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PREFACE

Acknowledgements typically appear at the end of a preface. In this case, however, my
indebtedness to Professor Marion Berger for her invaluable input throughout the develop-
ment of this text is such that [ am compelled to express my gratitude for her contributions
at the beginning: Thank you, dear colleague and friend.

That said:

Our text consists of two volumes. Volume I addresses those topics typically covered in
standard Calculus I and Calculus II courses; which is to say, the Single Variable Calculus.
Multivariable Calculus is covered in Volume II.

Our primary goal all along has been to write a readable text, without compromising math-
ematical integrity. Along the way you will encounter numerous Check Your Understand-
ing boxes designed to challenge your understanding of each newly-introduced concept.
Complete solutions to the problems in those boxes appear in Appendix A, but please don’t
be in too much of a hurry to look at those solutions. You should TRY to solve the problems
on your own, for it is only through ATTEMPTING to solve a problem that one grows math-
ematically. In the words of Descartes:

WE NEVER UNDERSTAND A THING SO WELL, AND MAKE IT
OUR OWN, WHEN WE LEARN IT FROM ANOTHER, AS WHEN
WE HAVE DISCOVERED IT FOR OURSELVES.

You will encounter a few graphing calculator glimpses in the text. In the final analysis,
however, one can not escape the fact that:

MATHEMATICS DOES NOT RUN ON BATTERIES






Answers:

(@) Dy = {x|x#£3}

() Dy = {(x,y)|x =1y}
(©) Dr = {(x,»,2)|(z=-1)}

For example:
9-4 =5
and:

(1, 3) - 4, - D)
= J1-42+[3- (1P
= Jo+16 =5

11.1 Limits and Continuity 427

CHAPTER 11
FUNCTIONS OF SEVERAL VARIABLES

§1 Limits and Continuity

Just as the (understood) domain of a function y = f(x) of one vari-
able consists of those numbers for which f{(x) is defined, so then does
the (understood) domain of the function z = f{(x, y) consist of all pairs
of numbers (x, y) for which f{(x, y) is defined. For example:

f(x) = 2x+

has domain Df = {x]x>5}

X —

and f(x,y) = 2xy+ has domain D, = {(x, y)|x >y}

X=y

CHECK YOUR UNDERSTANDING 11.1
Determine the domain of the given function:

@ f(x) = =——  (b) fx,y) =

x2-9 x2—y?

(©) flxy2) = ==

LIMITS AND CONTINUITY

We begin by modifying the limit concept of a single-valued function

lim f(x) = L if:

X—>cC

For any given € > 0 there exists 6 > 0 such that:
O<lx—cl<d=|fix)-Ll<e
to accommodate a real-valued function of two variables:

DEFINITION 11.1 lim  f(x,y) = L if:

LIMIT (?‘C,y) = (X0, ¥0) .
For any given € > 0 there exists 6 >0 such

that for every (x, y) in the domain of f:
0< H(X,J/)—(xo,yO)H <d0= If(xay)_L| <g

Note that |f(x, y) — L| denotes the distance between the two real num-
bers f{(x, y) and L, while the notation |(x, y) — (x,, v)| is used to rep-

resent the distance between the points (x, y) and (x,, y,) in the plane;

specifically: || (x, y) = (xg, vo)|| = A/(x —x¢)? T (¥ —y)? (see margin).
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Here is a geometrical interpretation of Definition 12.2:

—

Fo N [Forgiven

( (x():yo) \ €
\ (x,G)\a/ ( :\.\)
e
— L

Q ‘such that every f(x, y) ends UI/)EIJ?

As was the case with functions of one variable:
The limit does not care about what happens at the point of interest.

EXAMPLE 11.1  (a) Let f(x,y) = x+y. Prove that:

lim  flxy) =2
() —> (1, 1)
x2 -2
(b) Let g(x,y) = ﬁ . Prove that:

lim  g(x,y) =2
(xx,»)—>(,1)

SOLUTION: (a) For given € > 0 we are to find & > 0 such that:
0<ll(x,») = (1, DI <d=x+y-2|<e (¥
Noting that [x+y—2| = [(x-1)+(y—1)|<|x—1] +|y— 1| we can
conclude that (*) will be satisfied for any 6 > 0 for which:
0<](e, )= (1, D] <= |x—1| <§ and |y — 1| <§

-~ For if (x, y) is within £/2

units of (1, 1), then certainly

And & = = fits that bill:

both x and y must be within
€/2 units of 1.

[\OX Koo}

2.2
(b) Note that the function g(x, y) = xx _y is not defined at (1, 1).
Nonetheless: 4

2 2
Reminiscent of Example lim g(x,y) = lim XY — lim xE»F=y)
2.1, page 44. (xy)—>(1,1) xy)->(1,1) x—=y (x,»)—>(1,1) =y

lim  (x+y) = 2
(x3) > (1, 1) o

CHECK YOUR UNDERSTANDING 11.2

For f(x,y) = x2+y?, indicate the value of  lim  f{x,y), and

(x,y) = (0,0)

PUIETIENE S22 AR AL then use Definition 11.1 to justify your answer.
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Definition 1.3 of page 6 extends to real-valued functions of two (or

more) variable, as does Theorem 2.3 of page 55:

THEOREM 11.1 If lim f{x,y) = L and lim  g(x,y) = M, then:

LIMIT THEOREMS

The only difference is that
the distance notation |x — ¢|
on page 55 is adjusted to
represent the  distance
between points in the plane;

namely: ||(x,») — (xq, ¥o)| -

(x, ¥) = (g, ¥0) (x,¥) = (¢, ¥0)

(a) lim  [fix,y)+g(x,»)] = L+M.
(xay) - (x07y0)

(b) lim  [flx,y)-gl,»)] =L-M
(x,3) = (%0, ¥0)

() lim  [f(x,y)-g(x,y)] = LM.
(xay) - (x0a)’0

@  fim L&D L el
@) > Gy g, y) M

(e) lim [cf(x,y)] = cL for any number c.
(xay) - (XOJ/O)

PROOF: We content ourselves by establishing (a). The proof is “iden-
tical” to that of Theorem 2.3(a), page 55 (see margin).

For a given € > 0 we are to find 6 > 0 such that:

0 <[|(x,3) = (xpo ¥o)| < S = (f+ ) (x, ) — (L + M) <&

0 <[(x, ) = (xgo ¥9)| <8 = [flx,¥) + g, y) —L - M| <¢

0 <[ Cxr,») = (xg, ¥p)|| <8 = [[flx, ) — L]+ [g(x, y) —M]| <& (*)
By virtue of the triangle inequality we have:

|[f(x, ) = L1+ [g(x, ») = M1 < [f(x, y) = L| + |g(x, ) — M]
It follows that (*) will hold for any &>0 for which
0 <[(x, )~ (xg: )| <& implies that BOTH |f(x, y)—L|<§ and

lg(x,y)— M| < % Let’s find such a §:

Since lim  f(x,y) = L,thereisa &, >0 such that
(x, ) = (x0, o)

0 <[[(x.») ~ (e y0)] <8y = [ftw. )~ LI <5

Since lim g(x,y) = M thereisa d, >0 such that
(x, ) = (x0, ¥0)

€
0< H(xoy)_(x()ay())H < 82 = |g(an’)_A/[| < 5 .
It follows that for & the smaller of 8, and 3, :

0 <[(x.) = (s ¥o)|| <8 = [, ) LI < Z and [g(x, ) ~ M| < 5.
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A polynomial function of
two variables (or simply a
polynomial function) is a sum

of terms of the form cx?y™,
where cis a constant and » and
m are nonnegative integers.
Moreover, a rational func-
tion is a ratio of two polyno-
mials.

Answers: (a) See page A-1
(b) 20

In the exercises you are invited to verify that for

foey) =x:  lim floy) = x
(wa’)_>(x0:y0)
fey) =y lim o flx,y) =y,

(x,y) - (x07y0)

lim ¢ = c for any constant c.
(x, ¥) = (0, ¥0)
It then follows, from Theorem 11.1, that for any polynomial

p(x,y) of two variables (see margin):

lim  p(x,») = p(xg»p)
(x5, ) = (x0, ¥0)

Thus:  lim 2x?y+x-3y = 2(2%2-3)+2-3-3 =17
(,3)—>(2,3)
Moreover, for any polynomials p(x, y), g(x,y):
lim p(x, ) _ p(x()a y())
(x, ¥) = (xo )’o)(I(xa y) q(XO’ yO)
x2 ty _ 9-4 _ 5

(providing g(x, y,) #0).

Thus: lim =
xty)->G-Hxy—1 —12-1 13

CHECK YOUR UNDERSTANDING 11.3

(a) Prove Theorem 11.1(e).
(b) Use Theorem 11.1, along with Example 11.1, to evaluate

2 _
lim  5(x —I—y)(x Y
(5,) = (1, 1) x—y

CONTINUITY

As might be anticipated (see page 19):

DEFINITION 11.2  The real-valued function f{(x, y) is continu-
CONTINUITY ous at (x,, y,) if:

lim  f(x,y) = f(x, )
(X, y) g (XO’ yo)

A function that is continuous at every point
in its domain is said to be a continuous
function.

As 1s the case with functions of one variable:

THEOREM 11.2  If fand g are continuous at (x,, y,) then so

are the functions:

(@)f+tg b)f-g (©) fg
(d) Jé [providing g(x, y,) # 0]

(e) ¢f (for any real number c)
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PROOF: We establish (c), and relegate the others to the exercises.
By definition, the product function fg is defined by:

(f2)(x,y) = flx,y)g(x,y)

We proceed to show that lim (f2)(x,y) = (fg)(xp, ¥p):
(X,y) - (XOJyO)

The “same” as the proof of lim (f9)(x,y) = lim [f(x,y) - g(x, )]
Theorem 2.4(c), page 20. (x, ) = (x0, ¥0) (x, ) = (x0, ¥o)
Theorem 111((3) = hm f(x’ y) . llm g(x’ y)

. (%, ¥) = (x0, ¥o) (%, ¥) = (0, ¥0)
Since fand g are

continuous at (xg, yy): f(xoayo)g(Xano) = (fg)(xo’J’o)

Here are a couple of “new” continuity theorems:

THEOREM 11.3 (a) If f and g are real-valued continuous func-
tions of one variable, then:

H(x,y) = f(x) + g(y) and K(x,y) = f{x)g(»)
are continuous functions of two variables.

(b) If g is a real-valued continuous function of two
variables, and if f is a real-valued continuous
function of one variable, then:

H(x,y) = flg(x,»)]
is a continuous function of two variables.

Proof: See Appendix B, page B-1.

CHECK YOUR UNDERSTANDING 11.4

(a) Prove Theorem 11.2 (c).
(b) Use Theorem 11.3 to establish the continuity of

H(x,y)=Ay*(sinx + e¥), for x> 0.

The previous discussion involving functions of two variables, readily
extends to functions of three (or more) variables. In particular:

Answer: See page A-2.

DEFINITION 11.3 lim flx,y,z) = L if:
AS IN (x, 3, 2) = (X0, ¥0» Z0)
DEFINITION 12.2 For any given € > 0 there exists 8 > 0 such
that:

0 <|(x,»,2) = (x5 ¥ 2)| < &
= flx,y,z)- Ll <e

x’ »2  In the above:

W |Gr 3 2) = (i v 20)]| = W6 —=%0)2 + (= 19)? + (2= 2))?

represents the distance between the points (x, y, z) and (x, ¥, z,) in

three-space (see margin).
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DEFINITION 11.4  The function f(x, y,z) is continuous at

AS IN
DEFINITION 11.3

(Xg» Yo» Z¢) 1f:

lim fx,y,2) = f(xg, o0 29)

(-xsya Z) - (x0= Yo ZO)

We note that Theorems 11.1, 11.2, and 11.3 generalize to functions of
three (or more) variables. In particular:

THEOREM 11.4

AS IN
THEOREM 11.3

If f, g, and A are real-valued continuous func-
tions of one variable, then the following are con-
tinuous real-valued functions of three variables:

H(x,y,z) = fix)+g(y)+h(z) and
K(x,y,z) = fx)g(y)h(z)
If f is a real-valued continuous function of one
variable, and if g is a real-valued continuous
function of three variables, then
H(x,y,z) = flg(x,y,2z)] is also a real-valued
continuous function of three variables.

Definitions 11.2, 11.3, and 11.4, along with Theorems 12.2, 11.3, and
11.4, assure us that polynomial functions of two or three variables are
continuous everywhere, and that rational functions of two or three vari-
ables are continuous throughout their domains (which exclude only
those points where the polynomial in the denominator is zero).
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EXERCISES

Exercises 1-4. Determine the domain of the given function.

_ xy—100 Jx—100 3. flx,y) = tanxy
L flx,y) = 219 2. flx,y) = xz—_yz
_ ’\jxy = 1 =
4, f(x,y) = m 5.f(x,y,z) x+y+z 6. f(x,y,z) sinxyz

Exercises 7-9. Use Definition 11.1 to verify that:

. ! IR i . 2_ 2
' (x’y)h_in(l’l)zx yes 8. lim 4y-3x =6 9. lim X Axy Ayt 0
()= (23) Ly -2 1) x—=2y

Exercises 10-20. Evaluate:

\ o
s 12, lim

(x,») = (0,001 —xy

10. lim 2x + )3 . ety
(x,5) = (0, 1)( y) 11. lim

(xy)=>(0,m) y

4_ 4 4_ 4 -
13, lim 2=Y 14.  lim 22X B y)hin(l,e)ln(xy )
(5.) > (2,2) x2 = y? () = (2.2)x2 + 2
6. lim o, o X2H2pHy?-9 4 g XHY
(x.») > (0. H4xy — xy? () > (1,2) x+y—3 (x..2)>(0,1,002y —z
19. lim ZX —2Zzy 20. lim (xy—z,—x)
.y z) > (L1, 1) X—y @y 1 L1
Exercises 21-28. Find the set of discontinuities of the given function.
x4 -yt 4x —xy x2eXy
= S 22. f(x,y) = —=— 23. =
21f(x,y) xz_yz f( y) 4xy_xy2 3 f(xay) Ine*
2 — +
_ Y = Zx-zy = X7y
24. f(x,y) = . 25. f(x, , 2) y 26. f(x,y,2) 2o
x2=y? . x2-y* .
— if — if
27. f(x,y) =4 x—y "7 28 flx,y) =4 x—p "7
x+y ifx=y 0 ifx=y

29. Construct a function f: R2 — R with domain 2 which is discontinuous only at (0, 1).

30. Construct a function f: R2Z — R with domain R? which is discontinuous only at (0, 1) and
(1,0).

31. Construct a function f: R3 — R with domain R3 which is discontinuous only at (0, 1, 0).



434 Chapter 11 Functions of Several Variables

2
32. Show that the function f(x,y) = aand approaches 0 as (x,y)— (0,0) along any line

Xt 2
y = mx. Does lim  f(x,y) exist?
(x,y) = (0,0)
Exercises 33-41. Prove:
33. Theorem 11.1(b) 34. Theorem 11.1(c)
35. Theorem 11.2(a) 36. Theorem 11.2(b)
37. Theorem 11.2(d) 38. Theorem 11.2(e)

39.1f f(x,y) = x , then lim  f(x,y) = x,.
()C,_)/) d (x07y0)

40.1f f(x,y) = y , then lim  flx,y) = y,.
(x, ¥) = (g, ¥0)

41. For any constant c, lim c=c
(X, J’) - (x()’ yO)
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§2. GRAPHING FUNCTIONS OF TWO VARIABLES

Just as the graph of the function y = f(x) = ax+ b is a line, so then

. . is the graph of z = f(x,y) = ax+ by + ¢ a plane in three-space. And
A general discussion of | .. . . . .
planes takes place in Sec-  just as a line is determined by two points, so then is a plane determined
tion #.#. by three points (that do not lie on a common line). Consider the follow-
ing example.

EXAMPLE 11.2 (a) Sketch the graph of the plane
z =-2x—-4y+4
(b) Find the equation of the plane containing
the points (-1, 1, 1), (1,0, 6), (0, 1, 3).

SOLUTION: (a) We choose three “nice” points on the plane; specifi-
cally, points of the form (x, 0, 0), (0, y, 0), and (0, 0, z):
Setting yandztoOinz = —2x—4y+4 wehave 0 = —2x+4
or x = 2.Thus (2,0, 0) lies on the plane.
Setting x andzto 0 inz = —2x—4y+4 wehave 0 = -4y +4
or y = 1.Thus (0, 1, 0) lies on the plane.
Setting x and yto 0 in z = —2x—4y+4 we have z = 4. Thus
(0, 0, 4) lies on the plane.
One can envision the plane containing those points (a sheet of paper

sitting upon them). The first octant portion of the plane is depicted in
the margin.

(b) In order for the point (x, y,z) = (-1, 1, 1) to lie on the plane

z = ax+by+c wemusthave: 1 = a(-1)+b-1+c
A A

z X y
Similarly, (1, 0, 6) and (0, 1, 3) lead us to:
6 =a-1+b-0+tcand 3 =a-0+b-1+c
And so we have three equations in three unknowns:

(1):—a+b+tc =1 2):a=6-c 3):b=3-c
Substituting foraand bin (1): —(6—c)+(3—-c)+c = 1 =|c = 4|
Substituting 4 for ¢ in (2) and (3): (@ = 2|and [b = —1].

Conclusion: The plane z = 2x —y +4 contains (-1, 1, 1), (1,0, 6),
and (0, 1, 3).
While the graph of a function y = f{(x) of one variable resides in

two-dimensional space (the plane), that of a function z = f(x,y) of
two variables lives in three-dimensional space; which can be difficult to
draw on a two-dimensional surface. One may, however, get a sense of
its graph by considering the two-dimensional traces resulting from the
intersection of the surface with planes parallel to the coordinate planes.
Consider the following example.
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EXAMPLE 11.3 Sketch the graph of the function:

flx,y) = x2+y?

SOLUTION: Setting z = 4,z = 9,z = 16 inz = f(x,y) = xZ+y?
yields the concentric circles of Figure 11.1(a). Hoisting those circles
4,9, and 16 units up the z axis brings us to Figure 11.1(b). Imagining
that those hoisted circles are connected by some sort of elastic mem-
brane takes us to the graph depicted in Figure 11.1(c), called a parab-
oloid as its traces on the xz- and yz-axis are parabolas.

z zZ
- —

(b) (©
Figure 11.1

EXAMPLE 11.4 Sketch the graph of the function:
flx,y) = x*—y

SOLUTION: Setting z = 0,z = 2,z =4 inz = f(x,y) = x>~y
yields the parabolas of Figure 11.2(a). Hoisting those parabolas 0, 2,
and 4 units up the z axis brings us to Figure 11.2(b). Figure 11.2(c)
“solidifies” the construction process. Note that its trace on the xz-

plane is the parabola z = x2, while its trace on the yz-plane is the line

z = —y.

z z
(0,-4,4)
(0, 72,2)/\\
4 72// xz—y*} \Q—y
A
x2-y =4
X xc=y =2 X
(@) (b)

Figure 11.2
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CHECK YOUR UNDERSTANDING 11.5
Sketch the graph of:

Answer: See page A-2.

flx,y) = Ix|—y

DEFINITION 11.5 A cylinder in R3 is composed of lines
CYLINDER (called rulings) that are parallel to a given
line and pass through a given plane curve

(called a directrix).

We will restrict our attention to cylinders with directrix residing in a
coordinate plane and with rulings perpendicular to the directrix. The
equation of such a cylinder contains only two variables, and the surface
extends forever in the direction of the missing variable. Consider the
following example.

EXAMPLE 11.5 Sketch the graph of the parabolic cylinder:
2

zZ =X

SOLUTION: Note that the equation

z = x% does not involve the vari-
able y. This is an indication that
we are dealing with a cylinder
with directrix z = x2residing in
the xz-plane. Since the y-variable
is unrestricted, the rulings run par-
allel to the y-axis (see adjacent fig-
ure).

CHECK YOUR UNDERSTANDING 11.6

Answer: See page A-2. 2
Sketch the graph of the elliptical cylinder x2 + Jj: = 1.

Conic sections (circles, ellipses, parabolas, and hyperbolas) consist of
those points in %2 satisfying second degree equations in the variables x
and y. We now turn our attention to quadric surfaces in %3 which sat-
isfy second-degree equations in the variables x, y, and z of the form:
2 2 2 _
General quadratic equations Ax=+By*+ Cz"+Dx+Ey+Fz+G = 0

?150 contain xy, yz, and xz (ellipsoids, paraboloids, cones, and hyperboloids)
€rms.
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In general:

2 2
2 =L adl
c g b?
y_x* 22
¢ a? b2

2 2
E=LaZ
¢ a? b2

represent elliptic paraboloids.

Functions of Several Variables

ELLIPTIC PARABOLOIDS

The quadric surface x2+y2—z = 0 of Example 11.3 is said to be a
circular paraboloid [its trace on the planes z = k (for k> 0) are cir-

cles, while those with the planes x = k and y = k are parabolas]. It is

a special case of an elliptic paraboloid — one of which is featured
below.

EXAMPLE 11.6 Sketch the graph of the elliptic paraboloid:

2_|_y_2
9

SOLUTION: Projecting the traces of the surface with the planes
z =1,z = 4 and z = 9 onto the xy-plane brings us to the ellipses

zZ =X

x2+%2 =1, x2+)—;9E =
11.3(a). Lifting those ellipses back up the z-axis by 1, 4, and 9 units
brings us to Figure 11.3(b). Note that the traces in the planes x = k&
and y = k are parabolas. The associated elliptic paraboloid appears
In Figure 11.3(c).

2
4 and x2+)—;9— = 9 appearing in Figure

z z -
S ¢
z=x2+% z
, -
x2+y_:4 I X2
PR S ¥
x2+= =1 4 36
9
/ ’:“\\7/\ 1 -
P 3 6 9 y $ Y P Y
3 0 -
X \x2+%=9 X X 7 the plane y = 5
).C.EJFXE:]
(a) e (b) (©)
Figure 11.3

CHECK YOUR UNDERSTANDING 11.7

Answer: See page A-2.

Sketch the graph of the elliptic paraboloid:

= 2+§_
y =X 9




Spheres are “special ellip-
soids.” In particular:

’-C; +)—}§ 4F Z—; =1

T r r
denotes the sphere centered
at the origin of radius r.

Answer: See page A-3.
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ELLIPSOIDS
. x2 2 .
Just as equations of the form = + 2 = 1 represent ellipses centered
a
. . x2  y?  Z2
at the origin, so then do equations of the form = + p += =1 repre-
a c

sent ellipsoids centered at the origin. Consider the following example:

EXAMPLE 11.7  Sketch the ellipsoid:
2
22
4 1 9

SOLUTION: Portions of the elliptical traces of the ellipsoid on the
planes x = 0, y = 0, and z = 0 appear in Figure 11.4(a), as do
those on the coordinate planes z = 1 and z = 2. Traces on the
planes x = k or y = k are also ellipses. The associated ellipsoid
appears in Figure 11.4(b).

2
pung
7

Figure 11.4

CHECK YOUR UNDERSTANDING 11.8

Sketch the graph of the ellipsoid:
2,2
x_ + y_ + z- =1
9 25 4
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ELLIPTIC CONES

y2

In general: As noted in Example 11.6, the equation z = x?+<= is that of an
5; = ’%+Z§ elliptic paraboloid. Replacing z with z2 we arrive at the equation of an
Cz a2 bz elliptic cone:
L= o .
2 a2 EXAMPLE 11.8 Sketch the graph of the elliptic cone:
x2 _ yr 22 2
ZE — ;Z_E + l—ﬁ 72 = x2 +y_

represent elliptic cones.
SOLUTION: Projecting the trace on the planes z=1,z = 2, and

2
z =3 onto the xy-plane yields the ellipses x2+y3 =1,

2
x2+% =4 and x

2
2-1—% = 9 that appear in Figure 11.5(a). Since

[ 2
z =+ [x2 +% , those three ellipses were both raised and lowered 1,

2, and 3 units in Figure 11.5(b). Note that the traces on the coordinate
planes are lines. For example the traces on the plane y = 0 are the
lines z = #x.The associated elliptic cone appears in Figure 11.5(c).
Note also that the trace in Figure 11.5(c) on the plane y = 3 is a
hyperbola. This is the case for the trace on any plane y = k (or
x = k).

Z Z
3é
2
S_—
2 x2+ﬁ =1 1<>
2, ¥ 7 =
W45 =1 436 >y
/ ;“\\7/\ /
5 1
A \xZJr)—}- =9
2,9 C>
9 81 |
(a) (b) (c)
Figure 11.5

CHECK YOUR UNDERSTANDING 11.9
Sketch the graph of the elliptic cone:

2
Answer: See page A-3. y2 = x2+ z-
9




In general:

represent hyperbolas of
one sheet.

In general:

x2 y2 22 _
a2 b2 2

2 .2 2
T _ZaZL g
a2 b2 2
B2y 2
a2 b2 (2

represent hyperbolas of
two sheets,

In general:
z_2
c a2 b2
y_ox 2
¢ a? b2
2 2
c a2

represent hyperbolic parab-
oloids.
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HYPERBOLOIDS OF ONE SHEET AND OF TWO SHEETS

. X2 2 22
The equation ATl 1 represents
a hyperboloid of one sheet. Its trace on the x)-

| ~0) ; inse Lo+ X2 1.
plane (z = 0) is the ellipse 5+ 1 ; that
a’? b2

on the xz-plane (y =0) is the hyperbola

x2 2
— — = = 1; and that on the yz-plane (x = 0)
a? c?
2 2
is the hyperbola Jb;_2 — z—z =1.

Traces parallel to the xy-plane are again ellipses which expand as one
moves further up or down along the z-axis. Traces parallel to the other
coordinate planes are hyperbolas with vertices's moving further from
the origin as you move away from the x or y-axis.

2 20 2 2 2 2
i XYooz ALY
The equation — R + = 1 or: " + w2 1
represents a hyperboloid of two sheets. Z

The traces on the planes z = & for

|h| > |c| are ellipses which expand as || ]
increases. Traces parallel to the other !
coordinate planes are hyperbolas with

vertices's moving further from the origin |
as you move away from the x or y-axis.  x .

HYPERBOLIC PARABOLOIDS

2 2
Equations of the form z = x_2 — Jb;_z represent hyperbolic paraboloids.
a
Taking the easy way out:
saddle point
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COURTESY OF MATHEMATICA

Ellipsoid Elliptic Paraboloid
X2 2 2 z_a2 )2
- A ) aF - = 1 c a2 p2
ac b c
y_x2, 2
c g2 b2
x_y 2
c g2 b2
Elliptic Cone Hyperboloid of One
2 x2 2 Sheets
SRS 2y 2
2 p2 2
J_/E _ £+£ a b 4
2 a2 b2 X2 y2 2
. a? b2 2
C2 a2 b2 ,x_z.l,.y_z.»,_z_zzl
a 2 C
Hyperboloid of Two Hyperbolic Paraboloid
Sheets z _x2 )2
X2 Y2 c & B
2 12 2
a b C J_} _ x_zié
2 .2 c @ P
27 2 2
a b c )_C _ J_’_E_EE
_x_2+y_2_z_2 = ¢ a’ b?
a2 b2 2
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EXERCISES

Exercises 1-2. Sketch the graph of the given plane in the first octant.
l. z=—-4x-2y+2 2. z=—-x—-y+1
Exercises 1-3. Find the equation of the plane containing the given points.
3. (0,0,0),(1,0,2),(0,2,5) 4. (-1,1,1),(1,0,0),(0,1,2)
Exercises 5-10. Sketch the given cylinder in R3.
5. x+2y =1 6. 4xr+z =4 7. y2+z=0
8. 25x2-9y2-1 =0 9. x2-2y?2 =1 10. x—2xy =1

Exercises 11-26. Identify and sketch the given quadratic surface.

11. z = x2+y? 12. x = y2+4z2

13. 36x2+9y2+4z2 = 36 14. x—y?-2z2 =0

15. x2-y2+22 =0 16. x2+2y+z2 =0

17. 25x2—4y2 +2522+100 = 0 18. x2+4y+z2 =0

19. x2+4y-2z2 =0 20. 16x2—-9y%-9z2 =

21. x2+y2 422 = 4 22. 9x2-36y%+16z2+144 = 0
23. 25x2 —4y%+25z2 = 100 24. z = (x+2)2+(y-3)2-9

25. 9x% - 4y? = 36z 26. x2-y2-9z =0
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Why discuss integrals prior §3. DOUBLE INTEGRALS

to derivatives? Because, as

ou will see, several varia- .. . . .
%Iions of the derivative con- We take the definition of an integrable function y = f(x) of one vari-

the realm of multivariable pp £onpag

functions, while integrati . . )
is ‘rﬁo}%“sstrﬁgﬁéo?&vﬁrgf on DEFINITION 5.3 A function y = f{x) is said to be integrable

DEFINITE INTEGRAL . . . b
over the interval [a, b] if lim Z f(x)Ax
Ax—0

a

exists. In this case, we write:

b
jabf(x)dx = lim 3" fin)Ax

and modify it to accommodate a function of two variables:

DEFINITION 11.6 A function z = f{(x, ) is said to be integra-

z ble over the region R in the plane (see mar-
ol _ in) if lim x, ¥)AA exists. In this case,
fx) /{7 gin) Ax_)()Zf( »)
AR Ay—0
we write:
[[feeyyad = lim 3 fx, y)Ad
X
Aan (x,y) y R Ay =0 R
R Yy
Z Ay = lim X, V)AxA
x Ad = Axhy Ax—)OZf( ») Y
Ay—0 R

Quite a modification! But just as the “geometrical-area” approach
lead us to Definition 5.3:

Ax—>0

b
A= lim S flx)Ax = j bf(x)dx

so then will the geometric approach highlighted in Figure 11.6 lead us
to a better understanding of Definition 116:
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V= lim 3 f(x,»)Ad = j j fix, y)dA
L/ Ax—>0 = R
Ay —0 \
sum all of the AV
d y

volume of parallelepiped: AV = flx,y)A4 = f(x,y)AxAy
Figure 11.6

Fine, but how does one go about evaluating ”f(x, v)dA ? Like this:

R
z Fix a point (x, y) in R, and consider the depicted vertical
J /e[ | line segment from (x, y) to z = f(x, »).
S Keeping x fixed, slide that line from y = ctoy = d,
[~ therebysweeping out the hashed two-dimensional region A.
W: Next, slide 4 fromx = a to x = b, thereby
o / | N ﬁlling in t.he entire solid W. ' :
, % ex=a This brings us to the following so-called
/ iterated double integral representation:
(x, y) R ;‘r;t%;agtl)r;gﬁ )fzzlt with respect to y
| - -x=b>
X | ‘
Yy =c

I H—- 1
V= j I f(x,y)dA = jbddj_”(x, y)dyplx
~ a“c_ _ _

Figure 11.7

One can also arrive at the volume of the above solid W by first sliding

the vertical line from x = a to x = b, and then sliding the resulting
planar region, now perpendicular to the y-axis, fromy = c toy = d.
In other words:

V= [[ftxy)da = f jbf(x,wdxdy
R

cpa
in this integral, y is held fixed
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Answer: 39

Functions of Several Variables

EXAMPLE 11.9 Calculate the volume V of the solid bounded
above by the surface

z = flx,y) = x*+6xy
and below by the region:

R ={(x»))0<x<2,1<y<3}

SOLUTION: One way (Integrating first with respect to y):

x is held fixed and y runs from 1 to 3

23 A
V= J.I(x2+6xy)dA = J. j (x2 + 6xy)dydx
R 0°1

2 =

= J. (x2y+3xy2)‘y73dx
0 y=1
2

= j [(3x2+27x) — (x2 + 3x)]dx
0

2 x3
= j [2x2 + 24x]dx = (2-?+12x2)
0

0

Another way (Integrating first with respect to x):

y is held fixed and x runs from 0 to 2

32 A
v = Lj(xz +6xy)dA = Il '[0 (x2+ 6xy):1):a;y
dy

3 /3
(s
1\ 3
x=0

6o - (o)

CHECK YOUR UNDERSTANDING 11.10

Determine the volume of the solid W bounded above by the surface
z=f(x,y) =2x+y+3xy and below by the region
R = {(x,y)|1<x<2,2<y<4}. Do so by integrating first with
respect to y, and then again by integrating first with respect to x.

Our next goal is to set up an integrated integral representing the vol-
ume V of the solid in Figure 11.8 that lies above the region R, and

below the surface z = A(x, y). Note that, unlike the situation in Figure
11.7, the region R is no longer a rectangle.
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Consider, again, the vertical line of length z = A(x, y)
passing through the point (x, y) in R.
Keeping x fixed, slide the line from the curve

y = f(x) to the curve y = g(x), sweeping out the
hashed region A4.
Finally, slide that two dimenstional region from
1——>y X = a to x = b to fill in the entire solid W.
—r T Bringing us to:
Gt 4 : — o) b &(x)
v = fx) : S V= [[hxyaa = | Jgg h(x, y)dydx
¥ R : a” f(x)
Figure 11.8
Leading us to (proof omitted):
THEOREM 11.5 Let i(x, y) be continuous on a region R.
Fact: If 4 is continuous on (a) For R defined by a < xbs b( E)mdf(x) <y<g(x):
R then / is integrable on R, g
€n 2118 mmtegranie on J‘J‘h(x’y)dA _ J’ I h(x,y)dydx
a*f{x)

R
[see Figure 11.9(a)]

(b) For Rdefinedby c<y <d and f(y) <x<g(y):

d.g)
Rj j h(x,y)dA = j jf(y) h(x, y)dxdy

[see Figure 11.9(b)]

- b v=g
first from curve to curve J. r h (x’ y)dydx
a” = i) y o
— x =8V
{ g(x and then from point to point x = f(y) de dJ'x %)
first from curve to curve J. h (X, y)dx dy
) % R \\cggm
b X
y = f( x) ¢ —4 and then from point to point
Integrating first with respect to y Integrating first with respect to x
(holding x fixed) (holding y fixed)
(a) (b)

Figure 11.9

EXAMPLE 11.10 Let R be the finite region bounded by the
linesx = 0,y = x,and y = —x+ 2. Eval-

uate ”2xydA by integrating first with:

R
(a) respect to y. (b) respect to x.
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SOLUTION:
y
1| —x+2
2 =-—x+2
/y J.I2xydA = J. J. 2xydydx
(a) R 0" x
1,1 A
(1 1) first from curve to curve
R | holding x fixed
Ny =x
I then from point to point
0 1 X

Bringing us to:
1 ~x+2 1 o= xT2
[[2xyda = jo j 2xydydx = jozx%

dx = j]x[(—x +2)2 —x2]dx
R 0

x is held fixed 1
= j (—4x2 + 4x)dx
0
1
X x
= | 44—+ 4—
( 3 42
0
4 2
=__42 =%
3 3
y j—
5 My =-x+2
(b) T 1 2 —y+2
e — — — 2 ”2xydA :j ijxydxdy+I j 2xydxdy
i R 070 170
e Ny =x \j
0 1 X
Bringing us to:
1 2 —y+2
IJ.nydA = j r2xydxdy+f j (2xy)dxdy
0°0 170
1 ) xX=y 2 ) x=—-y+2
y is held fixed: :I (2)6—);)‘ dy+j (zx_y) dy
0N 27/ _ N 27
0 x=0
1 2 1 2
= f0y3dy+fl (-y+2)%ydy = f0y3dy+fl (y? —4y* +4y)dy
1 2
4 4 3
ERCREES
0
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CHECK YOUR UNDERSTANDING 11.11

Let R denote the finite region R in the xy-plane bounded by
y=—x+t1l,y=Jx—1landy = 2.

(a) Express HnydA in both iterated integral forms.
R

At Ror () 20 (b) Evaluate j j 2xydA .
R

Employing the ‘“dominant-minus-subordinate” approach used is
Example5.17, page197, we now calculate the volume V of the solid W
depicted below.

|
|

N dominant =

—(-y+2)

subordinate

Determine the volume V of the
solid W in the adjacent figure.

NI 4N

Answer: 10 ~
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x=y-2
y
4_ R
— (2)
. 1
N()
Z_ ) %
= =
X =4y
Answer:
,y+

j ; U 2h(x, y)dx}dy

Wy

Let’s turn things around. Instead of going from a region R to an iter-
ated integral, we now reconstruct R from a given integral:

EXAMPLE 11.11 Sketch the region R of integration for the
integral:

R”h(x, V)dA = le C 2+2h(x, )dydx

and then write an equivalent integral with the
order of integration reversed.

SOLUTION: Fixing x between —1 and 2, we y '

go from the curve y = x2 to the curve | y =x+2
y = x+ 2 (see R on the right). |
As is suggested in the margin figure, two inte- !

grals are needed in order to reverse the order ~ —| | | 77X
of integration: one if we fix y between 0 and 1 *
(hashed region), and another if we fix y
between 1 and 4. In the hashed region, the line

(x-2)(x+1) =0
labeled (1) will go from the curve x = —ﬁ to W=l =2

the curve x = .y (y=x2=x = +.Jy);
while in the second region, the line labeled (2) will go from x = y—2

tox = ﬁ/ Bringing us to:

“h(x,y)dA :jl ny h(x,y)dxdy%—JAJM[y h(x, y)dxdy
R 0 7A/)—; 1°y-2

CHECK YOUR UNDERSTANDING 11.13

Sketch the region of integration R for the integral
—x+2

1 .x2 2
[[nx.y)da = jODO h(x,y)dy]dwjl UO h(x,y)ddex

and then write an equivalent integral with the order of integration
reversed.

MASS

An idealized thin flat object is called a lamina. A homogeneous lam-
ina is a lamina with constant density throughout, where:
The density, &, of a homogeneous lamina of mass M and
area A is defined to be its mass per unit Area:

0 = %4 Leading us to: M = 04

A lamina that is not homogeneous is said to be inhomogeneous.
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The density function, 5(x, y), at a point (x, y) in an inhomogeneous
lamina R in the xy-plane is defined to be the limit of the masses of rect-
angular regions containing (x, y) divided by the area of those regions as

(x, ) the dimensions of the rectangular regions tend to zero:
[ofay 5(r,y) = lim 2 Leading us to: AM = 8(x, y)A4
Ax Ax—0 AA4
Ay —>0

Bringing us to:

The total mass M of a lamina R with density function
O(x, y) is given by:

M = j ja(x, y)dA
R

EXAMPLE 11.12 A triangular lamina R in the xy-plane bounded
by the lines y = 0, y = x and y = —x+2

has density function 6(x,y) = 2xy. Find its
y total mass.

o N SOLUTION:

M = j j 8(x,y)dA = j jzxydA
R R

1 —x+2

2

= (2xy) dydx = =

. j.OJ.x e /[\ 3
1 See Example 11.10

CHECK YOUR UNDERSTANDING 11.14

Answer: EIZ Find the mass of a triangular lamina with vertices at (0, 0), (0, 1),
and (1, 0) with density function d(x, y) = xy.

CENTER OF MASS

Roughly speaking, the center of mass, or center of gravity, of a lamina
R is the point (X, y) in R about which the lamina is “horizontally bal-
anced” (see margin).

/ To be horizontally balanced at (X,y),R
must surely be horizontally balanced when
If masses m,, m,, ...,m, are  positioned on the line L parallel to the y-axis

(*.7)

PO G 655 23 T e at x . Partitioning the region into small rectan-
LM - " gular regions of area A4, we conclude (see
- “ margin) that the lamina R with density func-
then the seesaw will balance if ; ; el
and only if: tion 6(x, y) will nearly balance about L if: ] X
3 (x—p)m; = 0 z(xi_)_c)s(xi’yi)AAi =0

i=1 R
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It follows that R will balanced about L if: j j (x—%)8(x,y)dA = 0.
R

A similar argument reveals that R will balance about the line L;, par-

allel to the x-axis at y : ”(y —¥)0(x,y)dA = 0.Since x and y are con-
R

stant, we can express the above two double integral equations in the
form:

j jxa(x, V)dA = xj j 5(x,y)dA and j j 18 (x, y)dA = yj j 8(x, y)dA
R R R R

j j x8(x, y)dA j j 18(x, y)dA
__ R __R
' j j 8(x, y)dA and oy j j 8(x, y)dA
R R

The expression ”xS(x,y)dA, denoted by M, is said to be the
R

Note that: Myz\”ffa(x’y)dA moment of R about the y-axis, while M = J- J. yO(x,y)dA 1is the

R
and M, =\J.J.7(5(x,y)df1 moment of R about the x-axis.

To summarize:
Center of mass (x,)) of a lamina R with density function
O(x,y) is given by:

j j x8(x, y)dA j j 18(x, y)dA
R R

=

¥y = =L =

M LJS(x,y)dA YoM LIS(x,y)dA

EXAMPLE 11.13 Find the center of mass of the triangular lam-
ina in the xy-plane bounded by the lines

2
sity function o(x,y) = 1l —-x—y.

y=0,y= pd and y = —)2—C+4 with den-

SOLUTION: We already encountered this lamina in Example 11.14

y where we found that M = [[8(x,)dd = 152
R

3
We also have:
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M ”xS(x y)dA = ”(llx x2 —xy)dA
S
4 —-x/2+4
= I {(llxy—xzy—%xyz) }lx
0

x/2

—x/2+4
(11x —x2 —xy)dy}dx

4
4 4
= [ (2 132+ 36w - (' - Bwrige)| - 2
4 3 . 3
M, J.IyS(x y)d4 = ”(lly xy —y2)dA
—x/2+4
= I [ Qy—ay )y
07x/2
11 1 1 -x/2+4
- 2_ 214
j ( 73 ) dx
x/2

= J- (——x + x2 22x+z-gg)dx

4
1 1 200 352
= | =x +=x3— 2 ) = ==
(48x 3¢ e 3
0
224/3 352/3) (g_zg éﬂ) .
Concltsion: = (184/3 18,3 ~ a3 p3) ¥ (122 191)
CHECK YOUR UNDERSTANDING 11.15
Answer: (g g) Find the center of mass of a triangular lamina with vertices at (0, 0),
ASS (0, 1), and (1, 0) with density function 8(x, y) = xy.




454 Chapter 11 Functions of Several Variables

EXERCISES

Exercises 1-8. Determine the volume V of the solid bounded above by the function 4(x, y) and
below by the region R by integrating first with respect to y, and also by integrating first with
respect to x.

1

2.
3.

~

[o¢]

10.
I1.

12.
13.

14.

Ch(x,y) = x? R 0<x<1,1<y<2.
h(x,y) = x2y3; R: 1<x<2,2<y<3,
h(x,y) = y—-2x;R: 1<x<2,3<y<5.
h(x,y) = 2xy—y2; R: 0<x<4,0<y<2.

. h(x,y) = sinx + cosy; R: OSng,OSySg.

h(x,y) = xylnxy; R: 1 <x<2,2<y<4.

. h(x,y) = 3xy%; Risenclosedby y = xZ and y = 2x.

. h(x,y) = x2+y%;Risenclosedby y = xZ and y = 2x.
Find the volume of the solid enclosed in the first octant by the plane x +y +z = 1.
Find the volume of the solid bounded by the coordinate planes and the plane 3x + 2y +z = 6.

Find the volume of the solid below the graph of z = xy  and above the triangle with ver-
tices (1, 1), (4,1),and (1,2).

Find the volume of the solid below the graph of z = x2 +y? and inside x2+y2 = 1.

Find the volume of the solid bounded above by the plane 2x +y—z = -2, and below by the
region in the xy-plane bounded by x = 0 and y2+x = 1.

Find the volume of the solid bounded by the cylinder x2 + y2 = 4 and the planes y +z = 4
andz = 0.

Exercises 15-26. Evaluate.

1

1

1 2 1 xl/4 1
5.[ r (x2 = y)dydx 16. jr (x1/2 = y2)dydx 17. Hy (xy — y3)dxdy
—1°%x2 0° x2 0°-1

19. jz j;/4—xz(x+2y)dydx 20. j4 f 8% dxdy

U
8. J. .[ y(xl/z—yz)dxdy
074 0%y/2
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21. JiJ';/z e’ dydx 22. J:I;exsinydydx 23. ﬁj;/z_yxyzdxdy
24, J‘nj.smxxdydx 25. J.ﬁ.r2xsinydydx 26. _[;leer ldydx
0 0 X

Exercises 27-38. Express the iterated integral as an equivalent iterated integral or integrals with
the order of integration reversed.

27. j23 j;h(x, )dydx 28. jb jjh(x, y)dxdy 29. j f h(x, y)dydx
30. j;j;h(x, y)dxdy 31. jll jieh(x, V)dydx 32. jm j(;:h(x )dydx
33. j(z)/s jfh(x, y)dxdy 34, jl j;nxh(x,y)dydx 35. jo j_ — h(x y)dxdy
36. jl j?nxh(x, y)dydx 37. j:) ji +jh(x, y)dxdy 13, I‘l‘ Ijxh(x’ y)dydx

Exercises 39-41. Are you able to evaluate the given iterated integral as stated? If not, then give it
a shot after reversing the order of integration.

1 /2 2 1.1 )
39. I J. e’ dxdy 40. J. I sec”(cosx)dxdy 41. IOJ.X siny2dydx

0%y/2 0% sin”

Exercises 42-45. Express the double integral as one iterated integral.

4. Ljh(x,y)dA = joljlxh(x,y)dydx+j;j;h(x,y)dydx
1 31

43. LIh(x,y)dA = jofoh(x,y)dydﬁjljoh(x,y)dydx

44, Ljh(x,y)dA - I:)IZh(x,y)dxdy+Ijjz_yh(x,y)dxdy

45. Lj h(x,y)dA = jj jj h(x, y)dxdy + ji f; /2h(x, V)dxdy + jj .C/Zh(x, y)dxdy
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Exercises 46-54. Find the mass of the lamina R with density function 8(x, y).
46. R is the triangular region with vertices (0, 0), (0,2), (1,0),and o(x,y) = 1 +3x+y.

47. R is the region bounded by y = x3,y = 0,x = 1,and 8(x,y) = xy.
48. R is the triangular region with vertices (2, 1), (4, 3), (6, 1), and 8(x,y) = 6x+9y.
49. R is the triangular region with vertices (0, 0), (1,2), (0, 1), and 8(x,y) = 6x+6y+6.

50. R is the region boundedby y = x2,y = 0,x = 1,and 8(x,y) = 1 +x+y.

51. R is the region bounded by y = 2x—4,y = Jx2—4,and 8(x,y) = 4x.
52. R is the region inside x2 +4y2 = 4, and 8(x,y) = x2+)2.
53. R is the region bounded by y = sinx,x = 0, x = 7w, and 8(x,y) = |cosx|.
54. R is the region bounded by y = sinx,y = 0,y = w,and d(x,y) = x+y.
Exercises 55-64. Find the center of mass of the lamina R with density function 6(x, y).

55. R is the rectangular region with vertices (0, 0), (0,2), (3,0), (3, 2)and
o(x,y) = 6x+6y+6.

56. R is the triangular region with vertices (0, 0), (2, 1), (0, 3), and 8(x, y) = xy?
57. R is the triangular region with vertices (0, 0), (2, 1), (0,3),and 8(x,y) = x+y.

58. R is the triangular region enclosed by the lines y = 6 —2x,y = x,x = 0, and
8(x,y) = x2.

59. R is the region bounded by y = J/x,y = 0,x = 1,and 8(x,y) = x+y.

J;c,yz 0,x =1,and o(x,y) = x.

60. R is the region bounded by y

61. R is the region boundedby y = ¥,y = 0,0<x<1,and d(x,y) = y.
62. R is the region above the x-axis and inside the circle x2 +y2 = 1, and 8(x,y) = x%+ 2.
63. R is the region bounded by, 0 <x <m, 0 <y <sinx, and (x,y) = 8y.

