRAL (PAGE 186)

1. 3        3. 6          5.            7. 4           9.            11.            13.            15. 

17.           19.          21. 0         23.           25.           27. 

29. (a) $6,381   (b) $2,765             31. 200 days                 33. The $3,000 machine          35. 27

37. 6              39. 0             41.             43.              45. 

47.  where . So: .

49.          51.          53.          55. 

57. 

59. 

v0
2

64
------ft

16t2– v0+ t h=

16t2 v0t– h+ 0=

t
v0 v0

2 64h–
32

------------------------------------=

v
v0 v0

2 64h––

32
-------------------------------------

 
 
 
 

32
v0 v0

2 64h––

32
-------------------------------------

 
 
 
 

– v0+ v0
2 64h–= =

v
v0 v0

2 64h–+

32
--------------------------------------

 
 
 
 

32
v0 v0

2 64h–+

32
--------------------------------------

 
 
 
 

– v0+ v0
2 64h––= =

35
6
------ 4–

27
8
------ 4 2 2–

3
------------------- 46

35
------–

1 1

2
-------+ 2 2–

1
4
--- 4 2 2–

3
------------------- 5

2
---

3x4 1+
xsin

x2 1+
-------------- x2 x+

H x  T g x  = T x  f t  td
a

x

= H x  T g x  g x  f g x   g x = =

2 48x4 1+ xcos

sin
2
x 1+

--------------------- 2x
x4 1+
--------------– 2x5 10x3– x x xsin+cos

4x2sec
2
x2 2 x2tan+

f x  g x –  xd
0

2


f x  g x –  xd

0

1 1
n
---–

 f x  g x –  xd
1 1

n
---–

1 1
n
---+

+ f x  g x –  xd
1 1

n
---+

2

+
n 
lim=

0 f x  g x –  xd
1 1

n
---–

1 1
n
---+

+ 0+
n 
lim=

 max f x  g x – 1 1
n
---+ 

  1 1
n
---– 

 –
 
 
  2

n
---

n 
lim

n 
lim 0=



ANSWERS   C-16
5.3 THE SUBSTITUTION METHOD (PAGE 194)

1.            3.            5.             7. 

9.              11.              13. 

15.            17.                 19. 

21.           23. 0           25.              27.              29. 

5.4 AREA AND VOLUME (PAGE 205)

1.          3.          5.          7.          9.          11. 16         13. 2         15.          17. 

19. 1      21.        23.        25.         27.          29.          31.        33. 

35.          37.          39.          41.          43.          45.          47. 

49.          51.          53.          55.          57.          59.          61. 

 

63.          65.          67.          69.          71.          73. 

5.5 ADDITIONAL APPLICATIONS (PAGE 214)

1.           3.              5. 

     

7.               9.                       11.                         13.   

15. The unit circle has perimeter . The graph of the function  over the interval
 is the upper half of the unit circle . It follows,

that: . The claim that  now follows from the

observation that:

 .

x 5– 16

16
--------------------- C+ 1–

28 2x 5– 14
------------------------------- C+ x2 5+ 16

32
------------------------ C+ 5x2 4–

5
--------------------- C+

1
2
--- 3x2 1

x2 3– 
-------------------– 

  C+
1
2
---tan

2
x C+ 3x2 3x 1+ +

3 x 1+ 3
------------------------------– C+

2
5
--- x 3– 5 2/ 14

3
------ x 3– 3 2/ 22 x 3– 1 2/ C+ + +

63
18
------ 2

5
--- 10 5– 

1
36
------–

1
2
--- 4

15
------ 2 1+  2

9
--- 11 11 27– 

9
1
4
--- 9

2
--- 9

8
--- 4

3
--- 7

6
--- 3

51
4
------ 2

3
--- 4 2+

3
---------------- 1– 2+

26
3

--------- 28
15

--------- 
30
------

8 4
3
---r3 2

9
------ 512

45
------------ 

3
--- 72

5
--------- 64

15
---------

16 
96
------ 96 3–  

3
--- 

3
--- 32

5
--------- 16

3
--------- 

8 35
6

--------- 212
15

------------ 1
3
---l2h

16
3
------r3 4

3
---

1 4x2+ xd
1

5

  24.40; 1 1
2x 5–
---------------+ xd

4

9

  5.35; 36x2 48x 17+ + x  27.27;d
2–

2



8
27
------ 19 19 1–  59

24
------ 3

2
--- 4 1 b2x2

a2 a2 x2– 
---------------------------+ xd

0

a


2 f x  1 x2–=

1– 1  x2 y2+ 1=

1 1 x2–  2+ xd
1–

1
 =

1

1 x2–
------------------ xd

1–

1
 =

1 1 x2–  2+ 1
1

2 1 x2–
--------------------- 2x– 

2
+ 1 x2

1 x2–
--------------+ 1

1 x2–
--------------= = =
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17. (a)    (b)    (c) 80 cm                 19. feet               21.                  23. 3W         

25. (a)  ft-lbs  (b)  ft-lbs    (c)  ft-lbs      

27. ft-lb         29. 1400 ft-lb        31.            33.  pounds         35.          37. 

39.            41.             43.             45.             47. 22w lb         

49.      51.          53. 28,912 lb

6.1 THE NATURAL LOGARITHMIC FUNCTION (PAGE 229)

1.          3.          5.          7.          9. 

11.        13.         15.        17.         19.      21. 

23.          25. (a)   (b)    (c)    (d) 

27.           29.           31.            33.          35. 

37.     39.     41.      43.    45. 

47.             49.             51.           53.                55. e   

57. Since , and , the two functions can differ only

by a constant (Theorem 5.1): . Evaluating this equation at :

6.2 THE NATURAL EXPONENTIAL FUNCTION (PAGE 239)

1.          3.          5.          7.          9. 

11.         13.          15.          17. 

19.            21.           23.          25.             27. 

25
4
------J

25
16
------J

3
2
--- 103

72
---------m

15,552 36,288 2,963.45
875
8

--------- x 1
5
---–=

5
7
--- 50

9
------ft 1 3– 

34
5
------ 102

5
---------– 

  3
4
--- 3

10
------ 

  1
2
--- 2

5
--- 

  8
5
--- 2 
 

27 18 3+ w lb 576w lb

3x2 x x2+ln
2 2 xln+

x
--------------------- x x xsin

x
----------+cosln xtan–

x x xcosln xsin–
x xln 2

---------------------------------------

4x x2 1+ ln
x2 1+

------------------------------- 1 xln+

2 x xln
------------------ xtan

2 x2ln cos
x

---------------------------- 1
x2
-----–

2 xln–

x xln 3
------------------

1 xln 2+
4 x xln 3 2/
--------------------------–

6x 1+
3x2 x+
----------------- 1 6 xln+

x
--------------------- 108x3 54x2 12x 1+ + +

1
x xln
-----------

y 2x 2–= y 0= e 1  1
3
--- x3 2+ C+ln

1
2
--- xln C+ln

xln  C+sin 2 xcsc C+ln–
1
2
--- 2ln x2 1+ ln

2
------------------------- 2+

1
2
--- 1

x
---ln 

  2
– 3

2
---+

5–
.

6– X

Y

1 e2+
2

-------------- e5 6–
5

-------------- 9
2
---ln

xrln  1
xr
---- rxr 1– r

x
--= = r xln  r

1
x
--- r

x
--= =

xrln r xln= C+ x 1=
1ln r 1ln= C+ 0 0 C C+ 0 xrln r xln== =

2e2x x2ex x 3+  2ex ex 1–  2x 1– e2x

2x2
--------------------------- 5 x ex+ 4 1 ex+ 

10x x2 e2+ 4 xe xsincos ex x2sin 2x x2cos+  2x sec
2
x2 x2tan– 
ex2

----------------------------------------------

2x 1 ex2+ 
x2 ex2+

--------------------------- eex x+ y 2x ey– 
xyey 1+

------------------------ ex x 2+  1
x2
-----– 2+
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29.               31. (a)    (b)   

                                                                (c)   (d) 

33.        35.         37.            39.    

41.         43.         45.         47.        49.    

51.           53. 

55. 

57.         59.          61.        63. 

65.              67.  So: 

69. $8,187.31           71. (a) 6.91 billion   (b) 2030

73. Since  and , and since the natural logarithmic function is
one-to-one: .

75. For : . Applying Theorem 4.3(c), page 124,

we have:  for some constant c, or: .

6.3  AND  (PAGE 247)

1.          3.            5.          7. 

9.            11.            13. 

15.          17.          19.          21. 

e2x 5 3x 12 3xsin+cos – 6x 1+ e3x2 x+ ex 6ex 1+ 

108x3 54x2 12x 1+ + + eex x+

y 4e4x 7e4–= y e 2/ x e 2/ 1 
2
---– 

 +=
1
2
--- e

1
4
---

 
  ex3

3
------ C+

e1 x/– C+ x e x–– C+ exsin C+ ex e x–– C+ln e

1

2
-------

1–

f x  1
2
---ex2 3

2
---+= f x  e2x

4
------- x

2
--- 3

4
---+ +=

Ae x– Bxe x–+  Ae x–– Be x– Bxe x––+  Ae x– Be x–– Bxe x– Bex–+ Ae x– Bxe x– 2Bex–+= = =

and 2 Ae x– Bxe x–+  2 Ae x–– Be x– Bxe x––+  2Ae x–– 2Be x– 2Bxe x––+= =

So:  Ae x– Bxe x–+  2 Ae x– Bxe x–+  Ae x– Bxe x–+ + +

Ae x– Bxe x– 2Bex 2Ae x–– 2Be x– 2Bxe x–– Ae x– Bxe x–+ + +–+ 0= =

2 3
.

1– 1

e
--–, 

 

.
2– 2

e2
-----– 

 

. e
1
e
--- 

 

.
e3 2/ 3

2e3 2/
-------------- 

 

9
8
---

e2 1+
2

--------------
f x  e x2–= f  x  2xe x2––=

f x  2e x2– 1 2x+  1 2x– –=

.. 1

2
------- e 1 2/– 
 1

2
-------– e 1 2/– 

 

inflection points

A 2xe x2–= A 2 1 2x2– 
ex2

-------------------------=

x

Then: A 0 at x
1

2
-------= =

ea bln b ealn ba= = eabln ab=
ea b eab=

g x  e x– f x = g x  e x– f  x  e x– f x – 0= =

e x– f x  c= f x  c
e x–
------- cex= =

ax logax

2 5ln 52x x23x x 3ln 3+  22x 1+ 2 2ln  16ln 1– 
x2

--------------------------------------------------------- 5 xsin x 5lncos

5x 2x x2cos 5 x2sinln+  1 3ln x xln–
x3x

---------------------------------- 2x 1
x 2ln
----------- 2log2xln+ 
 

1
2 x log2x ln

---------------------------------- 1
2ln 2xlog2x

-------------------------------- 3x x 1 3xln+  5x2

25ln
----------- C+
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23.          25.          

27. Turning to the formula  of Theorem 6.8, page 236, we substitute H for t to

arrive at: , or: . Applying the natural logarithmic functions to both sides

we have: , or: . Substituting in (*):

 .     

29. 29.3 days    31. 

33. (a)    (b)    (c)                          

35. 10,000               37. 251 times more intense.                   39. 8.2

6.4 INVERSE TRIGONOMETRIC FUNCTIONS (PAGE 256)

1.             3.               5.               7.                  9. 

11.             13.           15.                17.  

19.            21.           23.               25. 

27.             29.         31.          33. 

35.        37.          39.          41.           43. 

45.             47.          49.               51.  radian/sec

53.

51 x/

5ln
---------– C+

1
2ln

--------

A t  A0ekt= (*)

A0

2
------ A0ekH= ekH 1

2
---=

kH
1
2
--- 
 ln= k 2ln

H
--------–=

A t  A0e
2ln

H
--------t–

A0 e 2ln 
t
H
----–

A02
t
H
----–

= = =

blogb x x= logablogb x loga x= logb x  loga b  loga x= logb x
loga x

loga b
-------------=  

10 3–  Watts/m
2

10 9–  Watts/m
2

10 11–  Watts/m
2

1
e
--- e –   1– 1  2x

1 x4–
------------------ 2x

1 x4–
------------------–

xsin

1 cos
2
x+

----------------------–
1

e2x 1–
-------------------- 2e2x

1 e4x–
-------------------- x 1 x2+ tan

1–
x–

x2 1 x2+ 
-------------------------------------------

1

1 4x2+  tan
1–
2x

--------------------------------------------- 1

x 1+ 2x 1+
---------------------------------- 2x

x x2 1+  x2 2+
--------------------------------------------– y x=

y
1

3
-------x  3–

3
----------------+= sin

1– x
3
--- 
  C+

1
2
---sin

1– 2x

3
------- 
  C+ sin

1–
ex  C+

sin
1–
x C+ln 2tan

1–
x C+

1
3
---tan

1– xsin
3

---------- 
  C+


12
------ 4

3
------

2

72
------ f x  1

3
-------tan

1–
3x  4 –

4 3
------------+=

1
6
---tan

1–
9

3
80
------

tan
1–
x tan x= tan

1–
x tan  1 sec

2
tan

1–
x  tan

1–
x  1= =

tan
1–
x  1

sec
2

tan
1–
x 

------------------------------ 1

1 tan tan
1–
x  

2
+

--------------------------------------------= =

1
1 x2+
--------------=since sec

2
x 1 tan

2
x+=
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55. 