64. R is the region bounded by 0 <x<e, 0 <y<Inx, and d(x,y) = x.



The area AA , between the cir-
cles ofradius 7 and » + Ar ,and
the radial lines of angles 6 and
0+ A0, is the difference of
two circular sectors:

A4 = %(r aF Ar)2A9 — %FZAG

rArAQ + %(Ar)ZAG

Note: The Area of a
sector in a circle of
radius » that is sub-
tended by an angle 0 is
to the area of the circle,
as 0 is to the circum-
ference of the circle:
Since, for small increments,

%(Ar)er is negligible com-

pared to ¥rArA6 , we have:
AA =~ rArA© .

;
N

NS}

Ny=74fx

Recall (see page405):

x = rcos6 y = rsin0

r2 =x2+y?  tan@ = Y
X
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§4. DOUBLE INTEGRALS IN POLAR COORDINATES

At times, a region R in the xy-plane can more efficiently be repre-
sented using polar coordinates!. And just as one can partition the region
in Figure 11.10(a) into rectangles of area A4 = AxAy, so then can the
polar region in Figure 11.10(b) be partitioned into “polar rectangles” of
area AA =~ rArAB0 (see margin).

y y = g(x) Y

r=g(9)
R

Ar,

—_

/ AOYAAAL ~ rAFAD
r

7= 1)

| | | a$
(a) (b)
Figure 11.10

Bringing us to:

THEOREM 11.6 If R is a region of the type shown in Figure

11.10(b), and if A(7, O) is integrable over R,
then:

”h(r,@)dA = Iﬁf(e)h(r,e)rdrde

. o f(6)

EXAMPLE 11.14  For R = {(x,y)|x2+y2<4} , evaluate:
[Jo2+y2)a4
R

SOLUTION: If you choose to go with the Cartesian coordinate system,
then you will be faced with a tedious double integral (see margin):

I
[[e2eydyar = [ [7 7 (2 +)2)dyds
R 27 J4—x?
Turning to polar coordinates:
2
21 2 27 /4
”(x2 +12)dA =j j r2rdrdo =j (”—) do
0“0 0o V4,
R
=4.-2n = 8¢

1. Polar coordinates were first introduced in Section 10.2, page 405.
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If a positive functionz = h(x, y) is defined on the region R of Figure
11.10(a), then the volume of the surface bounded above by / and below
by the region R is given by:

V= ”h(x V)dA = j j h(x,y)dydx
a * f(x)
(see Figure 11.8, page 447)

Similarly, if a positive function z = A(r, 0) is defined on the region
R in Figure 11.10(b), then the volume V of the resulting solid can be
approximated by the Riemann sum:

V=~ Zh(r, 0)AA ~ Zh(r, 0)rArA0
R R

Moreover, in a fashion analogous to that developed in the previous
section, we have:

V= lim 3 h(r,0)Ad = ”h(r 0)d4 = Hﬂe) h(r, 0)rdrdd
A0 R

Note: Observe that if #(7, 0) = 1 forevery (7, 0) in R, then V above
is also the area 4 of R, which is to say:

p g(9) 1B , ,

-1 5[ @ = 3 - o) s
f(G) o

(same as formula in Figure 10.10(b), page418)

I

o f(e)

EXAMPLE 11.15 Use polar coordinates to find the volume of
the solid bounded above by

z = flx,y) = (x> +y?)>2
and below by R = {(x,y)|x>+y?<1}.

SOLUTION: The approach of the previous section brings us to:

1, o2
y = jR [ +y2)32d4 = I—l(j_m

Not a nice integral! There is a better way:

= [f2etan = [ = [ i
R R 0

0
27/ ..5 !
[
2151
-], 5

(x2 +y2)3/2dy) dx
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AT EXAMPLE 11.16 Find the area A of one petal of the four-leaf
2 rose » = sin20 of Example 10.8(b), page 408.
;= sin260
X SOLUTION:
As the arrow indicates, T n20 T sin20 s
r varies from 0to sin260 ,as 4 = IZ(J‘ I’dl’) 4o = jz(r_z) do = lj.zsinzzede
evariesfromOtog. 00 0°2 0 20
T
. 12(1 —cos40)
Theorem 1.5(viii), page 37: = —|“>—— <> "~/
71 A
T
1 1 ’
— g L _n
= 4(9 451n49) 2
0
CHECK YOUR UNDERSTANDING 11.16
(a) Find the volume of the solid bounded by the plane z = 0 and the
paraboloid z = 1 —x2 —y2.
Answer: (a) g (b) 3775 (b) Using a double integral, find the area of the region R enclosed by the
cardioid » = 1 — cos0 (compare with Example 10.10, page 417).
Recall that: EXAMPLE 11.17 Find the mass of the region enclosed by the
M = [[8(x, y)dA lemniscate 7> = 4c0s26 of Example 10.8(c),
(pfge 450) page 370, with 5(r, 0) = 2.

SOLUTION: Noting that the region and density are both symmetrical
about the x- and y-axis, we find the mass of the region by quadrupling
its mass in the first quadrant [see Figure 10.8(a), page 408]:

24/c0s20

T

- = 4[4 2.
M ”S(r, 0)dA 4j0j0 72 - rdrd®
R
T 4 2./cos20 T 24
= 4 (r—) 4o = 4 4(—cos229)de
IO{ 4, J.O 4
g 1 + cos40
= 16 —_—
jo —do

sin49)
= +
s(o+
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Answer: 53_1:
Recall that:
j f x8(x, y)dA
s Mk
M [ [3¢e.»da
R
y8(x,y)dA
R st
M
j j 8(x,y)dA
R
(page452)

(2 i)
Answer: ( 575

CHECK YOUR UNDERSTANDING 11.17

Find the mass of the region enclosed by the cardioid » = 1 + sin0 of
Example 10.9, page 411, with 6(r,0) = r.

EXAMPLE 11.18 Find the center of mass (%, ) of the semicir-
cular region R givenby » = 2 for 0 <0 <,

with 6(7,0) = r.
SOLUTION: Determining the mass of R: >

M = £I6(x,y)dA = jzgz(r.rdr))de

2
“(r3) "8 8 2o
=[ (%) do = [ 2d0 = ==
IO 31, j03 3
Finding M, and M :

T/ 2

M, = ||x0(x,y)dA = ( rcose-r-rdr)de
=1 U

2
T 7‘4 T
= j (—cose) do = 4] cos0d0
o 4 0 0
= 4sin6|; = 0

T2

M. = [[v8(x, y)da = ( rsine-r-rdr)de
=l J

U },.4 2 U

- | (ZsinG) d0 = 4[ sinodo
0 0 0
= —4cose|g =8

M
Conclusion: (%,7) = (ﬁy, ﬁx) = (%, %} = (0,%)

CHECK YOUR UNDERSTANDING 11.18

Find the center of mass (¥, ) of the semicircular region R given by

¥ = cosO forOSE)Sg,with 8(r, 0) = sin@.
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EXERCISES
Exercises 1-12. Evaluate.
T 2n 2
= J4cos20 n,3 = .co0s20
LT rdrdo 2. | ] Br=2rdrdd 3[4 rdrdo
070 o
4
2 I+5sind 2 5 Injlerzrdrde 6 jznjaerzrdrdﬁ
4. j j drdo oo oy
3 sin® 8 jnjlsmerzcosedrde 0 oy
j j rcos Odrdo ), 9. [°[  rdras
0% sin0
10. j“jme drae 11 Iznflr(l‘rz)mdrde 12. j6 jcomﬂsinzsedrde
(1.,.,,2)3/2 0°0

Exercises 13-24. Sketch the region over which the integration occurs, and then evaluate the iter-
ated integral using polar coordinates.

13. ” e 2+ 2dydx 14, j4jm(x2 +32)dxdy
0”0

15. J‘ZJJOxdxdy 16. Iljﬂemdxdy
0”0

17. J. 1J._ - ﬁdij 18. j I iy 1+x2+y d)/dx

19. ”e‘("2 *¥)dA where R is the region enclosed by the circle x2 +y2 = 1.
R
20. ”e‘“z *3))dA where R is in the first quadrant bounded by y = 0,y = x,and x2 + 2 = 4.

21. ”A/9 —x2—y2dA where R is the region in the first quadrant enclosed by the circle
R
x2+y2 =1.

22. I J.ysz where R is the region enclosed by the circle x2 +y2 = 2y.
R
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23. I IydA where R is the region enclosed by the circle x2 +y2 = y.
R

24, ”A/xz +y2dA where R is the region enclosed by » = 3 + cos0.
R

Exercises 25-34. Use polar coordinates and double integrals to determine the area of the given
region.

25

26.

27.

28.

29.

30.
31.
32.

33.

34

EENI VS

3 (i.e. rcos =

. The region lies inside the circle » = 3 and to the right of the line x = 1

2 )

The region lies inside the circle » = 2 and above the line y = 1 (i.e. rsin® = 1).

The region common to the circles » = 2cos0 and » = 2sin0.
The region that lies outside the circle » = 3cos0 and inside the circle » = % .
The region that lies inside the circle » = 3cos0 and outside the circle » = % .

The region inside the cardioid » = 2(1 + cos0).
The region inside the circle » = 1 and outside the cardioid » = 1 — cos0.

One leaf of the rose r = 3sin40.

The region in the first quadrant that is inside the circle » = ./3cos0 and outside the circle
r = sinf.

. The region common to the cardioids » = 2(1 + cos0) and » = 2(1 — cos0).

Exercises 35-44. Use polar coordinates to find the volume of the given solid.

35

36

37.

38.

39.

. A sphere of radius a.

\9)

. ox2 Yy oz
. —+—4+ = =1.
The ellipsoid 7773
The solid that is under the cone z = /x% + 2 and above the disk x2 +y2< 4.

The solid that lies below by z = 1 —x2 — 2, above the xy-plane, and inside the cylinder
x2+y2-x = 0.

The solid that lies below the paraboloid z = x2 + 2, above the xy-plane, and inside the
cylinder x2 +y2 = 2x.
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40. The solid that is bounded by the paraboloids z = 3x2+3y% and z = 4 —x2 -2,

41. The solid that is bounded below by the xy-plane, above by the spherical surface
x2+y2+2z2 = 4, and on the sides by the cylinder x2 + y2 = 1.

42. The solid that is bounded above by the cone z2 = x2 + 3?2, and below by the region which

lies inside the circlex? + y2 = 2aq.

43. The solid that is inside the cylinder x2 + y2 = 4 and the ellipsoid 4x2 +4y% + 22 = 64.

44. The solid that is bounded above by the surface z =

, below by the xy-plane, and

1
/x2 + y2
enclosed between the cylinders x2+ y2 = 1 and x2 + y2 =9,

Exercises 45-49. Find the mass of the region R.
45. R is the cardioid » = 1 + sin0, and o(x, y) = r.

46. R is the region outside the circle » = 3, inside the circle » = 6sin0, and d(x,y) = r.

47. R is the region outside the circle » = 3 and inside the circle » = 6sin0, and d(x, y) = 7%
48. R is the region inside the circle » = 3cos0, outside » = 2 — cos0, and d(x,y) = %

49. R is the region inside the circle » = a > 0, outside the circle » = 2asin0, and
1
) = -,
(ry) =~

Exercises 50-55. Find the center of mass of the region R.

50. R is the washer between the circles r = 2, r = 4,if 8(r, 0) = r2.

51. Ris the cardioid » = 1+ sin0, and d(x,y) = r.

52. R is the smaller region cut from the circle » = 6 by the line rcos® = 3 if 6(r, 0) = c0s’0.

53. R s the region outside the circle » = 3, inside the circle » = 6sin0 , and 6(r, 0) = }%
54. R is the region bounded by » = cos20, 0<06< E ,and o(»,0) = r0.
55. R is the region bounded by » = cos0, —E <0< g, and &(7, 0) = r.
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§5. TRIPLE INTEGRALS

b
In defining I f(x)dx for y = f(x), we had the luxury of being able
a

to represent the graph of a function y = f(x) in the xy-plane (see page
177). Though considerably more challenging, when defining

I I h(x,y)dA, we were still able to depict a function z = A(x,y) in

R
three space (see page 445). But when it comes to the next task, that of

defining the triple integral I I I k(x,y,z)dW over a three-dimensional
W

region W, we must abandon all hope of geometrically representing the
function w = k(x, y,z) in four-dimensional space, as we are three-
dimensional creatures.

That’s fine, for the eyes of mathematics are in the mind. We’ll just
generalize the Riemann sum procedure that lead us to the integral of a

function y = f(x) over an interval [a, b] and of the integral a function
z = h(x,y) over a region R in the plane to arrive at the definition of

the integral of a function w = k(x, y,z) over the region W in Figure
11.11. Specifically, we chop that region into “small boxes” of lengths
Ax, Ay, Az, pick a point (x,y,z) in each of those boxes, and then

define J. I J.k(x, v)dV to be the limit of the Riemann sums
W

Zk(x, v, z)AxAyAz as all three dimensions of the boxes tend to zero

w
(providing the limit exists):.

z = f(xy)

v j j uc(x, y)av = lim S k(x, y, 2)AV

- Ay—>0 W
y=g Az—>0
= g(x)

Figure 11.11
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As is the case with double integrals, the triple integral can be evaluated
using integrated integrals. Roughly speaking, for a given w = k(x, y, z):

Fix a point (x, y) in R, and start with the vertical
line segment from z = f,(x,y) toz = f5(x, ).
Keeping x fixed, slide that line from the curve

y = g(x) tothe curve y = g,(x), sweeping
out the hashed region 4.

Finally, slide that two-dimensional region 4 from
x = atox = b tofill in the entire solid W.

Bringing us to:

=b y=8) z=,x)

J[]hGey.2)dv = I I h(x, , z)dzdydx

y=g1(x)"z=11(x»)

A
N first from surface to surface
then from curve to curve

finally from point to point

Needless to say, certain conditions have to be met in order for all of the
above to work, and work it will if all of the functions g, g,, f{, /5, and A
are continuous over their associated domains.

EXAMPLE 11.19 Evaluate J.”xdzdydx , where W is the tetra-

4
hedron depicted in the margin.

SOLUTION:
From surface to surface, holding x and y fixed.
1-x 1-
”dezdydx _[ '[ I X dzdydx
w

From curve to curve, holding x fixed.

= jlj.l—x (xz)|(1)_x—ydydx= '[IJ_I —Mx(x_xz\_xy)dydx
070 oo

1-x

1 2
- [fp-rrs-)
0 2
0

/ From point to point \
x)?2

= I [x(l—x) x2(1 —x)— NE yx

1
3
_ (X zpﬁ) :(x__x_+x_z) _ 1
jo(zx dx834024

dx




466 Chapter 11 Functions of Several Variables

CHECK YOUR UNDERSTANDING 11.19

Answer: Use a triple Integral to find the volume of the tetrahedron of the pre-
6 vious example.

The concepts of mass and center of mass of Section 11.3 (pages 450
and 451, respectively) extend naturally to three-dimensional objects.
Consider the following example.

EXAMPLE 11.20 Find the mass M and center of gravity
(x, ¥, z) of the cylinder depicted in the mar-
gin, with density at each point proportional
to the distance from its base.

SOLUTION: Noting that 6(x, y,z) = kz for a constant & we have:

M = IJ.IS(x,y, z2)dV
1% by symmetry

Wi x2 Lk \l/ roJr2—x2
— J‘]J;ﬂ_xxzj‘okz dzdydx = 4I0I0r * Iokz dzdydx

2 _ 2 h
o [ (E)

-
= Zkhzj‘oﬂowz 7x2dx

0

= Zkhzj.i/rz —x2dx
0

I N2 —x2dx = Iz r2cos”0rcos0d0 2 1
0 0 = 2kh2=— = Ekhzrzﬂ

5 i 4
X = rsin _ o222

dx = rcos0do g jo cos 00

x=0=60=0 .

=r=>0="= _ 221+ cos20

x=r=0=73 rjo S—db

T

2

_mr?
4

0

By symmetry we anticipate that the x and y coordinates of the center
of mass of the cylindrical solid are both 0, a fact that you are invited
to establish in the following CYU. That being the case, the center will
lie on the z axis; but not at the midpoint of its altitude, as the material
gets heavier the further up from its base.

Generalizing the situation depicted on page 452 to accommodate the
three-dimensional object W we have:



Answer: See page A-8.

There are six possible
orders of integration:
dzdydx, dzdxdy, dydzdx

dydxdz, dxdzdy, dxdydz
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J.IJ.ZS(X v, z)dV ”szi(x v,z)dV JJ.JZS(X v, z)dV
- j [[ocynar M Sk
where:
J-;[/J-zfi(x, v,z)dV = j I ;:_X;J-Oz(kz)dzdydx
by symmetry: = 4I I rz_xzjhz(kz)dzdydx
= 4kj jmhjdydx
_ 4kh3J- md TETI’2 _ %kh3r2n
Lip3,2
And so: (x,3,z) = 0,0, ? T = (O, 0, %h)
Ekhzrzn independent of k

CHECK YOUR UNDERSTANDING 11.20

Verify that x = y = 0 in the previous example.

Up to now we have systematically evaluated triple integrals by inte-

grating first with respect to z, then y, and then x:

b .8 (x)

2(x, )
J-J.J-k(x yZ)dV J.aJ.E,'l()C)J.J/p(x y) k(x ¥ Z)dZdydx

It may be advantageous to choose a different order. Consider the fol-

lowing example.

EXAMPLE 11.21 Find the mass of the solid wedge W lying
between the planes z = 1,y = 0,y = 3,

l\JI»—ﬂ

z=1-y,x=0,x=2,and z=

l\)‘<

(see margin), if 8(x, y,z) = z.

SOLUTION: Integrating first with respect to z would require two inte-
grals (why?). On the other hand:
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12 2z+1 holdx and z fixed

M= ”ja(xy,z)dr/ []] Mdxdzt”

001
_II(Z)|y 22% dd —Ij3zzdxdz

3
IO( z x)‘x=0 z

6j;z2dz )

CHECK YOUR UNDERSTANDING 11.21

The order of integration for M in the above example is dydxdz.

Express M in terms of the remaining five possible orders of integra-
Answer: See page A-8. tion.
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EXERCISES

Exercises 1-10. Evaluate.

1.1.1
J- r r dzdydx 2. I j I (x2 +y2 + z2)dzdydx
x+y 0°0%0
1 2-3x x+y 1 1-x2 4-x2—y
3. r x dzdydx 4. x dzdydx
I, I,
3.1 .1 1 4-x 2x+y
5. xyz2dzdydx 6. z dzdydx
I, I, I,
2 2x 41 3
I I r (4x — 122)dzdydx 8. _[ J. I (x2y + y2x)dzdydx
1 “y—x 2°-1°1
1 2
3
0 U;f xy*z>dzdydx 10. jzjzf sin® dzdyds
Exercises 11-18. Evaluate. Note the specified order of integration.
1 242 1 2y
i [ [ [ dvdvaz 12 [ [ [ (et y)dzdray
0°0%0 0°0%0
|
13. ysinzdxdydz 14. —dxdydz
S [0 5
1 x2 x3y 1 2y,
15. J- J.x r x3y2zdzdydx 16. I rr x3y*z2dzdydx
00 %0 0700

Bz W32+ 22)

17. J‘ r JX+Z e VT2 dydzdx 18. JJI '[0 xyzlx2+y2 + 22dxdydz

X —X—z 0°0
Exercises 19-26. Find the volume of the solid W,

19. W s the solid in the first octant that lies between the planes x +y + 2z = 2 and
2x +2y+z = 4,

20. W s the solid bounded above by the paraboloid z = 4 —x2 — y2 and below by the plane

z =4-2x.

21. Wis the solid enclosed between the cylinder x2 + 32 = 9 and the planes z = 1 and
x+tz=35.
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22.

23.

24.

25.

26.
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W is the solid bounded by the cylinders z = x%, z = 4 —x2, and the planes y = 0 and
z+2y = 4.

W is the tetrahedron bounded by the planes z = 0,x = 0, x = 2y,and x +2y+z = 2.
W is the solid enclosed by the cylinders x2+y2 = 1 and x2+2z2 = 1.
W is the solid enclosed by the paraboloids z = 5x2+5y2 andz = 6 — 7x2 — 2.

Y

+x2

W is the solid enclosed by the surface z = and the planes x = 0,y = 0,z = 0, and

x+y=1.

Exercises 27-32. Find the mass of the object W with density function d(x, y, z) .

27.

28.

29.

30.

31.

32.

W is the cube givenby 0 <x<a,0<y<a,0<z<a;8(x,y,z) = x2+y2+z2.

W is the solid bounded by the parabolic cylinder z = 1 —y2 and the planes x = 0,z = 0,
and x+z = 1; 0(x,y,z) = k, for a constant £.

W is the solid bounded by the cylinder x2+y% = 1 and the planes z = 0,z = 1;
8(x,y,2) = |xyz].

W is the cube given by 0 <x<a,0<y<q,0<z<a; d(x,y,z) = xyz

W is the solid bounded by the parabolic cylinder x = y2 and the planesz = 0,x = 1, and
x = z;0(x,y,z) = k, for a constant £.

W is the solid bounded by the coordinate planes and the plane x+y+z = 1;
0(x,y,z) = 1—x—y.

Exercises 33-40. Find the center of mass of the object W with density function d(x, y, z) .

33.

34.

35.

36.

37.

W is the solid bounded above by the paraboloid z = 4 — x2 — 2 and below by the plane
z=0;0(x,y,2) = a.

W is the solid enclosed by the surface z = 1 —y2,fory >0, and theplanesx = —1,x = 1,
z=0;08(x,y,2z) = yz.

W is the solid bounded by the parabolic cylinder x = y2 and the planesz = 0, x = 1, and
x = z;0(x,y,z) = k, for a constant k.

W is the solid enclosed by the cylinder x2 + y2 = 42 and the planes z = 0,z = A, for
h>0;0(x,y,z) = h—z,

W is the cube given by 0<x<a,0<y<a,0<z<a;8(x,y,z) = x2+y2+22.
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38. W= {(x,2)-1<x<0,x<y<1l,x+y<z<2};08(x,y,z) = x+3.
39. W= {(x,,2)1<2z<2,0<x<z,x<y<z},08(x,y,z) = y—X.
40. W = {(xayaz)|9SZS4,x2+y2S4}; S(X,y,Z) = x2+y2+22.

Exercises 41-44. Express the integral '[ J- '[ k(x, y, z)dV in six different ways, where W is the solid
bounded by the given surfaces.

4.y =x2,y = -2z+4,z=0. 42.z2=0,x =2,y =2,x+ty-2z=12

43.y = 0,y = 4-x2 422 44, x=-2,x=2,y2+z2 =9
y y y

Exercises 45-48. Rewrite the given integral in five additional forms by changing the order of inte-
gration.

el 11 1y
| 0 jijk(x, v, z)dzdxdy 46. j_l jx2 [ o KCx p.z)dzdyds

1 2
'[0 I_lr k(x, y, z)dzdydx 48. J.Of; JJOk(x, v, z)dzdydx
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§6. CYLINDRICAL AND SPHERICAL COORDINATES

Just as certain planar regions are best described using polar coordi-
nates, some three-dimensional surfaces are best identified using non-
rectangular coordinate systems; one of which is the cylindrical coordi-
nate system. In this system, a point P with projection Q on the xy-plane,
is represented by (r, 6, z), where (7, 0) is a polar representation of Q,
and z is the rectangular vertical coordinate of P (see Figure 11.12).

See the Rectangular to ~ Bridges between the cylindrical and rectangular coordinates also appear
Polar and Vice Versa dis-  in the figure.

cussion on page 405. .

L, 0,2)

x =rcos® y=rsin6 z=:z

. y r? = x2+y? tanf = <
\bo~7 x

)C 4 Q(ra e)
Figure 11.12

%, 5) in rectangu-

EXAMPLE 1122 (oo pi g2 = (2’

lar coordinates.
(b) Express P(x,y,z) = (-1, J3,2) in cylindri-
cal coordinates.

SOLUTION: (a) For P(7,0,z) = (2, %n 5), z=15.

Since O = (r,0) = (2, %) (see Figure 11.12):

_ 3n _ ( TE) _ ( 1) _

X = 2cos=— = 2| —cos=]| = 2| —| = —ﬁ

Taken directly from page 4 4 [ 2 1
406.

. 37 (n) (1)
2sin=—= = 2 S =2—= = 2
y sm4 sm4 ﬁ [

Conclusion: (2, %, 5) has rectangular coordinates (—ﬁ, ﬁ, 5).

(b) For P(x,y,z) = (-1, /3,2), z = 2.
Since O = (r,0) = (=1, J/3) (see Figure 11.12):

r2=(-1)2+(3'2)2 = 4 and tan0 = if =_/3
As shown in Example 10.6(b), page 405, there are infinitely many solu-
2n
3

1

tions of the above two equations; one of whichis: » = 2 and 6 =
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Conclusion: (—1, ﬁ, 2) has cylindrical coordinates (2, 2?71’ 2) .

CHECK YOUR UNDERSTANDING 11.22

(a) Express (4, g, —1) in rectangular coordinates.

Answer: (a) (2./3,2,-1)
0 (2

(b) Express (2, 2, 4) in cylindrical coordinates with » >0 and 0 < 6 < I

>
Some volume building blocks are featured below:
z z
T \Az
g ~\\Ax
Ay
>y y
Rectangular Wedge: /Cylindrical Wedge:
AV = AxAyAz X AV = rArABAz
(@) (b)

Figure 11.13
Figure 11.13(a) displays a rectangular building block. Such blocks
were used to construct an iterated triple integral for I J' I f(x,y,z)dV.In

a similar fashion, using the cylindrical building block in Figure
11.13(b)], we now formulate an iterated triple integral for

”jf(r, 0,z)dV:
w

Fix a point (7, 0) in R, and consider the vertical
line segment from z = f,(r,0) to z = f,(r, 0).

Keeping 0 fixed, vary r from g,(0) to g,(0)
to sweep out the hashed region 4.

Finally, rotate 4 from 6 = acto 6 = f
to fill in the entire solid W.

Bringing us to:

N g0 0=B s =g(0) z=/(0)
? Ty = ” j h(r,0,z)dV = j j i j h(r, 0, z)rdzdrdd
0=a"r=g/0)"z= f(i”9)

/\ Once more: from surface to surface
then from curve to curve (polar form)
and now from angle to angle

Figure 11.14
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EXAMPLE 11.23 Find the volume, mass, and center of mass of
the solid W contained within the cylinder

x2+y2 = 4, that is bounded above by the
= 2 paraboloid z = x2 + 2, and below by the xy-

plane. Assume that the density at each point
is its distance from the axis of the cylinder.

SOLUTION: The solid W and density function 6 can be expressed as:
w = {(r, 9,2)|0£r£2,0£6£2n,OSerz} and 6(r,0,z) = r
We then have:

. UVI e Jznfzf:rdzdrde - JZE I2(72)|Zr2drde

|

r=2

2n 2 o 4
holding » and 6 cgilssttant - J. I ridrdd = I 4 a9
= j 4d0 = 8n
0
. 5 B 2n 2 g2 Do drd®
M = J;}[J- (x,y,z)dV = J-() IOIO v - rdzdrd
21 2
= jon fo(rzz)‘gzdrdﬁ
2
- Jjnjzr“drdﬁ = jzn%s o - &2

Symmetry dictates that the x and y coordinates of the center of mass

are 0. Let’s find its z coordinate:
2n 2 g2

z = AL/IJ‘J/IZS(x,y,Z)dV = M-[ J.I z-r-rdzdrdd

2

= sznj2(2 z drde
27 2 2
=ij dde——jom do
27 10
= —= g ==
64 7
(5

Conclusion: (¥, y,2) = (0, 0, 170)
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Answer
Y- _( 40./5-76) CHECK YOUR UNDERSTANDING 11.23

2n Ko 5 Find the volume, mass, and center of mass of the solid W contained
M = =37 (4045-76) within the paraboloid z = x%+y2, that lies below the sphere
x2+y%+2z2 = 20. Assume a constant density function.

( 20[ 38)

SPHERICAL COORDINATES

Three-dimensional objects that are symmetrical with respect to the ori-
gin, such as spheres and cones, are often best described in terms of spher-

ical coordinates; where:
» P(p, $,0)
In the exercises you are invited to establish

the following coordinate relations:
p2 = x2 432422

z
» P
0 y . .
x = psindcos® y = psindsinO
x z = pcosd

0<p<m0<0<2n

Figure 11.15

EXAMPLE 11.24 T .
(a) Represent P(p, ¢, 0) = (2, 7 5) n

rectangular coordinates.

(b) ReEresent P(x,v,z) = (1,1, /6) in
erical coordinates.

SOLUTION: (a) From the equations in F igure .15, P

we have: x = 2sinEcos = 2( (2)
43 2 fz

y = 2singsing = 2(}2)@ - 2

z = ZCOSZ = 2([) ﬁ

Conclusion: P(x, y,z) = (%, @, «/5) = (%’ {9, «/5)
(b) Using the equations in Figure 11.15, we have:
p=ux2t)2+z2 = [T+1+6 = .8 =22
Jo _ 3

z T
z = pcosp=>coshp = = = = =0 = -
P22 2 b5
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L
While smTTE is also equal to y = psindsin® = sin® = ps)i/nd) _ 1. - _ 1 1 _ %
:}5, we exclude §4ﬂ as - 2“/551118 2“/5 )
(1,1,/6) lies in the first =0 = Z (see margin)
octant.
Conclusion: P(p, ¢,0) = (2 J2, g, %c)
Answers: 5 CHECK YOUR UNDERSTANDING 11.24
(@ P(p, 6, 0) = (4.2 )

3
3 3 (a) Represent P(x,y,z) = (0, 2./3,-2) in spherical coordinates.
(b) P(x,3.2) = (-3, 2 1)

(b) Represent P(p, ¢,0) = (2, 2371, %E) in both rectangular and

cylindrical coordinates.

Our next concern is to unearth an integration method utilizing spheri-
cal coordinates. The first step is to find an approximation for the volume

AV of the spherical wedge depicted in Figure 11.16. As is noted in the
figure, that wedge can be approximated by a box with depth Ap. The
remaining two dimensions are determined by arcs of circles of radius p ;
one of which is easily seen to be pA¢ . The length of the remaining side
is that of an arc on a circle of radius psin¢ that is subtended by the arc
A . As such, it has a length of psin$p A0 . Bringing us to:

AV=Ap - psingAD - pAp = p2singApAPAD

V4

AV=Ap - psingA0 - pAd
= p2sinpApAPAD

Figure 11.16
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We now translate a familiar story, invoking the language of spherical
coordinates:

For h(p, ¢, 0) continuous on the solid W = {(p,$,0)|p;<p<p,, ¢;<P< Py, a<O<P}

Fix the angles ¢ and 6 and construct the radial
line / from the point p,(¢, 0) to the point p,(¢, 0).

Holding 0 fixed rotate the line from ¢, to ¢,

sweeping out the shaded planar region A4.

Finally, sweep that two-dimensional region A from

a to B, thereby filling in the entire region W.

B .02(0) pa(d, 6)

BRINGING US TO' j”h(p,q) 0)dV = j '[¢ (G)Ip o h(p, ¢, 0)p2sindpdpdddd

Figure 11.17

EXAMPLE 11.25 Find the volume, mass, and center of mass
of the solid W bounded above by the sphere

p = 4 and below by the cone ¢ = g
Assume that density is proportional to the
point’s distance from the origin.

o %4
SOLUTION: 7 — I J'3J' pZsinddpdddo
0 “0%0

=j f(—sm ) d¢d9
=0
43 27 g
= 3I (- cos¢)|¢ 0od
= 4?3 zn( cosg )d@ = 61;—“

We are given that 6(p, ¢, 0) = cp for a constant c. Thus:
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Chapter 11

T
Answer: 3

Functions of Several Variables

_2n§4 - _27:%43‘
M = jo jojo(cp)p sindpdpdddd = cjo jojop sindpdpdddo
)]
0 °0 4 0

= 43¢ I (—coso)|

T
30 _
0 dd = 64rnc

By symmetry, the x and y coordinates of the center of mass are 0.

;= Allujzﬁ(x,y, 2V = —j j j z¢p3 sinddpdddd

- sznfrpcosd)p sinddpdddo

21 =
M-[ F( ) cosdsinpddpdo
T
_ 45¢ an 3
= M), 2sn ¢ Ode
= —45 (sm ) 2t = 12
10(647c) 5

Conclusion: (X, y,z) = (O 0, 152)

CHECK YOUR UNDERSTANDING 11.25

Find the volume of the solid W bounded above by the sphere
x2+y2+22 = z and below by the cone z = J/x2 + 2.
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EXERCISES

CYLINDRICAL COORDINATES

Exercises 1-4. The following points are given in cylindrical coordinates. Express them in rectan-
gular coordinates.

o) 5.5 (651 e
1. (2, 6’3 2. 3,3,1 3. 6,4,1

Exercises 5-8. The following points are given in rectangular coordinates. Express them in cylin-
drical coordinates.

5. (~4,-4./3,-8) 3.3 3 7. (0,2,-2) 8. (0,m —1)
6. |—,—=,-1
272
Exercises 9-12. Write the equation in cylindrical coordinates.
9. z=x2+y? 10. 3x+2y+z =1
11. x2+y2 =2y 12. x2+y2 = 2x

Exercises 13-16. Evaluate.
21 1 1- r2

21 3 18 2
3. ] f [ rdedrdd 4[] " rdzdrdo
07r2/3
1./ 2n ) n/2 .cos® 2
15. (r2cos”0 + z2)rd0drdz 16. rsin0dzdrdo
I, [ §
Exercises 17-18. Evaluate using cylindrical coordinates.
1 J1-x2 Ja—(x2+?) Ji—x2 1
[ dedyar 18, j j Y[ Pdzdydx
x2+ 2

Exercises 19-26. Use cylindrical coordinates to find the volume of the given solid.

19. The solid bounded by the paraboloid z = x2 + y2 and the plane z = 9.

20. The solid bounded by the paraboloid z = x2 + 2 and the plane z = x.
21. The solid lying outside the cone z = ./x2 + y? and inside the cylinder x2 + y2 = 4.

22. The solid lying above the cone z = J/x2 + 2 and below the hemisphere

z=1+J1-x2-y%.

23. The solid enclosed by the cylinder x2 +y2 = 4 and the planes z = —1 and x +z = 4.

24. The solid bounded by the cone z = gr and the plane z = 4.
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25. The solid cut from the sphere x2 + y2 +z2 = 4 by the cylinder » = 2sin0.

26. The solid lying above the cone z = /x2 + 3%, below the plane z = 0, and bounded on
the sides by the cylinder x2 +y% = 3x.

Exercises 27-30. Find the mass of the given solid.
27. The ellipsoid 4x2 + 4y% +z2 = 16 lying above the xy-plane, with density function
o(x,y,z) = kz.

28. The circular cone of height 4 and circular base of radius « if the density at each point is
proportional to its distance

(a) from the axis. (b) from the base.

29. The solid bounded by the paraboloid z = 1 — (x2+y2) and z = 0 if the density is pro-
portional to
(a) its distance from the xy-plane. (b) the square of the distance from the origin.

30. The solid bounded by the paraboloid z = x2+y%—-4 and z = 0 if
8(x,p,2) = 1+x2+y2.

Exercises 31-36. Find the center of mass of the given solid.

31. The solid is bounded by the paraboloid z = 4x2 + 4y2 and the plane z = a,fora>0,
and has constant density k.

32. The solid that lies within the cylinder x% + y2 = 1, below the plane z = 4, and above the
paraboloid z = 1 —x2—y2,if 8(x, y,z) = z.

33. The upper hemisphere of the unit sphere, and has constant density &.

34. The cone of constant density with height 4 and a base of radius b.

35. The solid is bounded by the paraboloids z = x2+y2 and z = 36 — 3x2—3y2 and has
constant density £.
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SPHERICAL COORDINATES
36. Verify that if P(p, ¢,0) = P(x, y, z), then:
p2 = x2 432+ 2
x = psindpcos® y = psin¢sind
z = pcosd

Exercises 37-40. The following points are given in spherical coordinates. Express them in rectan-
gular coordinates.

T T T T T St 2w
(@ED x (an (154 (12,3521
37 (4,3,4) > 1 39. |7, 2,7c 40. | 12, = %3

Exercises 41-44. The following points are given in rectangular coordinates. Express them in
spherical coordinates.

41. (1, 4/3,2.3) 42. (0,-5,0) 43. (0,-1,-1) 44. (1,1,1)
Exercises 45-48. Write the equation in spherical coordinates.

45. z2 = x2 42 46. x+2y+3z =1

47. x2+z2 =9 48. x2-2x+y?+z2 =0

Exercises 49-52. Evaluate (note the order of integration).

49. Iznj.njlp3sin¢dpd¢de 50. III p 2sind cosdpdpdOde
0 J0%0 07070

gsinq)g 5 ggsmq)
51. jojo jop sinpd0dpde 52. jojojo dpdedd

Exercises 53-56. Evaluate using spherical coordinates.

a «/sz «/27 2 _ 2
[ T[T T 2y Rydadyds
0 0

J. J~«/9 y J.JIS X2 (x2 +y2 + 22)dzdxdy

x2+ 2
SR
y

s6. [ ﬂ” : ﬂ“’ S 2T Rdedyd

xydzdydx

Exercises 57-61. Use spherical coordinates to find the volume of the given solid.
57. A sphere of radius a.

58. A spherical shell whose outer radius is 2 and whose inner radius is 1.

59. The solid cut from the cone ¢ = g by the sphere p = 2acos¢.
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60.
61.

Chapter 11  Functions of Several Variables

The solid inside both of the spheres p = 1 and p = 2cos¢

The solid bounded below by the cone zZ = x2 + y? lying above the xy-plane and bounded
above by the sphere x2+y%2+2z%2 = 9,

Exercises 62-67. Find the mass of the given solid.

62.

63.
64.

65.

66.

67.

A sphere or radius a if the density at a point is proportional to the square of its distance
from the center.

A sphere of radius a if the density at a point is proportional to its distance from the center.

A hemisphere of radius « if the density at a point is proportional to its distance from the
base.

The solid common to the sphere x2 +y2 +2z2 = 1 and the cone z = J/x2 + 2 if
8(x,y,z) = WJx2+y2+2z2,

The solid enclosed between the spheres x2+ 2 +2z2 = 4 and x2+y2+2z2 = 1 if
B(x,,7) = (2437422 12,

The solid ball of radius 1 if the density at each point d units from the center is y

Exercises 68-72. Find the center of mass of the given solid.

68.
69.

70.

71.

72.

A hemispherical solid if its density is proportional to the distance from its base.

A homogeneous cone of height h and base of radius a, positioned so that its vertex is at
(0, 0, 0) and the axis is the positive z-axis. 9

A homogeneous solid bounded above by the sphere p = a and below by the cone
T

o = oc,where0<q)<2

The homogeneous solid bounded below by the cone z2 = x2 + 2 lying above the xy-
plane and bounded above by the sphere x2+y2+22 = 9.

The homogeneous solid that lies above the cone z = +/x2 + 2 and below the hemisphere

z = 1+4J1-(x2+y?).
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CHAPTER 12

Vectors and Vector-Valued Functions

§1. VECTORS IN THE PLANE AND BEYOND

Roughly speaking, a vector is a quantity that has both magnitude and
direction. A vector in the plane is represented by a directed line segment
(or arrow) pointing in the direction of the vector, with length represent-
ing its magnitude.

(a) (b)
Figure 12.1

Vectors will be denoted by boldface lowercase letters. The vector
y = 4B in Figure 12.1(a) is said to have initial point 4, and terminal
point B.

Since vectors represent magnitude and direction, those possessing the
same of both are considered to be equal. If, for example, you pick up the
vector v in Figure 12.1(a) and move it in a parallel fashion to the vector
in Figure 12.1(b) with initial point C and terminal point D, then you will
still have the same vector:

v = 4B = CD
In particular, the vector v in Figure 12.2 with initial point 4 = (x,, y)

and terminal point B = (x,y;) can be moved in a parallel fashion so

that its initial point coincides with the origin. When so placed, the vector
is said to be in standard position.

y /B = (xl’yl)
4 /
/
& =
& , A= (xg) /
& / /
é‘é&\_/ / v V= <x1 — X V1 _J’0>
& /N
(9
& X
Figure 12.2

Note: We will use a “wedged form” to distinguish vectors from points.
In particular, the expression (x; —x,, y; —y,) in Figure 12.2 represents

the standard position vector, while (x,, y,) is a point in the plane.
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The two vectors in the adja-
cent figure are indeed the
“same,” since they share a
common direction and mag-
nitude:
In either case one can get to
the terminal point from the
initial point by moving 6
units to the right and 4
units down.

The symbol R” will be used
to denote the space consist-
ing of n-tuples.

The numbers 4, in the n-
tuple (ay,a,,...,a,) are its
components.

For notational convenience,
v; is often used to represent

the components of a vector v
in R", as in:

v =V, vy, V= (v, v, v3)

and v = (v, vy, ..., V,)
Similarly:
W= (Wi, Way ooy W)

Answers: See page A-11.

EXAMPLE 12.1

Sketch the vector with initial point (-2, 3)

and terminal point (4, —1). Position that vec-
tor in standard position, and identify its termi-
nal point.

SOLUTION: The Figure below tells the whole story.

(=2,3)
!\

\
\

v
\ (4971)
G

\ v = (6,-4)
(6,—4)
Figure 12.3

As it is with a standard positioned vector v in the plane [Figure

12.4(a)], a standard position vector v in R3 can also be expressed in
terms of the coordinates of its terminal point, as in Figure 12,4(b). .

3
Yy
@ 7) R
| Y L
| - — — — (1,3,4)
i‘ x | v = <1’3’4>
2 | |
| ' 7
1 ____// ’
pe
(a) (®)

Figure 12.4

CHECK YOUR UNDERSTANDING 12.1

Sketch the vector v with initial point (2, 1) and terminal point
(4,-2) and determine (a,, a,) for which v =

(a;, a,) .
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SCALAR PRODUCT AND SUMS OF VECTORS

Vectors evolved from the need to adequately represent physical quan-
tities that are characterized by both magnitude and direction. In a way,
the quantities themselves tell us how we should define algebraic opera-
tions on vectors. Suppose, for example, that the vector v = (3,2) of
Figure 12.5(a) represents a force. Doubling the magnitude of that force
without changing its direction would result in the vector force labeled 2v
(a vector that is in the same direction as v = (3, 2), and length twice
that of v)

2v = (6,4) v = (3,2)

V= (3,2) T,
=3 = L3
(a) (b)
Figure 12.5
Similarly, if a force that is one-third that of v = (3, 2) is applied in the
opposite direction to v, then the vector representing that new force is

the vector %v in Figure 12.5(b).

In general:
DEFINITION 12.1 T, any vector v = (v, vy, ...,v,) in R",
Note: Real numbers (as .
opposed to vectors) are SCALAR and any a € R, we let:
called scalars. MULTIPLICATION

av = {avy, av,, ...,av,)

The vector rv is said to be a scalar multiple
of v.

For example:
3(L,5) = (3,15)
_5<1a 05 _4> = <_59 09 20>

J2(1,3,-4,5) = (J2,3.2,-4.2,5.2)

VECTOR ADDITION

If two people pull on an object positioned at the origin with forces v
and w, then the observed combined effect is the same as that of one indi-
vidual pulling with force z, where z is the vector coinciding with the
diagonal in the parallelogram formed by the vectors v and w [Figure
12.6(a)]. Asis revealed in Figure 12.6(b), z can be determined by posi-
tioning the initial point of w at the terminal side of v.
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(2)

While identical in form,
the “+” in v+ w differs in
spirit from thatin v, + w, .
The latter represents the
familiar sum of two num-
bers, asin 3 + 7 , while the
former represents the
newly defined sum of two
n-tuples, as in:

(3,-2)+(7,11) = (10,9)

Answers: (3,7)

Figure 12.6
The above vector z is said to be the sum of the vectors v and w, and is
denoted by v + w. From the figure, we see that:

2= VvEwW = (v, V) F(wLwy) = (v T w, vyt w,y)

Generalizing, we have:

DEFINITION 12.2  The sum of the vectors v = (v}, v,, ..., V,))
VECTOR SUM and w = (w, w,, ..., w,) in R", is denoted
by v+w and is given by:
vEw = (vitwL, vyt w,, Ly, tw)

EXAMPLE 12.2 Forv = (-2,3,1),w = (1,5, 0), determine
the vector 2v+w.
SoLuTION: 2(-2,3,1)+ (1,5, 0) (-4,6,2)+(1,5,0)
(—4+1,6+5,2+0)
(=3,11,2)

CHECK YOUR UNDERSTANDING 12.2

Forv = (3,2),w = (-1, 1), determine 2v + 3w .

The zero vector in R, denoted by 0, is that vector with each compo-
nent 0. For example, 0 = (0,0) is the zero vector in R?2, and
0 = (0,0, 0) is the zero vector in R3.

No direction is associated with the zero vector. A zero force, for
example, is no force at all, and its “direction” would be a moot point.
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SUBTRACTION

The negative of a vector v = (vl, Vo eens vn) , denoted by —v, is the
vector —v = (-1)v = (—v|,—v,,...,—v,) . Note that just as
5+ (=5) = 0, so then:

vE(Y) = (v, Vg V) TV Yy, L, Y

= (V= VpVy—Vy sV, =V, = (0,0,...,0) =0
For given vectors v and w in

the plane, v—w canbe repre-  And just as 7—3 is used to represent the sum 7 + (-3), so then for
sented by the vector with ini-

tial point the terminal point of ~ given vectors v and w we define v — w to be the vector v + (—w).
w and with terminal point the

terminal point of v: In spite of the above formalities, everything works out just fine. For
v w - example, as can be anticipated (7, —4, 9) — (2, 8,-1) = (5,-12, 10):
<79 _49 9> - <25 83 _l> = <77 _49 9> + [<_29 83 _1>]
Y = (7,-4,9) +(-2,-8, 1) = (5,-12,10)

‘ X
Note that in the above,
wr (v—w) is indood v, CHECK YOUR UNDERSTANDING 12.3

Determine: .
Answers: (-1, 1 86, S[(2.-3,0) = (1,0, -J5)] - (1.2, 3)

While we are particularly concerned with vectors in the plane and
three-dimensional space, it takes little additional effort to lay a founda-
tion in the general setting of n-dimensional space; and so we shall:

THEOREM 12.1  1¢t 4, v, and w be vectors in R”, and let a
and b be scalars (real numbers). Then:
@Qu+tv=v+tu
®)(utv)y+w=u+(v+w)
(c)a(u+v) = au+av
(d) (a+b)y = av+ by
(e) a(bv) = (ab)v

PROOF: We establish (b) in RZ, (c) in R3, and (e) in R".

To emphasize the important role played by definitions, the symbol = instead of = will tem-
porarily be used to indicate a step in a proof which follows directly from a definition. In addi-
tion, the abbreviation “PofR” will temporarily be used to denote that a step, such as the additive
associative property of the real numbers: (a + b) + ¢ = a + (b + ¢), that follows directly from
a Property of the Real numbers.
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(b): (u+v)+w = u+(v+w) (in R?).

The associative propert = = = .
eliminates the nle)edp fo}; Foru (uys ), v (v}, vy), and w (W, wy):
including parenthesis when
summing more than two
vectors. In particular,

(w+v)+w=[{up,uy + (v, v) ]+ {(w, wy)

vt Definition 12.2: = (uy + v, uy +v,y) + (wy, wy)
is perfectly well-defined. Definition 12.2: = ((uy+v)+wy, (uy Tvy) +twy)
POFR: = (u;+(vi+tw)),uy+ (v, twy))
Definition 12.2: = (uy, uy) + (v, vy) + (W, wy))
=u+(v+tw)

(©): a(u+v) = au+av (in R3).
Foru = (uj,uy, uz) and v = (v, v,, v3):

a(u+v)=al[{uy, uy, u3) + (v, vy, v3)1

Definition 12.2: =a(uy + vy, Uy + vy, uytvy)
Definition 12.1: =a(u; +vy), a(u, T v,), a(us+vy)
PofR: = (au; +av, auy + av,, auy + avy)
Defintion 12.2: = (auy, au,, ausy) +(avy, av,, avy)
Definition 12.1: =a(uy, uy, uy) +a(vy, vy, v3)
=aqu+tay

(e):a(bv) = (ab)v (in R").
Forv = (v, vy, ..., V)

a(bv)=al[b{v,,v,y, ..., v,)]

Definition 12.1: =a(bv,, bv,,...,bv,)
Definition 12.1: = (a(bv)), a(bv,), ..., a(bv,))
PofR: = ((ab)v,, (ab)v,, ..., (ab)v,)
Defintion 12.1: = (ab) (v}, Vs oo V)
=(ab)v

Throughout mathematics:
DEFINITIONS RULE!

Just look at the above proof. It contains but one “logical step,’
the step labeled PofR; all other steps hinge on DEFINITIONS.

b

CHECK YOUR UNDERSTANDING 12.4

Answer: See page A-12. Establish Theorem 12.1(a) in R3, and Theorem 12.1(d) in R".
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The length of a vector v, also called the norm of v, is denoted by |v| .
Applying the Pythagorean Theorem, we find (see Figure 12.7) that the

normof v = (v, v,) € R2 and v = (v, v,, v3) € N3 is given by:
2. 2 2. 2, 2 .
vl = \Jvi+v; and [lv]| = ,/v] +v;+ V5 (respectively).
2 2
Il = Jv]+v5 ] = (2 NI

v = (v, V) v = (v}, vy, v3)

(a)
Figure 12.7

In general, for v € R”, |v| is defined to be the length of v, with:

Il = (v vas v = 202402

Moreover:

|u —v| denotes the distance between the endpoints of u and v.

In particular, for u = (u;, u,) andv = (v, v,) in R2:

v = (v, V)

luw—v| = ,\/(”1 - V1)2 + (“2 - V2)2

%%

o v u = (uyp,u,)

Vectors of norm 1 are said to be unit vectors. The vectors (§ é> and

( ) for example, are unit vectors in R% and R3, respectively:

N

39| - «/ - IER F‘

e

CHECK YOUR UNDERSTANDING 12.5

Answer: (a) 430 (a) Determine I3 (2,1,0) - (4,-2, 1>||
) ReRenER el (b) Let v € R3 and ¢ € R. Prove that [cv]| = |c[||v].
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We single out, and label, two vectors in the )22 and three in R3:
i=(1,0),j=0,1)
and i = (1,0,0), j = (0,1,0), k = (0,0, 1)
The above vectors are called the unit coordinate vectors in R2 and

N3, respectively. Each is indeed of length 1, and lies along a positive
coordinate axis:

y z

mz sﬁ3

X

Note that every vector in R% and in R3 can be expressed uniquely in
terms of the above coordinate vectors. For example:

(=7,3) = =7(1,0)+3(0,1) = —=7i+3j

and (4, 0, —%) = 4(1,0,0)+0¢0, 1,0)—%(0, 0, 1)
PO | .1
= + — — = — —
4i+ 0j 2k 4i 2k

In general: ai + bj = (a,b) and ai+bj+ck = (a,b,c).

CHECK YOUR UNDERSTANDING 12.6

Answer: —9i+ 12j + 2k Determine: 3(2i+4j—k)—53i—k).

As previously noted, force is a vector quantity, subjected to the
defined properties of scalar multiplication and vector addition. Con-
sider the following example.

EXAMPLE 12.3 Find the vector (ten-
sion) forces, F, F,,

resulting from the 50
pound force F
depicted in the adja-
cent figure.

SOLUTION: The two tension forces
Note that the physical are broken down into their horizon-

length of the attaching . .
cables is of no conse. tal and vertical components in the

quence whatsoever. It is adjacent figure.

their direction and the Given the stable nature of the sys-

magnitude of the force that FIl cos55 [ 74| cos23°
are relevant (for a vector is tem, the sum of all force vectors  [Fifcos

determined by it direction must equal the zero vector: 17| = 50
and magnitude). (*



Invoking the sum identity:

sin(x +y) = sinxcosy + cosxsiny

we have:
sin55°¢0s23° + c0s55°sin23°
= sin78°

Note that

(—cos55°1, sin55°j)
and (cos23°i, sin23°j)
areunit vectors in the direction
of F, and F,, respectively.
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(HF 00523°—HF c0s55°)i+ (

2| 1 [Fy[sins5°+ |Fy sin23° - 50)j = 0i+0j

Leading us to: (1) ||F,| cos23° — | F,| cos55° = 0
(2) | F,| sin55° + | F,| sin23° - 50 = 0

HFIH cos55°
cos23°

HFlH c0s55°

cos23°

HFIH sin55°cos23° + HFIHCOSSSOSiHZ?)O —50c0s23° =0

From (1): HFZH =

Substituting in (2): HFIH sin55° + sin23°-50 = 0

50cos23° _ 50co0s23°

HFI H ~ 5in55°c0s23° + 0855°sin23° sin78°

|

see margin
50co0s23°
— 55°
R F = _Sn78° €05207  50c0s55°
ctuming o (1): || = c0s23° ~ sin78°

Conclusion [see (*) at bottom of previous page]:

Fy = —|[F,] cos55% + | F| sin55% = %(_ €0855% + sin55°)
Fy = |[Fy cos23% + |F,|sin23°f = %(wmoiﬂm%m

EXAMPLE 12.4 Find the forces,
F,, F,, resulting (54
from the 100 pound
force F depicted in LN
the adjacent figure. l,” Al = 100

SOLUTION: We know the whole story for the vector F, namely:
F = -100j.
We can easily find the unit vector in the direction of F:

! (=5,4) = —-i—(— 5i+4j); bringing us to:
1

J25+16 J41

oo mil—esisan] = 2l 4F]
1= 1A Jﬂ( and Ja e
Similarly:
F. = |\F _1 3i+2j i — 3HF2H:+ 2HF2H.
2~ 17 N R R
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Turning to the vector equation: F; + F, + F = 0 we have:

(- Sl L1 ﬂﬂb+(W&H 2|5

)+( 100j) = 0i + 0

TR ST R
Equating components:
5|Fy|  3|F
( PH JP”)I‘OIﬁ —5.J13||Fy|| +3.J41|F,| = 0 (1)
4| Fy| 2|F
(%H HfZH—loo) = 0j = 4./13|Fy| + 2/41|F,| = 100/13./41 (2)
prom 1 [y = 2 Hqu )

Substituting in (2): 4A77 iHFZH + 2«/7 HFZH lOOf A/i 1 = HFzH 500/\/7

5.4/13!
3./41 500./8B7_ 300(
5./B~ 22 22

Substituting in 3): ||F'y|| =

Conclusion:
5[ 4HF1H _ 300

Sy R T
3N, , 215, _ 500
3i

Fa = J3 Ji3° TR

—(-5i+4)) Z%)(—SivL 4j)

. 250,,. .
+2]) = —1—1—(31-‘1-2])

CHECK YOUR UNDERSTANDING 12.7

Find F, given that its magnitude is twice F, F,

that of F .
(3,4)
(1,a)

F = 100 pounds

Answer:

- 4B -a)(i+ 2L
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EXERCISES

Exercises 1-6. Sketch the vector with given initial point 4 and terminal point B. Sketch the same
vector in standard position in the plane and identify its terminal point.

1.4=(2,-2),B=(0,1) 2.4=(3,3),B=1(0,-1) 3.4 =(1,1),B = (-2,3)
4.4 =(1,0),B=(0,-1) 5 4=(2-1),B=(,-1) 6.4=(2,2),B=(1,-2)

Exercises 7-10. Express, as a 3-tuple, the vector with given initial point 4 and terminal point B.
7. A=1(1,2,3),B=(321) 8. A4 =(450),B=(2,-51)

9. 4=(0,1,-9),B = (-9,0,2) 10. 4 = (-3,5,-3),B = (3,-5,3)

Exercises 11-18. Perform the indicated vector operations.

1. 5(3,-2) +(0, 1) = (2,-4) 12, (2,5) + (1,3) +[—(-2, 3)]

13. (=2,3, 1) +[—(1,-2, 0)] 14, —[—(-1,2,3)]+(3,2,-2)

15, 4[2i—4j—(i+3))] 16.  —2(2i—4j)— (3i +3j)

17. —23i+2k)+(2j—k)—(i+j+k) 18. 5(i—2j+3k)—2[Q2i—k)+(i+j+k)]

Exercises 19-24. Find a unit vector in the direction of the given vector v, and then express v as a
product of a scalar times that unit vector.

19. v =(52) 20. v = 4i-3j 21, v =2i-4j+k
2. v =420 23 v = ﬁi—%j 2. v = %'—%j—ﬁk

25.Foru = (1,3),v = (2,4),and w = (6,-2), find scalars a and b such that:

(@) au+tbv =w (b) —au+bw = v (c)av+(—bw) = u
26. Find scalars a, b, and ¢, such that: a(1,3,0) +bH(2,1,6) +c(1,4,6) = (7,5, 6)
27. Find scalars a, b, and c, such that: —a(1,3,0) +b(2,1,6) +[-c(1,4,6)] = (0,5, 6)

28. Show that there do not exist scalars a, b, and ¢, such that
r(2,3,5) +b(3,2,5) +¢(1,2,3) = (1,2,4)
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29. Find the vector (a, b) € R? of length 5 that has the same direction as the vector with initial
point (1, 3) and terminal point (3, 1).

30. Find the vector {(a, b) € R? of length 5 that is in the opposite direction to the vector with ini-
tial point (1, 3) and terminal point (3, 1).

Exercises 31-34. Determine the force vectors F; and F, in the given stable situation.

y F, y
_ _ F2
31. 30° 457 32.
F, F, (-1 1) 3, 1)
x X
v 10 pounds /20 pounds
y F, y
_ _ F2
33. 30° 457 34.
F, F, (=L 1) 3, 1)
X X
60°
(1,-2)
10 pounds
20 pounds
F, y F,
5 pounds y
35. 36.
o (L1
(-1, 1) x
X 20 ponds/\
/ 10 pounds (-2,-1) (2 %) 5 ponds
FC2D
F,

37. A child pulls a sled on a level path with a force of 15 pounds exerted at an angle of 30° with
respect to the ground. Find the horizontal and vertical components of the force.

38. Ship 4 is traveling north at a speed of 10 mph, and ship B is heading east at a speed of 15 mph.
How fast and in what direction does ship 4 appear to be moving from the point of view of an
individual on ship B?

Exercises 39-42. A bearing is used to describe the direction of an object from a 4
given point. Nautical bearing, also used for flights, is specified by an angle mea- |

sured clockwise from due north (see adjacent figure). | 60°

earing o
beari f60°
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The airspeed of a plane is defined to be its speed in still air. The track of a plane is the direction
resulting from the plane’s velocity vector and that of a wind vector, and the ground speed of the
plane is the magnitude of the sum of those two vectors.

39. An airplane has an airspeed of 400 km/hr in an easterly direction. The wind velocity is 80
km/hr in a southeasterly direction. Determine, to two decimal places, the ground speed of the
plane.

40. A plane with airspeed of 250 km/hr is flying at a bearing of 25°. A 23 km/hr wind is blow-
ing at a bearing of 280° . Determine, to one decimal place, the track and ground speed of the
plane.

41. A plane with airspeed of 300 km/hr is flying at a bearing of 21°, against a 32 km/hr westerly
wind. Determine, to one decimal place, the track and ground speed of the plane.

42. A plane with airspeed of 250 km/hr is flying at a bearing of 25°. A wind is blowing at a

bearing of 15°. Determine, to one decimal place, the speed of the wind if the ground speed
of the plane is 270 km/hr.

43. (a) Referring to the adjacent figure, verify that if Hlﬁ’H = Hﬁ? ,

A
then: P = lA + lB £
' 27 2 - B
(b) Use the above result to prove that the line segment joining the o

midpoints of two sides of a triangle is parallel to, and half the
length of the third side.

44. Prove that the midpoints of the sides of a quadrilateral ABCD are ver-
tices of a parallelogram PQRS (see adjacent figure).
Suggestion: Consider Exercise 43.

45. Let A and B be two distinct points in the plane and let P be a

A
point on the line segment joining 4 and B. Show that if =P s
HFH = r and Hlﬁ?H = s, then: B
0

P () (H)e
r+s r+s

46. A median of a triangle is a line segment from a vertex to the midpoint of
the opposite side. Prove that the three medians of a triangle have a com- %

mon point of intersection (see adjacent figure).
Suggestion: Consider Exercise 45.

47. Prove that for v € R2, av = 0 ifandonlyifa = 0 orv = 0.

48. Verify that Theorem 12.1(a) holds in R”.
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49. Verify that Theorem 12.1(b) holds in R”.
50. Verify that Theorem 12.1(c) holds in R”.

51. Verify that Theorem 12.1(d) holds in R”.



Left to our own devices, we
would most likely define the
product of two vectors in this
manner:

GBS

it turns out owever the
above “natural definition”
does not appear to be useful.
The same, as you will see,
cannot be said for the dot
product concept.

Answer: See page A-13.

12.2 Dot and Cross Products
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At this point, we can add vectors (Definition 12.2), and can multiply
a vector by a scalar (Definition 12.1). In either of those cases, the end
result is again a vector. This operation assigns a real numbers to pairs

of vectors in R”:

DEFINITION 12.3 The dot product of u =

(Vi Vo ces Vi) s

u - v, is the real number:

DOT PRODUCT and v = denoted

+u v

u-v=ulv1+u2v2+... Vn

For example:
<2, 4, _39 1> : <55 09 79 _1>

= 2.544.04(3)-7+1-(=1)

and: (2i +3j—k)-(5i—7j—9k) = 10-21+9 = -2

Here are four particularly important dot-product properties:

THEOREM 12.2  For u, v, w € R” and any scalar 7:

(@) v-v20,andv-v = 0 onlyifv =
(b) u-v =

(c) au-v =a(u-v) = u-av

v-u

d (u+v)-w=wu-w+v-w and

(u—v)-w=u-w—v-w

Cup, Uy, ...,

u,)
by

-12

PROOF: We turn to (c) and invite you to verify the rest in the exer-

cises:
au-v = auy, Uy, ..., uy) - (Vi, Vo, ooy V)
Defitition 12.1, page 489: = (aup auy, ..., aun> . (vl, Vo oy Vn>
Definition 12.3: = (qu,)v, + (au,)v, + ... + (au,)v,
= a(uvy) ta(u,vy)+...+a(u,v,)

= a(uvytuv, + ... tu,v,

Definition 12.3: =

a(u -v)

As for the other part of (c):

CHECK YOUR UNDERSTANDING 12.8

Verify that for any u, v € " and any scalar a:

u-av = a(u-v)
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The norm of a vector was introduced on page 493. We now offer a
formal definition — one that involves the dot product:

DEFINITION 12.4  The norm of a vector v = (v, v,, ..., v},
NORM IN R" denoted by [|v] , is given by:

vl = Sv-v

— 2 2 .
Il = v+ ) In particular, for v = (v, v,) € R2:

y = (vl,vz) 3 3
vl = Jv-v = «/<V1’V2>'<V1avz> = Avityy

THEOREM 12.3 Foru.ve R":
Vl °
e —v]? = [ul?—2u-v+|v|?
[Reminiscent of: (a—b)? = a2 —2ab+ b?]
PROOF:
e —v]|> = (u—v)-(u—-v)
Theorem 12.2(d): = u-(u—v)—v-(u—v)
Theorem 122(b)and(d): = w-u—wu-v—v-u+v-v = |ul|>?—2u - v+ |v|?
CHECK YOUR UNDERSTANDING 12.9
(a) Determine ||3i —4j + 2k| .
Answers: (a) 429 (b) Show directly that:
(b) See page A-13. 1€5, 1) = (2,-3)12 = [I(5, DI?=2(5,1) - (2,-3) +[(2,-3)|?
ANGLE BETWEEN VECTORS

Applying the Law of Cosines [Figure 12.8(a)] to the nonzero vectors
u,v € N2 in Figure 12.8(b), we see that:

lae —vl|2 = llull +|I¥l| - 2[|ull[v]| cos ®
c
a
b
c? = a*>+b%—-2abcosd
Law of Cosines e —v[2 = [+ v - 2]ul|v] cos®
(a) (b)

Figure 12.8

We also have (Theorem 12.3):
o —l|2 = Null? —2u - v+ ||vl|?



For any -1<x<1,

cos 'x is defined to be
that angle 0<6<n=
whose cosine is x.

In Exercise 39 you are
asked to verify that
u-v

RaEDR E|
el I

Assuring us that:

—1( u-v o
cos (-————) exists.
flael W

Answer: cosfl<—1—) = 45°

2

We remind you that, for any

-1<x<1 ,cos_lx is that angle

0<0<n suchthat cos® = x.

So, if cosfl(u) = 90°,

[lzell |
then: 22 = ¢
[lzell | ]

or: u-v=20.
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Thus: [u]? + [v]? = 2[ull[v]cos® = [ull?—2u - v+ |v]?
2lull||v]|cos® = —2u-v
u-v = |ulll[v|cosd
cos = 4V
[
. —1( u-v )
see margin:. O = cos |———
e ]
Formalizing:

DEFINITION 12.5 The angle 0 between two nonzero vec-

tors u, v € R” is given by:

0 = cos_l(u) or cos® =
el || ]
And so:

ANGLE BETWEEN

VECTORS u-v

lall v

u-v = |ul|v]|cos0

EXAMPLE 12.5 Determine the angle between the vectors
u=<{1,2,00andv = (-1,3,1).

SOLUTION: § = 005—1(14_1) _ cos_l( (1,2,0)- (-1,3, 1>)
Tl T aroir071

_ 71( 5 ) °
= cos |—|~48
55

CHECK YOUR UNDERSTANDING 12.10

Determine the angle between the vectors i + 2jand —i + 3j.

ORTHOGONAL VECTORS IN R"

The angle 0 between the vectors u,v € R?
depicted in the adjacent figure has a measure of

90° (g radians ), and we say that those vectors are

perpendicular (or orthogonal). Appealing to Defi-
nition 12.5 we see that:

cosfl( u-v) =90° or u-v=90
[ae || v]]

(see margin)

Bringing us to:

DEFINITION 12.6  Two vectors u and v in R” are orthogonal
ORTHOGONAL VECTORS ify-v = 0.

Note: The zero vector in R” is orthogonal to every vector in R”.
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Answer: The vectors in (b)
and (c) are orthogonal.
Those in (a) are not.

proj,v = cu = (u)u
u-u

v = proj,v + (v — proj,v)

CHECK YOUR UNDERSTANDING 12.11

Which of the following pair of vectors are orthogonal?
(@)(2,3),(1,-4) (b)2i+3j,-3i+2j (¢)(1,2,3),(-1,-1, 1)

It 1s often useful to dec

v € R” into a sum of two vectors: one
parallel to a given nonzero vector u, and
the other perpendicular to u. The parallel-
vector must be of the form cu for some
scalar c¢. To determine the value of ¢ we

ompose a vector

note that for v — cu to be orthogonal to u, we must have:

(v—cu)-u =20

Theorem 12.2(d): v-u—(cu)-u =

Theorem 12.2(c): v-u—c(u-u) =

Summarizing:

THEOREM 124

VECTOR
DECOMPOSITION

U _v-ou|_u-v
u a2 [l
Theorem 12.2(b)

Qe S O

Cc =

For given v € R” and u any nonzero vector in
R” (see margin figure):
v = proj,v+ (v —proj,v)

Where: proj,v = (Z—L’Du

and: (v —proj,v) - proj,v = 0

The vector proj,,v is said to be the vector projec-
tion of v onto u, and the vector v — proj,, v is said
to be the vector component of v orthogonal to u.

Note that:

v-u

lull = 1v - ul

Ju-u _ v u
U U u

|proj,v| =

EXAMPLE 12.6

SOLUTION: For
have:

proj,v = (:——Du = [

Express the vector (2, 1,-3) as a sum of a
vector parallel to ((1,4,0)) and a vector
orthogonal to (1, 4, 0) .

v=«(2,1,-3) and u = (1,4,0) we

(1,4,0)-(2,1,-3) 3
(1,4,0) - <1,4,0>:|<1’4’0> - 17<1,4,0>
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and v proj,v = <2,1,—3>—<% %‘ 0) = <f§ %,—3>
Check: <%—§,17—7,3>+ <%, ?—‘7‘, 0) = (2,1,-3) = »
and <17 17 3 <167 i‘; U= ( )(167%(*17)@‘7‘) = U
Answer: CHECK YOUR UNDERSTANDING 12.12
v?rgﬂéﬂ’(ﬁ):): :<0<’31,>0> Express the vector v = (3,1) as the sum of a vector parallel to

= (0, 2) and a vector orthogonal to u.

A DETERMINED PAUSE

A two-by-two matrix of real numbers is an array consisting of two
rows and two columns of numbers, as is the case with 4 and B below:

A{z g} B:{o sJ
-35 9 ./7

The determinant of {a b} , 1s the number: det {a b} = ad-bc.

cd

cd

For example: det {2 8} =2-5-8(3) =
5

CHECK YOUR UNDERSTANDING 12.13

Evaluate:

Answers: (a) det | 3 (b) det [ =3 () det |2?
@30 ()24 (c) 20 06 4 6 40

We now define the determinant of a three-by-three array with first

row consisting of the unit coordinate vectors i, j, and k as follows:

note negative sign

i jk ¢ r
det |, p o = det {b C} 2 det c}jﬂLdet {“ b}k
e d f] de
def. ? K ?
_l]lt'_ _l_]k_ _ljk_
Note: ﬂbc alb c ablc
\d e f] |d|e| f] |d e |f]
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The reason for such a strange definition will soon surface. For now:

EXAMPLE 12.7 Evaluate:

ij k
det 2 53
40 6
SOLUTION: ] ] )
5-3 2| |-3 25
1o 6] 4] | 6] 40/ |
ij ok . .
det |2 5 3| = det {5 =37~ det {2 _}j+det {2 Sk
06 4 6 40
40 6 - -
=[(5:6)-(3-0)]i-[(2:6)-(-3-HI+[(2-0)-(5-4)]k
= 30i—24j— 20k
CHECK YOUR UNDERSTANDING 12.14
Evaluate:
ij ok
Answers: det l l -1
S2-6. 2. 32
B
0 -3 .2

CROSS PrRODUCT

We now focus our attention exclusively on R3, our very own physi-

cal three-dimensional space. As you will see, for given u, v € R3 | itis
often useful to find a particular vector n that is perpendicular to both u
and v, and here it is:

DEFINITION 12.7 For u = (uy, uy, u3),v= (v, v, vy the

CROSS PRODUCT cross product of u with v, denoted by u x v
and is given by:

i j k
uxv =det|u; u, u,
Vi Va2 V3

We will soon show that the vector u x v is indeed perpendicular to
both u and v, but first:



Answer: (10, 16,-7)

Answer: See page A-14.
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EXAMPLE 12.8 Evaluate:
(2i +5j—3k) x (4i + 6k)
SOLUTION:
ij k
(2i+5j—3k) x (4i+6k) = det |9 5 _3 3 30i —24j — 20k
4 0 6| Example 12.7

CHECK YOUR UNDERSTANDING 12.15

Evaluate:

(2,3,4)x(3,1,-2)

THEOREM 12.5  For any u,v € R3, uxv is orthogonal to
both u and v.

PROOF: Rolling up our sleeves, we simply show that (u xv) -u = 0,
and leave it for you to verify that (u x v) - v is also zero:

i j ok

Vi V2 V3

[(uyvy —usvy)i—(uy vy —uzv)j+ (u; vy —uyv k] - (uy, uy, us)

= (upvy —uzvy)uy — (uy vy —uzvuy + (uyvy) —uyvyu,

= ”M‘”ﬂz{l_”W2+”3‘<1{2+”1‘;Z“3_”2V1/W3 =0

CHECK YOUR UNDERSTANDING 12.16

Verity, directly, that:
<2a 3a 4> x <3a 1a72> ' <3a 1972> = 0

As it turns out, the cross product is not a commutative operator. In
particular:

ijk ijk
ixj=det|1 00| =k while jxi =det|g] 0| =k
010 100

Since the vectors i and j lie in the xy-plane (margin), and since the cross
product of two vectors is orthogonal to both, it comes as no surprise that
both of the above cross products must lie on the z-axis.
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Note that the direction of the above two cross products follows what
is termed the right-hand-rule: If the fingers of your right hand curl in
the direction of a rotation from i to j, then your thumb points in the k-

direction [see Figure 12.9(a)], while the thumb will point in the —k-
direction if you curl from j to i [see Figure 12.9(b)].

(b)

Right-Hand Grip Rule
Figure 12.9
Indeed, the right-hand-rule holds in general:

For given u and v, if the fingers of your T
right hand curl in the direction of a
rotation from u to v through an angle u

less than 180°, then your thumb will v
point in the direction of u x v. \
At this point we know the direction of u x v, as for its magnitude:

L eV g , THEOREM 12.6 1f0<6 < is the angle between u and v, then:
u xv = 0 if and only if

u and v are parallel lze x vl = [lul||v]l sin®

PROOF: From:
i j k
uxv = det |u; u,y u,

Vi V2 V3
= (Uyvy —usvy)i— (uy vy —u3vy)j + (U vy —uyvy )k
we have:

”” X v”Z = (uyv; — ”3"2)2 + (uyvs— uSVl)z + (U vy — ”2"1)2

22 22 22 22
Uy V3 — 2U, V35UV, T U VS T U vy — 2U, V53UV, T Ui Y

22 2.2
Tuivy = 2uvyuy vyt uyv

Which, as you can verify, is but a rearrangement of:

(“12 + u? + u?)(vlz + Vg + V?) — (U vy T uyv, + ”3"3)2

= llul?v]? = (u - v)?
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At this point we have:
loe > w2 = Jal2I¥| — (2 - v)* (*)
We also know that (see Definition 12.5):

u-v = |ufl[v]cosd (**):
Substituting (**) in (*):
lae x w2 = Yul2|I¥l|% — (u - v)?

2
= [lul|2[1v]12 — l|u]| 2 [[Vl|>cos™O
Since sin6>0 for 0<O<m:

" = 21201 - cos’0) = ul2]v]2sin’0
It follows that ||u x v|| = [lul||v]sin® (see margin).
Answers:
ixk=ikxj=i CHECK YOUR UNDERSTANDING 12.17
@° 0T
’,X’(‘f ;”‘X.’ 4 (a) Determine: j x k, kxj, i x k and k xi.
IX(IX = =
b =0 (b) Determine: i x (i x j) and (i x i) x .

The above CYU shows that the cross product is neither a commuta-
tive nor associative operator. It does, however, fall under the jurisdic-
tion of some “familiar patterns:”

THEOREM 12.7  For u, v, w € R3 and any scalar c:
@ux(v+tw)=uxvtuxw
b)) (utv)yxw=uxwt+vxw
C)cvxw =vxcw = c(vxw)
(d)vxu = —(uxv)

PROOF: We establish (a) and invite you to verify the rest in the exer-
cises.

i j k
ux(vtw) = (up, uy, tz) X (Vi +w, vy +wy, v+ wy) = det uy Uy usy
VitTwp vatw, vitwg
= [uy(v3 T+ wy) —uz(vy T wy)li—[u (v3 +wy) —us(vi +w )+ [u(vy +wy) —uy(vy +wy)lk

= [(uyvy —u3vy)i—(u vy —uzv))j + (u vy —uyv k] + [(uyws —uswy )i — (uywy —usw ) )j + (uywy —uyw) k|

i j k i j k
= det |u; u, uz|+det |u; uy, us| =uxv+tuxw
Viva V3 Wy Wy Wi
L

CHECK YOUR UNDERSTANDING 12.18

Let u and v be non-zero nonparallel vectors in
R3 . Prove that |u x v| is the area of the parallel- g
Answers: See page A-15. ogram with # and v as adjacent sides. v

0
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EXERCISES
Exercises 1-6. Evaluate:
1. 2(5i+2j)-(-3i+)) 2. (4,-7)-(3,5)+(1,5)-(2,4)
3. 3,2,1)-(—+4,0,5) 4. S5(i—-2j+3k) - (2i—-4j+k)

5. 4[2i—-4j)—-(G+3)]-(i—-2j+3k) 6. [2(3,1,0)+(1,1,4)]-[(0,2,1)—(2,1,-2)]

Exercises 7-18. Determine that angle between the given pair of vectors.

7. u=—-i+2j,v=20+j 8 u=&41),v=(1,2)

9. u=(1,4),v = (3,-2) 10. u=3i—j,v=1i+2j
IT.u=(2,-1,1),v = (1,1,-1) 12.u=2i-2j+2k,v = —i+j+5k
13.u=i+jv=j+k 14.u=(2,-2,2),v = (-1,1,5)
15.u=(3,0,4),v = (0, J7,-5) 16. u=4i+2k,v = 2i—j
17.u=3i—j+5k,v = -2i+4j+3k 18. u=(4,-3,1),v = (2,0,-1)

Exercises 19-22. Determine if the given pair of vectors are orthogonal, parallel, or neither.

19 u=(2,-1, v =0, 1.=5 20. u=i—%i+3k,v — 4i-2j+ 12k
20w =3i—j+5k v = —2i+4j+3k 2. u=0,v=i 2j+3k

Exercises 23-30. Express the vector v as the sum of a vector parallel to # and a vector orthogonal
to u.

23.v=(2,1),u = (-3,2) 2. v=4i-3j,u =i+J

25. v = 3j+4ku=it] 26 v=i+tju=3j+4k

27 v = (8,4,-12),u = (1,2,-1) 28 v = (1,2,-1),u = (8,4, —12)

29y = J12i+ J8ku = =i+ j- Lk z0.v=(L 12k = (21
B3 B 2 2
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Exercises 31-36. Evaluate:
31. (2,-1,6) x (3,4, 1) 32. Bi+2j—k)x(i—k)
33. [(—4i+j)x(2i—j—-3k)] x (3i—2j—3k) 34. (-3,1,0) x[(2,-1,-3) x (3,-2,-3)]

35.[(2,-1,4) x(7,2,3)] - (-1, 1, 2) 36. (i—k) - [(2i+j—k)x(i+3))]

37. Prove that (u—v)-(u—v) = u-(u—v)—v-(u—v), for:

(@) u,ve R? (b) u,v e R3 (c) u,v e R"
38. Provethat u - (u—v)—v-(u—v) =u-u—u-v—v-u+v-v, for

(@) u,ve R (b) u,v e R3 (c) u,v e R"
39. (a) Prove, without using the law of cosines, that ”|:”'”:|” <1, for:

(a) u,ve R? b)u,veR? (c) u,v e R"
40. Prove: (a) Theorem 12.2 (a) (b) Theorem 12.2(b) (c) Theorem 12.2(d)
41. Prove: (a) Theorem 12.7 (b) (b) Theorem 12.7(c) (c) Theorem 12.7(d)
42. Prove that u and v are parallel if and only if |u - v| = |ul|v||, for:

(a) u, v € R2 (b) u,v e R3 (c) u,veR"

43. Prove that a rectangle is a square if and only if its diagonals are perpendicular.
44. Prove that (a) |proj.,(v)| = ||(proj,v)| for any c € R.
(b) |proj,(cv)| = lcl|/(proj,v)| forany c € R.

45. Establish the Jacoby Identity:
(uxv)xw+(wxw)xu+(wxu)xv =0 (for u,v,we R3)

46. Establish the Lagrange Identity:
(uxv)-(wxz) = (u-w)(v-2)—(u-2)(v-w) (foru,v,w,ze R3)
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Exercises 47-50. (Work) The work done when a constant force F is _F

applied along the line of motion of an object through a distance d, is given

by W = Fd (see page 172). More generally, if a force Fis appliedina o d 5o 9 _ _
A B

direction that makes an angle 6 with the direction of motion, then the
work done in moving the body from 4 to B is defined to be:
W = |F|cosO|d| = F-d
A

the scalar component of
F in the direction of d

47. Find the work done by a force F = 20k that moves an object along the line from the origin
to the point (1,1,1). Assume that the force is measured in pounds and the distance in feet.

48. Find the work done by a force F = 3i+ 2j— 7k that moves an object directly from the

point (1,2, 5) to the point (3, 2, 6) . Assume that the force is measured in newtons and the
distance in meters.

49. How much work does it take to pull a 200 pound railroad car 100 feet along a track by
means of a rope that makes a 30° angle with the track?

50. Joe pushes on a lawnmower handle with a force of 30 pounds. Determine the angle the han-
dle makes with the ground if 1125 foot-pounds of work is required to mow a line of 75 ft.

Exercises 51-53. (Torque) Let a vector force F be applied to a
point P in space and let O be another point is space. The moment
of torque t of the force F at the point P about the point O is
defined to be:

— | F|| sin®
T=O0OPxF

In particular, if we apply a force F to a wrench, then the resulting
torque acts along the axis of the bolt to drive the bolt forward (see adjacent figure).

51. Prove that ||| = |OP]||Flsin6.

52. An 8-inch wrench is used to drive a bolt at point O. A force F of magnitude 60 Ib is applied
at the end of the handle (point P). Determine the magnitude of the torque produced if the
angle of applications (see above figure) is:

(a) 30° (b) 90° (c) 135°

53. A 9-inch wrench is used to drive a bolt at point O. A force F of magnitude 30 1b is applied
at the end of the handle (point P). Determine the magnitude of the torque produced if the
angle of applications (see above figure) is:

(a) 30° (b) 90° (c) 135°
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Exercises 54-56. (Triple Scalar Product) The triple scalar product of u, v, w in R3 is defined
to be the number u - (v x w).

54. Prove that u - (v x w) = det ViV, Vg , Where:
Wi Wy W3
uy uy uj
Vo v Vv, v v, v
det |v, v, wvy| =wudet| > | —uydet| ' | +ugdet| '

Wy Wj Wi W3 Wi Ws
Wi Wy W3

55. Provethat u - (v xw) = (uxv)-w

56. Prove that u-(vxw) is the volume of the parallelepiped with
u, v, w as adjacent sides (see adjacent figure). w
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The vectors v and u are said
to be direction and transla-
tion vectors, respectively, of
the line.

§3. LINES AND PLANES

While the direction (slope) of the line L in Figure 12.10(a), and that
of the vector v = @ = (x,—X;,¥,—¥;) in Figure 12.10(b) are one

and the same, the lines L and L, though parallel, are not equal. They

will coincide, however, if L is moved, in a parallel fashion, so as to
contain the point P (any point on L will do just as well). To put it
another way:

The line L coincides with the set of endpoints of the stan-

dard-position vectors w = (xy,y;) +#v, —0<f<o00.

Yy
(xp,yp +tv L
/ _
<x1,y1> P / -L
\ ty
. T ]
v = P_Q\ = <x2*x1ay2*y1>
(@) (b)

Figure 12.10
In general:

Let L be the line passing through two distinct points P = (x,y;)

and Q = (x,,y,) in the plane. Let v = PO = (Xy =X Yy — V1)
and u = (x,y,),then:

w=utty, —0<t<ow (¥
is said to be a vector equation of L.

EXAMPLE 12.9 Find a vector equation of the line L passing
through the points (1, 5) and (2, 3).

SOLUTION: We take v = (2—-1,3-5) = (1,-2) to be our direc-
tion vector, and # = (1,5) as the translation vector, leading us to

the vector equation:
w=ut+tv = (1,5 +t(1,-2)

Note thatw = (1,5) +¢(1,-2) = (1 +1¢5—2¢) reveals the follow-
ing parametric equations of L:
{G,)x=1+t,y=5-2¢, —0<t<o}
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CHECK YOUR UNDERSTANDING 12.19

Answers: (a) Find a vector equation and parametric equations of the line L of

@w = (5, 1)+1(3,-2) . .
X =543y = 1-2t slope -3 containing the point (5, 1).

@) W= E ) (b) Find a vector equation and parametric equations of the vertical

VA AL line containing the point (3, 7).

The nice thing about vector equations of lines in R? is that they carry
over seamlessly to R3:

Let L be the line passing through two distinct points P = (x, ¥4, z;)
and O = (x,, ,,2,) in R3.

The vectors v and u are again

said to be direction and _ P — — .
translation vectors, respec- Lety = PO = (xy—xy,y,-yy,2,~2)) and u (x1, ¥, 21) Then:

tively, of the line. w=u+tv *)

is a vector equation of L.

EXAMPLE 12.10 Find a vector equation and parametric equa-
tions of the line L passing through the points

(2,0,-3) and (1,4, 2).
SOLUTION: Taking v = (1-2,4-0,2—-(-3)) = (-1,4,5) as the
direction vector, and u# = (2,0,-3) as the translation vector we
arrive at the vector equation:
w=u+ttv=(2,0,-3)+t(-1,4,5)
And parametric equations:
{(e,y,2)|x=2—-t,y=4t,z=—-3+5¢t,—0<t<ow0}

Answer: CHECK YOUR UNDERSTANDING 12.20
(1,2,9) +1(~1,-1,~11)
x=1-t,y=2-1 Find a vector equation and parametric equations of the line L passing
z=9-11¢ through the points (1,2, 9) and (0, 1, -2).

EXAMPLE 12.11 Find the distance from the point P = (3,1, 3)
to the line L in R3 which passes through the
points (1,0, 2) and (3, 1, 6).

SOLUTION: We first find a direction vector for the given line:
u=(3,1,6)-(1,0,2)) = (2,1,4)
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want this distance

Choosing the point 4 = (1,0,2) on L P
we determine the vector v from 4 to P:

v=1(313-(1,0,2) = (2,1, 1)

v —Dproj,v |

Applying Theorem 12.4, page 504, we
have:

proj,v = (Z———Du

(2, 1,4) - (2,1, 1)
B ((2, 1,4)- (2, 1,4>)<2’ L4
63 12 <

—<214>_<§§7>

Thus:

. 6 3 12
vapI‘OJuvH = H(Z, 1, 1) - (7, 75 >H

8 4 5 1
= |&4-3) = fics.a-5n -

105
WZ—
7775 64+ 16+25

1
7 7

CHECK YOUR UNDERSTANDING 12.21

Find the distance from the point P = (2, 5) to the line L in R?2

passing through the points (1,-2) and (2, 4).

Answers: (a) —= (b) 2.3 (b) Find the distance from the point P = (1, 0, 1, 3) to the line L in
7 R4 passing through the points (1,2, 0, 1) and (1,2,2,1).

PLANES

Just as a line in R2 is determined by a point on the line and its slope,

so then is a plane in R3 determined by a point on the plane and a nonzero
vector orthogonal to the plane (a normal vector to the plane). To be
more specific, suppose we want the equation of the plane with normal

vector n = (a, b, ¢) that contains the point 4, = (x, ¥, z,) - For any

point P = (x, y, z) on the plane we have:

n-A,P =0
O (a,b, ) (g y Y27 = O
or: a(x—xy)tb(y—yy)+te(z—z5) =0

or: ax+by+cz = d,whered = ax,+ by,+ cz, [general equation
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EXAMPLE 12.12 Find a vector, scalar, and general equation of
the plane passing through the point (1, 3, -2)
with normal vector n = (4,1, 5).

SOLUTION:
vector: (4,-1,5)-(x—1,y—-3,z+2) =0
scalar: 4(x—1)-1(y—-3)+5(z+2) =0
general: 4x—y+5z = -9

Note that you can easily spot the normal n = (4,-1,5) to
the plane in any of the above equations.

CHECK YOUR UNDERSTANDING 12.22

Find a vector, scalar, and general equation of the plane passing
through the point (1, 3, —2) with normal parallel to the line contain-
Answer: See Page A-16. ing the points (1, 1, 0), (0,2, 1).

EXAMPLE 12.13 Find the general equation of the plane that
contains  the  points A=(1,2,-1),
B=(2,31),C=(3-12).

SOLUTION: Noting that the vectors
AB = (2,3,1)-(1,2,-1) = (1,1,2)

and AC = (3,-1,2)— (1,2, 1) = (2,-3,3)

are parallel to the plane, we employ Theorem 12.5, page 507, to find a
normal to the plane:

i jk
n=det|] | 2/=9i+j-5k=(9,1,-5)
2-33

Choosing the point 4 = (1,2, —1) on the plane, we proceed as in
Example 12.12 to arrive at the general equation of the plane:

<991>_5>'<-x_19y_2’2+1> =0
Ox-1)+(»y—-2)-5(z+1) 0
Ox+y—-5z =16

CHECK YOUR UNDERSTANDING 12.23

Pick three different points 4, B, C on the plane 9x +y—5z = 16 of

No unique approach. One Example 12.13 and proceed as in that example to arrive at the very

such approach appears on
page A-16 same equation 9x +y—5z = 16
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Answers: (a) 3
(b) See page A-16.

+o = 90°
0+a —=B=0
B+a = 90°

EXAMPLE 12.14 Find the (minimal) distance between the
point P = (1,1,2) and the plane
x+2y+3z=6.

SOLUTION: From the given equation, we see that n = (1,2,3) isa

normal to the plane, and that QO = (0, 3, 0) is a point on the plane (any
other point on the plane would do just as well).

—

For v = QP = (1,1,2)—-0,3,0) = (1,-2,2), we calculate the
length d of the vector w = proj, v (see margin), as that is the distance
between P and the plane:
. v-n 1,-2,2)-(1,2,3 3
d = “prOjnV“ — | | — |< ) - ( >| —

) dun JT+4+9 J1a

Theorem 12.4, page 504

CHECK YOUR UNDERSTANDING 12.24

(a) Find the distance between the point (2,-3,4) and the plane
x+2y+2z =13.
(b) Prove that the distance d between a point P = (x,, ¥, z,) and

the plane ax + by +cz+d = 0 is:
g ‘ax0+by0+czo+d‘

Ja*+ b?+ c?

Two planes in R3 are parallel if the normal vector of one is a scalar
multiple of the normal vector of the other. In particular, the planes

3x+2y—z="7and 6x+4y—-2z = 99

are parallel, since the normal vector (6, 4, —2) of the latter is twice the
normal vector (3, 2, —1) of the former.

You can see the angle 0 between the

planes P, and P, in the adjacent figure,

but how is it defined? Like this:
The angle between two nonparallel planes

P, and P,, is defined to be the angle ’

0<0<n between their normals »n, and
n, . Hopefully, the cross-section figure in the margin will convince you

that the angle B between the normals is indeed equal to the represented
angle O between the planes.



Answers: 119°
One possible answer:

1, 1 ) .
= [=g—= + 4L _
w (4t 4k 1(2i+4j-10k)
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EXAMPLE 12.15 Find the angle, 0, between the planes
2x+3y—z =4 and —x+2y+z =12, as
well as a vector equation of their line of
intersection.

SOLUTION: Here are normal vectors for the two planes:
ny = <2’ 3’ _1>’ ny, = <_1a 2a 1>
Appealing to Definition 12.5, page 535 we have:

= -1 Mt — -1 <29 39_1> . <_19 29 1>
- () |
S Janal) ~ % 23,01, 2, Dl

= cosfl(ﬂ) = cosfl(i) ~71°
J14./6 /84
As for their line of intersection:
Since the line lies on both planes, it must be orthogonal to both n; and

n,, and therefore parallel to:
i j k
nyxny, =det| o 3_1| =5i—-j+7k = (5-1,7)
-12 1

We now know that v = (5, -1, 7) is a direction vector of the line of
intersection, but are still missing a translation vector # in the vector

equationw = u +¢(5,—1, 7). Any point on the line will direct us to u,
and any such point must satisfy the equations:
2x+3y—z=4and-x+2y+z=2
We chose to find the particular point whose y-coordinate is equal to 0:
2x—z =4
then

—x+z=2ﬁz=2+x=8

add: x =6

Since (6, 0, 8) is on the line, u = (6,0, 8) is a translation vector,
bringing us to the vector equation w = (6,0, 8) +¢(5,-3, 1)

CHECK YOUR UNDERSTANDING 12.25

Find the angle, between the planes x+2y+z =0 and

3x—-4y—z = 1, as well as a vector equation of their line of inter-
section.
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EXERCISES

Exercises 1-4. Find a vector equation and parametric equations of the given line L.

1. Lin R? hasslope 3 and contains the point (1, 3).
2. Lin R? passes through the points (2, -5), (1, 0).
3. Lin R3 passes through the points (2, 3, 1), (0, 1, -1).

4. Lin R* passes through the points (0, 1, 1, 3), (-2, 0, 1, 2).

5. With respect to the line L in R? passing through the points (1, 1), (1, 0), show that the two
vector equations
w= (1L D+(1,1)-(1,0)) andw = (1,0) +£((1,0) - (1, 1))

are one and the same by verifying that each vector in either representation is also a vector in the
other.

6. With respect to the line L in R3 passing through the points (1, 1, 1), (1,2, 0), show that the
two vector equations

w = <15 15 1>+t(<15 1, 1>_ <1>2: O>) andw = <1’2’ 0>+t(<1’ 15 1>_ <1>2:O>)
are one and the same, by verifying that each vector in either representation is also a vector in
the other.
7. (a) Find the distance from the point P = (1, 5) to the line L in R2 passing through the points
(2,3) and (0,4).
(b) Find the distance from the point P = (2,0, 3) to the line L in R3 passing through the
points (1,2,2) and (2,0,4).
(c) Find the distance from the point P = (1,0, 1,0) to the line L in R* passing through the
points (2,2,1,1) and (1,0,2,1).
8. (a) Find the distance from the point P = (5, 3) to the line L in R? passing through the points
(2,2) and (1,4).
(b) Find the distance from the point P = (1, 1,-1) to the line L in R3 passing through the
points (3,0, 1) and (2, 1, 3).
(¢) Find the distance from the point P = (1, 3, 1,—1) to the line L in R* passing through the
points (0,2,0,1) and (1,3,1,1).
Exercises 9-12. Find a vector, scalar, and general equation of the plane with given normal vector
n that contains the given point Q.

9. n=(1,4,2),0=(2,073) 10. n = 2i+j-3k,0 = (2,1,-3)

11.n=3i+2j—k,0 = (1,1,2) 12.n = (2,-2,2), 0 = (1,-1,5)
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Exercises 13-16. Find the general equation of the plane containing the given points.

13. (1,2,0),(2,1,-2), (0,0, 3) 14. (0,2,-4), (1,1,1) ,(2,0,0)
15. (1,1,0),(0,-2,1),(0,0,1) 16. (1,1,0),(2,1,2),(0,0,0)
17. Find the distance between the point (1, 2, 2) and the plane x +y+2z = 4.

18.
19.

20.

21.

22.
23.
24.

25.
26.

27.
28.

29.

30.
31.

32.

33.

Find the distance between the point (3, 0, 1) and the plane —2x+ 2z = 3.

Find the distance between the origin and the plane with normal n = (1, 4, 2) that contains
the point (2, 1, 3).

Find the distance between the point (3, -3, 2) and the plane containing the points (1, 1,0),
(0,-2,1),(0,0,1).

Find the distance between the point (2, -3, 3) and the plane containing the point (1, 2, 2)
that is parallel to the plane 3x -2y +3z = 1 .

Find the values of x for which (x, 1, 1) is 10 units from the plane 3x -2y +3z = 1.
Find the values of a for which the point (3, 0, 1) is 1 unit from the plane ax +2y+z = 3.

Find an equation of the line that is common to the planes 3x—-2y+3z =1 and
ax+2y—z =13.

Find two planes that intersect in the line y = 3x + 2 in the x, y-plane.
Find the angle between the planes 2x -3y + 6z = 5 and 3x+y+2z = 6.

Find the angle between the planes x +y+z = 1 andx—y+z = 1.

Find an equation of the plane consisting of all point that are equidistant from the points
(3,4,0) and (1,0,-2).

Find an equation of the line containing the point (0, 1,2) that is parallel to the plane
x+y+z = 2 and perpendicular to the line w = (1, 1,0) +¢(1,-1,2).

Verify that the plane 5x —3y —z—6 = 0 contains the line w = (1,-1,2) +1(2,3,1).

Find an equation of the plane that contains the point (2, 1, —3) and the line of intersection of
theplanes 3x+y—z =2 and 2x+y+4z = 1.