57. (a) Let a be the positive square root of . Then:

(b) 

59. (a) Let a be the positive square root of . Then:

     

(b) 

61.                        63. 

7.1 INTEGRATION BY PARTS (PAGE 268)

1.       3.          5.     7. 

9.              11.              13. 

15.        17.          19. 

21.          23.          25. 

sec
1–
x sec x= sec

1–
x sec  1 sec

1–
x sec sec

1–
x  sec

1–
x tan 1= =

sec
1–
x   1

sec
1–
x sec sec

1–
x tan

--------------------------------------------------------------=

1
x
--- sec

1–
x tan 1

x x2 1–
---------------------= =

since 1 tan
2

+ x sec
2
x=

a2

xd

a2 x2–
-------------------- xd

a2 1
x
a
--- 
  2

–

----------------------------------- xd

a 1
x
a
--- 
  2

–

--------------------------------- ud

1 u2–
------------------ sin

1–
u C+ sin

1– x
a
--- C+= = = = =

u
x
a
--- du dx

a
------= =

sin
1– x
a
--- 

  1

1
x
a
--- 
  2

–

------------------------ x
a
--- 
   1

1 x2

a2
-----–

------------------- 1
a
--- 1

a2 x2–
--------------------= = =

a2

xd
a2 x b+ 2+
------------------------------- xd

a2 1
x b+

a
------------ 
  2

+

-----------------------------------------
1
a
--- ud

1 u2+
--------------

1
a
---tan

1–
u C+

1
a
---tan

1– x b+
a

------------ 
  C+= = = =

u
x b+

a
------------ du dx

a
------= =

1
a
---tan

1– x b+
a

------------ 
   1

a
--- 1

1
x b+

a
------------ 
  2

+

----------------------------- x b+
a

------------ 
    1

a2
----- 1

1 x b+ 2

a2
-------------------+

----------------------------- 1
a2 x b+ 2+
-------------------------------= = =

2 4–


------------------- 4 –


------------

x 1+
ex

------------– C+ 3x 3x 3xcos–sin
9

----------------------------------------- C+ ax ax axcos–sin
a2

----------------------------------------- C+ x3 3 xln 1– 
9

------------------------------- C+

9x2 6x– 2+ e3x

27
------------------------------------------ C+ 1 x2+ 1 x2 3–+ 

3
----------------------------------------------- C+ x2 2x 2+ +

ex
---------------------------– C+

2x3 2/

9
------------- 3 xln 2–  C+ x 1

x
---ln 1+ 

  C+
1
2
--- x2 c2–  x c+ ln

1
4
---x2 1

2
---cx+– C+

1
2
---x xln cos xln sin+  C+ x xsin ln 1– sin C+ x2 7x– 7+ ex C+
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27.         29.         31. 

33.      35.       37. 

39.          41.           43.             45.             47. 

49.          51.         53.         55.             

57. 

59. 

61. 

xtanx xsec
1
2
---x2–ln– C+ xsin

1
3
---sin

3
x– C+

1
2
--- tan

1–
x x

x2 1+
--------------– C+

1
6
--- x2 1+ ln 2x3tan

1–
x x2–+  C+

2
5
--- 3x 2x

3
5
--- 3x 2x C+coscos–sinsin– e 2–

1
27
------ 2 17

e3
------– 

  1
4
---  2 2ln–  5 5 4–ln 

8
---–

1
3
--- 2 2– 

9  e 2–  2e3 1 ft.+ xnex xd xnex n xn 1– ex xd–=

u xn=

du nxn 1– dx=

dv ex xd=

v ex=

sec
n
xdx sec

n 2–
x  sec

2
xdx sec

n 2–
x  x n 2–  sec

n 2–
x tan

2
x xd–tan= =

u sec
n 2–

x=

du n 2–  sec
n 2–

x  x xdxtansec=

dv sec
2
xdx=

v xtan=

sec
n 2–

x  x n 2–  sec
n
x sec

n 2–
x–  xd–tan=

sec
n 2–

x  x n 2–  sec
n
x x n 2–  sec

n 2–
x  dx+d–tan=

Thus: sec
n
xdx sec

n 2–
x  x n 2–  sec

n
x x n 2–  sec

n 2–
x  dx+d–tan=

sec
n
xdx n 2–  sec

n
xdx+ sec

n 2–
x  x n 2–  sec

n 2–
x  dx+tan=

sec
n
xdx sec

n 2–
x xtan

n 1–
-------------------------------

n 2–
n 1–
------------ sec

n 2–
x  dx+=

tan
2
x sec

2
x 1:–=

x
m

xln ndx xm 1+ xln n

m 1+
-----------------------------

xm 1+

m 1+
------------- n xln n 1–

x
------------------------- xd–=

xm 1+ xln n

m 1+
-----------------------------

n
m 1+
------------- x

m
xln n 1– dx–=

u xln n=

du n xln n 1– 1
x
---dx=

dv xmdx=

v xm 1+

m 1+
-------------=

x x2 a2++ ln xd x x x2 a2++  x

x2 a2+
--------------------- xd–ln=

x x x2 a2++  1
2
--- w

1
2
---–

wd–ln=

x x x2 a2++  w
1
2
---

– C+ln x x x2 a2++  x2 a2+– C+ln= =

u x x2 a2++ ln=

du dx

x2 a2+
---------------------=

dv dx=

v x=

w x2 a2+=

dw 2xdx=
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63. 

65. 

7.2 COMPLETING THE SQUARE AND PARTIAL FRACTIONS (PAGE 278)

1.      3.      5.      7. 

9.          11.          13.          15. 

17.                19.             21. 

23.              25.   

27.  29.  31. 

33.             35. 

37.            39.          41.  

43.          45.          47.         49.          

51.         53.          55.         57.        

59. 

eax bxsin xd
1
a
---eax bx

b
a
--- eax bxcos xd–sin=

1
a
---eax bx

b
a
--- 1

a
---eax bx

b
a
--- eax bxsin xd+cos–sin=

1
a
---eax bx

b
a2
-----eax bx

b2

a2
----- eax bxsin xd–cos–sin=

Thus: 1 b2

a2
-----+ 

  eax bxsin xd
eax

a
------- bx

b
a
--- bcos x–sin 

  C+=

eax bxsin xd eax

a2 b2+
----------------- a bsin x b bxcos–  C+=

u bxsin=

du b bxdxcos=

dv eax=

v
1
a
---eax= u bxcos=

du b bxdxsin–=

dv eaxdx=

v
1
a
---eax=

u v C+  v C+  ud– uv uC v u C ud–d–+ uv uC v u Cu–d–+ uv v ud–= = =

1
2
---tan

1– x 1+
2

------------ 
  C+

1
4
---tan

1– x 3+
4

------------ 
  C+ sin

1– x 3–
3

----------- 
  C+

1
10
------tan

1– 2x 2+
5

--------------- 
  C+

2

11
----------tan

1– 2x 3+

11
--------------- 
  C+ 3 2x x2–+– sin

1– x 1–
2

----------- 
  C+ + 

24
------–


6
---

1
3
--- x 2–

x 1+
------------ln C+ x 2– 2

x 1–
-------------------ln C+

1
4
--- x 1+  x 1– 3ln 1

2x 2–
---------------– C+

2
21
------ 3x 2–ln

1
14
------ 2x 1+ln C+ + x 3– 2

x2 x+
-------------------ln C+

x 4+ 3 x 3– 2ln 1
x 4+
------------ C+ +

x2

x 2+ 2
------------------- 1

2x2
--------– C+ln 1

x2 1+
--------------

1
2
--- x2 1+ ln C+ +

1
2
--- x2 1+ ln xln– tan

1–
x+ C+

5
2
--- x2 2+  x2 1+  3tan

1–
x– C+ln+ln

x x
x 2+ 3

-------------------ln C+ + x2

2
-----– 3x–

1
2
--- x2 1+  C+ln+

1
5
--- xsin 2–

x 3+sin
--------------------ln C+

1
2
--- ex 1–

ex 1+
--------------ln C+

2ln–
6

----------- 4.41 ln 3 3 3 49
12

---------+ln–+

4ln tan
1–
2– 

4
---+ 2 x 2– 

x 1–
-------------------ln

3
4
--- 21

13
------ 3ln+ln  19

105
---------

1
8
--- 15

7
------ln+ 

 

1
x a–  x a+ 

--------------------------------- A
x a–
-----------

B
x a+
------------ 1+ A x a+  B x a– + a x a: B–

1
2a
------   x a: A

1
2a
------  = =;–= == = =

xd
x2 a2–
----------------

1
2a
------ xd

x a–
-----------

1
2a
------ xd

x a+
------------–

1
2a
------ x a–

1
2a
------ x a+ C+ln–ln

1
2a
------ x a–

x a+
------------ C+= = =
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7.3 POWERS OF TRIGONOMETRIC FUNCTIONS AND  TRIGONOMETRIC SUBSTITUTION (PAGE 288)

1.             3.          5. 

7.      9.         11. 

13.      15.        17. 

19.             21.              23. 

25.             27.          29. 0           31.          33. 

35.           37.          39.          41. 

43.                   45.                    47.          

49.       51.        53. 

55.               57. 

59.  

61.            63.                 65. 

67.            69.            71. 4           73. 

75.    

1
2
---x

1
4
--- 2xsin– C+

1
9
---cos

3
3x

1
3
--- 3x C+cos–

3
8
---x

1
8
--- 4xsin

1
64
------ 8x C+sin+ +

1
16
------x

1
64
------ 4sin x–

1
48
------sin

3
2x C+ +

1
2
---tan

2
x xsec C+ln–

1
2
--- 2xcot–

1
6
---cot

3
2x– C+

1
6
---tan

6
x

1
4
---tan

4
x C+ +

1
10
------tan

2
5x

1
20
------tan

4
5x C+ + x xsec xsec xtan+ln– C+

1
5
---sec

5
x

2
3
---sec

3
x x C+sec+–

1
3
---csc

3
x

1
5
---csc

5
x– C+

1
2
--- 2xsin C+

2
3
--- tanx 

3
2
--- 2

7
--- tanx 

7
2
---

C+ +
5 2
12

---------- 3 
3
---–

3
4

------

48 3
1
2
--- sin

1–
x x 1 x2––  C+ 9 x2–– C+ 25 x2–

25x
---------------------– C+

1
3
--- 4x2 9+ 3+

2x
-------------------------------ln C+ 4x2 9–

9x
--------------------- C+ x

9x2 1–
---------------------– C+

2 2 x2––
1
3
--- 2 x2– 

3
2
---

C+ + x2 16+ 
3
2
---

48x3
-------------------------– C+

1
4
---sin

1–
2x

1
2
---x 1 4x2– C+ +

1
3
--- 1 e2x– 

3
2
---

– C+
25
2
------sin

1– x 2–
5

----------- 
  x 2–

2
----------- 
  21 4x x2–+ C+ +

x2 x 1+ +
1
2
--- x2 x 1+ + 2x 1+ + C+ln–

x2 2 x2 4x– 8+ ln
3
2
---tan

1– x 2–
2

----------- 
  C+ + + 4

2 3+

1 2+
---------------- 
 ln 2ln

5
96
------ 3

2
------ 2

4
------ 

2
---+

.R
r

y R r2 x2–+=

y R r2 x2––=

V 2 R r2 x2–+ 2 R r2 x2–– 2–  xd
0

r

=

2 R r cos+ 2 R r cos– 2– r cos d
0


2
---

=

2 4Rr cos r cos d
0


2
---

 8Rr2 cos
2 d

0


2
---

= =

x r sin=

dx r dcos=

4Rr2 1 2cos+  d
0


2
---

=

4Rr2  1
2
--- 2

0
 2

sin+ 22Rr2= =
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77. . Since n

is odd,  is even, say . Then:

Consequently: 

7.4 A HODGEPODGE OF INTEGRALS (PAGE 296)

1.     3.       5. 

7.                9.                11.   

13.                         15.  

17.          19.

21.          23. 

25.          27.          29. 

31.          33. 

35.          37.          39. 

41.          43.          45.          47.          49. 

51.        53.         55.          57.          59.       61. 