Find an equation of the plane containing the point (4, 1, —6) that is perpendicular to the line
passing through the points (-1, 6, 2) and (-8, 10,-2).
Find an equation of the plane that is perpendicular to each of the planes 2x +y—z = -2 and

x—y+3z = 1 and contains the point (1, 3,-2).
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34. Show that the line x =-1+¢ y=3+2¢f, z=—t is parallel to the plane
—2x+2y+ 2z = 3 and find the distance between them.

35. Find the minimal distant between the line x = 1+4¢, y = 5—4¢, z = —1 + 5¢ and the line
x=2+8t, y=4-3t z=5+¢.



Or: r(r) = (f(0), (1), h(1))

And, in a more general setting:

r(0) = (1D, 13(0), ... £,(D)

{(p)|x2+y2=r2} ’
'n

X
Iz

X
mz
1 |
{52, 2)|x2+y2 = r2}

in R3

Answer: See page A-18.
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§4. VECTOR-VALUED FUNCTIONS

A vector-valued functions of a real variable is a functions of the form:

r(t) = flni+g()j+h(Dk
Such functions can effectively be used to describe curves in R3.

Assume, for example, that the coordinates of a particle moving in
space during a time interval / are given by:

x=f(¢t), y=g(t),z = h(t),fort e I.
The point (x, y,z) = (f(t), g(t), h(t)) on the particle’s path can also
be described by means of the position vector function:

r(t) = i+ g)j+h()k

EXAMPLE 12.16 Describe the curve traced out by a particle
A HELIX with position vector:

r(t) = (cost)i+ (sint)j+ tk for t>0.

SOLUTION: We begin by noting that z
while the equation x%+y2? = 72 rep- T‘ N
resents a circle in the plane, it denotes a
cylinder in R3 (see margin). In particu-
lar, since x = cost and y = sint sat-
isfy the equation x2+y% = 1, the
terminal point of the position vector:
r(t) = (cost)i+ (sint)j+tk

= {cost, sint, t)

lies on the cylinder:
(G p, 2)[x2+y? =1}

At time ¢t = 0, for example, the particle has position vector
r(0) = (cos0)i+ (sin0)j+0k = (1,0, 0)

with terminal point (1, 0, 0), while at # = %‘:

r(%“) = (cos )t+(s1n )]+ Tr = (0,-

x (1,0,0) atz = 0

3n

L=

CHECK YOUR UNDERSTANDING 12.26

Describe the curve traced out by the position vector:
r(t) = ti+ %+ 2tk for 1 <¢<3.

Indicate the coordinates of the initial position of the particle (when
t = 1), and its terminal position (when ¢t = 3).




524 Chapter 12 Vectors and Vector-Valued Functions

Compare with Definition
2.2, page 53.

Compare with Definition
on page 57.

Compare with Definition
3.1, page 66.

Compare with Definition
5.2, page 167.

Some previously encountered concepts naturally extend to vector-

valued functions:

DEFINITION 12.8 For given r(¢) = f(t)i+g(t)j + h(¢)k and
vector L = ai+ bj + ck, we say that r has

Linttin limit L as ¢ approaches ¢, and write:
limr(t) = L
t—>t,
if for any given ¢ >0 there exists 6 >0
such that:
if 0 < ‘tf to‘ < 9§ then [|r(r) - L|| < ¢
CONTINUOUS r(t) is continuous at 7, if:
lim r(¢) = r(t,)
t—>t,
DERIVATIVE The derivative of r(¢) at ¢, is the vector
r'(t,) given by:
Fty) = lim S[r(tg+ h) — r(ty)]
h—0 h
(providing the limit exists)
INDEFINITE INTEGRAL J' r(t)dt = R(t)+C

where R'(t) = r(t) and C represents an

arbitrary constant vector.

In the exercises you are invited to show thatif lim r,(¢) and lim r,(7)

. t—t, t—t,
exist, then: ) i

lim [r(?) + ry(H)] = lim r(¢) + lim r,(2)

t—t, t—t, t—t,

(the limit of a sum is the sum of the limits)

That being the case, by looking at r(¢) = f(¢)i + g(¢)j + h(¢)k as the
sum of the three vector-valued functions f(¢)i, g(t)j, and h(t)k, we see

that:

lim #(7) = [hmf(t)JH [lim o(n) i+ [lim h(t)}k

t—>t, t—>t, t—t, t—t,

(providing the component-limits exist)
Moreover (see CYU 12.27 below):
(1) = f(0)i+g () + ' (Dk
(providing the component-derivatives exist)

Also (see Exercise 31):

jr(t)dt = [jf(f)dt]i + [jg(z)dzlj + [Ih(t)dt]k +C
(providing the component-integrals exist)

So: You can arrive at the limit, or derivative, or integral of
a vector-valued functions by performing those opera-
tions on the real-valued components of the function.



Answers: (i) ei + %j+ sin(1)k

(i) (eh)i+ %, T (cost)k

. .
(iil) efi + [5 In(#2 + 1)}/
—(cost)k+C
(b) See page A18.

As it is with real-valued
functions, a vector-val-
ued function r(¢) is said
to be differentiable if
r'(t) exists throughout
its domain.

Since in a scalar times a vec-
tor expression such as cv , the
scalar ¢ appears to the left of
the vector v, the chain rule is
generally not expressed in
what might be considered to
be the more reminiscent form:

D" = w'IAD ().

Why is there no quotient rule?
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EXAMPLE 12.17  Let r(r) = (3 + 1)i + (sint)j + 9k. Deter-

mine:

@ limr(r)  (b) #'(1) (©) j r(t)dt

SOLUTION:
(a) limr(¢) = lim (3 + 1)i + lim (sin¢)j + lim (9)k
t—2 t—2 t—>2 t—>2
= 9i+(sin2)j+ 9k

(b) F'(£) = (B +1)i+(sint)j+(9)'k = (312)i+ (cost)j

(c) jr(z)dz = [j(ﬁ +1)dt]i + [j sintdt]j + [j9dt]k

AP :
= (Z + t)l —(cost)j +(9)k+C

CHECK YOUR UNDERSTANDING 12.27

(a) For r(t) = (et)i+(t2 i 1) j + (sint)k, determine:

(1) limr(¢) (i) r'(2) (ii1) Ir(t)dt
t—>1
(b) Show that if the real-valued functions £, g, and 4, are differentia-
ble, them so is the function r(¢) = f(¢)i + g(¢)j + h(¢)k, and:

F(1) = f(0)i+g (0 + k' (1)k

Given that the derivative of vector-valued functions may be per-
formed by differentiating their real-valued components, one might
expect that the derivative formulas for such functions mimic those of
real-valued functions, and so they do:

THEOREM 12.8 For given differentiable vector-valued functions
u(t), v(¢t) in R3, and any scalar ¢, and any real-
}Tlgﬁolrsr;j }f";e)nt.hmugh ®  valued function £{¢):
(a) [cu(n)]" = cu'(7)
() [ADu(0)] = fu'(t) +f (Du(?)
(©) [u(f(n)]' = f()u'[f(1)] (see margin)
(d) [u(®) +v(0)]" = u'() +v'(?)
(e) [u()—v(D)]" = u'(1) —v'(1)
® [u(?) - v(D)]" = u(t)-v'(1) +u'(t) - v(1)

(8) [u() xv(D)]" = u(t) xv'(t) +u'(1) x v(1)
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PROOF: We establish (b) and (f). You are asked to verify (d) in
CYU 12.28, and are invited to prove the rest in the exercises.

(b) UDu()]" = D) (uy ()i + uy(0)j + uz()k)]'
= Ou,(O]'i+ [f(Duy (D)) + ADus()]'k
= fuy" () +uy (O (O + [y () + uy (OF (D1 + [y (1) + us (D) (1)]1k
= fOLuy" (i +uy (0f + us (k] + (O[uy ()i + uy ()] + uz (£)k]
= flou' () + £ (Hu(?)

() [u(t) -v(D)]" = [(u ()i +uy()j +us(D)k) - (vi(D)i+ vy ()] +v5(DK)]
= [“1(t)v1(t) + uz(t)vz(t) + “3(t)V3(t)]'
= [ul(t)vl’(l) + V](t)“f(t)] + [u2(t)v2’(t) + Vz(l)”zr(f)] + [”3(0"3’(0 + V3(’)”3'(t)]

= [uy (i +uy(0)j +us (k] - [v"(Di+ v, (1)j + v3' ()]
+ V(i T v, (0] T v3(Ok] - [u) ' (Di+uy' ()j + uz' (k]

=u(t)-vi(t)y+v(t) u'(t)
In the event that a vector-valued function has constant magnitude, we
have:

THEOREM 12.9 Let r(¢) be differentiable. If |r(¢)] = c, then:
r(£) - (1) = 0 (ie: () Lr'(1))
PROOF: From r(t) - r(t) = |r(¢)|? = c2, we have:
[r(6) - r()]" = ()’
Theorem 12.8(f): r(¢)-r'(t) +r'(¢)-r(¢t) = 0
2[r(t)-r'(n] = 0
r(t)-r'(t) =0

CHECK YOUR UNDERSTANDING 12.28

Prove Theorem 12.8(d):
[u() +v(D)]" = u'(1) +v'(7)

Answer: See page A-18.

Let’s focus on the geometrical signifi- r(ty+ ) —r(ty)
cance of the derivative expression: r(tg+h)

We adopt the form: r(t,)

r(ty+h)—r(t 0

r(ty +h) —r(ty) r(ty) = fim "o 1)~ o)
U h h —
h—0 h -

to conform with Definition 3.2, Multiplying the vector r(#,+ h)—r(t,)
page 67. Technically speaking,

we really should write: in the adjacent figure by % will result in a

.1
hlinoz[r(to +h)—r(t)]

vector parallel to r(t,+ h)—r(t,). Moreover, as h gets smaller, the
(See Definition 12.1, page 520)

corresponding vector r(z, + h) —r(t,) pivots to what we will now call
the tangent vector to the curve at r(#,) . More formally:
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DEFINITION 12.9 The tangent vector to the curve
r(t) = f(i+g(t)j+h(t)k, at t = ¢, is
/(zo) the vector r'(#,), providing the derivative

exists and is not 0.

In general, 7(Z) is said to be
be a smooth curve if 7'(¢)

exists throughout its domain. existangent lines at (f{(¢,), g(t,), #(t,)) is the line containing that point that

Why is r'(t,) = 0 ostracized in the above definition? Because the

is parallel to the tangent vector r'(#,). But no line can be parallel to

r'(ty) if r'(ty) = 0, as the zero vector has no direction. It is because

of its lack of direction that we do not associate a tangent vector to a
curveat t = ¢, if r'(z,) = 0.

EXAMPLE 12.18 Determine the tangent line to the curve
traced out by the vector valued function

r(t) = t2i+3tj+k whent = 5
SOLUTION: The tangent vector of i’(t) = 2i+3tj+k = (133, 1)

att = = 1s ((2) (2) 1) = ( 1) This gives us the direction

of the tangent line at the point (411 ; 1) on the curve. Any vector par-

allel to ( 1> can be used as the direction vector. That being the
) 13
case, we elect to go with 4(4—1, > 1) = (1,6,4).

Proceeding as in Example 12.9, page 514, we determine a parametric

equation of the tangent line L at (i ; 1)

:{(xay,Z)IX(f)ZiH,y 2+ 6(t)z—1+4t}

In the event that s(z) = x(¢)i +y(¢)j +z(¢)k represents a position
vector for a particle as a function of time, then the tangent vector points
in the direction of motion of the particle, and represents the rate of
change of its position with respect to time. That being the case:
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Answer:
v(t) = (—sint)i + (cost)j + k
a(t) = —(cost)i—(sint)j

()l = 2

Let s(¢) = x(¢)i +y(t)j +z(t)k for t € I be a differentiable

position vector for a particle for which s'(¢) is continuous and
never 0. Then:

v(t) = s'(¢) is the particle’s velocity and
a(t) = s"(t) is the particle’s acceleration.
(providing the second derivative exists and is distinct from 0)
Moreover: |v(zy)| denotes the particle’s speed at ¢ = ¢.

Note that velocity and acceleration are vectors indicating both mag-
nitude and direction. Recall that even in the one-dimensional consider-
ation of free falling objects on page 171, both acceleration and velocity
were linked to a direction — a positive or negative direction, for up or
down, respectively.

EXAMPLE 12.19 A particle moves along a curve so that its
coordinates at time ¢ are:

_ _1z
x—2t,y—§t,z—e

Find the velocity, speed, and acceleration of
the particleat t = 3.

SOLUTION: Focusing on the position vector:
2
s(t) = 260 + %t i+ etk
we have: v(t) = r'(t) = 2i+ ¢+ ek

and: a(t) = v'(t) = j+e'k
In particular, at t = 3:

v(3) = 2i+3j+e3k and a(3) = j+e3k
And: Speed at £ = 3: [v(3)] = 22+32+(e3)2 = J13 + €.

CHECK YOUR UNDERSTANDING 12.29

Find the velocity, acceleration, and speed of the particle moving
along the helix traced by s(¢) = (cost)i + (sint)j + tk.

EXAMPLE 12.20 Find v(¢) and s(¢) of a particle with initial
velocity v(0) = i+ 2j and initial position
s(0) = i+j+ k given that:
a(t) = 4ti+2tj— 312k for t>0.



Letting z = 0 in
v(t) = 282i+2j— Pk + C
we find that:
C =v(0) = v,
(asin Theorem 5.5, page 171)

Att=0:s(0) =s,.

Answer:

5.2 and 146 fi/sec.

Initially:

S .
W) 1200sin60°

60}

<1200 cos 60|
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SOLUTION: Since a(t) = %:

V(1) = Ja(o)de = [(4ti+2G=32k)de = 200+ 2j Pk + C §
= 22+ 25— 3 k
2ti + 5j - Pk + v, .

= 2020+ 2j— Pk + (i +2j)
Q2+ )i+ (2 +2)j -k

Since v(t) = Z—::
s(t) = jv(z)dt = j[(2z2+1)i+(z2+2)j—z3k]dz

see margin

243 ) (z-” ) o
= | = +¢]i+|[=+ —Zk+
(3 t)i 3 2t)j 4k So

3 3 4
- (z—t+t)i+(%+2t)j—%k+(i+j+k)

283 ) (13 ) (z‘“ )
= |==+t+1]i+|z+2t+1)j—| = -
(3 tr1)i+(Fras1)i-(T-1)k

CHECK YOUR UNDERSTANDING 12.30

Determine the minimum and maximum speeds of a particle with ini-
tial velocity v, = i—12j+ k (feet per second) if:

a(t) =i+2j—k for 0<¢<5.

EXAMPLE 12.21 A projectile is fired at a speed of 1200 feet
per second from ground level, at a 60°

angle of elevation. Determine its maximum
height and range.

SOLUTION: We establish our axes so 4Z

that the projectile’s plane of trajec-

tory lies within the yz-plane, and so

that it is positioned at the origin at

t=0. o Y

Due to the force of gravity, the projectile will be subjected to a down-

ward acceleration of 32 ft/secZ; which is to say: a(¢) = —32k. Con-
sequently:

v(t) = [(-32k)dt = (-320)k +v(0)
= (=321)k + (1200 c0s60°j + 1200sin 60°k)

(=321)k + (600 + 600./3k)
600j + (= 327+ 600./3)k  (*)
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Another approach: Since it
takes as long to reach the
ground as it does to reach the
maximum height:

2

Answer: 3131 m from
the base of the perch, at
175 m/sec.

and:
s(1) = j[600j+ (- 321+ 600./3)k]dt

= (6001)j + (— 16£2 + 600./31)k + s(0)
$(0) = 01 = (600¢)j + (— 1642+ 600./30)k (*¥)

Now, when the projectile reaches its maximum height, its velocity’s
vertical component must be zero. Turning to (*) we find the value of
t for that occurrence:

—32t+600ﬁ = 0,or: ¢t = 6022“6 = 754“6 sec.

The maximum height of the projectile is the vertical component of
s(¢) at that point in time:

2
maximum height = — 16(#} n 6ooﬁ(¥) ~ 16,875 fi

To find the range of the projectile, we first determine the value of ¢
for which the vertical component in (**) is 0:

1622460031 = 0= ¢ = 60?6ﬁ 3 752ﬁ sec.

(see margin)

??Ve then determine the horizontal component of (**) at that instant of
ime:

range = 6OO(Z§2—“/—§) ~38,971 fi.

CHECK YOUR UNDERSTANDING 12.31

A projectile is fired at a speed of 175 meters per second at a 45°
angle of elevation from a perch that is 10 meters above ground level.
Where does the projectile hit the ground, and at what speed?

Note: a(t) = —-9.8k m/sec’
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EXERCISES

Exercises 1-6. Sketch, in R3, the graph of the curve with given position vector.
. r(t) = ti,0<t<1 2. r(t) = ti+2t,0<t<1

= ’ ’ < <
3.r(t) = tityj+ak, 1<t<2 4. r(t) = (cost)i—(sint)j+k, 0<¢<

NI

5. r(t) = 3i+tj+t2k, —1<t<2 6. r(t) = ti+tj+(sint)k, 0<t<2m

Exercises 7-16. Determine lim r(¢), r'(¢), and Ir(t)dt for the given vector function.
t—>1
7. r(t) = 2ti+ 563 8. r(t) = 2ti+53j+k

9. r(t) = (sint)i— 13 10. r(t) = (sint)i—t3j+e'k

—1

Hor(t) = titj+hk 12. #(£) = (e™)i—sin(20)j + tTk

. ., (Inf _ Lttt
13. 1(t) = n—3,+(7)k 1470 = ik
15. r(t) = ti— 3+ (tant)k 16. r(t) = (tsint?)i+ tj — (tcost)k

Exercises 17-20. Find parametric equations for the tangent line at the specified point on the curve
with given position vector.

17. r(t) = 2ti+5¢%,¢t = 1. 18. r(t) = ti+t3j+83k,t = 0

19. r(t) = (sint)i—(2cost)j+k,t =0 20. r(t) = (sint)i—t3}j+e'k,t = n

Exercises 21-24. Find the velocity, acceleration, and speed of the particle moving along the given
path at the indicated time.

21.r(t) = ti+2tj,t = 1 22.r(t) = ti+j+ 2k, t =0
23.r(1) = (sint)i+ g+ (cost)k, 1t =0 24 pr)= Jti—tj+ ek, t = 4

25. Determine the minimum and maximum speed of a particle with initial velocity
vy = i—12j+ k (feet per second) and a(r) = 2i+j— k, within the interval 0 <7<6.
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26. Determine the minimal and maximum speed of a particle with initial velocity v, = i —k (feet
per second) and a(¢) = (sint)i + (cost)j — tk, within the interval for 0 <¢ < g .
Exercises 27-30. Prove:
27. Theorem 12.8(a) and (e) 28. Theorem 12.8(g) 29. Theorem 12.8(c)

30.

31.

32.

33.

34.

35.

36.

37.

38.

39.

40.

41.

42.

Show that if lim r () and lim r,(¢) exist, then:
1t 1=t

lim [, (2) + ro(£)] = lim r (£) + lim ry(7)
t =t t >t =1

Show that for r(¢) = f(t)i+g(t)j + h(t)k:
jr(t)dt = [J.f(t)dt]i + [jg(t)d:]j + [Ih(t)dt]k +C
(providing the component-integrals exist)

Prove that any two antiderivatives of a vector-valued function r(¢) can only differ by a con-
stant vector C.

A projectile is fired at a speed of 500 meters per second at a 45° angle of elevation, from a
point that is 30 meters above ground level. Find its speed when it hits the ground.

A projectile is fired at a speed of 800 feet per second from ground level, at a 45° angle of ele-
vation. Determine its maximum height, range, and speed when it hits the ground.

A projectile is fired from ground level with initial velocity v(0) = 100j + 100k feet per sec-
ond. Determine its maximum height, range, and speed when it hits the ground.

Repeat Exercise 32 given a constant wind velocity of:
(a) 2j feet per second. (b) 2j + k feet per second.

A stone is thrown downward from the top of a 168 foot building, at an angle of depression of
60° at a speed of 80 ft/sec. How far from the base of the building will the stone land?

A golf ball is hit at a speed of 90 feet per second at a 30° angle of elevation. Will it clear the
top of a 35 foot tree that is 135 feet away?

Referring to Exercise 36, determine the minimum speed for which the ball will clear the tree
(maintaining the 30° angle of elevation).

Referring to Exercise 36, can the angle of elevation be adjusted so as to clear the tree (main-
taining the 90 feet per second initial speed)?

At what speed must a stone be thrown horizontally from a point that is 25 feet above ground
level if it is to hit a bottle sitting on a 4 foot pole 45 feet away?

At what speed must a stone be thrown at an angle of elevation of 30° so as to achieve a max-
imum height of 25 feet?
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At what speed must a stone be thrown at an angle of elevation of 30° so as to achieve a range
of 50 feet?

Find two angles of elevation that will enable a projectile fired from ground level at a speed of
800 feet per second to hit a ground-level target 10,000 feet away.

Show that in order to achieve maximum range, a projectile must be fired at a 45° angle of ele-
vation.

Show that a projectile fired at an angle o, with 0 < o0 <90°, has the same range as one fired
at the same speed at the angle 90° — a.

Show that doubling a projectile’s initial speed while maintaining its launching angle will qua-
druple its range.

Show that a projectile attains three-quarters of its maximum height in half the time it takes for
it to reach its maximum height.

Prove that if the acceleration vector of a particle is always 0, then the path of the particle is a
line.

Assume that you take true aim at a bottle that is sitting on a y foot pole that is x feet down the
road from you. Show that if the bottle starts to fall just as you pull the trigger, then the bottle
will be hit, regardless of the muzzle speed of the gun.

Prove that any non-vertical trajectory of a projectile subjected solely to the force of gravity is
parabolic.
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(x(b), y(b))

Ve(a), y(@))

(x(b), y(b), z(b))

is

(x(a), y(a), z(a))

Answer: 13—3

A curve traced out by r(¢)
for which r'(¢) is continu-

ous and never 0 is said to be
a smooth curve.

§5. ARC LENGTH AND CURVATURE

Requiring that the length L of a parametrized curve
x=x(t), y =y(t) for a<t<b
be the limit of the lengths of inscribed pogonal segments (see margin),
led us to Definition 10.1 of page 401:

b dx 2 d 2
J. N \dt dt
Taking two-dimensional paths and whisking them into three-dimen-

sional space (see margin) brings us to:

DEFINITION 12.10 The arc length, L, of a smooth curve that
ARC LENGTH is traced out exactly once by

r(t) = x()i+y(t)j +z(t)k
as ¢t increases from a to b is given by:

L= (@) (S

b
Or: L = j ' () dt
a

EXAMPLE 12.22 Find the length of one turn of the helix of
Example 12.16, page 523:

r(t) = (cost)i+ (sint)j+tk for 0<¢t<2n

21 21
SOLUTION: L = [ " |r'()lldr = [~ (=sint)? + (cost) +(1)%dr
0 0

2n 2n
= J' J2dt = 21|, = 2n2
0

CHECK YOUR UNDERSTANDING 12.32

3
Find the arc length of r(¢) = (2t, %, 2y for 1<t<2 .

Among all of the possible parametrizations for a given curve C, one
stands out above the rest, for it is based on an intrinsic property of the
curve itself. To be more specific:

Consider a smooth curve C that is traced out exactly once by

r(t) = f(t)i+g(t)j+ h(t)k, for t contained in some interval /. If

we choose a base point P(7,) = (f(¢,), g(ty), h(,)) on C, we can

then assign a directed distance s(¢) to each ¢ € I as follows:
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t

s(6) = [l @ldu )

C ¢ can’t use ¢, as it is being used for
the upper limit of integration

Observe that if > ¢, then s(¢) is the distance along the curve
between the points P(z,) and P(t) = (f(¢), g(t), h(t)) (see mar-
gin). If 7 < ¢, then 5(¢) 1s the negative of the distance between the

P(1)
s(t)

Plto) points. In any event, s(¢) is called the arc length parameter of C
with base point P(t,), and r(s) is said to be an arc length param-

Iffis continuous on [a, 5], then: etrization of the curve.

d F O dz] - 1) Applying the Principal Theorem of Calculus (see margin) to (*), we
b have:

a

(Theorem 5.7, page 178) THEOREM 12.10 ds _ Il (o)
dt

EXAMPLE 12.23 Find the arc length parameter with base point
Wil A(D) = (L0 0) P(0) = (1,0, 0) of the helix traced out by:
r(t) = (cost)i+ (sint)j+tk.

SOLUTION: Turning directly to the above development we have:

t t
s(1) =j 1 (u0) due =J' J(=sinu)2 + (cosu)? + (1)2du
0 0

= ], Jadu =l = o

In particular, note that s(27) yields the answer in Example 12.22.

EXAMPLE 12.24 Find the arc length parameterization of one turn
of the helix traced out by:

r(t) = (cost)i+ (sint)j+tk for 0<¢t<2n
using the arc length parameter of Example 12.23.

SOLUTION: From Example 12.23:

s =) = ] Il = Jar

s . S .
— . Replacing ¢ with — in
J2 2

r(t) = (cost)i+ (sint)j+tk for 0<¢<2n

yields the arc length parametrization:
S

r(s) = cos(—ﬁ)iJr sin(%)fr(%)k for 0<s<2.2m.

From s = ﬁt,we have ¢t =
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Answer: See page A-20.

T(?)

B(1)

N(t)

CHECK YOUR UNDERSTANDING 12.33

(a) Find the arc length parameter with base point P(1) = (2, 1,-2)
for the curve traced out by r(z) = (2¢,¢,-2¢) for 0 <¢<3.

(b) Use the parameter in (a) to obtain an arc length parametrization
of the curve.

(c) Use both the parametrizations in (a) and in (b) to find the length
of the curve,

TANGENT, NORMAL AND BINORMAL VECTORS

The tangent vector r'(¢) to a curve r(¢) was defined on page 527. We
now define:

T(t) = ”:,Eg” to be the unit tangent vector,
T'(t)

[T (o)l

B(t) = T(¢)x N(¢) to be the unit binormal vector to the curve.
Clearly both 7(¢) and N(t) are unit vectors. In particular, since
| T(¢)|| is constant we have (see Theorem 12.9, page 526:
T(t)-T'(t) =0
It follows that T(¢#) and N(¢) are orthogonal:
s _ 1
[Tl 7 T

Theorem 12.2(c), page 501

N(t) = to be the unit normal vector, and

T(7)-N(1) = T(1) - (T(t)-T'(1)) = 0

Since B(¢) is the cross product of 7T(¢) and N(¢), it is orthogonal to
both. And it is indeed a unit vector:

IBOII = 1T(2) x N(1)l| 7 ||T(f)||||N(f)||Si}h190° =1-1-1=1
Theorem 12.6, page 540 T(t)L N(2)

EXAMPLE 12.25 Find the unit tangent, unit normal, and unit
binormal vectors of the helix

r(t) = (cost)i+ (sint)j+ tk

SOLUTION:
(1) = ”;8” = (_Smt;’”wzﬂ”k = r},—[(—sint)i+(cost)j+k]
«/sin t+cost+1 2

(—cost)i — (sint)j]

1
' _[

T'(t)| f .
” ()” % cos2t+s1n2t

= (—cost)i— (sint)j
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ik
B(f) = T(t) x N(t) = det %f %t % - :%[(sint)i—(cost)j+k]

—cost -sint 0

EXAMPLE 12.26 Find the unit tangent, unit normal, and unit
binormal vectors of the curve:

r(t) = (0,t,¢%) att = 0

SOLUTION: The curve r(t) = (0, t, t?) is easy to sketch (and to see),
v for it is the parabola z = y2, residing in the y-z plane (see margin).
As for the unit vectors:

_ () _ (0,1,20) _ _ .
- ’ T(t) EO YT = T(0) = (0,1,0) = j
| 2
(0, , )
Ny = L@ J1+422 J1+42
17" (1) H<O’ 1 2ty
J1+42 J1+4p2
(0,4t 2,
_ (472 Zt1)3/2 (4t2+21)3/2 . N(0) = <o,g, 2 _
H<0’ (42 +1)37 (42 + 1)3/2>
ijk
B(0) = T(0)xN(0) =det |9 10| =i
001

The pairwise orthogonality of the above three unit vectors is visually

- apparent in the margin figure. Indeed, they even coincide with the unit
coordinate vectors i, j, and k.
In a general setting, though always at right angles to N(t)
N(0)

each other, the directions of the unit vectors T(7), B(1)

B(

o ) y N(t), and B(t) will vary as ¢ varies. For a body mov- ()
/ ing along the curve, these three vectors provide infor-
mation on how the body’s path twists and turns.

In general, the plane determined by the normal and binormal vectors
is called the normal plane to the curve. It consists of all vectors
orthogonal to the tangent vector. In particular, the normal plane in the
margin figure is the x-z plane.
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The plane determined by the normal and tangent vectors to a point on
a curve is called the osculating plane, derived from the Latin osculum,
for: “kiss.” It is a passionate kiss in that it contains more of the curve than
any other plane at that point. The osculating plane in the above margin
figure is the y-z plane which contains the entire curve.

CHECK YOUR UNDERSTANDING 12.34

Find the unit tangent, unit normal, and unit binormal vectors of the
curve r(t) = (2t,t%,—ty at t = 1, and then verify, directly that
each of the vectors is orthogonal to the remaining two.
Answer: See page A-20. . .

Determine the normal and osculating planes at t = 1.

You are invited to establish the following useful result in the exer-
cises:

THEOREM 12.11 1If r(t) = f(t)i+g(t)j + h(t)k traces out a

smooth curve, then the vector
_ i j  k
B(1) = det | £(1) g'(1) h'(1)
[1(1) g"(1) k(1)
has the same direction as the unit binormal
B(1)

B(t) ie:  B(t) = Hth)H

EXAMPLE 12.27 Find the unit tangent, unit normal, and unit
binormal vectors of  the curve

r(t) = (26,63, —t) att = 1

SOLUTION (Compare with solution of CYU 12.34):
QL - (2,2t,-1) 1
T(1) = — = = T(1)==(2,2,-1)
I 2,0l s+ a2 3
i j Kk ij k .
B(1) =det | r1(1) g'(1) h'(1) Tdet 22-1/=(2,0,4)=B(1) = ﬁ<1’0’2>

(1) g"(1) A"(1) 020
(D), g(0), h(D) = (28, 22, ~1) = (1), 8" (0, H'() = (2,2,=1) = (/"(1), 8"(D). h"(1)) = (0,2,0)

Using the fact that N(¢) = B(t) x T(t) (Exercise 30) we have:

i j ok

1y 2 1
N(1)=B(1)x T(1) = det | /5 /3 :Zﬁ<_4’5’2>

22 1

33 3



Arc length, which is a natural
parameter for any curve, is
chosen for consistency.

Greek letter « : kappa

K 0

21a - 27

s is to the circumference of the circle
as 0 is to a complete revolution

_
TO = 17

Theorem 12.1:0 = r'()

ds
dt
drdi _ dr
dtds ds
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CURVATURE

The curve in the adjacent figure appears to be
“curving” less at a than at b, and less at b than at c.
Roughly speaking, the curvature at a point is a b c
measure of how rapidly the direction of the curve ¢
is changing at that point. To be more precise, we
define the curvature to be the magnitude of the rate of change of the
unit tangent vector T with respect to arc length:

DEFINITION 12.11 The curvature of a smooth curve is:
CURVATURE K(s) = Hdg(s)
)

Our first objective is to show that the above definition does do what it
is supposed to do, at least for lines and circles. Specifically, since a line
is aways heading in one direction, we expect that its curvature is zero,
and it is [Example 12.28(a) below]. Also, since a circle of radius 1
“bends quicker” then one of radius 2, we expect that the curvature of
the smaller circle is greater than that of the larger circle, and it is
[Example 12.28(b)].

EXAMPLE 12.28 (a) Show that the curvature of a line is zero.
(b) Show that the curvature of a circle of
radius a is 1 .
a

SOLUTION: (a) The unit tangent vector T always points in the direc-
tion of L. Being a constant vector:

= 4T = ol = 0
K(s) o o]

(b) We restrict our attention to the circle
x2+y? = a2 with vector equation:

r(0) = (a cos®)i+ (asin®)j, 0<0<2m (¥

Note that (a cos0)2 + (a sin)? = a2 base point

The arc length to any point P on the circle is
given by s = a0 (see margin). Replacing 6 with i in (*) we arrive
at the arc length parametrization:

r(s) = (a cosg)iJr (a sini)j, 0<s<2ma

With unit vector (see margin):
T(s) = C—%%S—) = (—Sini)i‘i‘ (cosg)j

a a
and:

[(Leost)i-(Lans)i] = [Seo() (2] - £

[
ds
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The following curvature formula involves an arbitrary parameter ¢:

THEOREM 12.12 If r(t) = f(t)i+g(t)j + h(t)k traces out a

smooth curve, then:

Tl
7o

Sincethe derivative ofa vector- dT , .
valued function is defined in -
terms of the derivatives of its PROOFx = ‘@ = ﬂ = ” T (t)” = ”T' (t)”
components, the Chain Rule ds T ds ds T |~ (t )”
Theorem extends to vector- —_ E
valued functions. Chain Rule dt Theorem 12.10

EXAMPLE 12.29 Use the above theorem to address Example
12.28(b).

SOLUTION: Using the parametrization:
r(t) = (a cost)i+ (a sint)j

we have:
H r(t) H[ (—a sin?)i + (a cost)j ]H
K = 17" (ol _ [”V'(f)”J _ J(~a sint)2 + (a cost)?
I (2)ll I (2)ll J(=a sint)2 + (a cost)?
H[(a sin?)i + (a cost)j]
- 9
a ’
I[(=sint)i + (cost)j] || _ |[(=cost)i—( sint)j]ll
a a
_ J(cost)? + (sint)? _1
a a

While more intimidating than the expression in Theorem 12.12, the
following representation for curvature is often the more practical to uti-
lize:

THEOREM 12.13 Let C be a smooth curve traced out by
r(t) = Q)i+ g()j+ h()k
The curvature at the point r(¢) on C is

given by:
_ [F@ xr"(1)]
Ir (0)l13
(providing r"(t) exists)
!
PROOF: From 7(t) = ”:,Eg” we have:

#(0) = PO T() 5 G700
Theorem 12.10

' 2
So: (1) = (%T(z)) - %T'(zw%m)

Theorem 12.8(b), page 525
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o wep _ ds ds .+ . d’s
Thus: r'(¢£) x ¥"(t) = le(t)x(d[T(Z)+d12T(t)J

Theorem 12.7(a) and (c): — (%}2 (T(¢) x T'(t)) + (%D (Z—j;) (T(t) x T(1))

(page 509)
luxv| = |ull|lv]sin® Theorem 12.6, page 508: = (@)2 (T(t) x T’(t)) +0
= (see margin) dt
17 <1 = |77 sin0 = 0 I
= Consequently:||r'(7) x ¥"(2)|| = (—% IT(t) x T'(2)
TxT =0 dt

Theorem 12.6, page 508 dsV dsY
andeOTrlf:;rem lg.%%i)ageS%: = (j;) ||T(t)||||T,(t)” = (j;) ”T'(t)”

1

Hence: |77 = /@ r" (0 _ () < r" (o)

s\’ R
(&
e () x (1)
Tl P ol
Andinally: S ol ~ el A @D}

Theorem 12.12

EXAMPLE 12.30 Find the curvature of the helix
r(t) = (cost)i+ (sint)j+tk

SOLUTION: For r(¢) = (cost)i+ (sint)j + tk we have:
r'(t) = (-sint)i+ (cost)j + k
r"(t) = (—cost)i+ (—sint)j
i j k
r'(0) xr"(¢) = det| _sins cost 1| = (sing)i+ (—cosr)j+k

—cost —sint 0

s = PP __sin’t+ cost+ 1

_ 2
”r’(t)”3 («/Sin2t+00821+ 1)3 (ﬁ)3

N =

CHECK YOUR UNDERSTANDING 12.35

Find the curvature of the curve traced out by:
2419 g 24181 r(t) = ti+ 2+ 5k

a .
1432 7 16132 at the points (1, 1, 1) and (2, 4, 8).

Answer:
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\‘6 .

Answer: See page A-22.

.2 N2 1
Answer: x*+|(y—=| = - and

(x+4)2+(y_92 - 125

You can think of curvature as an extension of the concavity concept
introduced on page 131. Unlike concavity, which only tells us if a curve
bends up or down, curvature yields a measure of how “fast” a curve is
bending. But in what direction is it bending? This should help:

The circle of curvature (or osculating circle) at a point P on a
smooth curve C where « # 0, is the circle of radius » = 1/« that

is tangent to the curve at P (shares the tangent line to C at P) and lies
on the concave side of C (in the direction of the normal to C at P).

As such, the circle of curvature is contained in the osculating
plane to the curve at P, and shares 7, /V, and k with C at P
(recall that the curvature of a circle of radius a 1s 1/a).

The graph of the function f{(x) = x? is concave
up everywhere but appears to be bending more rap-
idly at the origin than it does at the point (1, 1).

We will turn to the circle of curvature at those two
points in a bit; but first: | *

y
(1L, 1)

CHECK YOUR UNDERSTANDING 12.36

Prove that the curvature of the graph of y = f(x) at (x, f(x)) is:
o )l
[1+(f(x))2]*"2

Returning to the parabola f{(x) = x2 we have:

S 1 5

OGP (1 4a2)

We find that, as expected, the curvature at (1, 1), namely m, is
smaller than the curvature at (0, 0) : 2. To put it another way: the radius

3/2
of the circle of curvature at (1, 1), namely » = 5—2— ~ 5.6, is larger

than it is at the origin: » = % . As for the rest:

CHECK YOUR UNDERSTANDING 12.37

Find an equation for the circle of curvature to the graph of
f(x) = x2 at (0,0) and at (1, 1).

Hint: The center of the circle is located at the endpoint of the normal vector whose

length is the radius of the circle and whose initial point is the given point.
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EXERCISES

Exercises 1-8. Find the length of the given curve.

1. r(t) = (2sint)i+ 5t +(2cost)k, —-10<¢<10
/3

2. r(t) = (21, 3 2y, 1<t<2

3. r(t) = a(l—sint)i+a(l —cost)j, 0<t<2n

4. r(t) = sin(t2)i—cos(t?)j+ 2k, 0<t<n

5. r(t) = (acost)i+ (asint)j+ (bt)k, 0<t<2m

6. r(t) = (2cost,2sint, 2y, 0<tr<1

7. r(t) = (t, In(sect),3), 0<¢<

&~13

8. r(t) = 20)i+(t2-2)j+(1 -}k, 0<t<2

Exercises 9-14. Find parametric equations for the given curve using the arc length parameter with
base pointat ¢ = 0.

9. r(t) = 3t-2)i+ (4t+3)j 10. r(t) = (3 + cost,2 + sint)

12. = (¢! i+ (el <i :
1. r(z) = (§t3, %t2> r(t) = (e'cost)i + (e'sint)j

13. r(t) = (sint)i+ (cost)j+tk 14. r(t) = (2cost)i+ (2sint)j + 2tk

Exercises 15-19. Find the unit tangent, unit normal, unit binormal vectors and curvature of the
given curve.

= i 2
15. r(t) = (3sint, 3cost, 41) 16. (1) = (sint)i+(cost)j+%k

17. r(t) = (e'cost)i+ (e'sint)j+ 2k 18. r(t) = (2sint)i+ (5¢)j+ (2cost)k

12
19. r(t) = <§’ 5 0) fort>0
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Exercises 20-23. Determine the normal and osculating planes at the indicated point.
20. r(t) = (cost, sint, t); (1,0,0)
21. r(t) = (2sin3¢)i+¢j+ (2cos3t)k; t = =n

22. r(t) = ti+ 3+ 8k; (1,1,1)
. 1 1 =
23. r(t) = (sint, cost, t); (——, — —)
V2 204
Exercises 24-25. Find the equation for the circle of curvature at the indicated point.
24. r(t) = (2sint, 5¢) at (0,57 .
0 =< ) at(0,5m) 25. r(t) = ti+ (sin2¢)j at (g 1)
26. Prove that if the curvature of a curve is 0, then the curve is a line.
27. Show that the parabola y = ax? achieves its maximum curvature at its vertex.

28. Find the point on the graph of the function y = e* at which the curvature is maximum.
29. Prove Theorem 12.11.
30. Show that for a smooth curve r(¢): T(t) = N(t) x B(t) and N(t) = B(t) x T(t).
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CHAPTER SUMMARY

SCALAR PRODUCT AND Forv = (v,v5,...,v,) and r € R:
VECTOR ADDITION v = (v, Vg Y,
Forv = {v, vy, ..,v, and w = (w, w,y, ..., w,):
viw = (vptwp, v, twy, Ly, tw,)
THEOREMS Let u, v, and w be vectors, and let » and s be scalars (real

numbers). Then:
@u+tv=v+u
) (u+tv)y+w=u+((v+w)
) r(u+v) =rutry
(d) (r+s)y = rv+svy

(e) r(sv) = (rs)v

Dot PRODUCT

Foru = (u,u,y, ...,u,) and v = (v, v,, ..., v, ):

u-v=uyv tuv,+t.. +unvn

THEOREMS Let u, v, and w be vectors and let » be a scalar. Then:
(@ v-v>20,andv-v = 0 onlyifv = 0
b) u-v=v-u
() ru-v=r(u-v) =u-rv
(d (u+v)-w=wu-w+v-w and
(u—v)-w=u-w—v-w
NORM The norm of a vector v = (v, v,, ..., v,), denoted by

vl , is given by [[v]| = Jv-v.

ANGLE BETWEEN VECTORS

The angle 0 between two nonzero vectors u, v € R” is
given by:

0= cos_l(u) or u-v = |u||v|cosO
el [ v

ORTHOGONAL VECTORS Two vectors u and v are orthogonal if u - v = 0
VECTOR For given v and u any nonzero vector:
DECOMPOSITION

v = proj,v+ (v—proj,v) where:

proj,v = (Z—%}u and: (v —proj,v) - proj,v = 0
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CROSS PRODUCT

Foru = (u,uy,us) andv = (v, vy, v3):
i j k
uxv =det |u; u, uy

Vi Vo V3

THEOREMS

For any u, v € R3, u x v is orthogonal to both u and v.

If 0 <6 < is the angle between u and v, then:
lu vl = [lul/[v] sin®
Foru,v,w e R3 and c € R:
(@ uxy =—(vxu)
D)ux(v+w) =uxv+tuxw
C©)(u+v)xw=uxw+vxw
(d)cvxw =vxew = c(vxw)

LINES AND PLANES

Let L be the line passing through two distinct points
P = (x,y) and Q = (x,,y,) in the plane. Let
v=P0 = (x,-x,,y,—y,) and let u = (x5 ¥g) be
such that its endpoint lies on L Then:

w = u-+tty
is said to be a vector equation for L.

If n = (a, b, c) is a normal vector to a plane containing
the point A, = (xq,¥0 29), then for any point
P = (x,y, z) onthe plane we have:
n ~@ =0
or: (a,b,c)-{(x—xp,y—ypz—2y5 =0
or: a(x—x,)+tb(y—yy) tc(z—z5) =0
or: ax-+by+cz = d,whered = ax,+by,+cz,

LIMITS AND DERIVATIVE
OF VECTOR VALUED

FUNCTIONS

For r(t) = f(t)i+g(t)j+ h(t)k:
lim #(7) = [limf(t)}' + [lim o) i+ [lim h(r)]k

>t >ty t—>t, t—>t,

and: r(t) = f(Oi+g ()i +h'(Dk
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THEOREMS For given differentiable vector-valued functions u(¢), v(¢)

in R3, and any scalar c, and any real-valued function f{(¢) :
(@) [cu()]" = cu'(?)

(b) [ANu()]' = fw' () +f(Du(?)

(©) W[N] = f(Ou'[f(n)]

(d) [u() +v(D)]" = u' (1) +v'(1)

(e) [u(t) —v(D)]" = u' (1) —v'(?)

(B [u(@)-v(O]" = u(®)-v'(2) +u'(2) - v(1)

@[u()xv()]" = uxv'(1) +u'(r) xv(1)
Let r(¢) be differentiable. If |r(¢)] = ¢, then r(¢) and
r'(t) are orthogonal.