63. (a) 

(b) 

(c) 

tan
n
xsec

m
x xd xtan

n 1–
x xsecsec

m 1–
x xdtan sec

m 1–
xtan

n 1–
x x xtansec xd= =

n 1– n 1– 2k=

tan
n 1–

x tan
2k

x tan
2
x k

sec
2
x 1– k

sec
2
x 1– 

n 1–
2

------------
= = = =

tan
n
xsec

m
x xd sec

m 1–
x sec

2
x 1– 

n 1–
2

------------
x xtansec xd=

3 xln– x 2
x
---– C+ + x2 2x 5+ +ln–

3
2
---tan

1– x 1+
2

------------ 
 – x C+ +

1

3
-------tan

1–
3x  C+

1
3
--- x3 1+ 

ex3
-------------------– C+ sin

1–
ex  C+

x
2
--- 2xln sin 2xln cos–  C+

1
3
--- ex 1–

ex 2+
----------------ln C+

2
15
------ x 5– 

3
2
---

3x 20+  C+

6
7
---x

7
6
---

–
6
5
---x

5
6
---

– 6x
1
6
---

– 3 1 x1 6/+
1 x1 6/–
------------------- 2 x– C+ln+ sin

1– 2x 3–
3

--------------- 
  C+

x2 1– tan
1–

x2 1–– C+ x2 9+ x+ln x

x2 9+
------------------– C+

x 1–

9 x2 2x– 10+
------------------------------------- C+

1
10
------tan

1– 2x 2+
5

--------------- 
  C+ tan

1–
x

x
---------------– x

1 x2+
------------------ C+ln+

1
2
--- x x x xtan+secln+tansec  C+ 2 x 2 x x– C+sec+tan

x x x x 1+cossinln–cossin C+
1
2
---

x
2
---tan

x
2
---tan 2+

--------------------ln C+ 2 1+ ln

1
4
--- 2 

8
---+ln

3
9

---------- 1
4
--- 3e4 1+  

8
---–

1
6
--- 3 3 – 

1
2
--- 3 2–  2 2– 2

5
---

1
2
--- 

10
------cos–

4
9
--- 9

28
------–


18
------ 8 3 9– 

A B–  A B+ cos–cos A B A Bsinsin+coscos  A B A Bsinsin–coscos – 2 A Bsinsin= =

A B+ sin A B– sin+ Asin B Acos Bsin+cos  Asin B Acos Bsin–cos + 2 A Bcossin= =

A B–  A B+ cos+cos A B A Bsinsin+coscos  A B A Bsinsin–coscos + 2 A Bcoscos= =
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8.1 L’HOPITAL’S RULE (PAGE 308)

1.          3. 0         5. 0         7. 1         9. 0         11. 1         13. 0         15. 1         17. 4         19. 

21. 2         23.          25. 2          27.          29.         31.         33. 2         35. 0

37. 1          39. 0         41. 0          43.           45.           47. 1            49. e            51.  

53.            55.   0 and            57.             59.              61.           63. 

65. Using the facts that  and that the  derivative of  equals  (Exercise 64, page

88), we apply L’Hopital’s rule n times to go from  to: .

8.2 IMPROPER INTEGRALS (PAGE 316)

1. 1         3.          5.          7.          9. Diverges       11.           13.         15. 

17. Diverges         19. 6           21.           23. Diverges           25.          27. 

29.             31. 2             33.          35. Diverges            37.              39. 

41.             43.          45.              47.             

49. 

which diverges since the cosine continues to vary from  to 1.

 which diverges since the cosine continues to vary from  to 1.

, since .

51. 1          53.          55.          57. 

9.1 SEQUENCES (PAGE 330)

1.          3.          5. 

7.            9. As , 

11. For , , which tends to  as .

13.      15.    17. Diverges        19. Diverges        21. 

23. Diverges         25. Diverges      27. Diverges         29. Converges to 5         31. 1         33. 2

1
8
--- 1

3
---

1
2
---  aln bln– 1

6
---–

1
2
--- 2ln

1

e
------

  3
2
--- 1

2
--- 1

6
--- a 4=

ex  ex= nth xn n!
ex

xn
-----

x 
lim ex

n!
-----

x 
lim =

1– 1
4
---–


4
--- 1

2
--- 0  1 2+ 

4 10 2
4
5
---

– 10 23 5/

tan
1–
2 5 

2
---–ln+ 3

2
---–


2
--- 1

4
---–

3 1 22 3/–  a 1– 3 n 1–

x xdsin
0



 x xdsin
0

t

t 
lim xcos– 

1
t

t 
lim t 0cos–cos –

t 
lim t 1+cos– 

t 
lim= = = =

1–

x xdsin
–

0

 x xdsin
t

0

t –
lim xcos– 

t
0

t –
lim 0 tcos–cos– 

t –
lim 1– tcos+ 

t –
lim= = = =

1–

x xdsin
t–

t

t 
lim xcos– 

t–
t

t 
lim t t– cos–cos –

t 
lim 0= = = tcos t– cos=

4
3
--- 2 

7
---

n
n 1+
------------ 1– n 1+ n2

3n 1–
--------------- a  1, (b) 50, (c) 5,000, (d) smallest integer

1
22
--------

a  2
5
---, (b) 2, (c) 20, (d) smallest integer

1
5
----- n  n

10100
------------- 

n 100 an
n

n 100+
---------------------- n

2n
---------- n

2
-------= =  n 

Converges to 0 Converges to 5 Converges to 0



ANSWERS   C-26
35.          37.          39. 1         41.           43. 2         45. Diverges         47. 

49.     51.       53. Increasing       55. Decreasing     57. Decreasing

59. Decreasing               61. Sequence is decreasing and bounded.            65. No unique answer.

67. , since .

69. For given  choose N such that . Since :

.

9.2 SERIES (PAGE 342)

1.           3.            5.    

7. (a)   (b)   (c)          9.          11.          13. 

15. Diverges           17. Diverges           19.             21. 

23.         25. Converges         27. Converges         29. Diverges        31. Diverges

33. 10,000 terms          35. 3 terms          37.            39. 

41.          43. 

45. (a) 

(b) 

47. (a) Suppose that  converges. By Exercise 45(a), 
would also converge — contradicting a given condition.

(b) No unique answer.

49.          51. 

3
5
--- 1

2
------- 1

5
---ln Converges to 0

Converges to 
1
2
--- Converges to 

1
2
---

an
n

rn 1+
---------------

1

r 1
n
---+

----------- 1
r
--- as n = = 1

n
--- 0  as n  

 0 n N an L–  an L– an L–
n N an L– 

1
2n 1+
---------------

n 1=

4

 1
2n 3+
---------------

n 0=

3

 10n 1–

n 1=

5

 10n

n 0=

4

 1– n5n
2n
------

1



 1– n 1+ 5n 5+
2n 1+

---------------

0





5
4
--- 1

4
--- 5

4
--- Converges to 

7
2
--- Converges to 

500
99
--------- Converges to 3

Converges to 
1
6
--- Converges to 

10
3
------

Converges to 5
2
---–

108 terms sn 1 1

n 1+
----------------–=  sum 1=

sn
1
2ln

--------– 1
n 2+ ln

----------------------+=  sum 1
2ln

--------–= sn
3
2
--- 1 1

2n 1+
---------------– 

 =  sum 3
2
---=

an bn– 

n 1=



 an bn– 

n 1=

N

N 
lim an

n 1=

N

 bn

n 1=

N

N 
lim–

N 
lim an

n 1=



 bn

n 1=



–= = =

Theorem 9.2(b), page 322

can

n 1=



 can

n 1=

N

N 
lim c an

n 1=

N

N 
lim

 
 
 
 

c an

n 1=



= = =

Theorem 9.2(b), page 322

an bn+  an bn+  an–  bn=

300 ft 32 ft
2
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9.3 SERIES OF POSITIVE TERMS (PAGE 354)
1. Diverges         3. Converges         5. Converges         7. Converges         9. Converges

11. Converges         13. Diverges         15. Diverges           17. Diverges         19. Converges

21. Diverges       23. Diverges        25. Diverges        27. Converges         29. Converges

31. Converges         33. Converges         35. Converges         37. Converges         39. Converges

41. Diverges        43. Converges         45. Converges         47. Diverges         49. Diverges

51. Converges      53. Converges       55. Converges       57. Converges       

59. If , then the series is the divergent harmonic series. The series also diverges if  

(Exercise 21). The function  is continuous and positive for . Moreover, 

since  is negative for x sufficiently large, say for , f  is 

decreasing for . Applying the Integral Test we have: 

If , the above integral converges to , and so the series converges.

If , the above integral diverges to infinity, and so the series diverges.

61. Does not violate the Integral Test, since f is not a decreasing function.

63. True       65. True

9.4 ABSOLUTE AND CONDITIONAL CONVERGENCE (PAGE 362)
1. Conditionally Convergent          3. Conditionally Convergent         5. Absolutely Convergent

7. Conditionally Convergent       9. Absolutely Convergent            11. Absolutely Convergent

13. Absolutely Convergent        15. Divergent         17. Absolutely Convergent         19. Divergent

21. Conditionally Convergent         23. Conditionally Convergent         25. Absolutely Convergent

27. Conditionally Convergent      29. Conditionally Convergent     31. Diverges      33. Divergent

35. If  converges, then so must  (Theorem 9.20). Consequently, if  diverges, 
then so must .

37. (a) Since  and  so does ; as must , since 

.               (b) No       (c) No      (d) Yes      (e) No     (f) No

39. (a) Let M be such that . Since , the convergence or  implies the 
convergence of .          (b) No unique answer.

p 0= p 1=

f x  1
x xln p
------------------= x 2

f  x  xln p 1– p xln+ 
x2 xln 2p

---------------------------------------------–= x N

x N

xd
x xln p
------------------

N



 xd
x xln p
------------------

N

t

t 
lim u p– ud

N

tln

t 
lim 1

1 p–  xln p 1–
---------------------------------------

t 
lim

N

tln

= = =

1
1 p–  tln ln p 1–

------------------------------------------------- 1
1 p–  Nln p 1–

-----------------------------------------–
t 
lim=

p 1 1
1 p–  Nln p 1–

-----------------------------------------–

p 1

an an an
an

an bn an bn+ an bn+
an bn+ an bn+

yn M anyn M an an
anyn



ANSWERS   C-28
9.5 POWER SERIES (PAGE 371)
1. ,           3. ,             5. ,        7. , 

9. ,           11. ,            13. ,          15. ,     

17. , ,           19. , , 

21. , ,                23. , ,  

25. , ,                        27. , , 

29. , ,        31. , ,        

33.      35. 

37. . By the Root Test, the series 

 converges for .

9.6 TAYLOR SERIES (PAGE 384)

1.           3.            5. 

7.       9.       11. 

13.    15. 

R 1= 1 1 – R 2= 2– 2  R 5= 5– 5  R 2= 6– 2– 

R 1
2
---=

1
2
--- 3

2
--- 

  R 1= 5– 3–  R 1= 1– 1  R 1= 1– 1 

1– nxn

n 0=



 R 1= 1– 1  2 xn

3n 1+
------------

n 0=



 R 3= 3– 3 

1– nx2n 1+

9n 1+
----------------------------

n 0=



 R 3= 3– 3  5 xn

n5n
--------

n 1=



–ln R 5= 5– 5 

1– n 1+

n 0=



 xn xn

2n 1+
------------

n 0=



– R 1= 1– 1  2n

n
-----xn

1



– R 1
2
---= 1

2
---–

1
2
--- 

 

x2n

n
-------

1



– R 1= 1– 1  1– nx4n 2+

2n 1+
----------------------------

n 0=



 R 1= 1– 1 

f x  xn

n!
-----

n 0=



= f  x  nxn 1–

n!
---------------

n 1=



= xn 1–

n 1– !
------------------

n 1=



= f x  n 1– xn 2–

n 1– !
-----------------------------

n 2=



=

xn 2–

n 2– !
------------------

n 2=



 xn

n!
-----

n 0=



= =

Since f x  f x  f  x  f x – 0= =

R =

cnxn 1 n/

n 
lim cn

1 n/ x
n 
lim x cn

1 n/

n 
lim  x L= = =

cnxn

n 0=



 x L 1 x
1
L
---

1– n 1+ xn

n
--------------------------

n 1=



   R 1= 1– nxn

n 0=



   R 1= 3nxn

n 0=



   R 1
3
---=

1– nxn 1+

n!
--------------------------

n 0=



   R =
1– n1002n

2n !
-------------------------------x2n    R

n 0=



 =
e x 1– n

n!
----------------------,  R

n 0=



 =

1– n 1+ x 
6
---– 

  2n 1+

2 2n 1+ !
--------------------------------------------------

n 0=




1– n 3 x 

6
---– 

  2n

2 2n !
-------------------------------------------- R

n 0=



+ = 1– n 1+ x 1– n

n
----------------------------------------

n 1=



 R 1=
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17.      19. 

21.          23.         25. 

27.   29.   31.

33.     35.     37. 

39. 7 terms         41. 7 terms         

47. (a)      (b)       (c) and (d) 

49. As suggested, we first show that  is (1) 0 if , (2)  if , and 

(3)  if :

(1) Every time you differentiate  the power of  is reduced by 1. So, the  
derivative is a constant, and higher order derivatives are 0.

(2) (Using Mathematical Induction, page 83)

I. Valid at : 

II. Assume validity at : 

III. We establish validity at : :

(3) (Using Mathematical Induction)

I. Valid at : 

II. Assume validity at : 

III. We verify that :

1– n2n

2n !
---------------------- x 1

2
---– 

  2n

n 0=



   R = 1
3
---

1– n 1 3 5 2n 1–   
2n32n 1+ n!