ARC LENGTH The arc length, L, of a smooth curve that is traced out
exactly once by

r(t) = f()i+g(n)j+h()k
as t increases from a to b is given by:

L= (@)

where: x = f(t),y = g(t),and z = h(?)

b
Or: L = j 7' (2] dt
a

UNIT TANGENT, NORMAL () ——

Unit tangent vector:  7T(¢) = —
AND BINORMAL VECTORS [ @l mutually
. ’ <
Unit normal vector:  N(t) = ” ;,Eg” orthogonal

Unit binormal vector: B(t) = T(¢) x N(¢) %
NORMAL AND OSCULATING

Normal Plane: Plane containing N(¢) and B(t)
PLANES (with normal 7(¢))
Osculating Plane: Plane containing N(¢) and 7(¢)

(with normal B(¢))

CURVATURE

_ Tl _ lrr@) x el
I () lr ()13

dT)

ds

K(s) = ‘

CIRCLE OF CURVATURE The circle of curvature (or osculating circle) at a point P
on a smooth curve C where k # 0, is the circle of radius
r = 1/x that is tangent to the curve at P (shares the tan-

gent line to C at P) and lies on the concave side of C (in the
direction of the normal to C at P).
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Alternate notation for the par-
tial derivative of z = f(x,y)
with respect to x and with
respect to y:

oz of :
aa 53 Zxa fx

oz of
53 57 Zya f}‘/
Moreover:
4
Sl y) and L
X
(%0, 0)
denote the value of the partial
derivative (with respect to x) at
the point (x, y,) -
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CHAPTER 13

Differentiating Functions of
Several Variables

§1. PARTIAL DERIVATIVES AND DIFFERENTIABILITY

The following derivative concept, involving a function of two (or
more) variables, is not far removed from that of a single-variable func-
tion:

DEFINITION 13.1 Ifz = f(x, ), then the partial derivative
PARTIAL DERIVATIVEs  of f with respect to x at (x, y) is

0z _ £t hy) -~ fix.y)

0X  h—0 h
while Z = im [y +h) = fGx, )
ay h—>0 h

(Providing the limits exist)

Note that, in both cases, only one of the variables is allowed to vary,
while the other is held fixed — as if it were a constant! The partial
derivative is therefore obtained by taking the “regular” derivative with
respect to the “varying” variable. For example:

Forz = x3+y2+xy

¢ ¢

§

g % 324 E gyt i
y yTX n

g ox A ay 4 %

é %(ﬁ +y2+xy) a%(x3 +y2+xy) é

5 5 (34524x-5) = 3x2+5 (53+)2+5.p) = 2p+5< 2

Geometrically speaking, for given (x, o, z,) on the surface of

z = f(x,y), % is the slope of the tangent line to the curve of

(x0> y())
intersection of the surface with the plane y = y, [see Figure 13.1(a)],

while oz is the slope of the tangent line to the curve of intersec-

Y
(x0>y0)
tion with the plane x = x, [see Figure 13.1(b)].
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(a) (b)
Figure 13.1

EXAMPLE 13.1 Forz = f(x,y) = 5x>— 3 + sin(xy) find:

wE 0F o) oZ

T
(1.3
SOLUTION: (a) When determining %, remember that y is fixed and

must be treated as if it were a constant:

Q(sz —y3 4+ sinxy) = 10x + (cosxy)i(xy)
Ox Ox

>jnst like: (5x)' = 5

10x + (cosxy)(y)

(b) When it comes to g—j}, x is fixed:

a d/— Constantw
a—(S)C2 —y3 4+ sinxy) = —3p2 + (cosxy)x
Y

(c) Since f.(x,y) = 10x+ycosxy [see (a)]:

T T T /1 ) T
—_ = . + —_— . —_— = —l—_ — = +_
fx(l,4) 10-1 4005(1 4> 10 4([ 10 4ﬁ

(d) Since g—; = —3y2+xcos(xy) [see (b)]:
oz :_(7_‘)2+ n_ 3mr 1
6y( : NG 7% T 16 T 5
1

T
4



Answers: (a) 2xy + e "3y
(b) x2+3ex T3y
(c) ez (d) 4+3e2

Note: For z = f(x,y), one
can replace z with fthrough-

out; as in Loy for Zy -
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Stating the obvious:
Since partial derivatives are “regular derivatives” with
all but one variable assuming the role of a constant, the
familiar derivative rules still hold. For example, for

given f(x,y) and g(x,y):

v =Z+E Sife) =1 el et

CHECK YOUR UNDERSTANDING 13.1

Forz = f(x,y) = x%y +e** 3 determine:

82 82 A
@) =~ (b) 3y (© £:(2,0) d = oo

HIGHER ORDER PARTIAL DERIVATIVES

One may be able to take partial derivatives of partial derivatives of a
function z = f{(x, y), and here is the “O-notation ” for that activity:

(0 fr_ oM@y 2t _ o)
ox2  0Ox\O oy?  Oy\oy
2 2
(+%) 0z :Q(ﬁ_z) 0z :i(a_a
0x0y  Ox\Oy 0yox  0Oy\o
While the translation of (*) to the subscript notation is quite safe:
2 2
82_8(8@22 8_226(5_2)22
ox?  0Ox\0 X oy2  0Oy\oy yy
the same cannot be said about (**):
822 _ i ( 8_2 ) sisct:tv notation 822 B ( a X) subscrlpt notation
Oxdy  0x\0y X 0y0ox 6y
Mirs ! “Mirst x
\thertli /\ \;e; y /\

[Actually the danger is not so great (see Theorem13.1 on the next page)]

EXAMPLE 13.2  For z = f(x,y) = e +xIny find:
2

0z

(a) F) (b) z

©) £ (d) £y,
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SOLUTION:

keep in mind that y is held fixed — treat it as if it were a constant [see (1) in margin]

___
— ~

Just like: (322 ord -~
(1) (5 +xInS)’ = 5e+ 5 () Fe Gx[ (exy+x1ny)] xLyexy+ Iny] = y?e%
2)(5€%* + In5)" = 25¢e5% * ~
y is held\/ﬁxed [see (2) in margin]
x s held fixed
o[ o 0 X X
(b) z,, = a—y[a—y(exyﬁLxlny)J = a_y[xexy +J—J = xzeny)z
x is held fixed now y is held fixed
_ 0[O0, } ﬂ/ 6[ x}i 1
= | (eV+xIn = _|xe+=| = xye?” + e+ -
(©) Jix Ox 8y( ») Ox v 4 y
ﬁrstdoy/
@ fy = i i(enyrxlny)} = i[yeXy-i- Iny] = xye¥ + exy_|_l
W dylox Oy %
ﬁrstdox/

CHECK YOUR UNDERSTANDING 13.2
2
Answers: For z = f(x,y) = % , determine:
2 S+x

(a) 268 +x+5;) () 12 y

(5+x—y) 2 2

a 0
© B2 @) @) 5.5 0 25 ©fy @ £(2.3)

(0,4)

In Example 13.2 we observed that for z = ¥ + xIny:

Sy = fin

Was this a fluke? Nearly not, for one has to look pretty hard to find a
You need look no further . . . . . .
than Exercise 60. function z = f(x,y) with existing mixed second order partial deriva-

tives that differ. We offer the following useful result, without proof:

$ isanopenregioncontain-  PHPOREM 13.1 If, for given z = f(x,y), the partial deriva-

ing (xp,y,) if there exists

7> 0 such that the circle of tives fx’ f > fxx’ fy ’ fx > fyx are defined
radius r centered at (x, y,) and continuous in an open region containing
is contained in S: (xg» o) (see margin), then:
PN

- NS fxy(xoa J’o) = fyx(xoa )’0)

g )

{ / . Both the notion and the notation of partial derivatives naturally

N =7 extend to accommodate higher order partial derivatives and to include

functions involving more that two variables. Nudging nature along:



Answers: (a-1) 24xy3
(a-ii and a-iii) 36x2y2
(b-i) y2-3x2yz  (b-ii) 2x
(b-iii) —6yz  (b-iv) —3x2

DEFINITION 13.2
DIFFERENTIABLE
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CHECK YOUR UNDERSTANDING 13.3

(a) For z = f(x,y) = x*y3, determine:

. 0 .
(1) é (i1) Zypx (1i1) Zyxy
(b) Forw = f(x,y,z) = xy?+2z3y —x3yz, determine:
2
. O ... O :
(1) 8—2} (11) ay—v; () w . (iv) w,,.,

DIFFERENTIABILITY OF A FUNCTION OF TWO VARIALBES.

Starting with Definition 3.2, page 67:

Sxg+ 1) = f(xg)
h

we replace /1 with Ax and the resulting f(x, + Ax) —f(x,) with Ay to
arrive at the form:

f'(xo) = lim
h—0

’ . Ay
= lim ==
/ (xo) Ax — 0AX

To put it another way, the function is differentiable at x, if and only

if the difference &€ = f"(x,) — i—i goes to zero as Ax — 0; or, equiva-
lently, if and only if:
Ay = f'(xy)Ax + €eAx where € > 0 as Ax > 0.

Generalizing the above to accommodate a function of two variables
z = f(x,y) brings us to:

A function © =~ /05¥) s differentiable at (x,, )
if Az = fxy+Ax,y,+Ay)—f(xg,¥y) can be
expressed in the form:

Az = fL (x5, ¥ ) AX +fy(x0, Yo)Ay +e;Ax+e,Ay
where €,,6, - 0 as Ax, Ay > 0.

A function f is said to be differentiable if it is differ-
entiable at each point in its domain.
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Answer: See page A-24.

In the exercises you are
invited to show that though
both £,(0,0) and f£,(0,0)

exist for the function:

—Z7 e 3 0,0
fooy) =1 Zeypt EIFOO

0 if (x,») = (0,0)
the function fails to be con-
tinuous at (0, 0) ,and is there-

fore not differentiable at that
point.

If y = fix) and z = g(y)

are differentiable func-

tions, then the composite

function z = g[f(x)] is

also differentiable, and:
dz _ dzdy

dx dydx

Built into the above definition is the requirement that both partial
derivatives of f need to exist for f'to be differentiable at a given point.
That, as it turns out, is not quite enough. However:

THEOREM 13.2  If the partial derivatives f, and f, exist and

are continuous in an open region about
(xg»¥o) » then f1is differentiable at (x, y,).

PROOF: Appendix B, page B-2.

EXAMPLE 133 verify that z = f(x,y) = y2e3* is a differ-

entiable function.

SOLUTION: Since both of the partial derivatives: f, = 3y?e3* and

fy = 2ye3* are defined and continuous everywhere, f(x, y) = y2e3*
is differentiable.

CHECK YOUR UNDERSTANDING 13.4

Verify that f(x,y) = x%siny is a differentiable function.

As it is with functions of one variable:

THEOREM 13.3 If z = f(x,y) is differentiable at (x, ),

then /" is continuous at (x,, y,).
lim  [fx, y) = fxg ¥9)] = 0:
(x, ) = (xq, ¥0)
From Definition 13.2):

Az = [ (xg, o) Ax + [,(xg, o)Ay + &, Ax + &,Ay where:

PROOF: We show that

Az = flxy+Ax,yy+ Ay) —f(xg, yo)and €, ,6, —> 0 as Ax, Ay > 0.

Letting Ax = x—x, and Ay = y—y, we have:
f(an’) _f(x():yo) = f(xo +Ax7y()+Ay) _f(x()o.yO) = Az.
So:
lim U)(x,y) —f(xp, )]

(xay)_>(x0=y0

lim Az
(xry) - (xos yO)

= lim

Jo(x0, ¥o)Ax + f (X0, Vo) Ay + €/ Ax T €,Ay =0
(x,) = (g, ¥o) d

CHAIN RULE

Here are some partial derivative variations of the single-variable
chain rule of page 94 (see margin):
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THEOREM 134 (a)If z = f(x,y) is differentiable, and if
x = g(t) and y = h(t) are differentiable
functions, then the single variable function
z = fl[g(t), h(¢)] is differentiable, and:

dz _ Oz dx oz dy
dt  ox dt Oy dt

(b)If z = f(x,y) is differentiable, and if
x = g(u,v) and y = h(u,y) are differentia-
ble functions, then the two variable function

z = flg(u, v), h(u, v)] is differentiable, and:
0z _ 0z Ox 6_28_)/ 8228_28_x+6_26_y

ou 6x8u 0y ou ov 0x0v 0Oyov

PROOF: (a)
0z 0z
X+ Ay + +
e . A axA ayAy g1Ax +g,Ay
= = lim = = lim
dt  Ar50At A0 At
= 8_2 lim Ax+6_z lim Ay+ lim g, lim A_x+ lim &, lim Ay
8xm—>oAt aym—wAt At—>0 "At—>0AL  At—0 “At— 0AL
:a_de 0z dyeasAt—)O g, —~>0andeg, >0
Ox dt ay dt

(b) If v is held fixed, then x = g(u, v) and y = h(u, y) become

functions of u alone. Applying (a) with u in place of ¢, and if we use o
instead if d to indicate that the variable v is fixed, we obtain:

0: _ozix o2y
ou OxOu Oyou
A similar argument can be used to establish the formula for %:

DAL LS (a) Determine Z]—i if:

Z=xy2, x:tza y:'\/t
(b) Determine o= if:

os
z=xy%x = s+12,y = scost

SOLUTION: (a) Using the chain rule:

dz _0Ozdx  Ozdy _ ( 1 )

—= 2t)+2

4 oxdi oyar Y DTN Gm
(220 + 200 (535)

202+ 42 = 312
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Answers:
(a) 8(2sint + e ) (cost + re)
(b) ste*2+352)(9¢ + 25)

Answers: (a-i) y3e*
(a-ii) yeX(xy +2)
(b-1) y2—yz  (b-ii) 2x
(b-iii) —1
(c) See page A-25
(d) te*'(sint)(2 sint + 2¢cost
+ 3¢sint)

(e) rstesintcosr(2 + tcosr2cost)

Alternatively, we can express z explicitly as a function of #:
z = xy? = tz(«/t)2 =7
. . . dz _ d 3 _ 2
and then differentiate: — = —¢> = 3¢-.
dt  dt

(b) Let z = xy%,x = s+ 2,y = scost. Using the chain rule:

0z _626x+5‘26_y=

2
s2cos”t+2(s + t2)(scost)(cost)

2 2
3s2cos ¢+ 2st2cos t

Without the chain rule:
2 2 2
z = xy? = (s +12)(s%cos’t) = s3cos ¢+ t2s2cos’t
And again we have:
0z

2 2 2 2
Fri ag(s%os t+t2s2cos’t) = 3s2cos t+ 2st2cos” ¢
s s

CHECK YOUR UNDERSTANDING 13.5

(a) Let: z= (2x+e” )% x = sint, y = 2. Use the chain rule to
find d—j and check your result by expressing z explicitly as a

function of 7 and differentiating directly.

(b) Let: z=e", x = s+3t, y = st>. Use the chain rule to find
z

o 0
of s and ¢ and applying 5 to that expression.

and check your result by expressing z explicitly as a function

We conclude this section by noting that both the notion and the nota-
tion of partial derivatives extend to higher order partial derivatives, and
can also include functions involving more than two variables. That
being the case (your turn):

CHECK YOUR UNDERSTANDING 13.6

3
(a) For z = f(x,y) = ¥ +xlIny, find: (1) 2—23 and (ii) z
X

Xyx

(b) Forw = f(x,y,z) = xy?+2z3y —xyz, find:
2

. Oow L Ow
(1) P (11) ﬁ (111) Wiy
(c) Show that w = f(x, y,z) = zy?e3* is a differentiable function.

(d) Use the chain rule to determine dw if:

dt
w=xy?z3, x =13 y=sint, z=e¢!
(e) Use the chain rule to determine %V if:

w=xe¥ x = rst’, y = sint,z = cosr?
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EXERCISES
Exercises 1-12. Find o= and 6—2
ox oy
1. z=x2+y? 2. z=3x2—xy+y 3. z=(xy—1)2
4. z = Jx3+y? 5. z = 4ev’y3 6. z = 1
xty
7. z = Xty 8. z = sinz(x—3y) 9. z = ersiny
xy—1

10. z = In(x%+y?) 11. z = *°%Inx 12. z = sinxcosy

Exercises 13-21. Find £, fy s [ and fyx, and verify that fxy = fyx.
— 2 2 = p2x+3
13. f(x,y) = 6x?—8xy+9y 14. f(x,y) = ln;—i 15. flx,y) = e?**3y
.2
16. fir,y) = sin’(2-y) 17 fixy) = 24y 18 fey) = |
x+ty
19, flx,y) = SnX 20. f(x,y) = In(ye®) 21. f(x,y) = In(xy—y?)
cosy

Exercises 22-27.Find f_, [, fyy . fZZy, fzyz, fxyz, and fzyx.

22. fix,y,z) = xyz 23. f(x,y,2z) = x3y2z 24. f(x,y,z) = xy?sinz
25. f(x, y,z) = eV* 26. f(x,y,2z) = In(x+y+z) 27 f(x,y,z) = z2+ycosx
Exercise 28-36. Verify that the given function is differentiable.

28. flx,y) = x%y 29. flx,y) = x*y -9 30. flx,y) = 3x* +)?

— 2x+3 i - 2
31. flx,y) = €2+ 32, fx,y) = S0X 33. ftx,y) = In(xy—y*)
cosy
2 — 2z
34. flx,y) = = 35 f(x,p,2) = 232 36 ey, 2) = eFcosxy
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Exercises 37-39. (Implicit Partial Differentiation) Find % and g—i

Note: %(xy2 +) =2+ 2[3222—2} +2xz3

X

37. x2z4+2y%z22+y =0 38. e?—z2 = xy 39. X3+y3+23+6xyz =0
Exercises 40-42. Find a function f(x, y) such that:
40. fy =xandf, =y 41. f, = y*andf, = 2xy 42. f, = e¥siny andf, = ecosy

Exercises 43-44. (Cauchy-Riemann Equations) Show that the functions f{(x, ), g(x, y) satisfies
the following Cauchy-Riemann equations: /. = g, and fy = —g.:

43. flx,y) =x2—y%, g(x,y) = 2xy 44. f(x,y) = e*cosy, g(x,y) = e'siny

45. Let z = tan 3 Show that z  + Zyy 0.

46. Let f(x,y) = e“coscy. Show that f_ +fyy = 0.
47. Show that if f(x,y) = g(x) +h(y), then f,,, = 0.
48. Show that if f(x,y,z) = g(x,y)+h(y,z) + k(z, x), thenfxyz =0.

49. Show that the function z = f{(x,y) = x*+ 2x2y? + y* satisfies the partial differential equa-

tion x% +yg—j/ = 4z.
2,,2
50. Show that the function z = f(x,y) = %} satisfies the partial differential equation
Oz 0Oz
— + —_— =
x o b% 3y 3z

51. Show that the function w = f(x, y,z) = x2y + y2z + z2x satisfies the partial differential

equation ow + ow + ow

—— = (x+y+2)2.
ax Ty Ta  WtyTa)

2
52. Show that the function w = f(x,y,z) = Ty satisfies the partial differential equation
vz

ow, kB ow, k6 ow _
xa +y@ +z§ = 0.

53. Show that the function z = cos(x +y) + cos(x — y) satisfies the second order partial differ-

ential equation z,, — z,, = 0.
54. Show that the function z = sin(x+y)+ In(x —y) satisfies the second order partial differ-
ential equation: Zyx—Zyy = 0.
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55. The pressure P of a gas confined in a container of volume V and temperature 7 is related by an
equation of the form PV = kT, where £k is a positive constant. Verify that:

o _ ., oP 0P _ (OV)(O (GP o
Var = B V5 Tor O’anda_Ta_Pa_V) !

56. The kinetic energy of a body of mass m moving at a velocity v is given by K = %va . Verify

2
oK 0K _

57. When two resisters of resistance R; and R, ohms are connected in parallel, their combined

2 2
R, R 2

L2 .Verifythatalg . 6R2 = 4R .
R, +R, OR| OR5 (R,+Ry*

resistance R in ohms is given by R =

58. Find the slope of the tangent line to the curve of intersection of the curve z = x2 + 4y2 and
the plane x = -1 if y = 1.

59. Find the slope of the tangent line to the curve of intersection of the sphere x2 +y2 +z2 = 9
and the plane x = 2 at (2,1, 2).

X3y —xy3 .
60. Let fix,y) = { 27,2 T N #(00) yerify that £,,(0,0) = ~1 and £,,(0, 0) =

0 if (x,y) =(0,0)

|
—_

Exercises 61-62. Find Z—j , both with and without using the chain rule.

6l. z = xy,x = cost,y = sint 62. z=x3y+eV, x =2,y = sinx
Exercises 63-64. Find g‘} , both with and without using the chain rule.

63. w=xy+tz,x = cost,y =sint,z =t 64, w = zsin(xy?),x =2,y = el,z = xy

g—j and % , both with and without using the chain rule.

65. z=xsiny, x = s+3t, y = 12 66. z=xe¥, x = sinst, y = st

Exercises 65-66. Find

ow and ow , both with and without using the chain rule.

E i -68. Fi
xercises 67-68. Find Y 3

67. w=x+2y—3z, x =5st, y=e¢% z=sint 68. w=xe¥?, x =st, y=¢€% z =1t
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§2. DIRECTIONAL DERIVATIVES, GRADIENT VECTORS,
AND TANGENT PLANES

The partial derivatives, f_.(x,y) and fy(x, v), represent the rates of

change of the function z = f(x, y) in directions parallel to the x- and y-
axes, respectively [see Definition 13.1 and Figure 13.1 (page 549)].

Here is a natural extension of that definition:

&
; ) DEFINITION 13.3 The directional derivative of f in the direc-
% DIRECTIONAL tion of the unit vector u = (a, by = ai + bj
i DERIVATIVE is given by:
A | _
) | | D, f(x,y) = limf(X+ha,y+hb) Sx, )
| h—0 h
£ W )\ g (providing the limit exists)
(x+ha,y+ hb) v = (a,b)
Observe that if u is the unit vector i = (1, 0),then D, f = D,f = f..
Similarly: Dj f = fy
EXAMPLE 13.5 Find the directional derivative  of
f(x,y) = x2+? in the direction u of the unit
vector making an angle 30° with the positive
x-axis. Calculate D, f(/3,5), D, f(</3,-5),
and indicate what those numbers represent.
u SOLUTION: Since # = cos30°i + sin30°j (see margin):
1 b D Ax,y) = 1imf(x+hcos30°,y+hsm30°) —f(x,»)
| 30; h—0 h
a = co0s30°, b = sin30° f(x n ﬁh,y . lh) B (x2 +y2)
. 2 2
= lim
h—0 h
2 2
() e
) 2 2
= lim
h—0 h
2 32, 5 h? 5 o
x +J§hx+T+y +hy+z—x —y
= lim
h—>0 h

= lim (JSBx+y+h) = SBx+y
h—0

In particular:

D,f(\3,5) = J3J3+5 = 8 and D,f(/3,-5) = J3J3-5 = -2
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Interpretation: If you move a bit away from the point (./3, 5), in the

J3

direction of u = 71’ + %i, then the function value will increase by
approximately 8 times that bit. On the other hand, if you move a bit
away from the point (+/3, —5), in the direction of u = ?i + %j, then
the function value will decrease by approximately 2 times that bit.

One seldom resorts to Definition 13.3 directly to compute the direc-
tional derivative of a function. Here is the preferred choice:

THEOREM 13.5 If z = f(x,y) is differentiable, then for
any unit vector u = (a,b) = ai+ bj:
D, f(x,y) = af(x,y) + bf,(x,y)

PROOF: Appendix B, page B-3.

EXAMPLE 13.6 (a) Use Theorem 13.5 to solve Example 13.5.
(b) Find the directional derivative of
f(x,y) = x2y +7xy at the point (2,-3) in
the direction of the vector 3i —4;j.

SOLUTION: (a) Applying Theorem 13.5 with f{(x,y) = x2+y2 and

J3

u = cos30°i + sin30°% = 7i+%i,we have:

3 1 3 1
D, f(x,y) = %J;(x,yﬁy’y(x,y) = §2X+§2y = fBx+y
(b) Since ||3i —4j| = 5, the unit vector in the direction of 3i —4j is

u = %(3i—4j) = %i—gj.AppealingtoTheorem13.5,wethenhave:

3
D,flx,y) = 5h(x,») - gfy(x, y) = %(ny +7y) - ‘g‘(xZ +7x)

In particular:

Interpretation: If youmove a bi
awta;;p tfrtom ythe poin: Duf(2, —3) = 2[2(2)(—3)4—7(—3)] _ﬂ[22+7(2)] = _.1_7_1
(xg:7) = (2.-3) . inthedirec- 5 5 5
tion of 37 — 4j , then the function
value will drop by approximately
171/5 times that bit. CHECK YOUR UNDERSTANDING 13.7
Find the directional derivative of f(x, y) = xsinxy at (1, g) in the
Answer: ? direction of the unit vector u# that makes an angle of g with the posi-

tive x-axis.

Vfisread: “deltaf"or“delf.” DEFINITION 13.4 The gradient of a differentiable function
Itis worthrepeating that Vf is GRADIENT z = f(x,y), denoted by Vf(x,y), or Vf,
a vector-valued function. is the vector function:

VAx, y) = f(6 )i+ 1,(x, y)j
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Returning to Theorem 13.5 we see that:

The directional derivative of a differentiable function f{(x, y)
in the direction of the unit vector u = ai + bj is given by:

D, f(x,y) = u-VAx,y)

CHECK YOUR UNDERSTANDING 13.8

P ——a Use the above vector equation to find the directional derivative of

& f(x,y) = 7 at (0, 1) in the direction of the vector — i + .
The gradient vector is not merely a convenient notational device for
representing the directional derivative of a function. A case in point:
THEOREM 13.6 If z = f(x,y) is differentiable at (x,»,)
" lIn pa?icular: with Vf(xO° yO) #0, then Duf(xo’ yO)
The value of z = f(x,y) at : :
(x> ¥g) increases mostrapidly assumes its maximal Vélu.e of va (xQ’ y O)H
in the direction of Vf(xg, y,) » when the unit vector u is in the direction of
and the value of 7 = f(x, y) at the gradient vector Vf{(x,y,); and
(xg,¥y) decreases most rap- : .
idly in the direction opposite D, f(xy,y,) assumes its minimum value of
that of Vftxg, yy) - ~|VA(xg, ¥)|| When @ is in the direction of
—Vf(xg, 9) -

PROOF: Let 0 be the angle between Vf{(x, y,) and ¥ V(X o)

an arbitrary unit vector u in the x-y plane. Then:
Definition 12.5, page 503 ﬁ u

Duf(xoayO) = "'Vf(x():yO) i ||u||HVf(xO,yO)HCOSG (X0 ¥o)
= ||VA(xg, )| cos O

)T’\y = cosf It follows that the maximum value of D, f(xy, o) is |V/f(xp, v) »
_ and that it occurs when cos@® = 1, orat & = 0 (see margin); which

L \\J is to say: when u has the same direction as Vf{(x, y) .
=== It also follows that the minimum value of D, f(x,,y,) 1is
—HVf(xO, ¥o)|l and that it occurs when 0 = m; which is to say, when u

is in the direction opposite to V£{(x, y) -

EXAMPLE 13.7 Find the direction of greatest rate of increase
and greatest rate of decrease for the function

f(x,y) = e at the point (1, 2).
SOLUTION: Turning to the gradient function:
VAx,y) = ()it f,(x, y)] = yeVi+txej
we conclude that the function values increase most rapidly in the
direction of Vf(1,2) = f.(1,2)i+/,(1,2)j = 2e%i+e2%j and
decrease most rapidly in the direction of

-Vf(1,2) = —(f.(1,2)i +fy(1, 2)j) = —2e%i—e?j
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CHECK YOUR UNDERSTANDING 13.9

Find the greatest value and smallest value of the directional deriva-
Answer: 2 and -2. . . . .
tive for the function f(x, y) = xsiny at the point (2, 0).

FUNCTIONS OF THREE VARIABLES

The previous discussion extends to differentiable functions of three
(or more) variables. In particular:

For w = f(x, y,z) and unit vector u = ai+ bj+ ck:
Duf(xaya Z) = af;g(xaya Z) + bf)‘;(x’y: Z) +sz(X,y, Z) =u- Vf(xaya Z)
where: VA(x,y,z) = f.(x, 5, 2)i + f,(x,y, 2)j + [.(x, y, 2)k

EXAMPLE 13.8 (a) Determine the directional derivative of
fx,y,z) = xe¥* at (1,0,1) in the
direction 2i +j— k.
(b) Find the greatest value and smallest
value of the directional derivative for
flx,y,z) = xe¥* at (1,0, 1).
SOLUTION: (a) From:
f(x,p,z) = &7, fy(x, v,z) = xze¥:, f(x,y,z) = xye’*

we have: Vix,y,z) = e¥?i+xze¥?j+ xye¥k

In particular: V£(1,0,1) = i+j+0k
Since the wunit vector in the direction of 2i+j—k is

1
u=—Q2i+j-k):
J6
1

A/6(2i+j—k)-Vf(1,0, 1)

D,f(1,0,1) =
1 _3

2,
J6 6 6

2 1 1
= —i+—j——k) ~(i+j+0k) =
(JB J6 5
(b) By Theorem 13.6, the greatest value is:
IVA1,0, DI = li+j+0kl = 2
and the smallest value is

7||Vf(1,0, 1)” = 7A/§

CHECK YOUR UNDERSTANDING 13.10

Answer: 48 and /6 Find the greatest value and smallest value of the directional deriva-
3 3 tive for the function f(x, y,z) = In(x2+y2+2z2) at (1, 1,2).
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TANGENT PLANE

Just as the line in Figure 13.2(a) represents the tangent line to the
graph of the function y = f(x) at (x(,y,), so then we can agree that

the plane in Figure 13.2(b) represents the tangent plane to the surface
z = f(x,y) at (xy, ¥, 2() - Agreeing is all well and good, but what we
really need is a formal definition.

Yy z

(x(),y()) y = flx)

(@) (b)
Figure 13.2

The task at hand boils down to that of finding a normal to the plane at

the point P, = (x(, . z,) (reminiscent of finding the slope of the tan-

gent line to a curve on page 71). Our intuition tells us that a normal # to

the plane should be perpendicular to the tangent line 7" at P, on any

curve obtained by intersecting the surface with a vertical plane through
P, (see margin).

Lets begin by finding a tangent vector v, at

the point P, on the curve C, obtained by

intersecting the surface z = f(x,y) with g 35 )
the vertical plane y = y, (see adjacent fig- A

ure). Turning to the line L in the xy-plane xl/
with parametric represesentation

X =Xxgtt,y =y
we obtain the following parametric representation for C,
x =xgtt, ¥y =y z = flxgtt,0)
with position vector: r(¢) = (xy+1)i+yj + f(x,+1,y,)k. Evaluating
r'(t) = (xg+ )i+ (v +fl(xo tt,y0)k = i+0j +f,(x0 t1,y0)k
at ¢t = 0, we obtain a vector tangent to the curve Cyo at Py:
v = i+ 0j+f (5 yo)k
In a similar fashion one can show that the vector
u = 0i+j+f,(xp vk
is tangent at P to the curve Cxo obtained by intersecting the surface

z = f(x,y) with the plane x = x,.



13.2 Directional Derivatives, Gradient Vectors, and Tangent Planes 565

Taking the cross product of # and v we arrive at a vector perpendic-
ular to both # and v:

i j k

10 fi(xg,»0)

In the exercises you are invited to show that the above vector is, in
fact, perpendicular to the tangent line 7"at P, on any curve obtained by
intersecting the surface with a vertical plane through P, . Bringing us to:

DEFINITION 13.5 Let z = f(x,y) be differentiable at
TANGENT PLANE (xg> Vo) - The tangent plane to the graph of
S at (xy, 0, f(x(, ¥()) 1s the plane passing
through that point with normal vector
fx(xo, yo)i +fy(xoa yo)j k.

In particular, here is the scalar form equation of the plane (see page 516):
fx(xoy yo)(x *xo) +fy(x07 yO)(y *J/o) —(z *Zo) =0

EXAMPLE 13.9 Find an equation of the tangent plane to the graph
of f(x,y) = xye*™V at the point (1, 2, 2e3).

SOLUTION: From f(x, y) = xye* "> we have:

S (%) 7 y(xe*tV+e**Y) and 1,(x, ) = x(yeX TV + e ) In
y is held fixed x is held fixed
particular:

f(1,2) = 2(e3 +e3) = 4¢3 and fy(l’z) = 1(2e3+¢€3) = 3¢3
Normal to the plane (Definition 13.5):
n = 4e3i+3e3j-k
Consequently (see page 516):
(4e3,3e3,-1) - (x—1,y-2,z-2¢€3) = 0  vector form
4e3(x—1)+3e3(y—2)—1(z—2e3) = 0  scalar form

4e3x +3e3y—z = 8€3 general form

CHECK YOUR UNDERSTANDING 13.11

Find the general form equation of the tangent plane to the graph of
flx,y) = 3y%—2x2+x atthe point (2, -1, -3).

Answer: 7x+6y+z =5




566 Chapter 13 Differentiating Functions of Several Variables

Though not labeled as such,
level curves previously
played aroleinsection 11.2.
See, for example, Figures
11.1 and 11.2, page 436.

LEVEL CURVES AND LEVEL SURFACES

k. The projection of that curve onto the xy-
plane, is said to be the k-level curve of the | |
function f; specifically: ——

Consider the adjacent surface z = f(x, y), NGRASE
along with the curve C, obtained by cutting —
that surface with a horizontal plane of height Ll —
| S | Ck

Klevel curve

{Cf(x, y) =k}

Similarly, the k-level surface of w = f{(x, y, z) consists of all points

(x,y, z) for which f(x, y,z) = k; specifically:

{0, 2)f(x,3,2) =k}
Note that a level surface need not be level in the sense
of being horizontal. In particular, the 4-level surface of

W= flx,z) = X242 2
is the sphere of radius 2 centered at the origin.
In CYU 13.12 you are invited to show that for z = f(x, y):
Vf(x, y,) 1s normal to the k-level curve of fat (x, y,) .

Moving up a notch we have:
THEOREM 13.7 If w = f(x,y,z) is a differentiable func-
tion, then Vf{(x, y(, z,) 1s perpendicular to
the k-level surface of fat (x,, ¥, z) -

PROOF: Consider the k-level surface S = {(x, y, 2)|f(x,y,2) = k} .
We show that Vf{(x, y,, z,) is perpendicular to the tangent plane to
Sat Py = (xy, 0 25) by showing that it is perpendicular to the tan-
gent vector at P, (see Definition 12.9, page 527) of every curve C in
S that passes through P, :
Let C be such a curve, and let r(z) = x(¢)i +y(¢)j +z(t)k be a
parametrization of C with r(¢,) = P,,.

Differentiating both sides of f(x(?), y(¢), z(t)) = k with respect
to ¢ we have:

L fa 0, v, 20) = S0
\

Chain Rule: Gf dx af dy 6fdz _ Oza constant
(Theorem 13.4(a), page 555) ax dl ay dt aZdl

(G5 e) (@ a g = o

In particular, Vf{(x,, v, z) - ¥'(t,) = 0 which establishes the fact
that Vf{(x,, v, z,) 1s indeed perpendicular to the k-level surface of fat

(xoa Yo» Zo)-




Answer: See page A-27.

— S MRS R

One canuse Definition 13.5 to
find a normal to the plane at
the given point:
From the sphere’s equation
2+yl+(z-1)2 =1
we have:
S o
In particular, the upper
hemisphere is the graph of
the function:
— 1 —x2=— 2+

We leave it for youto verify
that:

1z 3)ien(3 3)i-x

~ ()i ()

2 2
which is parallel to:

vr(ll 1)

22 fh

=i+j+ 2k

bl
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CHECK YOUR UNDERSTANDING 13.12

Show that if z = f(x, y) is differentiable, then Vf(x,, y,) is perpen-
dicular to the k-level curve of fat (x, y,) .

In the following example we show how Theorem 13.7 enables us to

find the tangent plane to a 3-dimensional surface that is not the graph of
a function z = f(x, y). We also illustrate, in (b), how it can be used to

determine the tangent plane to a surface that is of the form z = f{(x, y).

EXAMPLE 13.10

(a) Find an equation of the tangent plane to
the sphere x2+y2+(z—1)2 = 1 at the

11 1)
+—].
point (2 > 1 7
See Example 13.9  (b) Find the normal to the tangent plane to the
graph of f(x,y) = xye*™V at the point
(1,2,2€3).

SOLUTION: (a) Since the sphere is not the graph of a function of two
variables (see margin), we cannot proceed directly as in Example
13.9 to find the desired tangent plane. Taking a different approach,
we consider the function of three variables:

F(x,y,2) = x2+y2+(z— 1)
Note that the sphere in question is the 1-level surface of F(x, y,z).

That being the case (see Theorem 13.7):

VF (1 1 1+ —) is normal to the tangent plane at (1 1 1+ L)

22 f 22 f

Grinding away:
VF(x,y,2) = F(x,y,2)i+ F (x,y,2)] + F(x, ), 2)k

= 2xi+2yj+2(z— 1)k

we find that: VF(1 1 1+—L)—z+j+ﬁk

22 [

Conclusion:

(i+j+ J2k) - [( 2) ( 2)J+ HED}:O

is the tangent plane to the sphere x2+ 2+ (z—1)2 = 1 at the point

(1111,

2’2 ﬁ

(b)We let the function z = f{x,y) = xye¥™ direct us to the func-
tion: F(x,y,z) = f(x,y)—z = xye* "V —z
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Answer: x+8y—z = 18

Just as dy is called the differ-
ential of y, dz is called the dif-
ferential of z. In addition, one
often replaces Ax and Ay,
with dx and dy , respectively;
leading to the alternate form:
dz = fx(x()a yO)dx +fy(x0: yO)dy

fle+ Ax)
J(©)

Noting that the 0-level surface of F is f(x,y) = xye**Y, we
apply Theorem 13.7:

VE@,y,z) = F(x,y,2)i + F (x, y,2)j T F.(x, 9, 2)k
= p(xeX TV + X TN)itx(yeX TV +eX V) 1k
VFE(1,2,2e3) = 2(e3 +e3)i+(2e’3+e3)j—k = 4e3i+3e3—k
We find, as we did in Example 13.9, that n = 4e3i+3e3j—k is
the normal to the tangent plane at (1, 2, 2¢3).

CHECK YOUR UNDERSTANDING 13.13

Find the general equation of the tangent plane to the ellipsoid
x2+4y2+2z2 = 18 atthe point (1,2,-1).

NUMERICAL APPROXIMATIONS USING TANGENT PLANES

Figure 13.3(a), previously appearing on page 82, displays how the
tangent line to the graph of a function y = f{(x) can be used to approx-
imate the change in function values Ay = f(c+ Ax)—f(c).

Specifically: Ay =dy = f '(c)Ax (for Ax “small”_

Similarly, as is suggested in Figure 13.3(b), the tangent plane to the
graph of a differentiable function z = f{(x, y) can be used to approxi-
mate changes in function values Az = f(x, + Ax, y, + Ay) — f(x, ¥) -

Specifically: Az=dz = f (xy, yy)Ax +fy(x0, Yo)Ay
(for Ax, Ay small)

z = flxy)

- } dz = fi(xg, ) Ax + f,(xg, yg) Ay
Az

N
\
~
- \
\
\
- - N

- -(x0+Ax,y0+Ay)

e

X a Ax
(xo, yo) Ay

(a) (b)
Figure 13.3

In support of Az~ dz = f.(xq, yy)Ax +fy(x0, Yo)Ay:
Since f'is differentiable (see Definition 13.2, page 553):
Az = f(xo"'Aan/()"'AY) *f(x()ayo) *)
= f(x0, ¥0)Ax + 1,,(x0, yo)Ay + &, Ax + &,Ay
Where €,,6, =0 as Ax, Ay >0



Admittedly, nowadays there is
really no need to approximate
anything — just invoke a cal-
culator. The main idea here,
however, is to underline the
fact that tangent planes can be
used to approximate more
complicated surfaces at points
of interest, just as tangent lines
can be used to approximate
more complicated functions of
a single variable.

Answer: —0.01
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The tangent plane to the graph of z = f{(x, y) passing through the
point P is given by (see Definition 13.5):

Se(xg, yo)Ax + f1(x0, o)Ay —(z2—25) = 0
Or: z = 2+ f(xg, o) Ax + f,,(xg, ¥ ) Ay
At that point, the tangent plane has height z,, and when
x = xy+Ax and y = y,+ Ay it has height:
z = 2o+ f(x, ¥o)Ax + f,(x0, ¥) Ay . So:
z—zy = flxg+ Ax,yo+ Ay) —f(xy, yy) = dz [see Figure 13.3(b)]
Returning to (*) we then have:
Az = dz+ g, Ax +¢g,Ay
or that dz — Az as Ax and Ay tend to 0.

EXAMPLE 13.11

Use a differential to approximate the change

in the volume V = %nrzh of a cone result-

ing from a change in radius from 10 cm to
10.01 cm, and a change in height from 20 cm
to 19.97 cm.

SOLUTION: Turning to:

V(r, h) = %nrzh, (r 1) = (10,20), Ar = 0.01 and Ak = —0.03

we have:
AV ~dv = V.(10,20)(0.01)+ ¥,(10, 20)(~0.03)
:5(1 2):7_‘ :a(l 2)27_‘2.
From V, EP 3 h 3(2rh), v, P 3 h 3
7,(10,20) = 5[2(10)(20)] = “%ﬂ, V,(10,20) = Z102 = 1030“
Thus: AV ~ dv = 4030”(0.01)+ 1030”(—0.03)z 1.05 cm’

CHECK YOUR UNDERSTANDING 13.14

Let z = f(x,y) = Jx2+32. Use a differential to approximate the
change in z as (x, y) varies form (3, 4) to (3.01, 3.98).
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EXERCISES

Exercises 1-2. Appeal directly to Definition 13.3 to verify that:

1. If f(x,y) = x?+ xy and if u is the unit vector making an angle 45° with the x-axis, then

3x+y
D, flx,y) = ——.
’ 2
2. If f(x,y) = y?+xy and if u is the unit vector making an angle 60° with the x-axis, then
Sx+(1+2/3)y

D,f(x,y) = >

Exercises 3-25. Find the directional derivative of the given function at the indicated point and
direction.

3. fx,y) = xp2+x2 at (=1, 2) in the direction of O = g
4. f(x,y) = 2xy—y? at (-1, 3) in the direction of 6 = 2—;
5. flx,y) = xe¥+ye* at (0, 0) in the direction of 0 = g
6. f(x,y) = ye™* at(0,4) inthe direction of 6 = 2?71
7. f(x,y) = xe¥—ye* at (0, 0) in the direction of 3i +4;j.
8. f(x,y) = 4x3y? at (2, 1) in the direction of 4i — 3j.

9. f(x,y) = y%Inx at (1, 4) in the direction of —3i + 3j .

10. f(x,y) = e*~7 at (0, In2) in the direction of i.
11. fix,y) = (2x+3y)? at (2,2) in the direction of j.
12. f(x,y) = e?e? at (0,—1) in the direction of —j.

13. flx,y) =

t (2,2) in the direction of j .
szryza (2, 2) 1in the direction of j

14. f(x,y) = €% at (1, 2) in the direction from (1,2) toward (3, 0).
15. fix,y) = x3—x2y+y? at (1,—1) in the direction from (1, 1) toward (4, 3).

16. f(x,y) = Slx%x;}) at (1, 1) in the direction of %iéj.
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17. fix,y) = sin’(x+y) at (’5‘ —g) in the direction of —i.

1

oo

1

O

Cflx,y) = tanl@ at (1,2) in the direction of 6 =

T
1

fx,y) = tanl()-;) at (=2, 2) in the direction of —i —j.

20. f(x,y) = xy at (a, b) in the direction from (a, b) toward (0, 0).
21. f(x,y,z) = xy+yz+zx atthe point (1,—1, 2) in the direction of the vector 3i + 6j —2k.

22. f(x,y,z) = xcosysinz at the point (1, T, Z—D in the direction of the vector 2i —j + 4k .

23. f(x,y,z) = 3e*cos(yz) at the point (1, 0, %) in the direction of the vector i + 2j + 2k.

2

~

S,y 2) = ztan_lej at the point (1, 1, 3) in the direction of the vector i +j— k.

25. f(x,y,2z) = (x+y?+23)?% at the point (1,2, 1) in the direction of the vector i +.

Exercises 26-39. Find the greatest value and smallest value of the directional derivative for the
given function at the given point.

26

28

30

32

34

36

38

. flx,y) = x2+xy at (1,-1)

2
Cflx,y) = y; at (2, 4)

. flx,y) = xe¥+ye at (1,1)

. flx,y) = xIlny at (5,1)

~ in(ox g
fxy) = sin(x-y) ac (5T
_ Y
fwy.z) = oyzat(1,2.3)
Cfx, v, z) = ztan*i at (1, 1,3)

27. f(x,y) = x3y%2 —xy at (2, %)

29. flx,y) = xe¥ +ye* at (0, 0)

31. f(x,y) = cos(3x—y) at (g g)

_ sin(x+y) T T
33. fix,y) = —Cos(x—y) at (2,4)

35fwyﬂ)=§awau¢L1>

37. fix,y,z) = Jx2+y2+z2 at(3,6,-2)

39. f(x,y,z) = Inxy+ Inyz+ Inxz at (1,1, 1)

Exercises 40-43. Find the general form equation of the tangent plane to the graph of the given
function at the given point using: (a) Definition 13.5 (b) Theorem 13.7.

40.
42.

z = 2x+3xy? at (2,1, 10)
z = 2x2+y at(1,1,3)

41. z = xy—y3+x% at (1, 4,-59)
43, z = 4x2—y2+2y at (-1,2,4)
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Exercises 44-53. Find the general form equation of the tangent plane to the given surface at the
given point.

44, z = xe? at (1,0, 1) 45. z = ycos(x—y) at (2,2,2)
.z = +x2+y? .
46. z = In(2+x=+y<) at (1,2, In7) 47. z = e3Vsin3x at (g, 0, 1)
48. x2+y2+z2 =49 at (2,-1,1) 49.2x2+3y2—z2 = 10 at (2, 1,-1)
2/3 2/3 2/3 —
50. x +y +z =9 at(1,8,—8) 51. Y =2 at(1,8,3)
+z
1 53.In(1+x+y+z) =3 at
52. cos(xyz) = 0 at (4, n,g)
(e2+2,e3—e2,-3)

54.

55.
56.
57.

38.

59.

60.

61.

62.

63.

64.

65.

66.

67.

Use a differential to approximate, to two decimal places, the value of J (2.98)% + (4.03)2.

Use a differential to approximate, to two decimal places, the value of /1002 + 1992 + 2012.
Use differentials to estimate the change in z = x2y — 1 from (1, 2) to (1.11, 1.92).

Use differentials to approximate, to two decimal places, the change in z = e*Inxy from
(1,2) to (0.9, 2.1).
Use differentials to approximate, to two decimal places, the increase in area of a triangle if its

base in increased from 2 to 2.05 centimeters and its altitude is increased from 5 to 5.1 centi-
meters.

Use differentials to approximate, to two decimal places, the increase in the area of a triangle if
its base in increased from 2 to 2.05 cm, and its altitude is increased from 5 to 5.1 cm.

Use differentials to approximate, to two decimal places, the increase in the volume of a right
circular cylinder if the height is increased from 2 to 2.1 cm, and the radius from0,5 to 0.51 cm.

Use differentials to approximate, to two decimal places, the change in f(x, y, z) = 2xy2z3
from (1,-1,2) to (0.99,-1.02,2.02).
Use differentials to approximate, to two decimal places, the change in

f(x,y,z) = x2cosnz—y?sinnz from (2,2,2) to (2.1, 1.9,2.2).

The length, width, and height of a rectangular box are measured to be 3 cm, 4 cm, and 5 cm,
respectively, each with a maximum error of 0.05 cm. Use differentials to approximate the
maximum error in the calculated volume.

Use differentials to approximate the percentage error in w = xy2z3 ifx, y, and z have errors
of at most 1%, 2%?2, and 3%, respectively.

Prove that if Vf(x,, y,) = 0, then all directional derivatives of fat (x,, y,) are 0.

X0 y)’o ZZg . x2  y* 2

Show that a2 Fe) + e 1 is the tangent plane to = + 2 + i 1 at (xg, yg, 2) -
yyo ZZg y2 2

Show that —a—z— el 1 is the tangent plane to a—2 + i 1 at (xq, ¥0, 2) -
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68. The normal line at a point on a surface S is the line that is perpendicular to the tangent plane
at that point. Two surfaces are said to be orthogonal at a point of intersection if their normal

lines are perpendicular at that point. Prove that the surfaces f{(x, y,z) = 0 and g(x,y,z) = 0
are orthogonal at a point of intersection (x, v, z,) if and only if . g+ fy g,+ fg.=0.

(Assume that Vf{(x, y,, z,) # 0 and that Vg(x,, y,, z,) #0.)

69. (Reminiscent of familiar derivative formulas) For f(x, y, z) and g(x, y, z) differentiable func-
tions, and any number 7, prove that:

@ V) = rvf (b) V(f+g) = VftVg
(©) V(fg) = fVg+gVf (d) V({;) - gig;Zng

70. Let (x(, ¥y, zy) be a point on a surface S with equation z = f{x, y). Show that
S (x0, y)i + ]iv(xo, Yo)J — k 1s perpendicular to the tangent vector r'(#,) to any smooth curve
r(t) = x(t)i+y(t)j +z(t)k lying on § that passes through (x,, v, z,) ; that is, for which

r(ty) = (X0, Yo» Z) -
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§3. EXTREME VALUES

Definition 4.2, page 125, readily generalizes to accommodate func-
tions of two (or more) variables:

More precisely
A local maximum occurs at
(xg, ¥o) if there exist >0

such that f(x, y,) 2 f(x,»)

DEFINITION 13.6
LOCAL EXTREMES

A function z = f(x, y) has a local maxi-
mum at (xy,y,) in its domain, if

S(xg, y9) 2f(x,y) for all (x,y) in its
domain that are sufficiently close to

for every (x, y) with:
| (-xay)_(x()ayo)” <g

(x()ayO)'
A function f has a local minimum at

(x0, ¥) 1f f(xg, o) < f(x, y) forall (x, y)
sufficiently close to (x, y,).

And just as the equation f'(x) = 0 is used to find the (local) maxima
and minima points of a single-variable function [Figure 13.4(a)], so can
the vector equation Vf{(x,y) = 0 be used to locate the (local) extreme
points of functions of two variables [Figure 13.4(b)]:.

y . z, Vfxp,y9) = 0 —
Sxp) =0 4
! 1 /
X f X s
s - Vfx ) = 0
f(x]) - / .. | y
X (xo,yo) 6(x1!y1)
(a) (b)
Figure 13.4
Why so? Because, If z = f(x,y) has a 4V =
local maximum (or minimum) at (x,, y,)

then the intersection of the surface with the
planes x = x, and y = y, have horizon-

tal tangent lines at (x,,y,) (adjacent fig-
ure). It follows that f .(x,,y,) = 0 and
1, (g v0) = 0.

To summarize:

Apoint (x,, y,) inaninterior
point of a set Sif there exists
¢ > 0 such thatallpoint (x, y)
within ¢ units of (x,, y,) are
contained in S.