--------------------------------------------------------------- x 9– n

n 1=



+   R 9=

e x 1– n

n!
----------------------

n 0=



   R = 1– nx2n

n 0=



   R 1= 1– nx2n 1+

2n 1+
----------------------------

n 0=



   R 1=

1
a b+
------------ 1– n x a– n

a b+ n
---------------------------------

n 0=



 R a b+= 1– nxn

n 0=



  R 1=
1– n

n!
-------------xn 1+

n 0=



 R =

1– n 1+ x – 2n

2n !
------------------------------------------

n 0=



  R = 1– nx2n 3+

2n 1+ !
----------------------------

n 0=



  R =
3–

k 
  xk

2k 3+
------------

k 0=



 R 2=

1– nx4n 2+

2n 1+ !
----------------------------

n 0=



 1– nx4n 3+

2n 1+ ! 4n 3+ 
-------------------------------------------

n 0=



 C+ 1
3
---

1
42
------ 0.3095–

d
k

dxk
-------- x a– n n k k! n k=

n n 1–  n k– 1+  x a– n k– n k

x a– n x a– nth

n k 1= = x a–  1 1!= =

n k m= = d
m

dxm
--------- x a– m m!=

n k m 1+= = d
m 1+

dxm 1+
---------------- x a– m 1+ m 1+ !=

d
m 1+

dxm 1+
---------------- x a– m 1+ dm

dxm
--------- d

dx
------ x a– m 1+ m 1+  dm

dxm
--------- x a– m= =

m 1+ m! m 1+ != =By II:

k 1= x a– n  n x a– n 1–=

k m=
d

m

dxm
--------- x a– n n n 1–  n m– 1+  x a– n m–=

d
m 1+

dxm 1+
---------------- x a– n n n 1–  n m–  x a– n m 1+ –=
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 And so we have:  

Evaluating at  we have , or: 

51. Applying the Ratio Test, we first show that the Binomial series converges for :

We now establish the fact that  by showing that the function 

. 

Step 1: 

d
m 1+

dxm 1+
---------------- x a– n d

dx
------ d m

dxm
--------- x a– n d

dx
------ n n 1–  n m– 1+  x a– n m– = =

n n 1–  n m– 1+  d
dx
------ x a– n m–=

n n 1–  n m– 1+  n m–  x a– n m– 1–=

II

f x  cn x a– n

n 0=



 cn x a– n

n 0=

k 1–

 ck x a– k cn x a– n

n k 1+=



+ += =

f k  x  dk

xk
----- cn x a– n

n 0=

k 1–

 ck x a– k cn x a– n

n k 1+=



+ +
 
 
 
 

=

cn
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n

n 0=
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 ck
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k
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n

n k 1+=
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           0              ckk!              cnn n 1–  n k– 1+  x a– n k–

n k 1+=
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x a= f k  a  ckk!= ck
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---------------=

x 1

ak 1+
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------------
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----------------------------------------- xk 1+
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-------------------------------------------------------- r k– x
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------------------

r
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1 1
k
---+
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g x  r
k 
  xk
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 1 x+ r= =

h x  1 x+  r– g x  1= =

1 x+ g x  1 x+  r r 1–  r k– 1+ 
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  1 x+  r r 1–  r k– 1+ 
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==
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 x
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 rg x = =

lower the index by 1 in the first series
and add 0 to the sum in the second series:
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Step 2:  (by Step 1).

Step 3:  (by Step 2).

Step 4: .

10.1 PARAMETRIZATION OF CURVES (PAGE 403)

1.          3.           5. 

7.          9.          11. 

13.                          15.                      17.          

19.       

21. 

23.          25. 

27.         

29.              31. 

33.             35.              37.            39. 

h x  1 x+  r– g x  1 x+  r– 1– g x – 0= =

h x  c=

h x  h 0  g 0  1= = =

y x 1– 3 x 2 y 1=

x

y

.2 1 

x2 y2– 1 x 1=

x

y

1

x 2+ 2

9
------------------- y2

4
-----+ 1=

5– 1

2 2– .
. ..

2– 2– 

2– x

y

y x2 3/=

x

y

y x2 1+=

x

y

.1

x 1 2y2–=

.
1

1 1– 

x

y

1– 1– 

y x–= y
4
3
---x– 4 2+= y

e2

2
-----x e2

2
-----+=

Horizontal: 4
16 3

9
------------- 

  , Vertical: 0 0 

Horizontal: 2 1–  2 1 , Vertical: 2 0 

Horizontal: none , Vertical: none Increasing: t
2
3
---, Concave up: t 0–

Increasing: nowhere , Concave up: t 0

x

y

 t 0–

x

y

0 t 

. .
1 4  1 4  .

.
.

2 8– 

8 8 

t 0=

t 4=

t 2=

4 2 2– 12 1
65
4
------ 
  t 4t2+ + td

0

2

 4sin
2
t cos

2
t+ td

0

2
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10.2 POLAR COORDINATES (PAGE 414)

1.          3.          5.          7.          9. 

11.     13.         15.      

17.                   19.                 21.             23.      

25.      27. 

29.                 31.                   33. 

35.          37.          39. 

41.          43.          45. 

47.          49.          51.          53. Maximum point: , Minimum point: 

55. Maximum points: , Minimum points: .

57. Maximum points: , 

Min. points:    59.    61.

63.

2 0  3 0  1– 3  2 2–  4 2
7
4

------ 
  4– 2

3
4

------ 
 

1

2
--- 

  1–
3
2

------ 
  2 2

3
------ 2k+ 

  2– 5
3

------ 2k+ 
  8 

6
--- 2k+ 

  8– 7
6

------ 2k+ 
 

r 3= r  csccot–= r 4 cos–= x2 y2+ 16=

x2 y2 3y–+ 0= y 1=

4

6

3 1 – 3 3 3  3 3 3– 

2 6
9

---------- 2 3
9

---------- 
  2 6

9
---------- 2 3

9
----------– 

 

3 33+
4

------------------- 53.6 
  3 33–

4
------------------- 212.5 
 

3 33+
4

------------------- 306.4 
  3 33–

4
------------------- 147.5 
  0 0  1

2
---–

1
2
--- 

  0 0  1
4
--- 3

4
------- 

 

r a sin b  r2 ar  br  x2 y2+cos+sin=cos+ ay bx x2 bx– y2 ay–++ 0= = =

x2 bx– b2

4
----- y2 ay– a2

4
-----+ + + b2

4
-----

a2

4
----- x b

2
---– 

  2
y a

2
---– 

  2
++ a2 b2+

4
-----------------= =

circle centered at 
b
2
--- a

2
--- 

   of radius 
1
2
--- a2 b2+
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 From the figure, we see that the circles  and  intersect 

at the origin and at the point with polar coordinates :

 

For 

And, for 

 At the point , the curve  has a vertical tangent line [denominator in (*) is 0], 

whereas the curve  has a horizontal tangent line [numerator in (**) is 0].

At the point , the curve  has a horizontal tangent line [numerator in (*) is 

0], while that of  is vertical [denominator in (**) is 0].

10.3 AREA AND LENGTH (PAGE 422)

1.             3.               5. 

7.          9.          11.          13.          

15.          17.          19. 

21.          23.          25.          27.          29. 

31.          33.          35.          37. 

65. r sin=

r cos=

r cos= r sin=
1

2
------- 

4
--- 

 

cos  tansin 1  
4
--- r 

4
---cos 1

2
-------= = = = =

r cos f  : dy
dx
------ f     f   cos+sin

f     f   sin–cos
---------------------------------------------------- sin

2– cos
2+

2  cossin–
------------------------------------- 2cos

2sin
---------------–= = = = = (*)

r sin g  : dy
dx
------ g     g   cos+sin

g     g   sin–cos
------------------------------------------------------ 2  cossin

cos
2 sin

2–
-------------------------------- 2sin 

2cos 
---------------= = = = = (**)

0 0  r cos=

r sin=

1

2
------- 

4
--- 

  r cos=

r sin=

3
2

------
2 2

 4 5

10
----------------- 4 –

16
------------  2+

4
------------

5 8–

 2–
8

------------ 8 16–
 2 2–

8
-------------------

18 3 4–
2 3 3–

2
----------------------- 12 40 42 3+

3
----------------------------- 6 3 2–

3
-----------------------

8
 3+

8
------------ 3 2 1 2+ ln+  38.75
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INDEX                                                                                                                                                                                                  I - 1
A
Absolute Convergence, 356
Absolute Value, 1, 577
Acceleration, 171, 527
Alternating Series, 337

Test, 337
Angle Between Vectors, 503
Antiderivative, 167
Arc Length, 208, 309, 534
Area, 177, 449

Between Curves, 158
Polar, 378
Surface, 633

Asymptote
Horizontal, 138
Oblique, 138

 Vertical, 139

B
Binomial Series, 380
Binormal Vector, 536
Bounded Sequence, 327
Boundary Point, 578

C
Center of Mass, 216, 451
Chain Rule, 94, 555
Circle of Curvature, 542
Composition, 7
Comparison Test, 347
Concavity, 131
Conditional Convergence, 356
Conservative Field, 605, 612
Continuity, 57, 430, 432
Continuous Function, 50, 57, 430
Cross Product, 506
Critical Point, 125, 575
Curl(F), 626
Curvature, 539
Cylinder, 437
Cylindrical Coordinates, 472

D
Decomposition of Vectors, 504
Decreasing Function, 123
Decreasing Sequence, 327
Definite Integral, 177
Density, 450

Derivative
At a Point, 66
Directional, 560
Geometrical Insight, 71
Higher Order, 85
Of Functions, 29

   In Polar Form, 373
Partial, 467

     Higher Order, 551
Determinant, 505
Differentiability, 553
Differential, 82
Differential Equation, 172
Discontinuity 48
 Jump, 49

Removable, 49
Directional Derivative, 560
Distance, 5, 14
Div(F), 628, 656
Divergence Test, 332
Divergence Theorem, 654
Domain, 3
Dot Product, 501
Double Integral 440

In Polar Coordinates 457

E
Elliptic Cone 440
Elliptic Paraboloid, 438
Ellipsoid, 439
Endpoint Extremes, 137
Exponential Function 

General, 242
Natural, 231

Exponential Growth and Decay, 235
Extreme Values

Absolute 577
Local 574
Subject to a constraint, 580
Subject to two constraints, 583

F
Flux, 652

Across a Curve, 636
Across a Closed Curve, 620
Across a Surface, 536

Force Field, 612
Free Falling Object, 171, 529
Function, 2

Absolute Value, 35
Composition, 7
                                                                       gio



I - 2                                                                                                                                                       Index
   Continuous, 50, 57, 430
Decreasing, 123
Domain, 3
Graphing, 131
Increasing, 123
Inverse, 13
One-to-One, 11
Piece-Wise Defined, 4
Range, 3
Vector Valued, 523

Fundamental Theorem of Calculus, 180, 605

G
Generalized Power Rule, 95
Geometric Series, 334
Gradient , 561
Graphing Functions, 131

Polynomial, 132
Radical, 143
Rational, 138 

Graphing functions of Two Variables, 435
Green’s Theorem, 617, 622, 630

H
Helix, 523
Higher Order Derivatives, 85
Hyperbolic Paraboloid, 441
Hyperboloid, 441
Horizontal Asymptote, 138

I
Implicit Differentiation, 103
Improper Integral, 310

Discontinuous, 313
Infinite Region, 310, 272, 275

Increasing Sequence, 377
Increasing Function, 123
Indefinite Integral, 167
Induction, 83
Inflection Point, 131
Instantaneous Rate of Change, 70
Integral

Definite, 178
Double, 444
     In Polar Coordinates, 449
Improper, 310, 316
Indefinite, 167
Triple, 464

Integral Test, 345
Integration by Parts, 261
Interior Point, 125

Intermediate Value Theorem, 126
Inverse Function, 13

Graph, 14 
Inverse Trigonometric Functions, 250

J
Jump Discontinuity, 11

L
Lagrange Theorem and Multipliers, 580
Lagrange Remainder Theorem, 339
L’Hopitals’ Rule, 301

“0/0” Type, 301
“ ” Type, 304
Other Forms, 205

Level Curve, 566
Level Surface, 566
Limit, 55

Definition, 55, 427, 431
Geometrical Interpretation, 47
Intuitive, 43
One-Sided, 46
Uniqueness, 53

Limit Comparison Test, 348
Line, 514

Parametric Equation,514
Vector Equation, 514

Line Integrals, 591
Of Scalar Valued Functions, 591
Of Vector Valued Functions, 597
     Alternate Notation, 599

Linearization, 82
Local Extremes, 121, 574
Logarithmic Function,223 
   Common, 2441
   General, 233
   Natural, 223

M
Maclaurin Series, 375
Mass, 450, 594

Center, 451
Mathematical Induction, 83
Maximum/Minimum Theorem, 127, 574
Mean Value Theorem, 121
Monotone Sequence, 327

N
Natural Exponential Function, 231
Natural Logarithmic Function, 223

f 
 
                                                                       gio



INDEX                                                                                                                                                                                                  I - 3
Net Change, 184
Norm, 502
Normal Vector, 536

O
Oblique Asymptote, 138
One-to-one function, 11
Optimization, 149, 574

Using a Graphing Utility, 157
Orthogonal Vectors, 503
Osculating Circle, 542
Osculating Plane, 538

P
Parallel Planes, 518
Parametrization of Curves, 392

Arc Length, 400, 401
Parameter, 393

Parametrization of Surfaces, 638
Partial Derivatives, 549
Partial Fractions, 272
Partial Sums, 332
Path Independent, 604
Pinching Theorem, 89, 324
Plane, 516

Normal, 565
Tangent, 565
Equations

General, 516
Scalar, 516
Vector, 516

Point of Inflection, 131
Polar Coordinates, 405
Polar Curves, 407 

Area, 416
Length, 420

Power Series, 364
Functions, 367
Interval of Convergence, 365
Radius of Convergence, 365

Principal Theorem of Calculus, 161
P-Series, 347
Pythagorean Theorem, 14

Q
Quadrant Angle, 31
Quadratic Formula, 19
Quadratic Surfaces, 437

R
Range, 1
Rate of Change, 70

Average, 70
Instantaneous, 70

Ratio Test, 350, 358
Related Rates, 110
Removable Discontinuity, 49
Rolle’s Theorem, 121
Root Test, 351