THEOREM 13.8

If z = f(x, y) has a local maximum or min-
imum at an interior point (x,,y,) of its

domain, and if the partial derivatives exist
at that point, then they both must be zero,
and therefore:

Vi(xp, y9) = fi(xg, 9)i +fy(xoaJ’())j =0
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Just as the single-variable function y = f{(x) is said to have a critical
point at x,, if f'(x,) = 0 (or if /(x,) does not exist), so then we say
that  (xq5,»,) 1S a critical point of =z = f(x,y) if
Jo(xp,¥0) = fy(xo, ¥o) = 0 (or if a partial derivative does not exist).
And just as a local extremum need not occur at a critical point of

v = f(x) [see Figure 13.5(a)], so then a local extremum may not occur
at a critical point of z = f(x, y) [see Figure 13.5(b) and CYU 13.15]:

=3
=X
y z=12-x2

Answer: See page A-27.

Compare with Theorem 4.8,
page 137.

(a) x

Figure 13.5
We note that (x,,y,) 1s said to be a saddle point of z = f(x,y) if

f(xp¥0) = fy(xo, ¥o) = 0 and the function does not have an extre-

mum at that point. In particular, (0, 0) is a saddle point of the function
in Figure 13.5(b).

CHECK YOUR UNDERSTANDING 13.15

Verify that (0, 0) is a saddle point of f(x,y) = y2—x2.

The following result, offered without proof, can be used to identify
the nature of critical points:

THEOREM 13.9  Let f(x,y) have continuous second-order
SRS | ETATL partial derivatives in an open region con-
DERIVATIVE TEST  taining a critical point (x, y,), and let
D = fi(xo, yo)fyy(xoa Yo) — [fxy(xoa yo)l?
Then:
(@)If D> 0 and f.(xq, ¥o) > 0:f has alocal minimum at (x, y,) .
(b)If D >0 and £, (x, y,) < 0:f hasalocal maximum at (x, y,) .
(c) If D <O0:f has asaddle point at (x,, y,) -

(d) If D = 0: Test is inconclusive.

Note: D = f,,(x, 9)f, (3, 9) — [fry (3, 9)]2
is called the discriminant of f.
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EXAMPLE 13.12 Identify the local extrema and saddle points of
flx,y) = x3+y3+3x2-3)2-8

SOLUTION: From:

S(x,y) = 3x2+6x = 0 f,(x, ) = 3y2—6y = 0
3x(x+2) =0 3yv(yv-2)=0
x=0,x=-2 y=0,y=2

we conclude that /" has four critical points:
(Os 0)9 (0’ 2)5 (_29 0)3 (_25 2)9

S (6, ¥) = 6x+6 fyy=6y—6 nyZO
we have:
D = £ (5 ), (5 9) ~ [y (5 )1 = (6 +6)(6y—6)
= 36(x+1)(y—1)

From:

Employing the Second Derivative Test:
D(0,0) = =36 <0 = f has a saddle pont at (0, 0)
D(0,2) = 36>0andf,,(0,2) = 6 >0 = local min. at (0, 2)

D(-2,0) = 36 >0 and f,,(-2,0) = —6 <0 = local max. at —(2, 0)
D(-2,-2) = 108 >0 = f has a saddle pont at (-2, -2)

CHECK YOUR UNDERSTANDING 13.16

Answer: Local minimum Identify the local extrema and saddle points of
at (9,-4). f(x,y) = x2+3y2+3xy—6x -3y

How does this example dif-

fer from Exercise 22 of Sec- EXAMPLE 13.13 Find the dimensions of a 4ft’ open rectangu-
o) (e Lol lar box requiring the least amount of material.

SOLUTION: Let x, y, z denote the dimensions of the base |

T S —— and height of the box, respectively, and let 4 denote its
cedure of page 149: surface area (amount of material used). Then: z
Step2 e hequiyio ()~ 07 T Aandd T 69 L
be optimized in terms of any From (*): z = — . Substituting in (**):
convenient number of vari- Xy
ables.
BuUT NOW: A=xy+8—y+8—x=xy+§+§
Step 3: If necessary, use the '\ xy Xy Xy

given information to arrive at
a function involving only two
variables (as opposed to one).
Step 4: Find where the two
partial derivatives are zero to
locate the critical points of the
function, and analyze the
nature of those critical points.

that which is to be minimized
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Answer:

Consider Exercises 33-38
of Section 4.3 (page 146).
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Locating the critical points (see Theorem13.8):

_ 8 _
Ax = TR 0 yx2 =8
= Syl =x2 = yx2—xy?=0
A =x-S o ®?=38
y 32 =>xy(x-y) =0
neither dimension x nor y can be zero: X = y
3=238
So: ¥ }:>x =y =2
x3 =8
=2 o
Xy
We now use Theorem 13.9 to make sure that a minimum occurs at the
(only) critical point (2, 2). Since 4, = 1—?, Syy = %, Axy =1:
X y

D =4,(2,2)4,,(2,2)-[4,,(2, D)? = (%} (%6) -12=3>0

and 4_ (2,2) = 2>0

Conclusion: The box requiring the least material has a square base of
length 2 ft, and a height of 1 ft.

CHECK YOUR UNDERSTANDING 13.17

Find the three positive numbers whose sum is 1 and such that the
sum of their squares is as small a possible.

ABSOLUTE MAXIMUM AND MINIMUM VALUES

Let z = f(x,y) be defined on a set S We say that f assumes its abso-
lute maximum at (x,,y,) in S, if f(x,y,) =f(x,y) for every

(x,y) € §. Similarly, f is said to assume its absolute minimum at
(xgo¥o) 1f f(x(, yy) <f(x,y) for every (x,y) € §. We already know

that if a differentiable function z = f(x, y) has a local maximum or
minimum at an interior point of §, then Vf{(x, y,) = 0 (Theorem 13.8).

In order to locate the absolute extreme values of the function, however,
we must also take into account the non-interior points of S. With this in
mind, we direct your attention to the following particularly important
result:

THEOREM 13.10 A real-valued continuous function f defined
on a closed bounded set S assumes its maxi-
mum value and its minimum value at points
in S.
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While a proof of the above result lies outside the scope of this text,
we can at least attempt to render it “understandable.”

To begin with, we note that the symbol R” denotes the Euclidean-n

space; which is to say the set of all n-tuples. In particular:

R is the set of real numbers, R? is the set of two-tuples
(the plane), and R3 denotes three-dimensional space.
As for the bounded part:

While the set § = (-2,1] = {x]-2<x<1} is bounded
in R (the set of real number), the set N = (0, «) is not (see
margin).

While the unit circle S = {(x,y)|x*+y? =1} is bounded
in the plane, the set N = {(x,y)[y >0} is not (see margin).

As for the closed part:
A set S is closed if it contains all of its boundary points:
those points which are “arbitrarily close” to both C and its
complement; more precisely:
b is aboundary point of S if for any given € > 0 there
exists an element in S that is within € units of b, and an

element not in S that is also within ¢ units of b.
For example:
While the sets [-2, 1] and [3, ) are closed in R, the set
(=2, 1] is not (it does not contain the boundary point —2).

While the unit circle {(x,y)|x?>+y? =1} is closed in the
plane (it contains all of its boundary points), the (open) cir-
cle {(x,y)|(x2+y?)< 1} is not (it does not contain the
boundary points on its rim).

EXAMPLE 13.14 Find the absolute maximum

and minimum values of

a
— 293 S
SO, y) = x2=2y° =3x+2y

N .y bo@

A set S is bounded if there exists a number M > 0 such that every
element of S falls within M units of the origin. For example:

“

on the adjacent region S. | d

Finding the critical points of f{(x,y) = x2—-2y3—-3x+2y in the

interior of S (see Theorem 13.8):

boundary of S (consisting of the above line segments a, b, ¢ and d).

3

SOLUTION: We know that the continuous function f'assumes both its
maximum and minimum values on the bounded closed set S (Theorem
13.10). To find them, we will need to compare the values associated
with the critical points in the interior of S, along with those on the

X
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VAx, ) = (e )i+ £ (x, v)j

— (2x—3)i+ (62 +2)j = 0= x = %,y - £
v

» is not negative in S

Conclusion: @, ﬁ) is the only critical point of /in S’s interior. Can

it be a saddle point? Yes, and it is; for

D

~ fora V) (6 0) ~ [y (6 )12 = 2(-129) - 02

is negative at @, ﬁ) (see Theorem 13.9).

It follows that the absolute maximum and minimum values of f must
occur on the boundary of S.

Here are the critical points of f{(x, y) = x2—2y3—3x+2y on the
boundary of S:

(1, 1)
a Sy = x
(0,0)

. b .
(LD /[\ (2,1)
y=1

2.1
c
/\(3,0)
y=-x+3
y=0
v

e —
0.0 g (3,0

On line a: y = x. And so we consider the single variable
function:

g(x) = flx,x) = x2-2x3 -3x+2x = —2x3+x2—x
Since the derivative g'(x) = —6x%+ 2x — 1 is never zero,
the only critical points of g on the line segment a occur at
its endpoints. It follows that (0, 0) and (1, 1) are critical
points of f'on the boundary of S.

On line b: y = 1. Bringing us to:
g(x) = fix,1) = x2-2-3x+2 = x2-3x
Since g'(x) = 2x—3 1is zero at x = %, the function f

%, 1) , as well as at the

b-end point (2, 1) (note that (1, 1) already made its pres-
ence felt on line segment a).

might assume an extreme value at (

On line ¢: y = —x + 3. Bringing us to:
g(x) = flx,-x+3) = x2-2(-x+3)3-3x+2(—x+3)
= 2x3 - 17x2+49x — 48

Since g'(x) = 6x2 —34x + 49 is never zero, we only pick
up one new critical point for f; namely ¢’s endpoint: (3, 0).
On line d:

g(x) = f(x,0) = x2—3x and g'(x) = 2x—3.Yielding

one additional critical point for f: @, 0) .
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Answer: Max: w .

Min: —1004 .

Joseph-Louis Lagrange
aka Giuseppe Lodovicio
(1736-1813).

The Greek letter A
(lambda), is said to be a
Lagrange multiplier.

Note: If Vg(x, y) = 0, then
(*) will surely hold.

Upon evaluating the function f(x, y) = x2—2y3 —3x+ 2y, at each
of the above 6 boundary critical points, we found that:

f(0,0) = 7(3,0) = 0 SO, 1) =f(2,1) = =2

)19 -3

Conclusion: On the region S, fachieves its absolute maximum value
of 0 at the points (0, 0) and (3, 0), and its absolute minimum value

(3 1) ma(5o0)
of 4at 2,1 and 2,O.

CHECK YOUR UNDERSTANDING 13.18

Find the absolute maximum and minimum values of 4.8
f(x,y) = x2—2y3—3x+ 2y on the adjacent region K. a/ |,

LAGRANGE MULTIPLIERS

The following result can be used to determine the extreme values of a
function when restricted, or constrained, to a subset of its domain:

THEOREM 13.11 |Let f{x,y) and g(x,y) be differentiable
Lagrange functions. If /' has an extreme value at a
point P, = (x,,y,) on the constraint curve

g(x,y) = k, then either Vg(x,,y,) = 0 or
there exists a constant A such that:

Vf(xo’ yo) = ng(xO, yo)

Similarly: | If f(x,y,z) has an extreme value at a point
Py = (x¢,¥9.29) on the constraint surface
g(x,y,z) = k, then either Vg(x, vy, z5) = 0 or there
exists a constant A such that:

Vf(xoa Yos Zo) = ng(xoa Yos Zo)

PROOF: Assume that a maximum (or minimum) value of f(x,y)
occurs at (x,, y,). Let the vector function r(¢) = x(z)i +y(¢)j trace

out the curve g(x,y) = k. Employing CYU 13.12, page 567, we
have:

Vg(xg,y) - 7'(2) = 0 ()
Now consider the function 2(¢) = f[x(¢), y(¢)], and let ¢, be such

that h(7y) = (xy, ;). Since an extremum occurs at 7, :



As is the case here, the
Lagrange method generally
leads to a non-linear system of
equations. Solving such a sys-
tem can prove to be achalleng-
ing if not impossible task.
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Theorem 13.4(a), page 555
W'(ty) = f'[x(0), y(1)] s S0, ¥0)X' () + £,(x0, ¥0)¥' (25)
= Vf(xp,y0) - ¥'(2y) = 0
Since Vg(xy,y,) and Vf(x,,y,) are both orthogonal to r'(¢)),

those vectors must be parallel; which is to say:
Vf(xp, y9) = AVg(xy,y,) for some number A .

EXAMPLE 13.15 (a) Find the maximum and minimum values
of the function f(x,y) = x2—3y? on the

.x2 5 _
elhpse5+(y—l) =1.

(b) Find the maximum value of the function
f(x,y,z) = xyz on the sphere
x2+ y2 +z2 =4.

SOLUTION: (a) We apply Theorem 13.11 with:
flry) = =32 and g(r.y) = 5+ (17
(the constraint curve is g(x,y) = 1)
The vector equation Vf{(x,y) = AVg(x,y):
2xi—6yj = AMxi+2(y—1)j] = Axi+(2Ay —2N)j
reveals equations (1) and (2) below, while equation (3) stems from

2
the constraint equation % +(y-1)2 = 1:

(1): 2x = Ax
(2): =6y = 2Ay—-2A
(3): x2+2y2-4y =0

From(1):x = 0orA = 2.
Addressing both possibilities we have:

If x = 0, then, from (3): If A = 2, then, from (2):
2y2 -4y =0 by = dy-4=y = 2
2y(r-2) =0=y=00ry=2 Substituting in (3):
N2 2 4.2
2 2) _4l4) = — 424
Yielding the two critical points: | ~ +2 (5) 4(5) 0=x=1+ 5
(0,0) and (0, 2) Yielding two additional critical points:

(£ ma (523

5 5
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We know that, when
restricted to the ellipse, the
function f must assume its
maximum and minimum val-
ues at points on the ellipse
(see Theorem 13.10)

Note that the condition
Ve(x,y,z) = 0:
V(x2+y2+22) =0
leads to the point (0, 0,0),
which does not lie on the
sphere x2 +y2 + 22 =

2
Turning to Vg(x,y) = 0 with g(x,y) = % +(y—1)%, we have:
g.(xy) = Oandgy(x,y) =0=>x=0and2y-2=0( =1)

Note, however, that (0, 1) is not a critical point as it does not lie of the
2

ellipse%Jr(y— 1)2 =1

Evaluating f(x,y) = x2—3y? at each of the four established critical

points (0, 0), (0, 2), (4ﬁ 2) and( 442 2 5) we have:

5°5
£0,0) = 0,70,2) = 12, /(42 %) = L anap(427 - 2

Conclusion (see margin):

The function f(x, y) = x2—3y2, when restricted to points on

2
the ellipse % +(y—1)% = 1, assumes a maximum value of ;—‘

at (4—[2 2) and( 442 2

53 5) and it assumes a minimum value of
—12 at (0, 2).

(b) We employ Theorem 13.11 with:
f(x,y,z) = xyz and g(x,y,z) = x2+y2+22.
(the constraint surface is g(x, y,z) = 4)
The vector equation Vf(x, y,z) = AVg(x,y,z):
vzi+xzj+xyk = A[2xi+ 2yj+2zk]

reveals equations (1), (2) and (3) below, while (4) is the given con-
straint equation:

(D:yz =2Ax  2):xz=2ry (3):xy = 2z

(4): x2+y2+z2 = 4

Multiplying (1) by x, (2) by y, and (3) by z leads us to:

2hz% or: Ax? = M2 = Az? (%)

We can exclude the possibility that A = 0, for A = 0 would imply

that y or z must be 0 [see (1)], and that would force f(x, y,z) = xyz
to be zero, which can not be the maximum value of £, as f assumes

positive values on the sphere x2 + y2 +z2 = 4. That being the case,
(*) tells us that x2 = y2 = z2. From (4) we then have:

xyz = 2Ax2 =2)y% =

2
x2+y2+z2 =3x2 =4=x,y,z = iT
3
As the maximum value of f(x, y, z) = xyz is positive, there are only
four critical points to consider: all three of the variables are positive or
exactly two of them are negative.

Conclusion: On the sphere x2+y2+z2 =4, f(x,y,2) = xyz

assumes the maximum value of 3 at the points:

343
2 2 2 2 2 2 2 2 2 2 2 2
FFAEF A EE A G ES
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CHECK YOUR UNDERSTANDING 13.19

Answers: . . ..
Maximum value: 4 Find the maximum and minimum values of f(x, y) = x%+ 4y2 on the

Minimum value: 1 circle x2 +y2 =1.

EXTREMA SUBJECT TO TWO CONSTRAINTS

It is sometimes necessary to determine the extreme values of a function
f(x,y, z) onthe curve C that results from the intersection of two surfaces
g(x,y,z) = k; and h(x,y,z) = k,.Insuch a setting you can invoke a
Both  (lambda) and generalization of Theorem 13.11; specifically:
(mu) are said to be _
Vf(xa s Z) - XVg(X, ) Z) + MVh(X, Y, Z)

Lagrange multipliers.
(Extreme points of fon C satisfy the above vector equation.)

Consider the following Example.

EXAMPLE 13.16 Find the maximum and minimum values of
f(x,y,z) = x+2y+ 3z on the ellipse C stem-
ming from the intersection of the plane

x—y+z = 1 with the cylinder x2+y2 = 1.

SOLUTION: For f(x,y,z) = x+2y+3z, g(x,y,z) = x2+y? and
h(x,y,z) = x—y+ z, the vector equation:

Vilx,y,z) = AVg(x,y,z) + uVh(x,y,z)
becomes: i +2j+3k = A2xi+2yj+0k)+pu(i—j+k).

Solving a system of equa-

tions, not all of which are Leading us to the following system of equations:
linear, can be a tricky, if not
impossible task. (1): 1T =2Ax+p (2): 2 =2\ y—p 3):3=np
(4): x2+y% =1 (5): x—y+z=1
Since u = 3 [see (3)]: x = —}% [see (1)],and y = % [see (2)].
125 29
P+ = 2 = = =2
Consequently [see (4)] YRTY 1 =4Ar 29 = A 5
Returning to x = 1,3 andz = 1 —x+y [see (5)]:
8 YT g '
o2 2 5 2,5, T
2 429 429 429 29 29
Ao N2 2 s o, 2 5 _ 1

DX .Y 2= l-—=-—==
2 J29 J29 29 29 29

And so there are two critical points for f on the ellipse C; namely:
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(—2 > 1+ 79)and(2 —5 1-— 79)
J29 .29 .29 J29° 29 29
A direct calculation shows that:

2 5 7Y _ 25 1) _5_
f(_ﬁ’ﬁ’l+ﬁ)_3$@’andf(@’ J2—9’1 J2—9) 3¢J2_9

maximum value minimum value

CHECK YOUR UNDERSTANDING 13.20

Find the critical points of f(x,y,z) = xy+yz subject to the con-
straints x +2y = 5 and x—4z = 0.

(o]
~—

555
A :(— ==
nswer: (3, 7,
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EXERCISES

Exercises 1-12. Identify the local extrema and saddle points of the given function.

1. flx,y) =y2—xy+2x+y+1 2. flx,y) = x2+5y2—x+y

3. f(x,y) = xy+3 4. flx,y) = x3-3xy—)3

5. f(x,y) = xy—x2—y*—-2x-2y 6. f(x,y) = xy—x3—y?

7. flx,y) = x*+y*r—4dxy+5 8. flx,y) = 2x2—4xy +y*

9. f(x,y) = x3—12xy+8y3 10. f(x,y) = 2x3-2y3 —4xy+1
11. fix,y) = 2x2+3xy +4y2 —5x+2y 12. f(x,y) = 3x3-2xy+y2 -8y
13. f(x,y) = e*siny 14. f(x,y) = xsiny

15. fix,y) = e (*Ty*+2x0) 16. fix,y) = e (> *5%)

17. f(x,y) = sinx+siny, 0<x<m,0<y<mn

18. f(x,y) = sinx + siny + sin(x +y), 0 <x <

T

2

T

,O<y<2

Exercises 19-30. Find the absolute minimum and maximum values of the given function on the
specified set S.

19.

20.

21.

22.

23.

24.

25.

26.

27.

flx,y) = 3xy—6x+7;8:0<x<3,0<y<5

flx,y) = x2+y2+x2y+4;8: -1<x<1,-1<y<1
f(x,y) = x3-3xy+3y%;S: %SXSI,OS)/S2
f(x,y) = x2+4y2 -2x2y+4;8: -1 <x<1,-1<y<1
flx,y) =3 —xp+y2—x;8:x20,y>20,x+y<2
f(x,y) = x2+3y%2 —4x -6y ;SxZO,yZO,yS%)mL?a

f(x,y) = xe¥—x2—e¥;S: 0<x<2,0<y<I
f(xoy) = —Xz—y2+1x+2y+1;S;x20’y20,x+y£2

fx,y) = 2x2-y2+4x+3y+5;8: y<2,y>—x,y>x
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28. fx,y) = x3—33-3x+12y ;S 0<x<2,-3x<y<0
29. flx,y) = 2x2—y2+6y;S: x2+y2§16
30. flx,y) = 23 +p4: S 22 <1

Exercises 31-42. Use Lagrange multipliers to find the minimum and maximum values of f, subject
to the given constraint C.

31. flx,y) = x+y;C:x2+y2 =1

32. f(x,y) = xy;C: 4x2+y2 = 8

33. flx,y) = xy+14;C: x2+y2 = 18

34, flx,y) = x2+2y2-2x+3;C: x2+y2 =10
35. flx,y) = x2+2y%; C:x2+y2 =1

36. f(x,y) = x2+2;C:x2+y2-2x—-4y =0
37. fix,y) = 2x2+3y2—4x-5;C: x2+y? = 16
38. flx,y) = 2x2—y2;C:x2+2y2 -4y =0

39. flx,y,z) = x+y+2z;C:x2+y2+22 =3
40. flx,y,z) = x+y+z;C:x2+y2+z2 =1

41. fix,y,z) = xyz;C:x+y+z =1 withx,y,z>0

42. flx,y) = 8x—4y+2z;C: x2+y2+22 = 21

Exercises 43-46. Find the absolute minimum and maximum values of the given function on the
specified set S.

43. flx,y) = xy;S: 4x2+y2<8 (see exercise 32).
4. f(x,y) = x2+2y2-2x+3;8: x2+y2<10 (see Exercise 34).
45. flx,y) = x2+2y%;8: x2+y2<1 (see Exercise 35).

46. f(x,y) = 2x2+3y2—4x-5;S: x2+y2<16 (see Exercise 37).

Exercises 47-51. Find the maximum and minimum values of f, subjected to the two given con-
straints.

47. fix,y,z) = 3x—y-3z;x+y—z = 0and x2+2z2 = 1

48. flx,y,z) = x+2y;x+y+z = landy?+z% = 4
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49. flx,y,z) = xy+yz;xy = landy?+z2 = 1

50. f(x,y,z) = 2x+2y+2z24+20;x2+y2+z2 = llandx+y+z = 3

51. fix,y,z) = 4y—-2z;2x-y—z =2andx>+y? = 1

Exercises 52-57. Solve using (a) Theorems 13.8 and 13.9 and (b) Lagrange’s Theorem.

58

59.

60.

61.

62.

63.

64.
65.

66.

67.

52. Find three positive numbers x, y, and z such that x + y +z = 12 and x2yz is maximum.

53. Find the points on the surface z2 = xy + 1 that are closest to the origin.

54. Find the point in the plane 3x + 2y +z = 14 that is nearest the origin.

55. Find dimensions of the most economical closed rectangular crate 96 cubic feet in volume
if the base and lid costs 30 cents per square foot and the sides cost 10 cents per square foot.

56. Find the dimensions of a rectangular crate with maximum volume if the sum of the length
of its 12 edges is 120 feet.

57. Find the shortest distance from (1, 3,4) to 2x—y+z = 1.

. Find the dimensions of a closed box of largest volume with 64 in? surface area.

2

2
Find the area of the largest rectangle that can be inscribed in the ellipse x_z + )b}_z =1.
a

A triangular area is to enclose 100 square feet. What are the dimensions of the triangle requir-
ing the least amount of fencing?

Assume that the combined cost of producing x units of one product and y units of another is
given by C(x,y) = 2x2+xy + 2+ 500 . How many units of each product should be pro-
duced to minimize cost, given that a total of 200 units are to be manufactured?

The temperature at a point on the surface of the sphere x2 + 2 +2z2 = 4 is given by
T(x,y,z) = x%yz. Find the point of maximum temperature.

The sum of the three dimensions of a rectangular box is not to exceed 45 inches, with the
length of one of its sides not to exceed half of the length of one of its other sides. Determine
the dimensions of such a box of maximum volume.

Find three positive numbers x, y, and z such that x+y+z = k and x%p?z¢ is maximum.

An open rectangular box has a fixed surface area S. Find the dimensions for maximum vol-
ume.

Find dimensions of the most economical open rectangular crate 96 cubic feet in volume if the
base costs 30 cents per square foot and the sides cost 10 cents per square foot.

An open symmetrical irrigation channel is to have a perimeter T — — — — — 7
of length / (see adjacent figure). Find the values of x and o to ;{ %
enable maximum flow.
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CHAPTER SUMMARY

PARTIAL DERIVATIVES

If z = f(x, y), then the partial derivative of f with respect to x
at (x V) is
L&t h y) —fey) 0z gy A y+h) —fx, )

8)(7 h—>0 5)/ h—>0

THEOREM

If z= f(x,y) and its partial derivatives f, f, f... fyx are
defined and continuous in an open region containing (X, y,),

then f, (X0, ¥) = fyx(xoaJ’o)-

DIFFERENTIABLE

A function z = f(x,y) 1is differentiable at (x,,y,) if
Az = flxq+ Ax,y,+ Ay) —f(xy,y,) can be expressed in the
form:

Az =fx(x0, yO)Ax +fy(x0,yO)Ay +e/Ax + g,Ay
where €,,6, - 0 as Ax, Ay > 0.

A function f is said to be differentiable if it is differentiable at
each point in its domain.

THEOREMS

If the partial derivatives f and fy exist and are continuous in an

open region about (x, y,) , then fis differentiable at (x, y) .

If z = f(x,y) is differentiable at (x, y,) , then /" is continuous at
(x()a y()) .

CHAIN RULES

(a)If z = f(x,y) 1is differentiable, and if x = g(¢) and
y = h(t) are differentiable functions, then the single variable
function z = f[g(¢), h(¢)] is differentiable, and:
dz 0Oz dx ozdy
dt  oxdt aydt
(b) If z = f(x,y) is differentiable, and if x = g(s,¢) and
y = h(s, t) are differentiable functions, then the two variable
function z = f[g(s, t), h(s, t)] is differentiable, and:
0z _ 0z 6x 0z Oy 0z 0Oz 8x 0z dy
Os 6x6s 0y Os ot oxot 8y8t

DIRECTIONAL
DERIVATIVE

The directional derivative of f in the direction of the unit vector
u = (a,b) = ai+ bj is given by:

D, fx,y) = hliinof(x *ha,y +hhb) —fx, )
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GRADIENT The gradient of a differentiable function z = f(x, y), denoted by
Vf£(x,y), or Vf, is the vector function:
VAx,y) = f,.(x, )i+ 1,(x, )j
The directional derivative of a differentiable function f(x, y) in
the direction of the unit vector # = ai + bj is given by:
D, flx,y) = Vf(x,y) u

D, f(xy,y,) assumes its maximum value when the unit vector u
is in the direction of the gradient vector Vf{(x,, y,), and its mini-
mum value when # is in the direction of —Vf{(x, y) .

TANGENT PLANE The tangent plane to the graph of f'at (x, y,, f(x(, y()) is the

plane passing through that point with normal vector:
fj‘c(x()a yO)i +fy(x()a y())j —k

LEVEL SURFACE

For given w = f(x, y, z) and constant k, the k-level surface of f
consists of all points (x, y, z) for which f(x, y,z) = k.

Vf(xy, 9 2z9) 1s perpendicular to the tangent plane to the level

surface of fat Py = (X, . Z¢)

LocAL EXTREMES

SECOND DERIVATIVE

If z = f(x,y) has a local maximum or minimum at an interior
point (x, y,) of its domain, then:

Vf(xoaJ’o) :fx(xoa)’o)i"'fy(xoayo)j =0

TEST
(@)If D> 0 and f, (x4, o) > 0:f hasalocal minimum at (x, y,) .
(b)If D >0 and f, (x(, yy) < 0:f hasalocal minimum at (x, y) .
(c) If D <0:f has asaddle point at (x,, y,) -
(d) If D = 0: Test is inconclusive.
LAGRANGE Maximum or minimum values of f(x, y, z), subjected to the con-
MULTIPLIERS

straint surface g(x,y,z) = k, occur among the points (x,y, z)
satisfying the vector equation:

V£x,v,z) = AVg(x,y,z) or Vg = 0




590 Chapter 13 Differentiating Functions of Several Variables



b
jb flryde = lim 3" f(x)Ax

(a)

We remind you that a
smooth curve is a curve
traced out by r(¢) for which
r'(¢) 1s continuous and
never 0.

14.1 Line Integrals

CHAPTER 14
Vector Calculus

§1. LINE (PATH) INTEGRALS

b
Our earlier development of the definite integral _[ f(x)dx is sum-
a

marized in Figure 14.1(a) (see Definition 5.3, page 178). Figures
14.1(b) and (c) generalize the concept to accommodate functions
defined on a curve C in the plane, and in three-space.

¥4 V4 w

W = S 3,2)

As

/\—/\ S \

f) 2= i b

J(x ) ., f
z ! (S
X wz; X
b b
if(x,y)ds = lim 3" fi y)As if(x, y.2)ds = lim 3" flx,y, 2
(b) (©)
Figure 14.1

As it is with the familiar integral in Figure 14.1(a), those in Figures
14.1 (b) and (c) also represent limits of Riemann sums. But while the

Riemann sum in (a) involves pieces Ax of the interval [a, b], those

in (b) and (c) involve pieces As of the curves C [in the xy-plane in (b)
and the xyz-space in (¢)].

Formalizing:
DEFINITION 14.1 Let the smooth curve C lie in the domain
Line Integral of a function =z = fx,y) or

w = f(x,y,z). The line (or path) inte-
gral of falong C is given by:

b b
Jf(x, y)ds = lim Zf(x, ¥)As or If(x, y,z)ds = lim Zf(x, ¥, 2)As
C As— 0 a C As— 0

of a Scalar Function

a
(providing the limit exists)

If f(x,y) = 1 [or f(x,y,z) = 1] and if the smooth curve C is
traced out exactly once under the parametrization

x=x(t),y = y(t),fora<t<b
(or: x = x(t), y =y(t), z = z(t) ,fora<t<b)

591
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then the line integral Il -ds denotes the length of the curve C

c
and is given by (see page 534):

foo = )G+ (@) Jon [ (57 (%) (S

a

Throwing a function f'into the mix we have:

THEOREM 14.1 Let x = x(¢), y = y(¢), for a<t<b be a parametrization of a smooth
curve C. For z = f(x, y) continuous on C:

s = [ nsoron (G« (5]

Forw = f(x,y,z),withx = x(¢), y = y(t) , z = z(t) ,fora<t<bh:
b 5 3 3
oo - {00z, (5" (57 (5
C a

b
We note that j f(x, y)ds [or j (x, y, Z)ds} is independent of the parametrization of C.
C a

y
! LGN T L] (a) Evaluate I(x +xy)ds where C is the por-
C
—>x tion of the unit circle x2 +y% = 1 lying in the
x2+y2 = 1,x>0,y>0 first quadrant, directed from (1, 0) to (0, 1).

(b) Evaluate J-(x +2y2+3z)ds where C is

c
the line segment from (0, 0, 0) to (1, 2, 2).

SOLUTION: (a) Turning to the parametrization x = cost, y = sint,

T
<t< ="
forO_t_z.
> dx\? | (dyn\?
02 ) X y)
+ = + =] +(=
j(x xy)ds '[O(cost costsint) (dt) (dt dt

C
T

= Jz (cost + costsint)/(—sinz)? + (cost)2dt
0

T 1 n/2
. . )
= J.z(costJr costsint)dt = (s1nt+§s1n t)
0

0

=1+

N —
N W

(b) Turning to the parametrization
x(t) =t y(t) = 2t, z(t) = 2¢t,0<t<1
we have:
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dz) 2
+ —_
()

[ +2y2+32)ds = I;(f+8t2+6t)J(‘§;)2+(@)2

dt
C

1
= j (842 + Tt) /12 + 22 + 224t
0

37

2

1
! 8 7 )
= 2 —3(8B34+ L2
3]0(81 + 7t)dt 3(3t +2t

While J. f(x,y)ds is independent of C’s parametrization, it need not

C
be independent of path. A case in point:

EXAMPLE 14.2 Evaluate J'(x +xy)ds where C is the line seg-

C
ment from (0, 1) to (1,0).

SOLUTION: Turning to the C parametrization x = ¢, y = —¢+ 1,
for 0<¢<1 we have:

_[(x+xy)ds = J.(l)[t+t(_t+ D] (%)Q_F(@)th

dt
In Example 14.1 we ¢ 1
observed that: 1 3
= ) 124 = z_l_) _ 2.2
e+ syas = 2 J @D AL -2
c

CHECK YOUR UNDERSTANDING 14.1

Evaluate Ixyzds where C is the helix with parametrization:
Answer: 0 N

x =cost,y = sint,z =t for 0<t<2n

The following parametrization for a line segment
from r{ to r; is used in the next example:

r(t) = rgtt(ry—rg) = (1=)rg+tr;, 0<1<1

xyds where C is the three-piece

EXAMPLE 14.3 Evaluate I
ica c

curve depicted in the margin.
—1 X
Vcl\‘.//czvz

SOLUTION: Using the parametrization:
=1

Cpyiry = (1=0)(=1,0)+£(0,—1) = (~1+4,—£),0<t<1
Cyiry = (1-1)(0,-1) +1(2,0) = (21,— 1+1£),0<1<1

Cyiry = (1-0)(2,0) +¢(2,2) = (2,2),0=<¢<1
we have:
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Ixyds

Answer:

é(5ﬁ72ﬁ+24+6m)

| 2 X
The further down, the heavier.

Ixyds + Ixyds + nyds
C, C, C;

jl (—1+0)(-0)J12+ (—1)2ait+j1 21(— 1+ 1)422 + 12dz+jlz(2t)ﬁdt
0 0 0
ﬁjl(t—tz)dt+2ﬁ_[l(—t+tz)dt+8jltdt
0 0 0
1
2 t
A(5-5) 5(5) O

fz@ +2ﬁ(_61) 14 é([z—zﬁ +24)

1 ) 3 1
=t
+2 (——+—) +
/3 2 3
0 0

CHECK YOUR UNDERSTANDING 14.2

Evaluate I xyds where C is the closed curve obtained by adding the

c
line segment from (2, 2) to the point (—1, 0) in the curve of Exam-
ple 14.3.

MaASS

Double integrals were employed to address the mass of thin flat
objects or laminas (see Example 11.14, page 451). Line integrals enable
us to do the same for “thin” curves. For example:

If the density at a point (x, y) of the wire ~ As. . C
C in the adjacent figure is given by 3(x, y), > N A
then its mass, M, is (naturally) defined to be: A \ ||
b M \ !
M= lim 38(x,p)As = [8(x,y)ds. LI —— T
As—0 e e
a ¢ a=tyty L Ly b=t

N

EXAMPLE 14.4 Find the mass of a wire C in the shape of the
semicircle x2+y% = 4, y>0, with density
5(x,y) = k(3-y).

SOLUTION: Turning to the
y = 2sint, for 0 <t <1 we have:

C parametrization x = 2co0s?,
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M = jS(x,y)ds = kj(3 —y)ds
C . C
= kj (3—2sint)J(—2sint)2+g2cost)2dt
0 1

7T
2kj (3-2sint)dt = 2k(3t+2cost)|; = 2k(3n—4)
0

CHECK YOUR UNDERSTANDING 14.3

Find the mass of the “slinky” C(¢) = (cost, sint, ¢) for 0<¢< 67,
with density function 6(x,y,z) = 1 +x+z

Answer: 2(6n + 1872)

LINE INTEGRALS OF VECTOR-VALUED FUNCTIONS

A vector-valued function (in two- or three-space) is a function that
assigns a vector (as opposed to a scalar) to elements in its domain; as is
the case with the function:

F(x,y) = xi+yj in R? and G(x,y,z) = 0i+0j+zk in R3
If you position the vector F(x,y) directly at the point (x,y) and

G(x,y,z) at (x, ), z), then you arrive at a visual representation of what

are called the vector fields associated with the given vector functions F
and G (see Figure 14.2).

. |2/ Trreeee
Nr\ —7 . I I I )
v Vivevye Y
2N i
F(x,y) = xi+yj G(x,y,z) = zk
Figure 14.2

Our next goal is to generalize the concept of work defined on page 211:

Ax—0

b
W= lim 3 flx)Ax; = j bf(x)dx

to arrive at the definition of the work done by a force
F(x,y) = g(x,y)i+ h(x,y)j inmoving an object from point 4 to point
B, along a smooth curve r(¢) = x(¢)i+ y(t)j, a <t <b.Once again, we
DIVIDE AND CONQUER:
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T(r(1)

/

Note that F - T is the scalar
component of F in the
direction of the curve’s unit
tangent vector T (see Defi-
nition 12.5, page 503).

In three space:
For F(x,y,z) and

r(t) = x(0)i+y(0)j +z()k
a<t<b '

b
W= j F(r(t)) - r'(t)dt

Note:

For r(¢) = x(t)i +y(t)j, the
symbol F(r(t)) represents
F(x(2), y(1)) .

For As small, the particle’s movement KB
) F
along As can be approximated by a move- '
ment in the direction of the unit tangent vec- |4 As |

tor T(r(z;)). That being the case, the work
done by F in moving the particle from r(¢;) to

— —>x
| | | L1 11 o

T T LI T

ofp G liva b=1t,

r(t; . ,) can be approximated by:
F(r(1,) - [As; T(r(2)))] = [F(r(2) - T(r(1;))]As;
(see Exercises 49-52, page 512)
Leading us to the definition: W = IF - Tds

C
As for the rest of the story:

THEOREM 14.2 The work ¥ done by a continuous force field
F(x,y) along a smooth curve C with param-
etrization r(¢) =x()i+y(t)j,a<t<b 1is
given by:

b
W= jF~ Tds = j F(r(t)) - r'(t)dt
a

C
(providing the integral exists)

b
We also write: W = .[F dr = I F(r(2)) - r'(¢)dt , where, symbolically: dr = Tds

PROOF:
W= [[F(x,) - T(x,y)]ds
C
b 2 2
Theorem 14.1: = I F(r(t)) - T(r(t)) (‘%} +(i%) dt

: /
- [ o) 2ol = [ Fro) - v/ (oyde
. Ir2 (0 .

unit tangent vector in direction of 7(r(?))

EXAMPLE 14.5 Find the work done by the planar force field
F(x,y) = xi+(x+y)j in moving a particle
along the path (1) = 2i+£3j,0<t<1.

SOLUTION:

b 1
W= j F(r(t)) - r'(t)dt = j F(22,3) - (2ti + 3t%j)dt
a 0

1
= j (2i + (12 + 83)f) - (2ti + 3£%j)dt
0
1
= .[ (263 +3¢4 + 365)dt
0

1

4 5 6

- (f_+3_f+f_)
2 5 2 0

_8
5
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CHECK YOUR UNDERSTANDING 14.4

Answer: 2% Find the work done by the force field F(x,y,z) = xi+ (x+y)j +zk
in moving a particle along the path r(¢) = 2i+3j+tk, 0<t<1.

10

Replacing the force field F in Theorem 14.2 with a more general vector
) o field brings us to:
Different applications and

interpretations of line inte-  PYEFRINITION 14.2 Let r(¢), a<t<b be a parametrization of

grals are rampant throughout

mathematics and the sciences. LINE INTEGRAL the smooth curve C, and let F be a continu-
In particular: : .

If Fis a force field, then the OF A VECTOR f)us vector functlofl defined on C. The lmg

line integral denotes the WOI'k FUNCTION lntegl'al (OI‘ path lntegral) OfF over C, 1S

done by F along C. given by:

If F denotes the velocity field b

of a fluid, then the line inte- . _ . _ L

gral represents the flow of the .[ F-Tds .[ F-dr .[ F(r(1) - r'(1)dt

fluid along the curve C. o c “

EXAMPLE 14.6 Evaluate
[i+2xj+3zk) - dr

C . . .
for the curve C depicted in the margin.

SOLUTION: Turning to the line-segment parametrization
r(t) = (1-ry+itr, 0<t<1

we have:
Ci:rp = (1-1(0,0,0)+¢0,2,0) = (0,2£,0),0<¢<1

Cy: 1y = (1-0)¢0,2,0) +(1,2,0) = (£,2,0),0<¢<1

Cyory = (1-0(1,2,00+£(1,2,2) = (1,2,2,0<<1
Hence:
[F-dr=[F-dr,+ [F-dr,+ [ F-dr,

C C, C, C,
On C,.For0<¢<1:x =0,y = 2¢, and z = 0. Thus:

1

[F-dry = [ (vi+2xj+3zk) - dr,
0

¢,

1
= j (2ti + 0j + 0k) - (0, 2¢, 0)'dt
0
1 1
:j (21,0,0) - (0,2,0)dt = j 0dt = 0
0 0

On C,.For0<¢<1:x =1ty =2, andz = 0. Thus:
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1

jF-dr2 = j (yi + 2xj + 3zk) - dr,
0

G

1
= [ Qi+4j+0k)-(1,2,0)
0
1 1 1
= [ (2,6,0)-(1,0,0) = [ 2dr = 24| =2
0 0

On C;.For0<¢<1:x =1,y = 2, andz = 2¢. Thus:

1

jF-dr2 = j (yi+2xj +3zk) - dr,
0

C

1
= [ Qi+ 1j+6rk)- (1,2,21)
0
1 1 1
— [ (21,60 -€0,0,2) = [ 12¢dr = 62|, = 6
0 0

Hence: J.F~dr= IF-dr1+IF-dr2+IF-dr3 =0+2+6 =8
C C, G, (8

CHECK YOUR UNDERSTANDING 14.5

Evaluate IF- dr for F(x,y,z) = yi+2xj+3zk and C the line

Answer: 9 segment §0m the origin to the point (1, 2, 2) (compare with above
example).

If Cis a curve with parametrization r(¢), a <t < b, then —C will denote
the curve with parametrization r(z) = r(a+b—t),a <t <b. Note that
r(t) traces out C, but in the opposite direction of r(¢):

r(t) starts at r(a) = r(a+b—a) = r(b)
and ends at #(b) = r(a+b—->b) = r(a).

THEOREM 14.3 If r(t),a<t<b is a parametrization for the
smooth curve C and if F is a continuous vector

Reminiscent of: function defined on C, then:

jzf(X)dx > —j:f(X)dx jF dr = - j F-dr
C -C



14.1 Line Integrals 599

PROOF: b
ROOF: j F-dr = j F(i(t)) - ' ()dt

From the chain rule: “c a

91(0)) b

= —j F(r(a+b—1t)-r'(a+b—1t)dt

— i[r(a +b-1)] see margin/ a

dt y
= [ratb-Dl(a+b-1t) = j F(r(a+b—1t))-r'(a+b—1t)dt

= r'(a+b-1)(-1) b

u=at+b—t
du = —dtordt = —du >
t=b=u=a

—ij(r(u))-r'(u)du = jF-dr

t=a=>u=>b C

CHECK YOUR UNDERSTANDING 14.6

Referring to the function F and curve C of Example 14.6, show,
directly, that:

jF-dr =—jF-dr
C -C

Answer: See page A-32.

ALTERNATE NOTATION FOR LINE INTEGRALS

Let F(x,y) = P(x,y)i+ Q(x, y)j be avector field defined on a curve
C with parametrization r(t) = x(¢)i + y(¢)j,a <t < b . Then:

b d d
JF-ar = [ | PG+ 0G5 |
C a
o dx b dy
= | Peyygdi+ | 0y g

=fﬂxwm+quw@

A mnemonic device:

I F-dr Imposing a more compact form:
b
= j(PHQj) - (dxi + dyj) jF dr = j Pdx + Qdy
a
= dex + Qdy ¢

EXAMPLE 14.7 Determine I xydx + ydy , where C has param-

c
etrization r(¢) = t2i+5¢4,1<t<2.

SOLUTION: For x(¢) = 2 and y(¢f) = 5t we have % = 2t and

dy

7 5. Consequently:
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Earlier notation:

1
[ Fedr= [ (5534 50) - v
C 0

1
= J' [(563i+51)) - (21i + 5))]dr
0

J(lOt +250)dr =

Samee

Answer: %é

notation for

/ 1
J.xydx +ydy = . |:(l‘2 51)— + Stgy]dt

C

= jl[5t3(2z)+-5z(5)]a& = jl(10t4+-25t)a&
0

ﬁ+2ﬁ3‘

CHECK YOUR UNDERSTANDING 14.7

Determine '[ xydx +ydy +yzdz, where C has parametrization
c
r(t)=12i+54-202k, 1<t<2.

As previously noted, line integral of a vector-valued function F

defined on a curve C with parametrization r(¢) for a < ¢ < b can be rep-
resented in several forms:

b b
IF-ﬂh ijh or jﬁ‘@ﬂt or IFOQDq%UW
C a dt a
In addition, we have:
For F(x,y) = P(x,y)i+ O(x, y)j For F(x,y,z) = P(x,y,2)i+ Q(x,y,2)j + R(x, y,2)k
and C in the plane: and C in three-space:

[[Pen® 0@ | |[[Per 2%+ 00 2% + Ry
or: or:

b b
IPW+Q@ ij+Q@+R&
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EXERCISES

Exercises 1-11. Evaluate I f(x,y)ds for the given function f'and given path C.
C
1. fix,y) = x2+y, and C is the line segment from (0, 0) to (1, 1).

2. flx,y) = x+y? and C is the line segment from (1, 1) to (4, 5).

3. f(x,y) = 2+x2y,and C is the upper half of the unit circle x2 + 2
counterclockwise direction.

1, traversed in a

4. f(x,y) = 2+x%y, and C is the lower half of the unit circle x2 + y2 = 1, traversed in a
counterclockwise direction.

5. f(x,y) = xy*, and C is the right half of the unit circle x2 + 2
clockwise direction.

4, traversed in a counter-

2
6. f(x,y) = 1+x%, and C is the right half of the ellipse % +y2 = 1, traversed in a counter-
clockwise direction.
7. fix,y) = 3x,and Cis the curve y = x2 from (0, 0) to (3,9).

8. flx,y) = xy,and Cis the curve x = y2 from (0, 0) to (3,9).

9. f(x,y) = xy,and C consists of the line segment from (0, 0) to (1, 1) followed by the line
segment from (1, 1) to (1,2).
10. f(x,y) = " j_c 5> and C is given parametricallyby x = 1 +2¢,y =t for0<¢< 1.
y

11. f(x,y) = 4x3, and C consists of the line segment from (-2, —1) to (0, 1) followed by
the graph of y = x3 —1 for 0 <x < 1, followed by the line segment from (1, 0) to (1, 2).

Exercises 12-16. Evaluate I f(x, v, z)ds for the given function f and given path C.
c

12. f(x,y,z) = z+y?, and C is the line segment from (0, 0, 0) to (1,4,2).

13. f(x,y,z) = x—3y2+z, and C is the line segment from (0, 0, 0) to (1,1, 1).

14. f(x,y,z) = x—3y+z, and C is consists of the line segment from (0,0,0) to (1,1, 1)
followed by the line segment from (1, 1, 1) to (1, 1, 3).

15. f(x,y,z) = xyz, and C is the helix given by x(¢) = cost, y(¢) = sint, z(t) = 3¢ for
0<t<4rn.

16. f(x,y,z) = —AJx2+2z2, and C is given parametrically by x(¢) = 0, y(¢) = acost,
z(t) = asint for 0 <t <2m.
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17. Find the mass of a wire in the shape of a semicircle x(¢) = 2cost, y(¢) = 2sint for
0 <¢ < m, with density function d(x,y) = y+2.
2t3/2

3 for

18. Find the mass of a wire in the shape of the curve x(¢) = ¢, y(¢t) = 2t , z(¢) =
0 <t <1, with density function 6 = 3./5 +¢.
19. Find the mass of a wire in the shape of the helix x(¢#) = 3cost, y(t) = 3sint, z(t) = 4t for

0 <t <, with density the square of the distance from the origin.