S
Second Derivative Test, 137
Second Partial Derivative Test, 575
Sequences, 321

Bounded, 327
Convergent, 321
Decreasing, 327
Divergent, 321
Increasing, 327
Monotone, 327
Subsequence, 328
The Algebra of, 323

Set, 1
Intersection, 2
Union, 2

Series
Absolute Convergence, 356
Alternating, 327
   Error Estimate, 340
   Test,337
Binomial, 380
Conditional Convergence, 356

Rearranging Terms, 360
Convergent, 2332
Divergent, 232
Divergent Test, 332
Geometric, 334
Maclaurin, 375
Of Positive Terms, 347

Comparison Test, 347
Integral Test, 307
Limit Comparison Test, 348
Ratio Test, 350, 358
Root Test, 352

P-Series, 347
Partial Sums, 232
Power Series, 364

Interval of Convergence, 365
Radius of Convergence, 365

Taylor, 373
Polynomial, 376
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Smooth Curve, 591
Spherical Coordinates, 475
Stoke’s Theorem, 644
Subsequence, 328
Substitutuion Method, 189, 192
Surface Area, 633, 639
Surface Integral, 635, 640

T
Tangent Line, 65
Tangent Plane, 565
Tangent Vector, 527, 536
Taylor Convergence Theorem, 378
Taylor Inequality, 377
Taylor Polynomial, 376
Taylor Series, 373
Techniques of Integrations, 261

By Part, 261
Completing the Square, 270
Partial Fractions, 272
Trigonometric substitution, 280

Trigonometric Identities, 37
Triple Integrals, 454

U
Unit Vector, 493

V
Vector, 487

Addition, 490
Component, 504
Angle Between Vectors, 503
Cross Product, 506

Right-Hand-Rule, 508
Decomposition, 504
Dot Product, 501
Initial Point and Terminal Point, 487
Norm, 493
Orthogonal Vectors, 504
Projection, 504
Scalar Product, 489
Standard Position, 487
Subtraction, 491
Tangent, 527
Unit, 493
Unit Binormal, 536
Unit Normal, 536
Unit Tangent, 536

Vector-Valued Functions, 523

Continuous,523
Derivative, 523
Integral, 523
Limit, 523

Vector Field, 604
Conservative, 605
Path-Independent, 604

Velocity, 171, 527
Vertical Asymptote, 139
Volume of Solids of Revolution, 195

Disk Method, 199
Shell Method, 202

Volume (Slicing), 203

W
Work, 210, 595

Z
Zeros and Factors of a Polynomial, 19
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	§1. Sets and Functions
	Functions
	Answers:
	(a) (b)
	(c) (d)
	EXAMPLE 1.1
	The Domain and Range of a Function


	The range of h is not so easy to determine at this point. You will be able to do so once you know how to graph such a function.
	Answers:
	(a)
	(b)
	Piecewise-Defined Functions
	EXAMPLE 1.2

	Answer:
	No, 10 is not in the domain of the function.
	DEFINITION 1.1
	THEOREM 1.1
	DEFINITION 1.2 Distance

	Answers:
	(a) ; 4
	(b) ; 10
	(c) ; 10
	(d) ; 4
	The Arithmetic of Functions
	DEFINITION 1.3
	EXAMPLE 1.3

	Answer:
	Composition of Functions
	DEFINITION 1.4

	Note that composition is not a commutative operation:
	EXAMPLE 1.4
	EXAMPLE 1.5

	Answers:
	(a-i) 13 (a-ii)
	(b) One possible answer:
	EXAMPLE 1.6
	1.
	2.
	3.
	4.
	5.
	6.
	7.
	8.
	9.
	10.
	11.
	12.
	13.
	14.
	15.
	16.
	17.
	18.
	19.
	20.
	21.
	22.
	23.
	24.
	25.
	26.
	27.
	28.
	29.
	30.
	31.
	32.
	33.
	34.
	35. Evaluate the function at and at .
	36. Evaluate the function at and at .
	37. Evaluate the function at: , , , and at (Are you sure? What is the domain of f?).
	38. For and determine:
	39. Theorem 1.1(a)
	40. Theorem 1.1(b)
	41. For any numbers a and b:
	42.
	43.
	44.
	45.
	46.
	47.
	§2. One-To-One Functions and their Inverses

	DEFINITION 1.5 one-to-one
	Figure 1.1


	Horizontal Line Test:
	No horizontal line can intersect the graph of a one-to-one function at more than one point.
	Figure 1.2
	EXAMPLE 1.7

	Answer: See page A-2.
	Inverse Functions
	Figure 1.3


	Do not confuse with .
	Figure 1.4

	Only one-to-one functions have inverses (see Figure 1.3).
	DEFINITION 1.6
	EXAMPLE 1.8

	Answer:
	and see page A-3,
	Graph of an inverse function
	EXAMPLE 1.9
	Figure 1.5


	Answer: See page A-3.
	1.
	2.
	3.
	4.
	5.
	6.
	7.
	8.
	9.
	10.
	11.
	12.
	13.
	14.
	15.
	16.
	17.
	18.
	19.
	20.
	21.
	22.
	23.
	24.
	25.
	26.
	27.
	§3. Equations and Inequalities
	Polynomial Equations
	EXAMPLE 1.10

	Answers: (a)
	(b)
	(c)
	Zeros and Factors of a Polynomial

	If
	then:
	EXAMPLE 1.11

	Answer:
	Polynomial Inequalities
	EXAMPLE 1.12
	Figure 1.6


	Answers:
	(a)
	(b)
	EXAMPLE 1.13

	Note: If a quadratic polynomial has a positive discriminant then it has two distinct zeros, and they are both odd-zeros.
	EXAMPLE 1.14

	Answer:
	Rational Equations
	EXAMPLE 1.15

	Answers: (a)
	(b)
	Rational Inequalities
	EXAMPLE 1.16

	We are adopting the convention of placing a “hole” where the denominator is zero (function not defined).
	EXAMPLE 1.17

	Answers:
	(a)
	(b)
	1. (a) (b) (c)
	2. (a) (b) (c)
	3. (a) (b)
	4. (a) (b) (c) (d)
	5. (a) (b) (c)
	6. (a) (b) (c)
	7. (a) (b) (c)
	8. (a) (b) (c)
	9. (a) (b)
	10. (a) (b)
	11. (a) (b)
	12. (a) (b)
	13. (a) (b)
	14. (a) (b) (c)
	15. (a) (b)
	16. (a) (b)
	17. (a) (b) (c)
	18. (a) (b) (c)
	19. (a) (b) (c)
	20. (a) (b) (c)
	21.
	22.
	23.
	24.
	25.
	26.
	27.
	28.
	§4. Trigonometry
	Trigonometric Functions of Acute Angles
	DEFINITION 1.7
	Two important right triangles


	Answer: See page A-6.
	Figure 1.7
	Radian Measure
	EXAMPLE 1.18

	Answers: (a) (b)
	Oriented Angles
	Figure 1.8

	Trigonometric Functions of Oriented Angles
	DEFINITION 1.8

	The hypotenuse has length 1 as it coincides with the radius of the circle.
	DEFINITION 1.9
	Trigonometric values of quadrantal angles
	Figure 1.9


	EXAMPLE 1.19
	EXAMPLE 1.20

	Answer: See page A-6.
	Trigonometric Values of Non-Quadrantal Angles
	Figure 1.10

	EXAMPLE 1.21

	Answer: cosine and secant are positive, the others are negative.
	Figure 1.11
	EXAMPLE 1.22
	EXAMPLE 1.23

	Answers: (a)
	(b) (c)
	Trigonometric Functions of a Real Variable
	DEFINITION 1.10
	Figure 1.12


	A vertical asymptote for the graph of a function is represented by a dashed vertical line about which the graph tends to either plus or minus infinity. In particular the graph of the tangent function has vertical asymptotes at odd multiples of .
	Figure 1.13
	Trigonometric Identities
	1.
	2.
	3.
	4.
	5.
	6.
	7.
	8.
	9.
	10.
	11.
	12.
	13.
	14.
	15.
	16.
	17.
	18.
	19.
	20.
	21.
	22.
	23.
	24. sin
	25.
	26.
	27.
	28.
	29.
	30.
	31.
	32. sin
	33.
	34.
	35.
	36.
	37.
	38.
	39.
	40.
	41.

	CHAPTER 2
	Limits and Continuity
	§1. The Limit: An Intuitive Introduction
	EXAMPLE 2.1
	EXAMPLE 2.2
	EXAMPLE 2.3
	Figure 2.1
	Figure 2.2

	DEFINITION 2.1
	EXAMPLE 2.4
	1.
	2.
	3.
	4.
	5.
	6.
	7.
	8.
	9.
	10.
	11.
	12.
	13.
	14.
	15.
	16.
	17.
	18.
	19.
	20.
	21.
	22.
	23.
	24.
	25.
	26.
	27.
	28.
	29.
	30. where:
	31. where:
	32. where:
	33. where:
	34.
	35.
	36.
	37.
	38. and
	39. and
	40. and .
	41. and .
	42. f is:
	§2. The Definition of a Limit

	DEFINITION 2.2
	THEOREM 2.2
	Figure 2.3

	EXAMPLE 2.5
	EXAMPLE 2.6
	THEOREM 2.3
	THEOREM 2.4
	THEOREM 2.5
	Figure 2.4

	DEFINITION 2.3
	1. ,
	2. ,
	3. ,
	4. ,
	5. ,
	6. ,
	7.
	8.
	9.
	10.
	11.
	12.
	13.
	14.
	15.
	16. for any number c.
	17. for any numbers c and .
	18.
	19.
	20.
	21.
	22.
	23.
	24. For what values of a and b is continuous at 2?
	25. For what values of a and b is continuous at 1?
	26. is continuous at c.
	27. is continuous at c.
	28. is continuous at c.
	29. is continuous at c.
	30. Theorem 2.1
	31. Theorem 2.2
	32. Theorem 2.3(b)
	33. Theorem 2.3(d)
	34. Theorem 2.4(b)
	35. Theorem 2.4(d)
	36. Theorem 2.4(e)
	37. if and only if . That is:
	38. Every polynomial is a continuous function.
	39. Every rational function is a continuous function.
	40. Prove Theorem 2.1, page 46.
	41. If f and g are continuous functions and if , then: .
	§1. Tangent lines and the Derivative
	Figure 3.1
	Figure 3.2
	Figure 3.3


	DEFINITION 3.1
	EXAMPLE 3.1
	DEFINITION 3.2
	EXAMPLE 3.2
	EXAMPLE 3.3
	Figure 3.4

	EXAMPLE 3.4
	Figure 3.5
	1.
	2.
	3.
	4.
	5.
	6.
	7.
	8.
	9.
	10.
	11.
	12.
	13.
	14.
	15.
	16.
	17.
	18.
	19.
	20.
	21.
	22.
	23.
	24.
	25.
	26.
	27.
	28. at
	29. at
	30. (Graphs of Functions and their Derivatives) Pair off each function [A] through [F] with its corresponding derivative function [1] through [6].
	31.
	32.
	33.
	34.
	35.
	36.
	37. f does not have a limit at 0; it has a limit at 1 but is not continuous at 1; it is continuous at 2 but not differentiable at 2.
	38. f is not defined at 0 but has a limit at 0; it is defined at 1 but does not have a limit at 1; it has a limit of 5 at 2, but is not continuous at 2; it is continuous at 3 with function value 6, but is not differentiable at 3.
	39. Where f is differentiable in , f has a positive derivative. f has a negative derivative between 2 and 4. f is not continuous at 1. f is continuous at 2 but not differentiable at that point.
	40.
	41.
	42.
	43.

	§2. Differentiation Formulas

	EXAMPLE 3.5
	EXAMPLE 3.6
	EXAMPLE 3.7
	Approximating Function Values
	Figure 3.6


	EXAMPLE 3.8
	EXAMPLE 3.9
	Mathematical Induction



	The Principle of Mathematical Induction might have been better named the Principle of Mathematical Deduction, for inductive reasoning is used to formulate a conjecture, while deductive reasoning is used to rigorously establish whether or not the conj...
	Figure 3.7

	The last integer in:
	The sum of the first 3 odd integers is: The sum of the first 4 odd integers is: Suggesting that the last integer in the sum of the first k odd integers is:
	EXAMPLE 3.10
	Higher Order Derivatives
	1.
	2.
	3.
	4.
	5.
	6.
	7.
	8.
	9.
	10.
	11.
	12.
	13.
	14.
	15.
	16.
	17.
	18.
	19.
	20.
	21.
	22.
	23. at
	24. at
	25. at
	26. at
	27. at
	28. at
	29. at
	30. at
	31. at
	32. at
	33. at
	34. at
	35.
	36.
	37. at
	38. at
	39.
	40.
	41. ; slope: 2.
	42. ; slope: 1.
	43. Show that no tangent line to the graph of the function has a slope equal to .
	44. Show that there is but one tangent line to the graph of the function with y- intercept equal to 4. Determine the equation of the tangent line.
	45. Show that there does not exist a tangent line to the graph of the function with y-intercept equal to .
	46. Show that for any there exists a unique tangent line to the graph of the function with y-intercept equal to b.
	47. Find the point(s) on the graph of the function which have as tangent line.
	48. Show that the line is tangent to the graph of the function at some point. Determine the point of tangency.
	49. Find a second degree polynomial such that , , and
	50. Find a second degree polynomial such that its graph passes through the point , the tangent line at has slope 1, and the tangent line at has slope 3.
	51. Determine a, b, c, d such that and are the tangent lines to the graph of the polynomial function at and , respectively.
	52. at
	53. at
	54. Theorem 3.2(c)
	55. Theorem 3.2(f)
	56. Use Theorem 3.2(f) to establish the following reciprocal rule:
	57. Show that if f, g, and h are differentiable, then:
	58. Show that if is a factor of a polynomial , then is a factor of . Is the converse true? Justify your answer.
	59. Prove that for every integer ,
	60. Prove that for every integer ,
	61. Prove that the sum of n differentiable functions is again differentiable.
	62. Prove that the product of n differentiable functions is again differentiable.
	63. Prove that the derivative of equals for any positive integer n.
	64. What is wrong with the following “Proof” that any two positive integers are equal:

	§3. Derivatives of Trigonometric Functions
	and the Chain Rule.

	EXAMPLE 3.11
	EXAMPLE 3.12
	The Chain Rule

	EXAMPLE 3.13
	EXAMPLE 3.14
	Figure 3.8

	EXAMPLE 3.15
	Proof of the Chain Rule:
	f I
	1.
	2.
	3.
	4.
	5.
	6.
	7.
	8.
	9.
	10.
	11.
	12.
	13.
	14.
	15.
	16.
	17.
	18.
	19.
	20.
	21.
	22.
	23.
	24.
	25.
	26.
	27.
	28.
	29.
	30.
	31.
	32.
	33.
	34.
	35.
	36.
	37.
	38.
	39. Determine the numbers where the tangent line to the graph of the function is horizontal.
	40. For what values of x is the slope of the tangent line to the graph of parallel to that of ?
	41. Show that the line is tangent to the graph of the function at some point. Determine the point of tangency.
	42. at
	43. at
	44. , given that for .
	45. , given that for .
	46. , given that for .
	47.
	48.
	49.
	50. (Theory) Prove that for any . (Suggestion: Make the substitution )
	51.
	52.
	53.
	54.
	55.
	56.
	57.
	58.
	59.
	60.
	61.
	62. (Investment) If $100 is invested at an annual interest rate r compounded quarterly, then the future value (in dollars) accumulated after 10 years is given by: . Find the rate of change of the future value with respect to r.
	63. (Investment) The effective rate of an annual nominal rate r compounded monthly is given by: . Find the rate of change of the effective rate with respect to the nominal rate.
	64. (Sales) A baseball stadium has a capacity of 35,000 fans. Attendance starts falling off when the temperature rises above 90 degree Fahrenheit, in accordance with the formula , where x is the (average) number of degrees above 90 during the game. T...
	65. (Theory) Derive the chain rule formula for three differentiable functions f, g, and h:

	§4. Implicit Differentiation
	Figure 3.9
	Figure 3.10


	EXAMPLE 3.16
	EXAMPLE 3.17
	EXAMPLE 3.18
	1. The points and on the parabola .
	2. The points and on the parabola .
	3. The points and on the circle .
	4. The points and on the circle .
	5. The points and on the ellipse .
	6. The points and on the ellipse .
	7. The points , , and on the hyperbola .
	8. The points , , and on the hyperbola .
	9. at
	10. at
	11. at
	12. at
	13. at
	14. at
	15. at
	16. at
	17. at
	18. at
	19. at
	20. at
	21. at
	22. at
	23. at
	24. at
	25.
	26.
	27. at
	28. at
	29.
	30.
	31.
	32.
	33.
	34.
	35. at
	36. at
	37. at
	38. at
	39.
	40.
	41.
	42.
	43. and
	44. and
	45. and
	46. and
	47. (Theory) Prove that the tangent line at any point on the circle is perpendicular to the radius of the circle at that point.
	48. (Theory) (a) Prove that the tangent line at any point on the circle is given by .
	§5. Related Rates

	EXAMPLE 3.19
	EXAMPLE 3.20
	EXAMPLE 3.21
	EXAMPLE 3.22
	Figure 3.11
	1. (Cube) The edge x of a cube is increasing at the rate of . Determine:
	2. (Circle) The radius r of a circle is increasing at the rate of . Determine:
	3. (Sphere) The radius r of a sphere is decreasing at the rate of . Determine:
	4. (Cone) The radius r of a cone is increasing at a rate of 2 inches per second while its height is decreasing in such a way that the volume remains constant at . At what rate is the height decreasing when the radius is 1 inch? Note: .
	5. (Cylinder) The radius r of a cylinder is decreasing at the rate of and its height is increasing at the rate of ? Find the rate of change of the volume when the radius of the cylinder is 2 feet and its height is 3 feet.
	6. (Cylinder) The radius r of a cylinder is increasing at 2 inches per second. When the radius is 4 inches, the volume is and is increasing at . How fast is the height of the cylinder increasing at that instant?
	7. (Circular Ripples) A stone is dropped into a pool of water creating a series of concentric circular ripples.
	8. (Rectangle) One side or a rectangle is 5 cm longer than the other side. Both sides are increasing at a rate of .
	9. (Rectangle) The length l of a rectangle is increasing at a rate of and its width w is decreasing at a constant rate . Determine c if its area is increasing at a rate of when and .
	10. (Rectangle) The length l of a rectangle is increasing at a rate of . Find the value of l at which the area of the rectangle starts to decrease if the perimeter of the rectangle is held fixed at 20 cm.
	11. (Rectangle) The length of a rectangle is increasing at 2 inches per second. Determine the rate of change of the area when the rectangle is a square, if the perimeter remains constant at 42 inches.
	12. (Rectangle) The length of a rectangle is increasing at 2 inches per second. How fast is the perimeter increasing when the length is 6 inches if its width decreases in such a way that the area remains constant at 24 square inches?
	13. (Equilateral Triangle) At a certain instant of time the sides of an equilateral triangle are 1 inch long and increasing at a rate of . Determine:
	14. (Shadow) A man 6 feet tall is walking away from a 24 foot lamppost at a rate of 3 feet per second. At what rate is the end of his shadow moving away from him?
	15. (Ladder) A ladder 12 feet long is leaning against the side of a building, and its foot is being pulled away from the building at the rate of 1 foot per second. Determine the rate of change of the angle formed by the ladder and the ground when the...
	16. (Equilateral Triangle) The area of an equilateral triangle is and it is increasing at the rate of . At what rate is the side of the triangle increasing at that time?
	17. (Triangle) The base of a triangle is increasing at the rate of 3 inches per minute, while the altitude is decreasing at the same rate. At what rate is the area changing when:
	18. (Triangle) The altitude of a triangle is increasing at a rate of and its base is increasing at a rate of . At what rate is the area of the triangle increasing when its height 15 cm and its area is ?
	19. (Isosceles Triangle) The base of an isosceles triangle is held constant at 24 inches. At what rate is the vertex angle changing at the instant of time when the altitude is 12 inches and is increasing at the rate of 1 inch per minute?
	20. (Balloon) A spherical balloon is expanding in such a way that its radius is increasing at a rate proportional to its surface area. Show that the surface area is increasing at a rate proportional to its volume.
	21. (Mothball) A spherical mothball evaporates in such a way that its volume decreases at a rate proportional to its surface area. Show that the radius decreases at a constant rate.
	22. (Balloon) A balloon rises vertically at a rate of 200 feet per minute, from a point on the ground that is 500 feet from an observer. Determine:
	23. (Sand) The volume of a cone is increasing at a constant rate of 2 cubic feet per minute in such a way that the height of the cone is always equals to its diameter. (Note: .)
	24. (Boat) A boat is pulled toward a dock by a rope attached to the bow of the boat and passing through a ring on the dock that is 6 feet higher than the bow of the boat.
	25. (Boyle’s Law) A gas occupies a volume of 1000 and is subjected to a pressure of Find the rate at which the pressure is changing at the instant when the volume is if the gas is being compressed at a rate of .
	26. (Two Ships) At noon ship A is 200 km west of ship B. Ship A is sailing south at and ship B is sailing north at . How fast is the distance between the ships changing at 2:00 PM?
	27. (Walking) At 1 PM a man starts walking north at a rate of from a point P. Five minutes later, a woman starts walking east at a rate of from a point Q that is 1000 feet west of P. How fast is the distance between the two individuals changing at:
	28. (Particle) A particle moves along the curve . Find the points on the curve at which the x-coordinate is increasing 9 times faster than its y-coordinate.
	29. (Water) Water is leaking out of an inverted conical tank of height 120 inches and radius 10 inches at a rate of , while water is being pumped into the tank at a constant rate. (Note: .) Find that constant rate if:
	30. (Water) Water is pumped into a tank at the rate of 75 cubic feet per minute. The tank consists of a cylinder of radius 2 feet, centered at the top of a hemisphere of radius 5 feet. (Volume of sphere: ). How fast is the water level rising when the...
	31. (Swimming Pool) A rectangular swimming pool 20 feet long and 10 feet wide is 6 feet deep at one end and 2 feet deep at the other. Water is pumped into the empty pool at the rate of . At what rate is the water level rising when it is:

	§1. The Mean Value Theorem
	Figure 4.1
	Figure 4.2


	DEFINITION 4.1
	DEFINITION 4.2
	Figure 4.3

	EXAMPLE 4.1
	EXAMPLE 4.2
	Proof of the Mean Value Theorem
	1. ;
	2. ;
	3. ;
	4. ;
	5. ;
	6. ;
	7. ;
	8. ;
	9. ;
	10. (a) Show that if f is differentiable on and if its derivative is never 0, then .
	11. Show that the function does not have a zero derivative in the interval , even though . Explain how this does not violate Rolle’s theorem.
	12. Show that the function does not have a derivative equal to in the interval . Explain how this does not violate the Mean-Value Theorem.
	13. (a) Sketch the graph of .
	14. (a) Sketch the graph of .
	15. Let f be differentiable on . Prove that if has two distinct solutions in , then has at least one solution in .
	16. Show that the equation has exactly one real root.
	17. Show that the equation has exactly one real root.
	18. Show that the equation cannot have more that two distinct real roots.
	19. Show that the equation has exactly one real root.
	20. (a) Show that the equation can have at most two real roots.
	21. Show that the equation cannot have more that two distinct real roots.
	22. Let f be differentiable on . Prove that if has two distinct solutions in , then has at least one solution in .
	23. Show that for any real numbers a and b.
	24. Let f and g be differentiable on with and for . Show that .
	25. Two runners start the 100-yard dash and finish in a tie. Prove that at some time during the race they are running at the same speed.
	26. Suppose that and for . What is the largest possible value of ?
	27. Suppose that and for . What is the smallest possible value of ?
	28. A fixed point for a function f is a number c for which .
	29. Suppose that f and g are differentiable on and that the graphs of the two functions intersect at and at . Show that there is some point between a and b where the tangents to the graphs of f and g are parallel.

	§2. Graphing Functions
	Figure 4.4

	Graphing Polynomial Functions


	The graph of a polynomial function and that of its leading term need not get arbitrarily close to each other as x tends to , but they will have similar shapes.
	Answers: (a)
	(b)
	EXAMPLE 4.3
	Figure 4.5
	Figure 4.6
	Endpoint Extremes
	Figure 4.7

	Second Derivative Test
	Figure 4.8


	EXAMPLE 4.4
	Graphing Rational Functions
	Vertical Asymptotes


	The graph of a rational function will approach a vertical asymptote at c where and . A vertical asymptote need not occur at a point at which both the numerator and denominator of the rational expression are zero. (see Exercise 53).
	.
	Answer: The graph tends to as x approaches from the left, and it tends to as x approaches from the right.
	EXAMPLE 4.5
	Figure 4.9

	EXAMPLE 4.6
	Figure 4.10
	Graphing Radical Functions

	EXAMPLE 4.7
	Figure 4.11

	EXAMPLE 4.8
	Figure 4.12


	Answer: See page A-22.
	1.
	2.
	3.
	4.
	5.
	6.
	7.
	8.
	9.
	10.
	11.
	12.
	13.
	14.
	15.
	16.
	17.
	18.
	19.
	20.
	21.
	22.
	23.
	24.
	25.
	26.
	27.
	28.
	29.
	30.
	31.
	32.
	33. ,
	34. ,
	35. ,
	36. ,
	37. ,
	38. ,
	39. Has a local maximum at 0, a local minimum at 5, and does not have an absolute maximum nor an absolute minimum anywhere. (See Exercises 33-38.)
	40. Has domain . Has a local maximum at 0, a local minimum at 5. The absolute minimum of the function occurs at , and the absolute maximum occurs at 10. (See Exercises 25-30.)
	41. The first and second derivatives of the function are positive everywhere.
	42. The first and second derivatives of the function are negative everywhere.
	43. The first derivative is positive everywhere, and the second derivative is negative everywhere.
	44. The first derivative is negative everywhere, and the second derivative is positive everywhere.
	45. The function has a maximum value at and an inflection point at ; the first derivative is negative immediately to the left of 3, and positive immediately to the right of 3.
	46. The function has a minimum value at and an inflection point at ; the first derivative is negative immediately to the left of 3, and positive immediately to the right of 3.
	47. Has a vertical asymptote at , an x-intercept at , and a horizontal asymptote .
	48. Has a vertical asymptote at , x-intercepts at and , and a horizontal asymptote .
	49. Has vertical asymptotes at and , x-intercepts at and , and a horizontal asymptote .
	50. Has a vertical asymptote at , an x-intercept at , and an oblique asymptote .
	51. (Learning Process) Experimentation has shown that the learning performance of rats for a particular task can be approximated by the function , where t denotes the number of weeks the rat has been exposed to the learning process, for . At what poi...
	52. (Fruit Flies) In the early 1900, the biologist Raymond Pearl discovered that the growth rate of the population of fruit flies with respect to time t, in days, can be approximated by the function, , for .
	53. Show that the function has a vertical asymptote at but not at .
	54. Show that for each of the following functions, and then go on to show that one of the functions has a maximum at 0, another has a minimum at 0, and the remaining one has neither a maximum nor a minimum at 0.
	55. (a) Prove that the graph of a cubic polynomial cannot have more that two distinct horizontal tangent lines.
	56. (a) Prove that the vertex of the parabolic graph of a quadratic function occurs at .
	57. (a) Prove that the graph of the cubic function has but one inflection point, and that it occurs at .
	58. (a) Prove that the graph of a polynomial of degree can have at most maximum or minimum points.
	§3 Optimization
	EXAMPLE 4.9