Exercises 20-31. Evaluate J-F - dr for the given function F and curve C with given parametriza-
tion r(z). ¢

20. F(x,y) = (x+2y)i+Qx+y)j, r(t) = ti+t% for 0<t<1.

21. F(x,y) = xyi+y?%j, r(t) = costi+ sintj for 0 <¢<

w3

22. F(x,y) = xyi+sinyj, r(t) = eli+ej for 1 <t<2.

23. F(x,y) = (e +y)i+xj, r(t) = ti+ 1% for 0<¢<1.

24. F(x,y) = e li+xyj, r(t) = t2i+ 3 for 0<t<1.

25.  F(x,y) = x%2i—yj ,r(t) = ti+eljfor0<t<2.

26. F(x,y,z) = xi+yj—zk, r(t) = ti+33j+283k for 0<t<1.
27. F(x,y,z) = 8x2yzi+ 5zj—4xyk, r(t) = ti+t3j+ 3k for 0<¢<1.

28. F(x,y,z) = (x+y)i+(y—z)j—z%k, r(t) = t2i+3j+ 2k for 0<r<1.

29. F(x,y,z) = (Qxz+y2)i+2xyj+ (x2+3z2)k, r(t) = 2i+(t+1)j+2t-1)k for

0<¢t<1.
30. F(x,y,z) = ei+xelj—(z+1)e?k, r(t) = ti+ 13+ 3k for 0<¢<1.

31. F(x,y,z) = sinxi+ cosyj+xzk, r(t) = Bi+t3j+tk for 0<t<1.

32. Find the work done by the force field F(x,y) = yi+xj in moving a particle along the path
r(t) = ti+13 ,1<t<2.

33. Find the work done by the force field F(x, y) = xyi+x3j in moving a particle along the path
r(t) = tV2i+ 1145, 1<t<16.



34.

35.

36.

37.

38.

39.

40.
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Find the work done by the force field F(x,y) = xsinyi+yj in moving a particle along the
parabola y = x2 from (-1,1) to (2,4).

Find the work done by the force field F(x, y) = xi+ (y+ 2)j in moving a particle along the
path r(¢) = (¢t—sint)i+ (1 —cost)j, 0<t<2m.

Find the work done by the force field F(x, y,z) = (y+z)i+ (x+2z)j+ (x + y)k in moving a
particle along the line segment from (1, 0,0) to (2, 1,5).

Find the work done by the force field F(x, y,z) = (y —x2)i+ (z—y?)j + (x —z2)k in mov-
ing a particle along the path r(¢) = ti + %+ 3k, 0<t<1.

Find the work done by the force field F(x, y,z) = zi + xj + yk in moving a particle along the
path r(¢) = (sint)i+ (cost)j+tk, 0<¢t<2m.

Find the work done by the force field F(x, y,z) = x%i +y%j +z2k in moving a particle along
the path r(¢) = (1 +2)i+3j+[2+sin(nt)]k, 0<t<1 .

Find the work done by the force field F(x,y,z) = (x +y)i+ (x—y)j + 4zk in moving a par-
ticle along the path r(¢) = sin(3¢)i + cos(3¢)j+3tk, 0<t<1 .
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A curve C with parametriza-
tion r(t), a <t < b issaidto
be closed if r(a) = r(b):

C
A closed curve: O

The symbol §F~ dr isused

C
to indicate that the path C is
closed.

Answer: See page A-33.

§2. CONSERVATIVE FIELDS AND PATH-INDEPENDENCE

Here is one of the main characters of this section.
DEFINITION 14.3 A vector field F is said to be path-indepen-
PATH-INDEPENDENT  dent in a region S if for any two points p
VECTOR FIELDS and p, in §, and any two smooth curves C,
and C, in § from p, to p;:

As it turn out, to challenge a vector field for path-independence one
need only consider closed paths (see margin):

THEOREM 14.4 A vector field F is path-independent in a

region § if and only if j;F -dr = 0 for every

C
(smooth) closed curve Cin S.

PROOF: Assume that F is path-independent. Consider the closed
path C in Figure 14.3(a) (with indicated orientation). Choose two

points p, and p, on C. Break C into two pieces C;, C,, oriented so
that they both start at P, and end at P, as is indicated in Figure

14.3(b).
C 0 0
C
P P1 G
@)

(b)
Figure 14.3
We then have:

5€F~dr= J.F-dr+ jF-drz jF.dr—der:o

c C, -G, T c c,
Theorem 14.3, page 599 by path independence

As for the converse (your turn):

CHECK YOUR UNDERSTANDING 14.8

Show that if §F -dr = 0 for every closed curve C in S, then F is

C
path-independent in S.

In general, vector fields tend not to be path-independent; even “nice”
ones, like the vector field F(x,y) = xi+ (x+y)j of Example 14.5,
page 628. Theorem 14.5 below, often called the Fundamental Theo-
rem for Line Integrals, identifies an important class of path-indepen-
dent fields:
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DEFINITION 14.4 A vector field F is said to be conservative

We remind you that: CONSERVATIVE FieLp ©on a set Sif there exists a scalar-valued

VI, y) = £ )i+ 1 (5, ) function f, called a potential function for F,
and: such that for every p € S:
Vf(x,y,z):fxiJrfijrfzk F(p) _ Vf(p)
Conservative fields are path independent. Indeed:
Compare: _ : .
£ F = V7, then: THEOREM 14.5 If F = Vf and if £ has continuous first order

partial derivatives in an open region S, then:

[F-dr = fip))~fipo) For any two points p,, p, in S, and any

C
with the Fundamental Theo- piecewise-smooth curve C from p, to p; :
rem of Calculus (page 180):
If f(x) = ¢'(x), then: [F-ar = fip)~flpy)
c

b
[ fxydx = g(b)—g(a)
PROOF: We establish the proof for a smooth curve C in the plane. Let

<t< izati :
A proof for piecewise-smooth r(t), a<t<b,be a parametrization of C from p, to p,, then:

curves canbe obtained by con- b b
sidering its pieces separately. IF dr = .[ F[r(t)] -r'(t)dt = J. Vf(l’(t)) < (t)dt
a a
¢ Definition 14.2, page 597 ) b d
margin: = [ Zf(r(1))]de
VAR 0 = f B+ adl

Ydt b
From Theorem 13.4(a) page 555: - [f(r(t))] |a
SOy = L D = f(r(b)) = f(r(a))
= flpy) —1(py)

The above theorem tells us that line integrals of conservative vector
fields are path independent. In most cases the converse also holds; spe-

cifically:
Aregion Sisconnectedif any 1T HEOREM 14.6  Let F'be a continuous vector field on an open
two points p,, p, in S can be connected region S (see margin). If F is inde-
joined by a (smooth) curve pendent of path in S, then it is conservative

contained in S.

(i.e: F = Vf for some f).

Proof: We offer a proof for a two-dimensional region S.
Fix a point (a, b) in S and let (x, y) be any other point in S. Since
S is an open region, we can choose a circle, centered at (x, y),
that is contained in S, along with a point (x,, y) in the circle that

lies directly to the left of (x, ) (see margin). We then define

fix,y) = jF~dr+jF-dr
C L
where C is a smooth path from (a, b) to (x;,y), and L is the hor-

izontal line segment from (x,,») to (x,y). Note that f'is well-
defined, as F is independent of path.
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We now show that F = Pi+ Qj = Vf:

While we do not know the value of J.F - dr, we do know that it

C
is solely a function of its endpoints (a, b) and (x,,y). As such,

I F - dr is independent of x, and therefore: aﬁ I F-dr=0.
X
C C

Turning to IF -dr, with parametrization r(¢) = ti+yj,
L
x; <t<x,wehave:

0 0 . . . 0
OfF-ar = 2 [P(y)i+ 0l (e = [ P(t,y)di
aXL 8)( X ax X
Theorem 5.7, page 178: = P(x, y)
Note that, since y is held fixed, %f P(1, y)dt = %r P(1, y)dt

At this point we know that:
9 fixey) = 2| [F-dr+ [Fdr| = P(x.y)
0x ox a 7

A similar argument with the vertical line L depicted in the margin
can be used to show that:

O fixy) = 06 )
Y

And so we have: F = Pi+ Qj = Vf.

Combining 14.4 and 14.5 we have:

A continuous vector field F on an open connected region S is
path-independent if and only if it is conservative [i.e: F = Vf].

We also have:

THEOREM 14.7 (a) If F = P(x,y)i+ O(x,y)j is a conservative
vector field on an open region S for which the second
partial derivatives of P and Q are continuous, then:

o°P _ 00

oy  Ox

(b)If F = P(x,y,2)i+ Q(x,y,z)j + R(x, y,2)k is
a conservative vector field on an open region S for
which the second partial derivatives of P, O, and R
are continuous, then:

8P _ 30 &P _0R 80 _ &R

oy Ox’ 0z 0Ox’ 0z Oy



Answer: See page A-33.

As you might anticipate:
S is an open region in three-
space if for any point
(xg,¥-2o) In S there exists

r>0 such that the sphere of
radius 7 centered at (x, v, z,)
is contained in S.

We previously observed that
this vector field F is not
independent of path (see
Example 14.6 and CYU
14.5, pages 597and 598.

Answer: See page A-33.
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PROOF: (a) If F is conservative with potential function f, then:
F = Pi+Qj = Vf(x,p) =fxi+fyj
=P =f and Q=f
P 0
oy v T ¥ ox
Theorem 13.1, page 552

=

As for (b):

CHECK YOUR UNDERSTANDING 14.9

Establish part (b) of Theorem 14.7.

EXAMPLE 14.8 (a)Show that F(x,y) = xyi+ yxj is not con-

servative on any open planar region S.

(b)Show that F(x,y,z) = yi+2xj+3zk is
not conservative on any open spacial region S.

SOLUTION: (a) For F = Pi+ Qj = xyi+yxj :

a—PZxanda—xQ:y

oy 0
Since the open region S must contain a point (x, y) with x #y, and

. P . . .
since op # 00 for any such point, F is not conservative on S.

oy Ox
(b) For F = Pi+ Qj+ Rk = yi+2xj+3zk:
oP 00 _
3y 1 anda 2.

It follows, from Theorem 14.7, that F is not conservative on S.

CHECK YOUR UNDERSTANDING 14.10

Show that the vector field F(x,y,z) = xi+zj+ yzk is not conser-
vative on any open spacial region S.

The converse of Theorem 14.7 need not hold:

EXAMPLE 14.9 Show that the vector field
oy . -x .
F = +
X2 + le )C2 + y2]
satisfies the condition 8_P = 6_Q but fails to
oy  Ox
be conservative on the open region

S = {160, y)#(0,0)}.
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SOLUTION: Note that F satisfies the given condition:
[ v J _ (2 -(@2y) o x2-y?
y

x2+y2 (x2+y2)2 (x2+y2)2
o= ] o @E@EpHED - (0)Q2x) | _x2-y?
and: |:X2 +y216 (xz +y2)2 (xz _|_y2)2

We now show that F' is not conservative on S by demonstrating that it
is not path independent in S (see Theorem 14.4):

Let C and C be the curves from (1, 0) to (-1, 0) with parame-
trizations:

r(t) = (cost)i+ (sint)j,0<t<m

and r(¢) = (cost)i— (sint)j, 0 <t < m, respectively
Then:

[F-dr = [ F(r(t) - r(yr
C 0 AN

2., .2
note that x2 +32 = cos t+sin"t = 1

= In[(sint)i+ (—cost)j] - [(—sint)i + (cost)j]dt
0

T T
= I (- sinzt—coszt)dt = —I ldt = —n
0 0

On the other hand:

IF- dr = jnF(m)) P (8)dt
c 0

= In[(—sint)i+ (—cost)j] - [(—sint)i + (—cost)j]dt
0

= Jﬁ(sinzt+cos2t)dt = Jﬁldt =T
0 0

We maintain that the culprit in the above example is not the vector

field F, but is the region S, which contains a “hole”: it is missing the
Roughly speaking, Sis simply point (0, 0). Indeed (proof omitted):
connected if it has “no holes”

init. To put it another way: the THEOREM 14.8 Let F = P(x, y)i+Q(x, y)j be a continu-

interior of every closed curve ously differentiable vector field on a simply
in S that does not intersect i i

: 3 connected open region S (see margin). If
itself anywhere between its P 8 ( gin)

G IO E I remiiien op _ 00 in S, then there exists a function f
in S. Visually speaking: oy Ox ’

with continuous partial derivatives such that
F = Vf (i.e. Fis conservative).

Not simply connected



They are equivalent in
that ifany one holds, then
the remaining three must
also hold.
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Merging previous results we come to:

THEOREM 14.9 Let F be a continuous vector field on a simply
connected open region S.

The following properties are equivalent:

(1) {>F -dr = 0 for any smooth closed curve
Cin S.
(i) F is a conservative vector field on S, i.e.

F = Vf.
(i11) F = Vf is path-independent on S with

[F-dr = fip)~fipy)
C

for any smooth curve C from p, to p, .

In the event that we are dealing with a vector
field with continuous second partial derivatives,
we can throw in a fifth equivalent condition:
(iv)For F = P(x,y)i+ Q(x,»)j:

oP _ 00

dy  ox
For F = P(x,y,z)i+ Q(x,y,z)j + R(x,y,z)k:

8P _ 30 &P _0R 80 _oR

dy Ox’ 0z Ox 0z Oy

We now turn our attention to the task of finding potential functions
for conservative vector fields:

EXAMPLE 14.10 Show that
F(x,y) = (x—y?)i+(-2xy + siny)j
is a conservative vector field, and find a
potential function for F.

SOLUTION: Theorem 14.9(iv) assures us that F is conservative:
(x-y?), = -2y and (-2xy+siny) = -2y

To find f such that F = Vf we consider:

(x=y2)i + (~2xy + siny)j = VAxp) = f(x. )i +1,(x, 9)j
Which brings us to:

(D): fu(x,y) = x=y* and  (2):f,(x,y) = —2xy +siny
Treating y as a constant in (1), we integrate x —y2 with respect to x,
gefeii.zing that the resulting constant of integration will be a function

X2

B): fny) = [(r=y)dr = S —xp2+g(7)
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The appearance of the constant
C tells us that the potential
function f'in (3) is not unique.

For P(x,y,2)i+ Q(x,,2)j + R(x, , 2)k

P,=0.P.=R.0, =R,

Our next goal is to find g(»). To do so, we take the partial derivative
of (3) with respect to y to arrive at:

1 y) = 2xy+[g(¥)], = 2xy+g'(y)

2(y) contains no x
Bringing (2) into the picture, we have:
—2xy+siny = 2xy+g'(y) = g'(y) = siny
So: g(y) = Isinydy = —cosy+C

Letting C = 0 we have an answer:

2
F(x,y) = (x—y?)i+ (-2xy + siny)j = Vf = V(% —xy? - cosy)

EXAMPLE 14.11 Show that

F(x,y,z) = (2x2)i + (-2pz)j + (x> = yD)k
is a conservative vector field, and find a poten-
tial function for F.

SOLUTION: Verifying (iv) of Theorem 14.9 (see margin):
P, = (2xz)y =0 and O, = (2yz), = 0

P, = (2xz), = 2x and R = (x?—)?), = 2x
0, = (2yz), = -2y and Ry = (x2_y2)y = 2y

At this point we know that ' = Vf for some f. To find such a poten-
tial function we turn to:

(2xz)i+ (_2yz)j + ('xz _yz)k = fx(x, s Z)i+fy(xay5 Z).] +.fz(xa Vs Z)k
Bringing us to:
(l)zfx(xay’ Z) = 2)CZ, (Z)ny(x:ya Z) = _ZyZa (3):fz(x:ya Z) = xz_yz

Treating y and z as constants in (1), we integrate 2xz with respect to
x, realizing that the resulting constant of integration will be a function

gy, 2):
@): f(x,y,2) = [2xzdx = x?z+g(»,2)
Our next goal is to find g(y, z) . To do so, we take the partial deriva-
tive of (4) with respect to y to arrive at:
Ly, 2) = g, 2)],

From (2): —2yz = [g(y, z)]y
So: g(v,2) = [(-2pz)dy = —y?z +h(z)

Returning to (4), we have:

(5) f(xa Y, Z) = xzz _yzz + h(Z)
Taking the partial derivative with respect to z:



Answer: See page A-33.
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f;(x:y: Z) = x2 _y2 + h’(Z)

From (3): X2 —y2 = x2 —y2 +h'(2)

h'(z) =0=h(z) = C

Letting C = 0 and returning to (5) we have an answer:
F(x,y,z) = V(x*2-yz)
Check:
V(x?z—y%z) = (x?z—y%z),i + (x?z —yzz)yj +(x%z-y%z2).k
= (2x2)i - (2y2)j + (x* —yD)k

CHECK YOUR UNDERSTANDING 14.11

(a) Show that F(x,y) = 2xyi+x2j is a conservative vector field,
and find a potential function for F.

(b) Show that F(x,y) = (2xyz)i+ (x2z)j+ (x2y)k is a conserva-
tive vector field, and find a potential function for F.

EXAMPLE 14.12 Eyaluate J-F - dr where:

C
F(x,y,z) = (2xz)i + (-2yz)j + (x> - y*)k
and where the curve C has parametrization:

r(t) = (tcost)i+tj+ (sin“t)k, 0< ¢ < Z—:.
SOLUTION: Approach (a): We showed, in Example 14.11, that F is a

conservative field with potential function A(x,y,z) = x%z —y2z.

i = T = (Teos® T 2T
Since r(0) = (0,0,0) and r(4) (4c0s4, 7 Sin 4) the curve C

. . 1
starts at the point (0, 0, 0) and ends at the point (—n—, E, 5) .
4.2 4

Employing Theorem 14.9(iii) we conclude that:

[F-ar =f(2n[——2,§,%)—f(0,0,0)
C

JCACROIORE

x2z—y2z
Approach (b): The above approach hinged on the lengthy solution of
Example 14.11. Here is a more independent solution:
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Rather than performing the tedious integration IF - dr along the

c
- 1 path C, we chose to take the path C = C,uC,u (5 from
i)
1
5 C" . (0,0,0) to ( 2) (see margin).
3
_“_C/ s Turning to the hne-segment parametrization
ih
/ C, r(t) = (1=trg+tr;, 0<t<1
we have:
) T T
C,: rl—(l—t)(000)+([00) (ItOO) 0<t<1
T
Gy ry = (10 0,0) + o 2= ) ( o) 0ci<1
22 4.2 47
C:r—(l—t)( 0)+( = Z)O<t<1
ALyt il vy
For F(x,y,z) = (2xz)i+ (-2yz)j + (x2 — y?)k we then have:
[F-dar=[F-dr,+[F-dry+ [ F-dr,

C C, C, C3

(1[50 G e (o

1 1 11/-2 2 2
B l(n n) . ( T )
= 4 S I I = [
IOOdt IOOdt _[02 5 1) 4 !
0

CHECK YOUR UNDERSTANDING 14.12

Use both of the approaches of the previous example to evaluate

IF -dr for F(x,y) = 2xyi+ x%j and where the curve C has param-
L c
Answer: T024 o 2.
etrization: r(¢) = (tcos t)i +¢+j for 0<¢ <

~13

CONSERVATIVE FORCE FIELDS
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By now, the term conservative force field should be self-explana-
tory. That being the case:

EXAMPLE 14.13 Find the work done by a particle in moving
from the origin to the point (3, 6), while sub-
jected to the force field F(x, y) = e¥i+ xe’j.

Note that F is conservative: SoLUTION: We find a potential function f* for F:
(eY) E (_xey)x = ey . . . .
Y eXit+xelj = f.(xy)i+f,(x )

fxy) = e S5, y) = xe’

integrating with respect integrating with respect

to x, holding y fixed: to y, holding x fixed:
Jx,y) = xe¥+g(y) f(x,y) = xe¥+ h(x)

It follows that f(x, y) = xe” is a potential function for F. So:

jF-dr =1(3,6)—f(0,0) = 3¢b
C

CHECK YOUR UNDERSTANDING 14.13

Show that the work done in moving a particle from the (0, 0,0) to
(xg» Yo 29) When subjected solely to the force of gravity —mg, is equal

to —mgz,, independently of the chosen path taken from (0, 0,0) to
Answer: See page A-35. (Xg» Yo» Z0) -
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EXERCISES

Exercises 1-12. Determine if the vector field F is conservative on the region S. If it is, find a func-
tion f'such that /' = Vf.

l. F(x,y) = (x—y)i+(x—-2)j,S = R2.

2. F(x,y) = 2xy%i+(1+3x%y2)j ,S = R2.

[98)

F(x,y) = 2xy3i+(1+3x2y%)j , S = R2.

4. F(x,y) = (3+2xp)i+ (x2-3y2)j, S = R2.

5. F(x,y) = (ycosx +2xe¥)i+ (sinx +xe¥ +4)j,S = R2.

6. F(x,y) = (ycosx +2xe¥)i+ (sinx +x2e¥ +4)j, S = R2.

7. F(x,y,z) = yz%i+ (2xyz—y)j+ (xz2-2)k ,S = R3.

8. F(x,y,z) = yz2i+ (xz2—z)j+ 2xyz—y)k , S = R3.

9. F(x,y,z) = (e*cosy +yz)i+ (xz—e*siny)j+ (xy+z)k, S = R3.

10. F(x,y,z) = (xz—e*siny)i+ (e*cosy +yz)j+ (xy+z)k, S = R3.

11. F(x,y,z) = y%i+ (2xy +e3?)j+3ye’k, S = R3.

12. F(x,y,z) = y%i+Qxy+e3?)j+ye’k , S = R3.
Exercises 13-16. Verify that the vector field F is conservative. Evaluate IF - dr using both
Approach (a) and Approach (b) of Example 14.12. ¢

13. F(x,y) = yi+xj and C with parametrization r(¢) = sinti + 2¢j for g <t<m.

14. F(x,y) = (xy)i+ (x—y)j and C with parametrization r(¢) = t2i+2£3j for 0<¢<1.

15. F(x,y,z) = (yz+ 1)i+ (xz+2)j+ (xy+ 3)k where C is any smooth curve from the ori-
gin to the origin to the point (1, 2, 3).

16. F(x,y,z) = e’i+xe’j+(z+1)e‘k and r(t) = ti+t3j+ 3k for 0<t<1.
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Exercises 17-25. Verify that the vector field F is conservative and then evaluate jF - dr where C

has parametrization r. ¢

1
2+

17. F(x,y) = (3+2xy)i+ (x2-3y2)j, r(t) = eli+ ZI for0<r<1.

18. F(x,y) = (3+2xy)i+ (x2-3y2)j, r(t) = sinti+ 283 for 0<¢<1.
_ 2. 2.8 _ AN Tt .

19. F(x,y) = xy“i+x<yj, r(t) = | t+ sm—2— i+|t+ cos; jfor0<¢<1.

20. F(x,y) = (x+2xp)i+(x2=3y2)j, r(t) = sin2ti+3j for 0<¢<1.

21. F(x,y) = (3+2xy)i+ (x2—3y2)j, r(t) = e'sinti+e’costj for 0 <t<m.

22. F(x,y,z) = yz2i+ (xz2 —2)j + Qxyz—y)k, r(t) = t2i+ 35+ 3 L

kfor0<¢<1.
t+1

23. F(x,y,z) = yz2i+ (xz2 - 2)j + RQxyz—y)k, r(t) = L 2i+t2j+k for0<¢<1.

2+

24. F(x,y,z) = (yz+ )i+ (xz+2)j+(xy+3)k, r(t) = i+ 3+ tz%lk for0<¢<1.

25. F(x,y,z) = (yz+ )i+ (xz+2)j+(xy+3)k, r(t) = eli+3j+e't2k for 0<t<1.

Exercises 26-29. Determine a function K(x, y) for which the field F is conservative in § = R2.
(no unique solutions)

26. F(x,y) = (x +2y)i+ K(x,y)j 27. F(x,y) = (2xp?)i+K(x, )j

28.  F(x,y) = K(x,y)i+xy3j 29. F(x,y) = K(x, )i+ (x2e”)j
Exercises 30-32. Determine functions M(x, y, z) and N(x, y, z) for which the field F is conserva-
tivein § = R3.

30. F(x,y,z) = 2xy3i+M(x,y,z)j+ N(x, y, 2)k

31. F(x,y,z) = M(x,y,z)i+2xy3j+N(x, y, z)k

32. F(x,y,z) = M(x,y,z)i+N(x,y,2)j +2x°k

33. Verify that F(x, y) = e’i +xe’j is a conservative force field. Determine the work done if a
particle subjected to F moves around the circle r(¢) = costi + singj for 0<¢<2m.

34. Verify that F(x,y) = eYi+xe’j is a conservative force field. Determine the work done if a
particle subjected to F moves over the semicircle #(¢#) = costi+ sin¢j for 0 <t <.
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35. Verify that F(x,y,z) = (x2+y)i+ (y2+x)j+ (ze?)k is a conservative force field. Deter-
mine the work done if a particle subjected to F moves over the helix

r(t) = costi+ sintj+§—%k for0<¢<2m.

36. Verify that F(x,y,z) = e¥?i+ (xze?? +zcosy)j + (xye’” + siny)k is a conservative force
field. Determine the work done if a particle subjected to F moves over the curve

r(t) = ti+ 13+ 3k for-1<t<1.

37. Prove that any two potential functions, f(x, y) and A(x,y), for a conservative vector field
F(x,y) = P(x,y)i+ Q(x,y)j can only differ by a constant.



George Green (1793-1841).
a self-taught British mathe-
matician.
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A piecewise smooth curve is a
curve that is composed of
finitely many smooth curves.

X

Note that Green’s Theorem
relates a double integral over
aregion D to a line integral on
the boundary C of that region.
It is analogous to the Funda-
mental Theorem of Calculus
that relates an integral over
[a, b] to the values of f* at its
endpoints (boundary of the
interval).
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§3. GREEN’S THEOREM

Green’s Theorem relates a line integral along a closed curve to a double
integral over the region enclosed by that curve.

Here is one form of that important result (proof omitted):

THEOREM 14.10 1ct S be a simply connected region in R2

GREEN’S THEOREM bounde?d by a cloged counterglock\fvise curve
C that is parameterized by a piecewise smooth

one-to-one vector-valued function r(?),

FORM F - T

a <t <b (see margin). If

F = P(x,y)i+ O(x, y)j
has continuous first-order partial derivatives
on some open region containing S, then:

$F - Tds - §de+Qdy - H(@Q aP)arA
C

PROOF: The claim will be established once we show that:

(1): jpd "”a 4 and (2): dey— ”anA

We content ourselves by establishing (1) when the curve C is
bounded below and above by continuous functions g,(x) and g,(x),

respectively — giving rise to the decomposition of C into two pieces
C, and C, (see margin):

IR S T Nl

- _j [P(x, g5(x)) — P(x, g;(x))]dx
- _I P(x, gz(x))dx+j P(x, g(x))dx

= _ J. P(x,y)dx + IP(x,y)dx
—C, G
_ IP(X,y)dX+ IP(x,y)dx = J.de
C, G ¢

A similar argument can be used to establish the validity of (2) when
the curve C is bounded on the left and on the right by continuous func-

tions f(») and f,(y) , respectively.
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EXAMPLE 14.14 Verify Green’s Theorem for:
(@) F(x,y) = yi—xj

(b) {>2ydx— 3x2dy
C
where: C = {(x,y)[x2+y2=1}.

SOLUTION: The parametrization r(¢) = (cost)i+ (sin¢)j,0<t<2n
traverses the unit circle C in the counterclockwise direction (also called
a positive orientation). We then have:

27
(a) ﬁp. Tds = &F- dr = I [(sinti—costj) - (—sinti + costj)]dt
0

C C
27

_ J'zn[—sinz(t)—cosz(t)]dt = [ -1dr = -2m
0 0
00 oP

Gy) dA must also equal -2,

Green’s Theorem asserts that { I (

where Q and P stem from F(x,y) = P(x, )i+ Q(x,y)j = yi—xj
and where S = {(x, y)|x2+»%<1}. Let’s check it out:

] (2.27) {j(%(—x)—aiy(y))m - 2ffun 5 2

S
a circle of radius 1 has area

(b)
2ydx — 3x%dy (8_Q aP) -
i (& 554 = ”( 6x —2)dA
27
— 1 ! 2 1 !
- J'O [(2sint)(cost)’ — (3cos t)(sint)']dt Theg;egneqislf: _ J‘O J‘O(i 67cos0 — 2)rdrdd
2n .2 3 i
:'[ [—2sin"t—3cos t]dt - J’z Il(—6r20059—2r)drd9
070
_ cos2t .2 2n 1
I [ —3(1 —sin t)cost}dt =I (_2,,30059_,,2)‘0019
0
in2¢ 1 2n 27
= [—t+sm —3(sim—-(sin3t)ﬂ = [ (~2c0s6 - 1)db
2 3 ) 0
=27 = (—2sin9—9)|§7E = -

CHECK YOUR UNDERSTANDING 14.14

5,
For F(x,y) = x%i+xyj, evaluate {>F~ Tds both 1

C
Answer: See page A-34. directly and by using Green’s Theorem.

C




Though the particle moved
back to its starting point, the
work done is not zero. Not
an issue, since the force
field is not conservative.

.2
Answer: 2

14.3 Green’s Theorem 619

EXAMPLE 14.15 Find the work done by the force:
F(x,y) = 2xi+ (x3+3xy?)j
in moving a particle once along the directed
curve C in the margin.

SOLUTION: The work is given by:
aQ OP
W = ¢F-Tds ( )dA— 3x2+3 —0)dA
pr-ris = [5G =5 ¢ = [ @eea-o

Changing to polar coordlnates (page 457) We have:

W= “(3x2+3y2)dA = j j 3r2rdrdd

3
= jo( Z)‘Ode —j 12d0 = 12x

CHECK YOUR UNDERSTANDING 14.15

Find the work done by the force field v

. . . 1
F(x,y) = yi—2xyj in moving a particle once C
along the indicated curve C.

17 1 =X

Green’s theorem provides a formula for the area of planar regions:

THEOREM 14.11 If the conditions of Theorem 14.10 are met
for the region S bounded by the closed
curve C, then:

Areaof §: 4 = %{;—yderxdy

PROOF: Letting P = —% and Q0 = )EC in Green’s Theorem we have:

g0 30 - 113)-(3) o - i (D)
= [[a4 = 4

o1 _
Or: §§—ydx+xdy =4
C
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EXAMPLE 14.16 Find the area enclosed by the ellipse:
2 2
¥y
a? b2

SOLUTION: Choosing the parametrization:
r(t) = (acost)i+ (bsint)j, 0<t<2xn
for the ellipse, we have:

1 1 27
A= —ﬁ—ydﬁxd = j [-bsint(acost)’ + acost(bsint)']dt
2 2J,

c
12" .2 2 1 (27
= = + = = =
2.[0 (basin"t + abcos t)dt 2I0 abdt = mab

CHECK YOUR UNDERSTANDING 14.16

Use Theorem 14.11 to find the area enclosed by the closed curve with|

Answer: %n 3 3
parametrization r(¢) = (cos ¢)i +(sin"t)j, 0<t<2m.

As you know, the work W done by a force field F in moving a particle

along a smooth curve C is given by W = J-F - Tds (Theorem 14.2,

C
page 596. Replacing the unit tangent vector 7 with the unit normal vector
n we arrive at another important concept:

DEFINITION 14.5 Let r(¢) trace out a smooth closed curve C in

Flux Across a a counterclockwise direction exactly once,
Closed Curve with C contained in the domain of a differen-
tiable vector field F. The flux of F across C

is given by:
Flux(F) = §>F - nds
C
where n is the outward pointing unit vector to
the curve.

Just as F - T denotes the scalar component of F tangent to the curve,
so then does F - n represent the scalar component of F normal to the
curve. In particular, if F = P(x, y)i + Q(x, y)j is the velocity field of a
fluid flowing in a planar region containing the closed curve C, then the
integral {;F (x,y) - T(x,y)ds represents the fluid’s flow along the

c
curve, while f{>F (x,y) - n(x,y)ds yields the net outward flow of the

C
liquid across that curve.



If the planar curve is tra-
versed in a counterclock-
wise direction, then its
outward unit normal n at a
point on the curve is given
by the cross product
n=Txk

where T is the unit tangent
vector at the point, and & is
the unit coordinate vector
along the z-axis.

THEOREM 14.12

14.3 Green’s Theorem 621

Our next goal is to arrive at a method for evaluating the flux-integral.
As a first step, we observe that (see margin):

=Txk = r (f) ¥ k
N P
|| (t)||[(x ()i+y'()j+0k)x (0i+0j+ 1k)]
i J k
= Tl |64 (0 (0 0] | = gy 08+ ()
0 0 1

Proceeding as in Theorem 14.2, page 596, we then have:
Flux(F.) = &F(x,y) -n(x,y)ds
C

Theorem 14.1: = j F(r(1)) - n(r(1)) ( ) (‘éy) dt

= [ oty - LD Wy

[ (2]
b
= j F(r(t)) - y'(0i—x"(2)j]dt

Summarizing:

If r(t) = x(t)i+y(t)j,a<t<b traces out a smooth
closed curve C in a counterclockwise direction exactly
once, with C in the domain of a differentiable vector field

F = Pi+ Qj then:

dy. dx.

b
fF.nds = Ia(Pi-Ier) (EI_E) t = i)de—de

EXAMPLE 14.17 Find the flux of F(x,y) =

across the circle x2 +y2 = 1.

(x+y)ityj

SOLUTION: The parametrization () = (cost)i + (sint)j,0<¢<2n
traces the unit circle C exactly once in the counterclockwise direc-
tion. Appealing to Theorem 14.12, with P = x+y = cost + sin¢

and Q = y = sint we have:

Flux(F) = Izn[(cosﬁr sinf)(sin) — (sinf)(cost)'1dt
0

27
2 . .2 .
= I (cos”t+ costsint +sin”t)dt = J. (1 + costsint)dt
0 0

21

= + -
t 2Sll’1t
0

=27
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CHECK YOUR UNDERSTANDING 14.17

Answer: -9

Find the flux of F(x,y) = (32 —x2)i+ (x2 + y2)j across the triangle
bounded by y = x, x =

3,and y = 0.

Tweaking Theorem 14.12 a bit we arrive at another form of Green’s

Theorem:

THEOREM 14.13

GREEN’S THEOREM

FORM F - n

Let C be a piecewise-smooth counterclock-
wise oriented simple closed curve in the
plane. If the region S consisting of C and its
interior is simply connected, and if
F = P(x,y)i+ Q(x,y)j has continuous first-
order partial derivatives on some open region
containing D, then:

§F nds = ﬁpdy Odx = ”( a)%d/l

PROOF: Applying Theorem 14:10:

§de+Qdy ”(aQ aP)dA

to the vector functlon Fy,=-0Qi + Pj we have:

§> Odx + Pdy = ”[

(et = (15 )

EXAMPLE 14.18 Use Green’s Theorem to find the flux of

Compare with Example 14.17,

F(x,y) = (x+y)i+yj across the circle
x2+y2 =1.

SOLUTION: Turning to Theorem 14.13 with

F(x,y) = P(x,)i+Q(x,y)j = (x+y)i+tyj

we have: §>F nds = ”(ap aQ)dA = ”(1+1)dA =2n

Jy

CHECK YOUR UNDERSTANDING 14.18

Answer: -9

Use Green’s Theorem to address CYU 14.17:
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EXERCISES

Exercises 1-11. Verify both forms of Green’s Theorem (14.10).

1.

2.

F(x,y) = (x=»)i+xj, D = {(x,p)|x* +y><1}.

F(x,y) = (xy)i+x2%j, D is the rectangular region with vertices (0, 0), (2, 0), (2, 3), and
(0,3).

F(x,y) = (xy)i+ (x%2—y?)j, Dis the rectangular region with vertices (0, 0), (0, 1), (1, 0),
and (1, 1).

F(x,y) = (=xy?)i+xy%j, D = {(x,y)|x*+y?<a?}
F(x,y) = x%i—xy?%j, D is the triangular region with vertices (0, 0), (0, 1), and (1, 1).

F(x,y) = xi+yj , D is the region bounded by the line segments from (0, 0) to (0, 1)
and from (0, 0) to (1, 0), along with the parabola y = 1 —x2 from (1, 0) to (0, 1).

F(x,y) = —yi+xj , D is the region bounded by the line segments (0, 0) to (0, 1) and

from (0, 0) to (1, 0), along with the quarter-circle y = /1 —x? in the first quadrant.

§y2dx +x2dy and C is the triangle with vertices (0, 0), (1,0), and (0, 1).
c

fxyder x2y3dy and C is the triangle with vertices (0, 0), (1,0), and (1,2).
c

10. {;(x2 —y2)dx + xdy, and C is the circle of radius 3 centered at the origin.
C

11. § y3dx—x3dy and C is the circle of radius 2 centered at the origin.

C

Exercises 12-17.Use Green’s Theorem to evaluate the line integral along the given positively ori-
ented curve C.

12. j;y“dx +2xy3dy and Cis the circle x2 +32 = 9.

C

2
13. ﬁy“dx +2xy3dy and C is the ellipse % +y2 =1,

C
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14. §cosydx + x2sinydy and C is the rectangle with vertices at (0, 0), (2, 0), (2,3), and

C
(0,3).

15. j;ydx —xdy and C consists of the line segments joining (0, 0) to (0, 1), joining (0, 0) to
c
(1, 0), and the parabola y = 1 —x2 from (1, 0) to (0, 1).

16. §— 2y3dx+ 2x3dy and C is the circle of radius 3 centered at the origin.
c

17. §y cosxdx + x2dy and C is the boundary of the unit square in the first quadrant with a ver-

c
tex at the origin.

Exercises 18-22. Find the work done by the force F in moving a particle once along the given
positively oriented curve C.

18. F(x,y) = 2xy3i+4x%y%j and C s the region in the first quadrant enclosed by the x-

axis, the line x = 1 and the curve y = x3.
19. F(x,y) = (x2+xy)i+xy%j and C is the triangle with vertices (0, 0), (1,0), and (0, 1).
20. F(x,y) = (4x—2y)i+ (2x—4y)j and Cis the circle (x —2)2+ (y—2)2 = 4.
21. F(x,y) = 7xi+ (x3+3xy?)j and Cis bounded by the line segment from (-2, 0) to (2, 0)
and the semicircle y = ﬂ
22. F(x,y) = —2y3i+2x3j and C is the circle of radius 3 centered at the origin.
Exercises 23-27. Use Theorem 14.11 to find the area of the region D.
23. D = {(x,y)|x2 +y2<r?}.
24. D = {(x,y)|x*+2y*<2}
25. D is the region between the curves y = x2 and y = x3.
3

26. D is the curve r(t) = t2i+(% t)j,—ﬁﬁtsﬁ.

27. D is the region lying between the x-axis and one arch of the cycloid with parametric equa-
tions x = a(t—sint) and y = a(1 — cost).
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Exercises 28-31. Verify both forms of Green’s Theorem (Theorem 14.13). .
28. F(x,y) = 2xy3i+4x2y2%j and Cis the region in the first quadrant enclosed by the x-axis,

the line x = 1 and the curve y = x3.
29. F(x,y) = (x=y)i+xjand C = {(x,y)[x*+y*=1}.

30. F(x,y) = (x+y)i—(x2+y?)j and C is the triangular region with vertices (-1, 0), (0, 1),
and (1, 0).

31. F(x,y) = (4x—2y)i+ (2x—4y)j and Cis the circle (x —2)2+(y —2)% = 4.
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§4. CURL AND D1V

In this section we introduce two functions on vector fields that play
important roles in numerous applications. We begin with the curl-func-
tion that assigns vectors to elements in the field:

DEFINITION 14.6 Let F(x,y) = P(x,»)i+Q(x,y)j. The curl of F,
curl(F) denoted by curl(F) is the (spacial) vector field:

curl(F) = (g—g—g—fjk (*)

For F(x,y,z) = P(x,y,2)i + O(x,,2)j + R(x,y, 2)k

(assuming the indicated partial derivatives exist)

To help us recall the expression in (**) we introduce the following
The V -symbol was first intro- “delta-operator:”

duced in the definition of the V = ii + i P ﬁ k
gradient function (page 561): ox ay] Oz
VIx,y) = ()it f(x, 0)) Symbolically, we then have:
In that role, V/ assigned vec- ..
tors to points in the domain of i j k
a real-valued function f.
Here, the delta-operator curl(F) = Vx F = det i i g
assigns vectors to vec- Ox 0y Oz
tors in a vector field. see page 506 P QO R
0 0 0 0 0 0
see page 505: = det @ oz|i—det|ox oz|j + det|ox @ k
O R P R P QO

_(9R_20); (9P _oR); (00 _oP,

oy Oz 0z Ox ox Oy

Note that the delta operator can also be used to generate (*) in Defini-
tion 14.6. Simply move F(x,y) = P(x,y)i+ Q(x,y)j up a notch:

F(x,y,z) = P(x,y)i+Q(x,y)j + 0k

i j k

Then: curl(F) = Vx F = det 0 0 0] = (8_Q_8_P)k
Ox 0y Oz ox Oy
PQO sincea—Q=6_P=0

oz oz
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EXAMPLE 14.19 Find curl(F) for:
F(x,y,z) = xyzi+2yzj— 3k

SOLUTION:
i j k
curl(F) = VxF =det| 9 0 0
ox Oy 0z
xyz 2yz =3

= (29 L@)i- (L3 Zoma)i+(Lor - L)k

= 2yi+xyj—xzk

CHECK YOUR UNDERSTANDING 14.19

Answer: Find curl(F) for:
—xe¥?i + (ze¥? — xcosxy)k F(x, ¥, Z) = sin(xy)i + exzj +1n (22 + l)k

Recalling the gradient function of page 561:
VAx, y,2) = fu(x, 3, 2)i+ f,(x, p, 2)j + (%, y, 2)k
we have:
THEOREM 14.14 1f w = f{(x, y,z) has continuous second-

partial derivatives, then:
curl[VA(x, y,z)] = 0

PROOF:
i ok
9909
Curl[Vf(X,y, Z)] = VXVf(xaya Z) = det ﬁx 8)/' 82
adUAY
|0x Oy 0Oz

= (fzy _fyz)i - (fzx _fxz)j + (fyx _fxy)k

Theorem 13.1: _— s . _
(ooemsy = 0i—0j+0k = 0

In particular, the vector field: COROLLARY If Fis a conservative vector field with continuous

F(x,y,z) = xyzi+2yzj—3k second partial derivatives, then:
of Example 14.19 is not con-
servative. curl(F) = 0

PROOF: To say that F(x, y, z) is a conservative vector field is to say
that there exists a scalar function f{(x, y, z) such that F = Vf. Conse-
quently: curl(F) = curl[Vf(x,y,z)] = 0.
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Answer: See page A-37.

Let’s modify the all important Theorem 14.9 of page 609:

THEOREM 14.15 Let F be a continuous vector field on a simply
connected open region S.

The following four properties are equivalent:

(1) i;F -dr = 0 for any smooth closed curve C
in S.

(i1) F is a conservative vector field on S, i.e.
F = Vf.

(i11) F = Vf is path-independent on S with

[F-dr = fip)~flpy)
C

for any smooth curve C from p, to p, .
(iv) curl(F) = 0

Note that, the old-(iv) of Theorem 14.9:

. .. OP _ 0
For F = P(x.y)i+ Q(x.y)j: 57 = 52

For F = P(x,y,2)i+ Q(x,y,2)j + R(x, y, )k
oP_ 00 3P_0R 30 _0R

dy Ox’ 0z 0Ox 0z Oy

has now been replaced by one compact statement: curl(F) = 0.

How so? Your turn:

CHECK YOUR UNDERSTANDING 14.20

(a) Verify that Theorem 14.15(iv) is equivalent to Theorem 14.9(iv).

(b) Sh?g i%lat the converse of the Corollary to Theorem 14.14 need
not hold.
(Suggestion: Consider Example14.9, page 607)

DIVERGENCE

Unlike curl(F) that assigns vectors to elements in the vector field F,
the following function assigns scalars (real numbers) to the vectors in F:

DEFINITION 14.7 Let F(x,y) = P(x,y)i+ O(x,y)j. The divergence of

div(F)

F, denoted by div(F) is given by:
. OoP 00
= - 4=
div(F) ooy
For F(x,y,z) = P(x,y,2)i+ Q(x,y,2)j + R(x, y, 2)k
0P 20 , O

diV(F)=§ o oz

(assuming the indicated partial derivatives exist)

That is: div(F) = V- F
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EXAMPLE 14.20 Find div(F) for:
(@) F(x,y) = yx%i+evj
(b) F(x,y,z) = xzi+xyj - yz°k
SOLUTION:
(a) div[yx2i+e¥jl =V -F
= (%l + % + %k) - [yx%i+ej+ 0k]

= (x?), +(e¥), = 2xy +xeV

(b) div[xzi+xyj—yz?k] = V- F

6 . 6 . a ) . . 2
- +— +_ . + -
(f i y] 5 k) - [xzi+xyj—yzk]

= (x2), + (xp),~ (42?), = z+x~2yz

CHECK YOUR UNDERSTANDING 14.21

(a) Find div[curl(F)] for F(x,y,z) = xzi+ e*?j—(sinz)k .
Answers: (a) 0 (b) No (b) Is the expression curl[divF] meaningful? Justify your answer.

That div[curl(F)] turned out to be 0 in part (a) of the above CYU is
no fluke; for:

THEOREM 14.16 1et F = Pi+ Qj+ Rk.If P, O, and R have
continuous second partial derivatives, then:
div[curl(F)] = 0
PROOF:
div[curl(F)] = V- (V xF)

219,52 ). 50

ox\0y 0z/ 0oy\0z 0Ox/ 0Oz
- Ryx7Q2x+sz7ny+ szipyz
- (Ryx_ny)+(sz_sz)+(sz_Pyz) /? 0

Theorem 13.1, page 584

ox Oy

CHECK YOUR UNDERSTANDING 14.22

Establish the validity of Theorem 14.16 for:
Answer: See page A-37. F(x,y) = P(x, )i+ O(x, y)j
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VECTOR FORM OF GREEN’S THEOREM

In the previous section you encountered two versions of Green’s The-
orem involving a vector field F = P(x, y)i + O(x, y)j; both of which
can be expressed in vector form;

Theorem 14.10, page 617 Theorem 14.13, page 622
_ _ oQ ﬁP) _ _ (ap aQ)
:{)F-Tds = §>de+Qdy = ”(a_x % dA {>F-nds = §de—de = ” 3 o dA
C c D c c D
Vector Form Vector Form
§>F~ Tds = ”(cuﬂ F)-kdA §F-nds = ”(div F)dA
c D c D
(*) (**)
{ =jj(VxF)-de} { =H(V-F)dA}
D D
For: For:
k= (2P g = (220 divF = &£+
(curl F) -k (éx ay)k k 2x oy ox | By

Why do we need two forms?
For the sake of applications and interpretations:

Curl and divergence play important roles in a variety of vector field
applications. Both are best understood by thinking of the vector field as
representing the flow of a liquid. Roughly speaking, divergence mea-
sures the tendency of the fluid to flow into or disperse from a point — it
is a scalar quantity. The curl, on the other hand, measures the tendency
of a fluid to swirl around a point — its magnitude measures how much
the fluid is swirling, and its direction indicates the axis around which it
tends to swirl.