	Answer:
	EXAMPLE 4.10
	EXAMPLE 4.11
	EXAMPLE 4.12
	EXAMPLE 4.13
	EXAMPLE 4.14
	EXAMPLE 4.15
	With the help of a graphing utility

	EXAMPLE 4.16
	1. (Maximize Profit) A company can produce up to 500 units per month. Its profit, in terms of number of units produced is given by . How many units should the company produce to maximize profit?
	2. (Minimize Cost) The total operating cost, per hour, to operate a freight train is given by , where s is the speed of the train in miles per hour. Find minimum cost for a 400 mile trip.
	3. (Maximum Drug Concentration) The concentration (in milligrams per cubic centimeter) of a particular drug in a patient’s bloodstream, t hours after the drug has been administered has been modeled by . How many hours after the drug is administered...
	4. (Air Velocity in the Trachea) When a person coughs, the radius r of the trachea decreases. The velocity of air in the trachea during a cough can be approximated by the function , where a is a constant, and is the radius of the trachea in a relaxed...
	5. (Bacterial Growth) A pond is treated to control bacterial growth. After t days, the concentration of bacteria per cubic centimeter can be approximated by the function , . Determine (a) the minimal bacterial concentration and (b) the maximal bacter...
	6. (Minimum Force) An object of weight W is being pulled along a horizontal plane by a force F acting along a rope attached to the object which makes an angle with the plane. Find the angle for which the force is smallest, given that , where the cons...
	7. (Sensitivity) The reaction to a dosage x of a drug administered to a patient is given by , where x is the amount of the drug administered, and a is the maximum dosage of the drug that can be administered. The rate of change of R with respect to th...
	8. (Maximize Revenue) A car-rental agency can rent 150 cars per day at a rate of $15 per day. Assume that for each price increase of $1 per day, 3 less cars will be rented, while for each $1 decrease 2 additional cars will be rented. What rate should...
	9. (Maximize Revenue) A chemical company charges $90 per pound for a product. The decision is made to discount each pound in any order that exceeds 10 pounds by $3 per additional pound; up to and including  pounds. Find the value of x beyond which re...
	10. (Maximize Profit) It costs the college bookstore $7 for a student supplement to one of its mathematics texts. The bookstore is currently selling 300 copies at $12 per book, and it estimates that it will be able to sell 10 additional copies for ea...
	11. (Maximize Revenue) A computer manufacturer will, on the average, sell 25,000 units per month at $950 per unit. It is estimated that 250 additional units will be sold per month for each $5 decrease in price. Find the price that will maximize revenue.
	12. (Minimum Distance) Find the point on the line that is closest to the point .
	13. (Smallest Sum) Determine the positive number which, when added to its reciprocal, yields the smallest sum.
	14. (Greatest Difference) Determine the positive number which exceeds its cube by the greatest amount.
	15. (Maximum Area) Find the largest possible area of a rectangle with base on the x-axis and upper vertices on the curve .
	16. (Minimum Area) Determine the right triangle of largest area that can be inscribed in a circle of radius r.
	17. (Maximum Area) Determine the maximum area of a right triangle with hypotenuse of length 4 inches.
	18. (Maximum Area) Find the area of the largest rectangle that can be inscribed in a semicircle of radius r.
	19. (Minimum Area) A poster is to surround of printing material with a top and bottom margin of 4 in. and side margins of 3 in. Find the outside dimensions of the poster that will require the minimum amount of paper.
	20. (Maximum Volume) Determine the maximum volume of a right circular cylinder that can be inscribed in a sphere of radius r.
	21. (Maximum Volume) A shipping crate with base twice as long as it is wide is to be shipped by freighter. The shipping company requires that the sum of the three dimensions of the crate cannot exceed 288 inches. What are the dimensions of the crate ...
	22. (Minimum Surface Area) Find the dimensions of a 4 open-top rectangular box with square base requiring the least amount of material.
	23. (Minimum Cost) A fenced-in rectangular garden is divided into 2 areas by a fence running parallel to one side of the rectangle. Find the dimensions of the garden that minimizes the amount of fencing needed, if the garden is to have an area of 15,...
	24. (Minimum Cost) A fenced-in rectangular garden is divided into 3 areas by two fences running parallel to one side of the rectangle. The two fences cost $6 per running foot, and the outside fencing costs $4 per running foot. Find the dimensions of ...
	25. (Minimize Cable Length) A power line runs north-south. Town A is 3 miles due east from a point a on the power line, and town B is 5 miles due west from a point b on the power line that is 9 miles north of a. A transformer, on the power line, is t...
	26. (Shortest Ladder) A ladder is to reach over a 8 ft fence to a wall 2 ft behind the fence. What is the length of the shortest ladder that can be used?
	27. (Minimum Commuting Time) A lighthouse lies 2 miles offshore directly across from point A of a straight coastline. The lighthouse keeper lives 5 miles down the coast from point A. What is the minimum time it will take the lighthouse keeper to comm...
	28. (Minimal Distance Between Two Cars) At noon, car A is 10 miles due west of car B, and traveling east at a constant speed of 55 miles per hour. Meanwhile, car B is traveling north at 40 miles per hour. At what time will the two cars be closest to ...
	29. (Maximum Light Emission) A Norman window is a window in the shape of a rectangle surmounted by a semicircle. Find the dimensions of the base of the window that admits the most light if the perimeter of the window (total outside length) is 15 feet...
	30. (Optimizing Area) A 16 inch wire is to be cut into two pieces. One piece is to be bent into an equilateral triangle and the other into a square. How should the wire be cut in order for the resulting combined areas to be: (a) Maximum? (b) Minimum?
	31. (Minimum Production Cost) A union agreement stipulates that the worker of Example 4.15 will now be paid $14 per hour plus $4 per hour for each machine in operation. How many machines should be used to minimize cost of production?
	32. (Minimum Production Cost) A manufacturer receives an order for N units. He can use any number of machines for the project, each capable of producing n units per hour, and each costing c dollars to be set up for the job. Once set up, the machines ...
	33. (Beam Strength) A rectangular beam is to be cut from a log with circular cross section. If the strength of the beam is proportional to its width and the square of its depth, find the dimensions of the strongest beam.
	34. (Fermat’s Principle and Snell’s Law) The speed of light depends on the medium through which it travels. Fermat’s Principle in optics asserts that light will travel along the quickest route. Assume that the speed of light in medium 1 and med...
	35. (Minimum Perimeter) Prove that among all rectangles of a given area, the square has the smallest perimeter.
	36. (Maximum Area) Prove that among all rectangles of a given perimeter, the square has the largest area.
	37. (Maximum Area) Prove that among all rectangles that can be inscribed in a given circle, the square has the largest area.
	38. (Minimum Area) Prove that the length of the square of minimal area that can be inscribed in a square of length L is of length .
	39. (Shortest Distance) Determine, to two decimal places, the shortest distance between a point on the curve and the point .
	40. (Shortest Distance) Determine, to two decimal places, the value of b such that the distance between the points where the line intersects the graphs of the functions and is smallest.
	41. (Shortest Distance) Determine, to two decimal places, the value of b such that the distance between the points where the line intersects the graphs of the functions and is smallest.
	42. (Shortest Distance) In Example 4.16, insert an additional point D midway between plants B and C. Determine, to 2 decimal places, the point P on the road whose combined distances from the four points A, B, C, and D is minimal.
	43. (Minimum Pollution Count) In CYU 4.24, introduce a fourth plant D that is on the same road as C and midway between C and the line joining A and B. Assuming that the pollution emission of D equals that of B, determine, to one decimal place, the po...
	44. (Minimum Cost) Point A is at ground level, and point B that is 35 feet below ground level, and 100 feet away from A (at ground level). The first 15 feet below ground level is soil, after which there is shale. A pipe is to join the two points. It ...
	§1. The Indefinite Integral


	A similar question:
	Answer: 7 and .
	DEFINITION 5.1
	DEFINITION 5.2
	EXAMPLE 5.1
	Differential Equations

	EXAMPLE 5.2
	EXAMPLE 5.3

	By convention, a positive velocity indicates an upward movement, while a negative velocity indicates a downward movement. Also, a positive position indicates “up” from the reference point, and a negative position indicates “down.”
	EXAMPLE 5.4
	EXAMPLE 5.5
	1.
	2.
	3.
	4.
	5.
	6.
	7.
	8.
	9.
	10.
	11.
	12.
	13.
	14.
	15.
	16.
	17.
	18.
	19.
	20.
	21.
	22.
	23.
	24.
	25.
	26.
	27.
	28.
	29.
	30.
	31.
	32.
	33.
	34.
	35.
	36.
	37.
	38.
	39.
	40.
	41. The function is a solution of the differential equation .
	42. The function is a solution of the second order differential equation .
	43. (From Slope to Function) The slope of the tangent line to the graph of a function f at is . Find the function, if its graph passes through the point (1,5).
	44. (From Slope to Function) The slope of the tangent line to the graph of a function f at is . Find the function, if its graph passes through the point (0,1).
	45. (Impact Speed) A stone is dropped from a height of 3200 feet. What is its speed on impact with the ground?
	46. (Initial Speed) At what speed should an object be tossed upwards, in order for it to reach a maximum height of 160 feet from the point of its release?
	47. (Bouncing Height) An object is thrown downward from a 96 foot building at a speed of 16 feet per second. Upon hitting the ground, it bounces back up at three-quarters of its impact speed. How high will it bounce?
	48. (Collision Velocity) An object is thrown downward from a 264 foot building at a speed of 24 feet per second, at the same time that an object is thrown up from the ground at 64 feet per second. Assuming that the two objects are in line with each o...
	49. (Particle Position) Let represent the position function of a particle moving along the x-axis, where is measured in minutes and s in meters.
	50. (Particle Position) Repeat Exercise 49 for the position function .
	51. (Stopping Distance) After its brakes are applied, a car decelerates at a constant rate of 30 feet per second per second. Compute the stopping distance, if the car was going 60 miles per hour (88 ft/sec) when the brakes were applied.
	52. (Stopping Distance) After its brakes are applied, a car decelerates at a constant rate of 30 feet per second per second. Compute the speed of the car at the point at which the brakes were applied, if the stopping distance turned out to be 120 feet.
	53. (Theory) An object is tossed upward from the ground with an initial velocity of feet per second.
	§2. The Definite Integral
	Figure 5.1
	Figure 5.2


	DEFINITION 5.3 Definite Integral
	THEOREM 5.6
	THEOREM 5.7
	Figure 5.3

	EXAMPLE 5.6
	THEOREM 5.8
	EXAMPLE 5.7
	EXAMPLE 5.8
	DEFINITION 5.4
	THEOREM 5.9
	THEOREM 5.10
	THEOREM 5.11

	Units can help point the way. We are given a rate in gallons per minute; and want to end up with total gallons over a specified period of time:
	EXAMPLE 5.9
	EXAMPLE 5.10
	1.
	2.
	3.
	4.
	5.
	6.
	7.
	8.
	9.
	10.
	11.
	12.
	13.
	14.
	15.
	16.
	17.
	18.
	19.
	20.
	21.
	22.
	23.
	24.
	25.
	26.
	27.
	28. (Cost Increase) In July, the price of gas increased at the rate of cents per gallon, where t denotes the number of days from June 1. How much did the cost of a gallon increase during the course of the month?
	29. (Depreciation) The resale value of a car decreases at the rate of dollars per year, where denotes the number of years following the car’s year of manufacture. How much did the car’s value depreciate:
	30. (Melting Ice) A 360 cubic inch block of ice is melting at the rate of cubic inches per minute. How many minutes will it take for the block to totally melt?
	31. (Advertising) A store is launching an aggressive advertising campaign, and anticipates that the number of daily customers, N, will grow from its current value of 200, at a rate of , where t is the number of days from the beginning of the campaign...
	32. (Declining Sales) Because of fierce competition, the weekly sales at an appliance store are expected to decline at the rate of units per week, where t is number of weeks from the present date. The store plans to go out of business when weekly sal...
	33. (Income Stream) A printing company can purchase a $2,000 hole-punching machine that will increase monthly earnings at a rate of dollars per month, or a $3,000 machine that will increase monthly earnings at a rate of dollars per month (t in months...
	34. (Depreciation) The resale value of a certain industrial machine decreases at a rate that depends on the age of the machine. When the machine is x years old, the rate at which its value is dropping during that year is  dollars per year. If the mac...
	35.
	36.
	37.
	38.
	39.
	40.
	41.
	42.
	43.
	44.
	45.
	46.
	47. (Theory) Let f be integrable, and g be differentiable. Use the Chain Rule (page 94) and Theorem 5.7, to show that for : .
	48. (Theory) Let f be integrable, and g and k be differentiable. Use the Chain Rule (page 94) and Theorem 5.7, to show that for : .
	49.
	50.
	51.
	52.
	53.
	54.
	55.
	56.
	57.
	58. (Theory) Referring to Definition 5.3, offer an argument explaining why the function:
	59. (Theory) Referring to Definition 5.3, offer an argument explaining why for the two functions depicted below.
	§3. The Substitution Method

	EXAMPLE 5.11

	And the end justifies the means. The substitution:
	takes us from:
	to:
	EXAMPLE 5.12
	EXAMPLE 5.13

	Answer:
	EXAMPLE 5.14
	EXAMPLE 5.15

	Answers: (b)
	1.
	2.
	3.
	4.
	5.
	6.
	7.
	8.
	9.
	10.
	11.
	12.
	13.
	14.
	15.
	16.
	17.
	18.
	19.
	20.
	21.
	22.
	23.
	24.
	25.
	26.
	27.
	28. ,
	29. ,
	30. (Theory) Prove that if , then:
	§4. Area and Volume
	Figure 5.4

	EXAMPLE 5.16
	EXAMPLE 5.17
	EXAMPLE 5.18
	EXAMPLE 5.19
	Figure 5.5

	DEFINITION 5.5
	EXAMPLE 5.20
	EXAMPLE 5.21
	Figure 5.6

	EXAMPLE 5.22
	Figure 5.7

	EXAMPLE 5.23
	EXAMPLE 5.24
	DEFINITION 5.6
	1.
	2.
	3.
	4.
	5.
	6.
	7.
	8.
	9.
	10.
	11.
	12.
	13.
	14.
	15.
	16.
	17.
	18.
	19.
	20.
	21.
	22.
	23.
	24.
	25.
	26.
	27.
	28.
	29.
	30.
	31.
	32.
	33.
	34.
	35.
	36.
	37. (Volume of Sphere) Derive the formula for the volume of a sphere of radius r. (Equation of the circle of radius r and centered at the origin is given by: .)
	38.
	39.
	40.
	41.
	42.
	43.
	44.
	45.
	46.
	47.
	48.
	49.
	50.
	51.
	52.
	53.
	54.
	55.
	56. , about
	57. , about
	58. , about
	59. , about
	60. , about
	61. , about
	62. about
	63. about
	64. S is bounded on the left by the y-axis, on top by the line , and on the right by the graph of .
	65. S is bounded on the left by the line , on top by the line , and on the right by the graph of .
	66. S is bounded on the left by the y-axis, on top by the line , and on the right by the graph of .
	67. S is bounded on the left by the line , on top by the line , and on the right by the graph of .
	68. The solid is a 25 foot pyramid whose base is a 10 foot square.
	69. The solid is a pyramid of height h whose base is a square of side l.
	70. The solid is a A pyramid of height 25 feet whose base is a 5 foot by 10 foot rectangle.
	71. The base of the solid is a circular disk of radius r and its cross-sections perpendicular to the base are squares.
	72. The base of the solid is a circular disk of radius r and its cross-sections perpendicular to the base are equilateral triangles.
	73. The base of the solid is the ellipse and its cross-sections perpendicular to the base are squares.
	74. Two right-circular cylinders of radius r have axes that intersect at right angles. Find the volume of the region common to the two cylinders. Suggestion: Consider the adjacent figure depicting one-eighth of the solid in question.
	§5. Additional Applications
	Arc Length
	Figure 5.8


	DEFINITION 5.7
	EXAMPLE 5.25
	EXAMPLE 5.26
	Work
	Figure 5.9


	DEFINITION 5.8
	EXAMPLE 5.27
	EXAMPLE 5.28
	Figure 5.10

	EXAMPLE 5.29
	1.
	2.
	3.
	4.
	5.
	6.
	7.
	8.
	9.
	10.
	11.
	12.
	13. (Arc Length) Express, in integral form, the length of the perimeter of the ellipse .
	14. (Arc Length) Express, in integral form, the length of a cycle of the sine curve.
	15. () Apply the arc length formula to the unit circle to show that .
	16. A spring is found to exert a force of 10 lb when stretched 4 in. beyond its natural length.
	17. A spring is found to exert a force of 25 N when compressed 200 cm beyond its natural length.
	18. A spring has a natural length of 1 ft. A force of 8 oz. stretches the spring to a length of ft.
	19. Find the natural length of a spring, given that the work done in stretching it from a length of 2 feet to a length of 3 feet is one-half the work done in stretching it from a length of 3 feet to a length of 4 feet.
	20. A spring has a natural length of 1 m. A force of 12 N compresses the spring to a length of 0.7 m.
	21. Find the natural length of a spring, given that the work done in compressing it from a length of 1 m to a length of 75 cm is twice the work done in stretching it from a length of 1 m to a length of 2 m.
	22. Find the natural length of a spring given that the work done in stretching it from a length of 1 ft to a length of 1.5 ft is half the work done in stretching it from a length of 1.5 ft to a length of 2 ft.
	23. Given that a work W is needed to stretch a spring from its natural length l ft to a length of ft, find the work done in stretching the spring from a length of ft to a length of ft.
	24. A vertical cylindrical tank of radius 2 feet and height 6 feet is full of water. (Water weighs 62.5 pounds per cubic foot.) Find the work done in:
	25. An inverted circular cone of height 3 ft and radius 1 ft is filled with a liquid weighing . Find the work done in:
	26. A chain lying on the ground is 5 m long and has a total mass of 50 kg. How much work is required to raise the chain to a height of 7 m?
	27. A 25 foot rope weighs is lying on the ground. How much work is required to raise the rope to a height of 30 ft?
	28. A 40 ft cable weighing hangs from a windlass. How much work is required in winding up 25 ft of the cable?
	29. A bucket of sand that weighs 50 pounds hangs from a 20 foot cable that is attached to a beam that is 75 feet above the ground. Find the work done in lifting the bucket to the beam if the cable weighs 2 pounds per foot.
	30. A bucket that weighs 50 lb is attached to the end of a 15 foot rope lying on the ground weighing . The rope is lifted and attached to a 30 ft beam. Initially the bucket contained 25 lb of liquid which is leaking out at a constant rate. How much w...
	31. Find the center of mass of a system consisting of a 10 pound weight at and a 15 pound weight at .
	32. Find the center of mass of a system consisting of a 10 pound weight at , a 15 pound weight at , and a 2 pound weight at
	33. A system consists of a 10 pound weight at and a 15 pound weight at . What size weight needs to be positioned at for the center of gravity of the system to be at ?
	34. A system consists of a 10 pound weight at and a 15 pound weight at . Where should a 5 pounds weight be positioned in order for the center of gravity to occur at ?
	35. The density of a 10 foot rod, as measured from end-point A, is given by . Find the rod’s center of mass.
	36. The density of a 7 meter rod, as measured from end-point A, is given by . Find the rod’s center of mass.
	37. Determine the center of mass of a system consisting of ten pounds at , twenty pounds at , and four pounds at .
	38. A system consists of ten pounds at , twenty pounds at , and four pounds at . What size weight needs to be positioned at the origin for the center of gravity of the system to be at the origin?
	39. A system consists of ten pounds at , twenty pounds at , and four pounds at . Where should a five pound weight be positioned in order for the center of mass of the system to be at the origin?
	40.
	41.
	42.
	43.
	44.
	45.
	46.
	47.
	48.
	49.
	50.
	51.
	52. Find the force on a circular gate of diameter 4 ft in a vertical dam where the center of the gate is 20 ft below the surface if the water.
	53. A swimming pool is 20 ft wide. The water is 3 ft deep at one end at 10 ft deep on the other end. Find the force of the water on one of the 20 ft sides.
	54. Show that if a vertical surface descends vertically at a constant rate, then the fluid force on the surface increases at a constant rate.
	§1. The Natural Logarithmic function

	DEFINITION 6.1
	Figure 6.1

	EXAMPLE 6.1
	EXAMPLE 6.2
	EXAMPLE 6.3
	EXAMPLE 6.4
	1.
	2.
	3.
	4.
	5.
	6.
	7.
	8.
	9.
	10.
	11.
	12.
	13.
	14.
	15.
	16.
	17.
	18.
	19.
	20.
	21.
	22.
	23.
	24.
	25.
	26.
	27. at
	28. at
	29. at
	30. (Implicit Differentiation) at
	31. (Point of Tangency) Find the point on the graph of at which the tangent line passes through the origin.
	32.
	33.
	34.
	35.
	36.
	37.
	38.
	39.
	40.
	41.
	42.
	43. if .
	44. if
	45. if .
	46. if and
	47.
	48.
	49. (Area) Determine the area A of the region bounded above by the graph of the function , below by the line , and on the sides by the vertical line and .
	50. (Area) Determine the area A of the region that lies above the interval and below the graph of the function .
	51. (Volume) Find the volume obtained by revolving the finite region bounded by the graphs of the functions , , and the line about the x-axis.
	52. (Learning Curve) A study has shown that the number, , of words per minute that an individual can type, after t hours of practice, is given by:
	53. (Work) Determine the work done by a force of N along the x-axis from to .
	54. (Arc Length) Find the length L of the graph of the function over the interval .
	55. (Maximum Velocity) A particle moves on the x-axis in such a way that its velocity is given by for . At what time will velocity be greatest?
	56. (Theory) (a) Find a formula for the derivative of , for .
	57. (Theory) Show that for any rational number r and any .
	§2. The Natural Exponential function
	Figure 6.2


	EXAMPLE 6.5
	EXAMPLE 6.6
	EXAMPLE 6.7
	Figure 6.3

	EXAMPLE 6.8
	EXAMPLE 6.9

	Answer:
	1.
	2.
	3.
	4.
	5.
	6.
	7.
	8.
	9.
	10.
	11.
	12.
	13.
	14.
	15.
	16.
	17.
	18.
	19.
	20.
	21.
	22.
	23.
	24.
	25.
	26.
	27.
	28.
	29.
	30.
	31.
	32.
	33. at
	34. at
	35. at
	36. (Implicit Differentiation) at
	37. (Point of Tangency) Find the points on the graph of the function where the slope of the tangent line to the graph equals the function value.
	38. (Point of Tangency) Find a point on the graph of at which the tangent line passes through the origin.
	39.
	40.
	41.
	42.
	43.
	44.
	45.
	46.
	47.
	48.
	49.
	50.
	51. if .
	52. if
	53. if .
	54. if , and
	55. Show that the function satisfies the equation for all real numbers A and B.
	56. For what values of a does the function satisfy the equation ?
	57. For what values of a does the function satisfy the equation ?
	58. For what values of a does the function satisfy the equation ?
	59.
	60.
	61.
	62.
	63. (Area) Determine the area A of the region bounded above by the graph of the function , below by the graph of , and on the sides by the vertical lines and .
	64. (Area) Find the positive number a such that the area lying below the graph of the function and above the x-axis over the interval is equal to that over the interval .
	65. (Volume) Find the volume obtained by rotation about the x-axis the region in the first quadrant that lies below the line and above the graph of the function .
	66. (Related Rate) The vertices of a rectangle are at , and . If x is increasing at a rate of 1 unit per second, at what rate is the:
	67. (Optimization) Show that the rectangle of greatest area bounded below by the x-axis and above by the graph of the function , has two of its vertices at the inflection points of that graph.
	68. Determine the annual interest rate r required for capital to double in 10 years, when interest is compounded continuously.
	69. How much should be invested at an annual rate of 4% compounded continuously in order to have a total of $10,000 at the end of 5 years?
	70. (Radioactive Substance) A certain radioactive substance loses 20% of its original mass in two days. How long will it take for the substance to decay to 90% of its original mass?
	71. (Population) The world population was 5.28 billion in 1990, and 6.37 billion in 2004. Assuming that, at any given time, the population increases at a rate proportional to the population at that time, determine:
	72. (Dead Sea Scrolls) Approximately 20% of the original carbon-14 remains in the Dead Sea Scrolls. How old are they? (See Example 6.9)
	73. (Theory) Prove Theorem 6.7(c).
	74. (Theory) Prove Theorem 6.7(d).
	75. (Theory) Prove that if for all in then for some constant c. Suggestion: consider the derivative of the function .
	76. (Theory) (a) Find a formula for the derivative of , for .
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	28. (Doubling Time) Prove that in an exponential growth situation, if the doubling time of a substance is D, then the amount of substance present at time t is given by where denotes the initial amount of the substance.
	29. Practicing one hour a day, it took Bill 9 days to learn to type 30 words per minute. How many days of practice will he need in order to get his speed up to 60 words per minute, assuming that an average experienced typist can type 73 words per minute
	30. (a) Find the learning curve formula for Mary’s riveting abilities if it took her 5 days before she could do 27 rivets per hour, given that the average experienced riveter can do 43 rivets per hour.
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	33. Find the intensity of the given sound.
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	39. Find the pH value of sea water, given that .
	40. (a) Find the value of lemon juice, given that its pH value is 2.3.
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