The F - T-Greens Theorem:

:{>F- Tds ”(cuﬂ F)-kdA
C D

Y

The F - n-Greens Theorem:
§F- nds = ” (div F)dA
C D

y

) C

A glance into the near future:

will, in Section 14.6,

evolve into Stoke’s
Theorem, which relates
the integral over a

closed curve C in three-
space to a double inte-
gral involving the sur-
face S bounded by that
curve:

will, in Section 14.7,
evolve into the Diver-
gence Theorem, which
relates the integral
over a three-dimen-
sional region E to a
double integral involv-
ing the surface
bounded by that curve:
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STOKE’S THEOREM
SEF- Tds = j j curl(F) - ndS
C S

Z,

C

DIVERGENCE THEOREM

LjF-ndS=j}J;I(divF)dV

z

S n
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EXERCISES

Exercises 1-14. Find curl(F).
I F(x,y) = (x2=p)i+ (xy—y?)j 2. F(x,y) = 3x%—xp)i+(y—x?)j
3. F(x,y) = sin(xy)i+ cos(xy)j 4. F(x,y) = eVi+ylnxj
5. F(x,y,z) = y?zi—x3j+xyk 6. F(x,y,z) = x2zi—y3j + xy%k
7. F(x,y,z) = xzi +xyzj—y*k 8. F(x,y,z) = sinxi— cosyj +xyzk
9. F(x,y,z) = In(x+z)i—e¥3j+xyk 10. F(x,y,z) = ¥ —cosyj + Inz2k
11. F(x,y,z) = sin(yz)i+ sin(zx)j— sin(xy)k 12. F(x,y,z) = e*i+ Inyj— sinzk

13. F(x,y,z) = tan(yz)i + cos(xy)j — sin(xy)k 14.F(x,y,z) = ye¥i+ yz3j— sinzk
Exercises 15-22. Find div(F).

15. F(x,y) = x2yi+ sinxj 16. F(x,y) = xy%i+ cosxyj
17. F(x,y,z) = xyi+yzj—2xzk 18. F(x,y,z) = yz2i +xzj + xzy*k
19. F(x,y,z) = e¥ Zite* Vj—e¥ "k 20. F(x,y,z) = e¥éi+ e¥?j—esinzk

21. F(x,y,z) = cos(xy)i—sin(yz)j + cosysinxk 22 F(x,y,z) = JJxzi+ In(x)j— sinzk
Exercises 23-26. Show that F is conservative.
3 - ; 2 _12.,2Vi
23. F(x,y) = xzyi+x?j 24. F(x,y) (3 +2xy)i+ (x=—3y°)j
25. F(x,y,z) = y223i+ 2xyz3j + 3xy2z2k  26. F(x,y,z) = (x2+ )i+ (2 +x)j+ (ze?)k

Exercises 27-34. Let f'and g be scalar functions, and F and G be vector fields. Establish the given
identity, assuming that all partial derivatives exist and are continuous.

27. div (fF) = f(div F)+ F - Vf 28. V(gf) = gVf+/Vg

29. div(Vfx Vg) = 0 30. V x (gF) = (Vg) x F+g(V x F)

31. div(Fx G) = G- curl(F)— F - curl(G) 32. Vx(gVf+fVg) = 0

33. V- [V(f2)] = AIV-(Ve)]l+g[V - (VN] 34. Vx(gVf-fVg) = 2Vgx Vf
+2(Vf-Vg)

Exercises 35-41. Let /" be a scalar function, and F a vector field. Indicate if the §iven expression
is meaningful. If not, state why not. If so, then indicate whether the output is a scalar field or a vec-
tor field. (all from A-3)

35. VF 36. V(divf) 37. curl(curlF) 38. div(divF)
39. div(VY) 40. VfxdivF 41. div[curl(VA)]
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§5. SURFACE INTEGRALS

Z &9 How are we to define the area A(S) of a surface S that is defined by
the equation z = f(x,y) over a region D in the plane? We turn to a
I familiar development, and:
| f | (1) Find an adequate approximation for the surface area
|

! Y of the depicted region AS.
U D (2) Sum all of those bits of surface areas.
AD
x (3) Take the limit of the evolving Riemann sums, as

the areas of the AD ’s tend to zero.

/ As for (1): Choose a corner (x, y) in the rectangular region AD with
u ﬂ g sides parallel to the x- and y-axis in the margin and consider the paral-
== Yy lelogram P that is tangent to S at (x, y, f(x, y)) — a parallelogram with

f% - yﬁi side-vectors u = (Ax, 0,f.(x,y)Ax) and v = (0, Ay,fy(x, Y)Ay) .
0

S ﬁy § Here is how we arrived at the above expression for u:

% (a similar development leads to the expression for v)

—X YA u is the vector from: (x, y, f(x,y)) to (x+Ax,y, f(x +Ax,y));

¥ (x,7) which is to say: u = (x+Ax—x,y—y, flx + Ax, ) - f(x, ).

Since f(x + Ax,y) —f(x, y) = f,(x, »)Ax : u = (Ax, 0, f,(x, y)Ax)
Noting that P has area |u x v|| (see CYU 12.18, page 509), we have:
i j k
|z x v| = [det|Ax O f.(x,y)Ax
0 Ay fi(x,y)Ay
|-/ (e, ) AxAyi = (f,(x, ¥)AxAy)j + AxAyk|

= JU o )12+ (6 )12 + 1 AxAy

As for (2):
A(S) = 3 ST+ [£,(6, )12 + [, (x, ) ]?AxAy
D

(3) Bringing us to:
DEFINITION 14.8 Let S be the surface z = f(x, y), where fis
SURFACE AREA a differentiable function defined on a region
D. The surface area of S, denoted by A(S),
is given by:

A(S) = [[ ST+ T06 )1+ [ (x, »)]%dA
D
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EXAMPLE 14.21 (a)Find the area of that portion of the plane
3x+2y+z = 4 that lies above the disk

D = {(xy)x2+y2<1}.
(b)Find the surface area S of the cone:
z = x2+y2, 0<z<1
(c) Find the surface area of the portion of the

paraboloid z = x2 + y2 that lies below the
plane z = 4.

3x+2y+z =4

SOLUTION: (a) Since z = f(x,y) = 4—3x -2y, we have:
AS) = [[ T+ IAP+1412d4 = [[J1+(=3)2+(-2)%d4
D D
= «/174”.dA = Jl4n
D AN

Area of D

(b) Since z = f(x,y) = A/x2+y2:
A(S) = IN1 +[,)2+ [, 12d4
D

- [ (Z) (7

”/ xziidA—fzjdA J2n

(c) Since z = f(x,y) = x2+y?:
A(S) = le 2+ [f,)%dA = ”J1+(2x)2+(2y)2dA
= HmdA

Converting to polar coordinates (see page 457), we have:

A(S) = J.jnf)dl +4r2rdrdd = fndej-zn/l +4r2dr

L(l/i::l;:;r .[ de.[ ul2du = 8.[ ( u3/2)
3

_ T z_)
6(17 1

= £(17/17-1)

17
do

1
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CHECK YOUR UNDERSTANDING 14.23

Find the surface area of the portion of the cone z = A/x%+y? that

Hamwer 3480 lies above the region D = {(x,y)|1 <x2+y2<4}.

Extending Definition 14.8 to allow for a real-valued function g
defined on a surface S in three space, we come to:

DEFINITION 14.9  Let S be the surface z = f(x, y), where fis a differentiable function

SURFACE INTEGRAL defined on a region D in the xy-plane, and let g(x, y, z) be a contin-
uous function on S. The surface integral of g over S, denoted by

”g(x, ¥, z)dS is given by:
s

[0y, 2)dS = [ [ lx, v, foe W11+ (6 )12 + [, (3, 7)12dA
S D

Note that while f/ is defined on a region D in the plane, the function g is defined on a surface S in three-space.
Because the points in S are of the form [x, y, f(x, )], the expression g[x, y, f(x, y)] , as opposed to g(x, y, z) , appears
in the above integral.

EXAMPLE 14.22 Find the mass M of that portion S of the
(thin) plane x + y +z = 9 that lies above the
disk D = {(x,y)[x%2+y?<4}, if the den-

sity at each point of the plane equals its verti-
cal distance from D.

SOLUTION: As x+y+z =9,z = 9—x—y = f(x,y). For a point p
inS:d(p) =z=9-—x-y.Hence:

M = [ [8lx,y. fax, 211+ e )P + U (5, )1dA
D

ﬁy\xzwm = [JO-x-nJ1F D2+ (1)
¢ D

D )2 % 21 2
polar form: = ﬁj J- (9 —rcosO —rsin0)rdrdd
0 °0

21
9 1 .
= /3 [—rz——r3(0059+ sm@)}
IO 273

2
do
0

o 8 :
=3 [18—§(cose+sm9)]d9
0

2n

- ﬁ[lSG—g(sine—cose)J - 3631

0
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CHECK YOUR UNDERSTANDING 14.24

Find the mass of the portion of the paraboloid z = x2 + 2 that lies

1. . . .
U 516[‘6 5B, below the plane z = 1 if the density at each point of the surface is

equal to the square of its distance from the origin D.

SURFACE INTEGRAL OF FLUX

The concept of flux across a closed curve C was defined on page 620.
Removing the closed-restriction we have:

DEFINITION 14.10 The flux of a two-dimensional vector

field F across a curve C is given by:

FLUX ACROSS A
\c><\ o Flux(Fe) = [ - nds
C
where, at any point on C, n is the unit nor-
n mal pointing 90° in a clockwise direction

from the tangent vector.

Note that if C is a closed curve, oriented in a counterclockwise
direction, then # is the outward pointing unit vector to the curve.

Typically, a surface S has two sides, and a normal vector to the sur-
face can point in one of two directions. Once the direction is chosen,
the surface is said to be oriented, and the side from which n sprouts is
said to be its positive side. That said:

DEFINITION 14.11 The flux of a three-dimensional vector
FLUX ACROSS A field F across an oriented surface S is
SURFACE given by:
Flux(Fy) = j j F-ndsS
S

n

positive side
of the surface

Note that the ds in Definition14.10 “grew into” a dS in 14.11 — a
reflection of the fact that while As represents a piece of a curve C, AS
represent a piece of a surface S

Figure 14.4
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As for the rest of the story assume that, in both instances, F rep-
resents the velocity field of a fluid. If so, then the area A4 in Figure
14.4(a) is an approximation of the amount of fluid crossing As in a unit
of time: A4 = (F - n)As; while the volume AV in Figure 14.4(b) is an
approximation of the amount of fluid crossing ASin a unit of time:
AV = (F -n)AS. The ““n” comes into play since, in each situation, the
height of the shaded region is not perpendicular to its base [the base As
in (a), and the base AS in (b)].

To compute a unit normal to a surface S of the form z = f(x,y) we

first rewrite the equation as z — f(x, y) = 0, which is a level surface for
the function:

gx,y,z) = z—f(x,y)
Theorem13.7, page 566, tells us that:
Vg = S/ (x,»)i—f,(x,y)jitk
is a normal to the surface, with corresponding unit normal:
Yy S-Stk
JEPR ()2 + 1

Since k is positive, it is the upward unit normal to the surface. That
being the case, the downward unit normal is given by:

S+ Sk
J(fx)2+(fy)2+1

The next theorem addresses the flux issue across a surface S of the
form z = f(x, ).

THEOREM 14.17 Let the surface S be defined by a differentia-
ble function z = f(x, y) defined on a region
D in the xy-plane.
If S is oriented by upward normals:

”F- ndsS = ”F (—~fii—f,j + k)dA
S D
If S is oriented by downward normals:

[[F-nds = [[F-(fi+},j-kdd
S D

PROOF: Assume that S is oriented by upward normals. Turning to
Theorem 14.1, page 592, we have:

_ _fxi_fyi_"k 2 274 — : :
F-nds = [[F- L+ (f)2+(f,)2dA = || F-(~f.i—fj+k)dA
g " IDI Ww;)zﬂj ’ {)I e
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Answer: %n

In previous parametrizations,
r(¢) referred to a point on a
curve (a one-dimensional
object). Here, r(u, v) refers to
a point on a surface (a two-
dimensional object).

EXAMPLE 14.23 Determine the flux of the field

F(x,y,z) = zk in an upward direction
through the portion of the paraboloid

z = x%+y? lying below the plane z = 4.
SOLUTION: For f(x,y) = x2+y?: ~fd =Stk = -2xi-2yj+k
and D = {(x,y)|x?+y%<4}. Bringing us to:
Flux(Fy) = j jF~ (~fi— 1, + k)dydx
D

= [[zk - (= 2xi—2yj + k)dydx
D

2n 2
= [[zdvdx = [[(2+y2)dydx = jo jorzrdrde = 8m

D b Example 11.16, page 457

CHECK YOUR UNDERSTANDING 14.25

Determine the flux of the field F(x,y,z) = xi+yj+zk in an
upward direction through the surface z = 1 —(x2+y2),z>0.

PARAMETRIZED SURFACES

It is often convenient to parametrically describe a surface. As the sur-
face S is a two-dimensional object, each coordinate of a point
(x,y,z) € S needs to be specified in terms of two parameters; say u
and v, yielding a parametrization of the form:

r(u,v) = x(u, v)i+y(u, v)j+z(u, v)k

Our next goal is to find the area A(S) of a surface S that is the graph
of a function with a given parametrization r(u, v), where u and v range
over a region D in the plane:

v r(u,v) = x(u, v)i + y(u, v)j +z(u, v)k

u X

By stretching the reasoning process used at the beginning of the sec-
tion, we conclude that the area of »(AD) can be approximated by that
of the parallelogram determined by the vectors r, (u, v)Au and

r (u, v)Av; namely, by:
|7, (s VIAU X r (u, VIAY| = ||(r, x ) (1, V)| AuAvy
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Bringing us to:

DEFINITION 14.12 Let S be the surface parametrized by the dif-
SURFACE AREA ferentiable function

(Parametrization Form) r(u’ V) = x(u, V)i —i—y(u’ v)j + Z(u’ v)k
defined on a region D in the uv-plane. The
surface area of S = r(D), denoted by
A(S), is given by:

A(S) = I.[Hru xr | dudv
D

EXAMPLE 14.24 Find the surface area S of a sphere of radius .
SOLUTION: In spherical coordinates, the points on the sphere
S={(x,y,2)|x>+y>+z2= r2} take the form (see page 475):

x = rsinpcosO, y = rsindsin0, z = rcosdp; 0<¢<m,0<0<L2x

Linking with the notation of Definition 14.12:
r(u,v) = x(u, v)i+y(u, v)j+z(u, v)k
\

r(¢,0) = (rsindcosB)i+ (rsindsin0)j+ (rcosd)k
Then:
i Jj k
roxrg = det) cospcosd rcoshsind —rsing
—rsingsin® rsingcos® 0

(rzsinzcl) cos0)i — (r2sin2(|) sin0)j
+ (2 cos¢sin¢c0526 + 72 cosd)sind)sinze)k

= (rzsinZd)cosO)i— (rzsinzd)sine)j + (r2cos¢sing)k

And:
|1y > 1| = «/r4sin4d)cosze + r4sin*psin’0 + r4cos’dsin’ ¢
.4 2, .2 .2 :
= r%/sm ¢ +cos Ppsin"Pp = r24/sin” ¢ 3 r2sin¢
sing>0for0<¢$p<m
Thus:

A(S) = ijHrd,erqu)de - rzjznjz sin hddo

)

27 1 27
2 = r2j (—cos$)|7d0 = r2j 2d0 = 4nr?
0 0

CHECK YOUR UNDERSTANDING 14.26

Answer: na2 Solve Example 14.21(b) utilizing a cylindrical coordinates parame-
trization.
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Proceeding as usual:

DEFINITION 14.13 Let S be the surface parametrized by the differen-
SURFACE INTEGRAL  tiable function
(Parametrization Form) r(u,v) = x(u, v)i+y(u, v)j+z(u, v)k
defined on a region D in the uv-plane. The sur-
face integral of g over S is given by:

[[gCe,y,2)ds = [[elr(u,v|r, x v dudv
S D

EXAMPLE 14.25 Integrate the function g(x, y,z) = x + zy over the surface
S that is parametrized by:
r(u,v) = (u—v)i+2uj—Bu+v)k 0<u<1,0<v<2

SOLUTION:
i jk
HruxrvH = |det| 1 2 3| = [IF2i+4)j+2k] = J24 = 2./6
-10-1
Ijg(x,y, z)dS = Ijg[r(u, W|r, x r,||dudv
S D
= jjg(u—v,2u,—3u—v)2J6dudv
D

2 .1
2[6] j [(u—v)+ (= 3u—v)(2u)]dudy
0%0

2 1
Zﬁj j (— 6u? —2uv+u—v)dudv
0°0

dv

1
2
2«/8] (—2u3—u2v+ %—vu)

2
0

2

= —-14./6

Zﬁjj(— 3 2v)dv = 2«/6(—%\/— vz)

2

0

CHECK YOUR UNDERSTANDING 14.27

Integrate the function g(x,y,z) = xy?z over the surface S that is
parametrized by:

Answer:—zi4
r(u,v) =uituvj—k 0<u<1,0<v<u
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EXERCISES

Exercises 1-10. Find the area of the given surface.

1

. That part of the hyperbolic paraboloid z = xy that lies inside the cylinder x2 + y2 = g2.

. That part of the surface z = +/x2 +)? that lies inside the cylinder x2+y? = 4 .

. That part of the plane x + 2y + 3z +4 = 0 that lies within the cylinder xZ + 2 = a2,

. That part of the surface z = x+§y3/2 that lies above D = {(x,y)|1 <x<4,2<y<7}.

. That part ofthe parabolic cylinder z = y? thatlies above the triangle with vertices (0, 0), (0, 1),
(L, 1).
. That part of the hyperbolic paraboloid z = y2 — x2 that lies between the cylinders x2 + 32 = 1

and x2+y? = 4.

2

. That part of the hemisphere z = /25 —x2 — 2 that lies above the disk x2+12<9.

. That portion of the sphere x2 + y2 +z2 = 9 that lies above the plane z = 2.

. That part of the surface z = %(x3/2+y3/2) that lies above D = {(x,y)|2<x<4,1<y<4}.

10. That part of the surface z = e + /7x that lies above D = {(x, PN0<x<e?, 0<y<3}

Exercises 11-18. Evaluate.

11.

12.

13.

14.

”(z + 3y —x2)dS where S is the part of the surface z = 2 — 3y + x2 that lies above the trian-

S
gle with vertices (0, 0), (2, 0), (2,-4).

”32zdS where S is the part of the paraboloid z = 2x2 + 2y? between the planes z = 0 and

S
z =4,

”de where S is the surface z = x +y% above D = {(x,»)|[0<x<1,0<y<2}.
S

”3de where S is the parabolic cylinder z = %yz above D = {(x,y)|0<x<1,0<y<1}.
S
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15. ”(erz)dS where S is the part of the circular cylinder y%+z2 = 9, in the first octant

S
between the planes x = 0 and x = 4.

B

16. ”xzdS where S is that part of the plane x + y +z = 1 that lies in the first octant.
S

A3
24

17. ”xzyzzzdS over the surface of the cone x2 + y2 = z2 which lies betweenz = 0 andz = 1.
S

18. ”xA/4 +y2dS where S is the surface of the parabolic cylinder y2 + 4z = 16 cut by the planes

S
x=0,x=1,andz = 0.

Exercises 19-22. Find the mass of the (thin) surface S with density 6.

19.S is the portion of the parabolic cylinder y? = 9—z between the planes
x=0,x=3,y=0,andy = 3,and o(x,y,z) = y.

20. S is the portion of the cone z = ./x2+y? between the planes z = 1 and z = 4, and
d(x,v,z) = x%z.

21. S is the triangle (a, 0, 0), (0, a, 0), (0, 0, a), and 8(x, y,z) = kx2.
22. S is the surface z = 1 —%(x2 +3?) that lies above D = {(x,»)[0<x<1,0<y<1}, and
8(x,y,2) = xy.

Exercises 23-26. Integrate the function g over the surface S with given parametrization r(u, v).

23. g(x,y,z) = xyz, H(u,v) = (u+v)i+vj+(u—-v)k with0<u<1,0<v<2.

24, g(x,y,z) = x2+yz, r(u,v) = (u+v)i+uj+vk with0<u<1,0<v<2.

25. g(x,y,z) = m,r(u,v) = (ucosv)i+usinvj+vk with0<u<1,0<v<m.
26. g(x,,2) = Jzy—xy, r(u,v) = vituj+(u+v)kwith 3<u<5,2<v<3

Exercises 27-30. Calculate the flux of the vector field F in the upward direction through the sur-
face S.
27. F(x,y,z) = zk, and S is the rectangular plate with corners at (0, 0, 0), (1, 0, 0), (0, 1, 3),
(1,1,3).

28. F(x,y,z) = xi+yj+zk,and S is the paraboloid z = x2+y2 -1, for -1<z<0.
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29. F(x,y,z) = yi+xj+zk,and S is the surface z = 16 —x2 —y? that lies above the xy-plane.

30. F(x,y,z) = yzi+xj—y%*k, and S is the parabolic cylinder z = x? that lies above
D = {(x,»)0<x<1,0<y<4}
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George Stokes. Irish math-
ematician and Pha/swlst.
(1819-1903)

If D is the interior of a
counterclockwise oriented
simple closed curve in the
plane, and if F = Pi+ Qj
has continuous first-order
partial derivatives on some
open region in the plane
containing D, then:

f)F-dr = ”(curl F)-kdA
C D

Z

TS

§6. STOKE’S THEOREM

Green’s theorem (margin) equates a line integral over a closed curve
in the plane to a double integral over the region bounded by the curve.
Stoke’s theorem does pretty much the same thing, but in a higher
dimension. Specifically:

THEOREM 14.18 If Sis an oriented surface that is bounded by a

STOKE’S THEOREM  simple closed curve C with positive orientation
g (counterclockwise), and if F = Pi+ Qj+ Rk
C has continuous first-order partial derivatives on

some open region in three-space containing S,
then:

§;F~ dr = ”curl(F) -ndS
C S

where the orientation of S is such that:
When walking around C in a counter-
clockwise direction with your head
pointing in the direction of n, the sur-
face will always be on your left.
In words: The line integral around the boundary curve of S of the tangential compo-
nent of F is equal to the surface integral of the normal component of the curl of F.
A proof of the above result, in the special case where the surface S is
the graph of a function, is offered in Appendix B, page B-3. At this
point, we offer a geometrical argument that suggests the validity of the
theorem:
Break up the surface S into positively oriented two-dimensional
regions D,. Being two-dimensional, Green’s theorem holds on
each D;; which is to say:

§F.Tds: H(curl F) - kdA: §>F~dr= ”curl(F)-ndS (*)

C; D; C; D,
From page 630

where C; denotes the closed curve bounding D; .
Now consider the surface D composed of the four depicted
regions D, through D, in the margin figure. From (*) we have:
churl(F) -ndS = j;F~ dr+ i{>F~ dr+ {)F dr+ ﬁF- dr
D o G G o
But if C is the boundary of D, then:
”curl(F) - ndS = §F- dr

D C
Why? Because, as is depicted in the figure, every inner-line seg-
ment of the four closed paths C, through C, is traversed twice,

but in opposite directions. Expanding the region D to include all
of the D,’s; which is to say, to all of S, we find that:

j jcurl(F) - ndS = §F- dr
S C
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Note: Just as Stoke’s theorem represents an elevation of Green’s theorem, so then is Green’s theorem a compres-
sion of Stoke’s theorem. To be more specific:
Green’s theorem tells us that if D is a region in the xy-plane bounded by the curve C, then [see (*), page 630]:
§F-dr = ”(curlF)-de

c D
Applying Stokes theorem with S a (flat) region D in the xy-plane z = 0, and with F = Pi+ Qj + 0k we have:

jSF- dr = “curl(F) -ndS = ”(curl F)-kdA
C S D

/[\

Stoke’s theorem can be used in two directions.

One direction: Finding the value of a line integral using a surface
integral. (Example 14.26 and 14.27).

Another direction: Finding the value of a surface integral using a line
integral. (Example 14.28).

EXAMPLE 14.26 Let S be the graph of f(x,y) = 2x— 6y +25
that lies above the region:
D= {(xy)-1<x<3,0<y<2}

Find §F- dr

c
where  F(x,y,z) = (x%i +xzj—yk), and
where C is the boundary of S, oriented in the
counterclockwise direction when viewed
from above.

SOLUTION: Rather than involving four integrals, one for each of the
line segments defining the boundary of S, we turn to Stoke’s theorem.

i j ok
Since: curl(F) = det| 9 9 9| = (—1-x)i—0j+zk
Ox Oy 0z

x2 xz -y

Employing Theorem 14.17, page 637, we then have:
§;F- dr = chrl(F) - ndS = “[(— 1 —x)i+zk] - (—f,i—f,j+k)dA
C S D

= [[1(= 1-x)i+ (2x~ 6y + 25)k] - (-2 + 6 + k)dA
D

~ [ [T+ 20+ 2x—6y+25)] dvds
-1%0

3 2 3
= I I (4x — 6y +27) dydx = J. (4xy—3y2+27y)‘(2)dx
170 4
— [ (8x+42)dx = (422 +420)[,
-1

= 36+ 126 (-38) = 200
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EXAMPLE 14.27 Use Stoke’s theorem to evaluate §>F -dr

C
where F(x, y,z) = 2zi+4xj+ Syk and Cis
the curve of intersection of the plane
y+z = 4 and the cylinder x% + y2 = 4 ori-
ented counterclockwise as viewed from
above.

SOLUTION: For F(x,y,z) = 2zi+ 4xj+ Syk we have:

i ok
curl(F) = det| 9 0 9| = 5i+2j+4k

Ox 0y Oz
2z 4x Sy
There are many surfaces with boundary C. The most convenient is

the elliptical region S in the plane y +z = 4 bounded by C. If S is
oriented upward, then C is positively oriented. The projection of §

onto the xy-plane is the disk x2 + 2 < 4. Applying Theorem 14.17
of page 637, with z = 4 —y, we then have:

F-dr = ||curl(F)-ndS = ||cwl(F) - (—f.i—fj+k)dA
¢ II /] A=t
C S D

= ”(5i+2j+4k)-(j+k)dA
D

= “(2+4)dA = 8(n-2%) = 32n
D Are;[\ofD

EXAMPLE 14.28 Evaluate J‘ _[ curl(F) - ndS where

S
F(x,y,z) = xyi+xzj+yzk
and S is that part of the sphere
x2+y2+x2 = 4 that lies above the xy-plane,
and within the cylinder x2+y2 = 1.

B RS e

SOLUTION: To find C, we solve the system of equations:

1) x2+)2+22 = 4
Ezz';i;fl }:(Um:z:ﬁ

It follows that C = {(x,y, +/3)|x2+y2 = 1}. In polar-vector form:
r(t) = costi+sintj+ 3k, 0<t<2n
with: F(r(t)) = costsinti+ /3costj+ 5/3sintk

and: r'(t) = —sinti + costj
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Applying Stoke’s theorem:

“curl(F) - ndS = §>F dr = jzn(F(r(z)) - r'(£)dt)
S C

27
= I [costsinti + A3 costj + «/3sintk] - (—sinti + costj)dt
0

21 9 om
= I (- costsin’t + ﬁcoszt)dt = _I costsin’tdrt + ﬁj 1+ costht
0 0 0 2
2n . 2n
= [—%sinﬂ 0 - ?(H S”;Zt) O = 3

Note that the value of the above surface integral depended solely on
F’s value on the boundary curve C. It follows that if we mold the spher-
ical surface S of the previous example [see Figure 14.5(a)] into the sur-

face S’ depicted in Figure 14.5(b), we will still have:

”curl(F) - ndS = ”curl(F) - ndS = §;F- dr = J3n
A S C

£

()

Figure 14.5

EXAMPLE 14.29 Verify Stoke’s theorem where S is the portion
of the paraboloid z = 4-x2-y% lying
above the xy-plane, and:

F(x,y,z) = xi+2zj—-3yk

SOLUTION: We are to show (1) {>F- dr and (2) ”curl(F) - ndS have

C S
the same value. Turning to (1):

The positively oriented curve C can be parametrically represented
by the equation:

x = 2cost, y = 2sint, z = 0, 0<t<2xn
r(t) = 2costi+2sintj+0k, 0<¢t<2m
Then: r'(t) = —2sinti +2costj
F(x,y,z) = xi+2zj—3yk = 2costi+ (2-0)j—3(2sint)k

= 2costi—6sintk
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27
and: &F— dr = I (2costi — 6sintk) - (—2sinti + 2costj)dt
0

C
27 2 2w
= I —4costsint dt = (—2sin t)‘o =0
0
Turning to (2):
i j k
curl(F) = det| 9 9 O | = _5i+0j+0k
Ox 0y Oz
x 2z 3y

j j curl(F) - ndS = j j (=50) - (= f,i—f,j + k)dA < Theorem 14.17, page 637
S D

o) = 4= y2 = [[(=5i) - (2xi + 2yj + k)dA
D

5 Ja-y?
_lezzjgxdydx = 10[22(%2) '

—Ja—y?

CHECK YOUR UNDERSTANDING 14.28
Verify Stoke’s theorem where S is the portion of the paraboloid
z = x%2+y? lying below the plane z = 1 oriented upward, and
Answer: See page A-39. F(x,y,z) = y%i+xj+z%k .

The closed the surface S’ in the margin was obtained by taking the sur-
face S of Example 14.29 and capping it below by the disk

D = {(x,y)|x2+y2<4}.

We claim that j j curl(F) - ndS' = 0 (%)

Sl
In an attempt to convince you that the above claim
holds, we call your attention to the adjacent surface S,.,

which is S’ but with a hole at the bottom — a hole
bounded by the circle C, of radius » Stokes theorem
assures us that:

”curl(F) - ndS, = §>F- dr (**)

S, C,

We observe thatas r > 0: f{)F-dlf—)O and §,—S§".
C

r

Letting » — 0 in (**), we arrive at (*).
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In general: if F = Pi+ Qj+ Rk has continuous first-order partial
derivatives on some open region in three-space containing
the closed surface S, then:

”curl(F) ndS =0
N

CHECK YOUR UNDERSTANDING 14.29

Use Stoke’s theorem to prove that if curl(F) = 0 in a region S, then
Answer: See page A-40. F is path independent in S.
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EXERCISES

Exercises 1-9. Use Stoke’s Theorem to evaluate §>F -dr.
C
1. F(x,y,z) = —=3zi+(x+y)j+yk,S isthe graphof f(x,y) = 4x—8y+5 thatlies above the

region: D = {(x,y)|(x—1)2+9(y—3)2<36}, and C is the boundary of S, oriented in the
counterclockwise direction when viewed from above.

2. F(x,y,z) = z%i +y%j + xk and Cis the triangle with vertices (1, 0, 0), (0, 1, 0) and (0, 0, 1),
oriented in the counterclockwise direction when viewed from above.

3. F(x,y,z) = yi+xz3j—zy3k and Cis the circle x2 +y2 = 4,z = -3, oriented in the coun-
terclockwise direction when viewed from above.

4. F(x,y,z) = (x2—y)i+ 4zj+ x2k and C is the curve of intersection of the cone z = /x% + 2
and the plane z = 2, oriented in the counterclockwise direction when viewed from above.

5. F(x,y,z) = —y3i + x3j — 23k and Cis theintersection of the cylinder x2 + y2 = 1 andthe plane
x+y+z = 1 oriented in the counterclockwise direction when viewed from above.

6. F(x,y,z) = x?2yzi +yz%j + z3e*k and Cis the intersection of the sphere x% + y2 +z2 = 5 and
the plane x = 1 oriented in the counterclockwise direction when viewed from above.

7. F(x,y,z) = x2e>?i+xcosyj+ 3yk and C is the circle defined by the parametric equations
x=0,y=2+2cost,z = 2+2sint,0<t<2m.

8. F(x,y,z) = (x2—y2)i+ (y?—z2)j+ (22 —x?)k and Cis the boundary of the part of the plane
x +y+z = 2 in the first octant, oriented in the counterclockwise direction when viewed from
above.

9. F(x,y,z) = xzi+ xyj+ 3xzk and Cis the boundary of the portion of the plane 2x + y +z = 2
in the first octant, oriented in the counterclockwise direction when viewed from above.

Exercises 10-17. Use Stoke’s Theorem to evaluate ”curl(F ) - ndS.
S

10. F(x,y,z) = xzi+ yzj+xyk and S is that part of the sphere x2 + y2 + z2 = 4 that lies above
the xy-plane, and within the cylinder x2 +y2 = 1.

11. F(x,y,z) = z%i—3xyj+x3y3k,and S isthepartof z = 5 —x2 —y? that lies above the plane
z = 1. Assume that S is oriented upwards.

12. F(x,y,z) = e*coszi + x2zj + xyk ,and Sis the surface x = /1 —y2 — z2 oriented upwards.



13.

14.

15.

16.

17.
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F(x,y,z) = z2i+5xj,and Sis the square 0 <x<1,0<y<1,z = 1.

F(x,y,z) = x?z%i +y2z%j + xyzk and S is the part of the paraboloid z = x% + y? that lies
inside the cylinder x2 + y2 = 4, oriented upward.

F(x,y,z) = 2ycoszi+ e*sinzj + xe’k and S is the part of the hemisphere x2 + y2+2z2 = 9
above the plane z = 0, oriented upward.

F(x,y,z) = x*yz3i+ xyzj + sin(xyz)k and S is the part of the cone z2 = x2 + 2 between
the planes z = 0 and z = 3, oriented upward.

F(x,y,z) = —y%i+xj+z2k and S is the part of the plane y +z = 2 inside the cylinder
x2+y2 = 1, oriented upward.

Exercises 18-27. Verify Stoke’s Theorem: {>F -dr = J. j curl(F) - ndS

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

C S

F(x,y,z) = 2zi+3xj+ 5yk and S is that part of the paraboloid z = 4 —x% — y? for which
z>0, oriented upward.

F(x,y,z) = yi+zj+xk and Sis that part of the paraboloid z = 1 —x2 —y? forwhichz >0,
oriented upward.

3
F(x,y,z) = 3xi+ (x + 2% + 2xy2) j+zk and S is that graph of the function
z = A1 =2(x2+y?) where 0 <xZ+y2< % , z> 0, oriented upward.

F(x,y,z) = z2i—2xj + y3k and S'is the upper half of the sphere x2 + y2 +z2 = 1, oriented
upward.

F(x,y,z) = 3yi+4zj—6xk and S is the paraboloid z = 16 —x2—y2, z>0, oriented
upward.

F(x,y,z) = 6xzi—x%j—3y2%k and S is the upper half of the sphere x2 + y2+22 = 1, ori-
ented upward.

F(x,y,z) = x*i +xyj+z% and S is the triangle (2, 0, 0), (0, 2,0), (0,0, 2), oriented
upward.

F(x,y,z) = (x2+y2)i+y2%j + (x> + z2)k and S is the triangle (2, 0, 0), (0, 2, 0), (0, 0, 2)
traversed counterclockwise.

F(x,y,z) = xi+yj+xyzk and S is the part of the plane 2x + y +z = 2 that lies in the first
octant, oriented upward.

F(x,y,z) = (z—y)it(z+x)j—(x+y)k and S 1is the part of the paraboloid
z = 1 —x2—y? that lies above the plane z = 0, oriented upward.
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28. A particle moves along the line segments from the origin to the points (1,0,0), (1,2,1),
(0,2,1), and back to the origin under the influence of the force field
F(x,y,z) = z%i + 2xyj + 4y2k . Determine the work done.

Suggestion: See Theorem 14.2, page 628, and apply Stoke’s theorem to the plane S containing the three points.

29. Let C be a simple closed smooth curve that lies in the plane x +y+z = 1. Show that
§de —2xdy + 3ydz depends only on the area of the region enclosed by C and not on the

C
shape of C or its location on the plane.
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§7. THE DIVERGENCE THEOREM

A discussion on the surface integral of flux was initiated on page 636.
Within that discussion you encountered:

Definition 14.11 (page 636): The flux of a three-dimensional
vector field F across an oriented surface S is given by:

Flux(Fy) = j jF-ndS
S

And:
Theorem 14.17 (page 637): If S is the graph of a differentiable
function z = f(x, y) defined on a region D, then:

(if S 1s oriented by upward normals)
”F—ndS = ”F (—fyi—f,j + k)dA
S D

(if S is oriented by downward normals)

[[F-nds = [[F-(fi+fj-k)d4
S D

Note that we cannot invoke the above theorem in the next example, as
the spherical surface S = {(x,,z)|x2+y2+z2=r2} is not of the
form z = f(x,y).

EXAMPLE 14.30 Find the outward flux of the vector field

F(x,y,z) = xi+yj+zk across the

sphere x2 +y2 + 22 = 2,

SOLUTION: Since both F and n are pointing radially away from the
origin, they are parallel. Hence:

F-n = ||Fl|n|cos0 = |F|-1 = |F| = yx*+y*+22 = r

Thus: Flux(Fg) = ”F ndsS = r” ds 5 r(4nr?) = 4nrd
S S Example 14.24, page 639

While the above solution was easy, it is also atypical. Indeed, evaluat-

ing a surface integral J. IF - n dS when S is not generated by a function

S
can prove to be an overwhelming if not impossible task.

Help is on the way:
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S

Gauss, Carl Friedrich
(1777-1855).

Answer: 4mr3

One might anticipate that the vector form of Green’s theorem,
appearing on page 630:
{;F-nds = ”div F(x,y)dA
C D

2 X
boundary curve of the plane region
extends to three space:
”F~ndS= j“div F(x,y,z)dV

S E
2
boundary surface of the solid region

Ans so it does:

THEOREM 14.19 Let the surface S be oriented in the outward
THE DIVERGENCE  direction and let £ be the solid region

THEOREM enclosed by S. If F = Pi+ Qj + Rk is con-
tinuously differentiable throughout £, then:

ijF-ndsz jijdiv(F) dv

y In words: The flux of F across the boundary S of a

solid region E is equal to the triple integral of the
divergence of F over E.

The above theorem, also known as Gauss’ theorem, is undoubtedly
the most far-reaching result in vector calculus; we do, after all, reside in
three-dimensional space. A restricted proof of the theorem appears in
Appendix B, page B-4.

CHECK YOUR UNDERSTANDING 14.30

Use the divergence theorem to solve Example 14.30.

EXAMPLE 14.31 Calculate the outward flux of:
F = (x—ysinz)i+ (y2 —z%)j + yzk
across the boundary S of the box:
E={(xy2))0<x<1,0<y<2,0<z<3}

SOLUTION: The ugliness of the vector field F, prevents us from
attempting to compute ”F -n dS directly. Fortunately, div(F) is

. S
nice:

div(F) = (x=ysinz), + (2 =205, + (2), = 1+2y+y = 1+3y

Turning to the divergence theorem we have:



Answer: 637

14.7 The Divergence Theorem 655

”F nds = ”jdw(F)dV ”j(1+3y)dzdydx
S

= j j (z+3y2)[ _ dydx
= j0j0(3+9y)dydx

1 y=2 1
=j(3y+— dx=j24dx=24
0 2 _ 0
=0

CHECK YOUR UNDERSTANDING 14.31

Calculate the outward flux of:

= (xsinzy)i + (e¥'? — tanx)j + (zcoszy)k
across the boundary S of the cylindrical solid:

E = {(x,,2)|x2+»2=9,0<z<7}

Answer: 9721

EXAMPLE 14.32 Calculate the outward flux of:
F = x3i+y3j+x3y3%k
across the boundary S of the parabolic solid:
E={(x,y,2)|z=4-x>-1%2>0}

SOLUTION: We have:
div(F) = (x3), + (%), + (x%%), = 3x2+3)?
Thus:

”F-ndS= j”div(F)dV= 3j“(x2+y2)dV
S E E

n 2 4-r?
Turning to cylindrical coordinates: = 3 J. J. J. 2rdzdrd®
(see Figure 11.13, page 473)

21 2 42
3[0 jo(ﬁz)\o drdo

3j2nj2(4r3 —¥5)drdo
0 °0

3j ( )‘ 9—3J.2nmd9—32n

CHECK YOUR UNDERSTANDING 14.32

Calculate the outward flux of F = 5xy2i + 5yz2%j + 5x2zk across the
boundary S of the sphere E = (x,y,z)|x2+y*>+2z2<9.
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We conclude this brief section with a glimpse into the nature of diver-
gence:

Let P be a point in space. Let E, be the solid sphere cen-
tered at P of radius » with boundary S,, and outward
pointing normal n. We then have:

C [[F-nas=[[[divR)avs [ [ [div(FP)ay
E E

S

r r r

= div(F(P)) j j j dv = div(F(P))@nﬁ)
E

r

Notice that the approximation div(F(P)) = 3 '[ F-ndS

4mr3

r

improves as 7 tends to 0. That said:

If div(F) >0 at P, then so is J. _[F -n dS for r small. L.e: Flow is directed away from P.
S

I

If div(F) <0 at P, then so is J..[F n dS for r small. L.e: Flow is directed toward P.
S

r

If div(F) = 0 at P, then _”F n dS~ 0. l.e: Flow toward P equals Flow from P.
S,

r
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EXERCISES

Exercises 1-12. Use the divergence theorem to evaluate I J.F -nds.
S

—

. F(x,y,z) = x3i+y3j+ 23k and S is the sphere x2 + y2 + 22 = g2,
2. F(x,y,z) = (x3+y)i+ (3 +z2)j+(z>+x)k and S is the sphere x2+y2+2z2 = 1.

3. F(x,y,z) = (x+y)i+z2% +x2k and S is the surface of the solid hemisphere:
E = {(x,y,2)|x2+y*+2z2<1,2>0} (with outward normal).

4. F(x,y,z) = xyi+yzj+xzk and S is the surface of the solid:
E={(x»2)]0<x<1,0<x<1,0<z<1-x-y} (with outward normal).

5. F(x,y,z) = ye?’i+y%j + ek and S the surface of the solid:
E = {(x,y,2)|x?+3%<9,0<z<y -3} (with outward normal).

6. F(x,y,z) = 3xy%i +xe?j + z3k and S is the surface of the solid cylinder:
E = {(x,y,2)|y?+2z2<1,-1 <x <2} (with outward normal).

7. F(x,y,z) = y%i+xz3j+ (z— 1)%2k and S is the surface of the solid cylinder:
E = {(x,y,2)|x?+y?<16,1 <z <5} (with outward normal).

8. F(x,y,z) = 2xyi+ 3ye?j+ xsin(z)k and S is the surface of the solid unit cube:
E={(x»,2)]0<x<1,0<y<1,0<z<1} (with outward normal).

9. F(x,y,z) = [xzsin(yz) +x3]i + cos(yz)j + [3z)2 — e¥* "]k and S'is the surface of the solid:
E = {(x,,2)|0<z<4—x?—y?} (with outward normal).
y2
10.F(x,y,z) = xyi— Ej + zk and S is the surface of the solid:
E={(xy,2)|z<4-x2-y%1<z<4} U {(x,,2)|x?+»?<1,0<z< 1}
(with outward normal).

11.F(x,y,z) = xyi+ (y?+ e*¥)j + sin(xy)k and S is the surface of the solid bounded by the par-
aboliccylinderz = 1 —x? andtheplanesz = 0,y = 0,andy = 2 —z (with outward normal).

12.F(x, y,z) = 2xzi—xyj —z2k and Sis the surface, with outward normal, of the wedge cut from
the first octant by the plane z = 4 —y and the elliptical cylinder 4x% +y% = 16.
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13.

14.

15.

16.

17.

18.

Verify the divergence theorem for the vector field F = x2i + y%j + z2k and S is the surface of
the solid unit cube £ = {(x,»,2z)[0<x<1,0<y<1,0<z<1}.

Note: You will need to compute six surface integrals to evaluate j IF -n dS directly.

S
Verity the divergence theorem for the vector field F = xi+ yj+ zk and S is the surface of
the solid £ = {(x,y,2)|0<z<16—-x2—y?}.
Verify the divergence theorem for the vector field F = x2i + xzj + 3zk and S is the sphere
x2+y2+z22 =4,

Show that for F = xi + yj + zk and for S the surface of any solid £ satisfying the conditions
of the divergence theorem:

Volume of E = %“F-ndS
S

Show that the outward flux of a constant vector field F = ¢ across any closed surface satisfy-
ing the conditions of the divergence theorem is zero.

Verify that if the conditions of the divergence theorem are satisfied, then:

”curlF-ndSZ 0
S
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CHAPTER SUMMARY

LINE INTEGRALS

For C a smooth curve C in the domain of a function f(x, y) or

For Scalar-Valued | f(x,,z2):
Functions b
{ fds = lim 3 fAs
THEOREM Ifx = x(¢),y = y(t), fora<t<b, then:
dy
jf(x y)ds = jﬂx(r) yo1 (%) +(2)
Ifx = x(t) , v = y(t),z = z(t) fora<t<b,then:

Jree.ds - J 030,20 J( ) (D)4 ()

LINE INTEGRALS

Let r(¢),a<t<b be a parametrization of the smooth curve C,

For Vector-Valued and let F be a continuous vector function defined on C. The line
Functions integral (or path integral) of F over C, is given by:
b
jF. Tds = jF- dr = j F(r(0)) - ¥ ()dt
a
THEOREM If Cis a curve with parametrization r(z), a < t < b, then —C denotes the

curve with parametrization r(¢) = r(a+b—1t),a <t <b and we have:

jF-dr= —jF-dr
C -C

(Note that 7(¢) traces out C, but in the opposite direction of r(z))

Line integral of a vector-valued function F defined on a curve C with parametrization r(z) for

a <t<b can be represented in several forms:

b
[F-1as  or [F-dr o j F. ——dt or [ Fr(t)-v(t)dr
C a
For F(x, ) = P(x,»)i + O(x, )i For F(x,7,2) = P(x, y,2)i+ 0(x, 3, 2)j + R(x, 7, 2)k
and C in the plane: and C in three-space:
b b
d d
J [Pen G+ 06 Jdi J [Peey %+ 0, 2 + ROk ) L
a a
or: or:

b
j Pdx + Ody
a

b
j Pdx + Qdy + Rdz
a
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PATH-INDEPENDENT | A vector field F is path-independent if for any two points po and

VECTOR FIELD P, in the domain S of F, and any two smooth curves C and C in

S from p, to py:
[F-dr=[F-dr
c c

CONSERVATIVE FIELD | A vector field F is said to be conservative on a set S if there
exists a scalar-valued function f, called a potential function for
F, such that forevery p € §:

F(p) = VA(p)

curl(F) Let F(x,y) = P(x,y)i+ Q(x,y)j. The curl of F, denoted by curl(F) is
the vector field:

curl(F) = (g—g—g—i)k

For F(x,y,z) = P(x,y,2)i+ O(x,y,z)j + R(x, y, 2)k

i j k
~ det| @ @ @ :(5_13,5_Q -+(5_P,5_R i+ 5_Q_5_P)
curl(F) detaa& 2 az)’ PP ax)] (ax 8yk
P OR
0,, 0., 0
. _ =i+ i+ =
Or: curl(F) =V x F where V pI ayl aZk
THEOREM

Let F be continuous on a simply connected open region S. The following are equivalent:

(1) {)F -dr = 0 for any smooth closed curve C in S.
C

(i1) F is a conservative vector field on S, i.e. F = Vf.

(ii1) F = Vf is path-independent on S with J.F -dr = f(p,)—f(p,) forany smooth C from p,
C
top,.

(iv)For F = P(x,y)i+ O(x,»)j: g—jj = g—g

oP_00 oP_oR 00 _GR

oy Ox 0z o0Ox 0z Oy’
That is: curl(F) =0

ForF = P(x,y,2)i+ Q(x, y, 2)j + R(x, y, 2)k:
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div(F) Let F(x,y) = P(x,y)i+ Q(x,y)j. The divergence of F, denoted by
div(F) is given by:
div(F) = a—P Y
ox Oy
For F(x,y,z) = P(x,y,z)i+ O(x,, Z)J+R(x v, 2)k:
orP 00
F)=_—+_=
div(F) = ox Oy 82
Or: Div(F) =V - F where V = axl+6yl ak
GREEN’S THEOREM |
For F- T For F-n

oy

§F.Tds=5£de+Qdy:”(g_g_a_f’)d/l §F - nds = igpdy de_”(ap aQ)
C c D c

Vector Form Vector Form

§>F-Tds = ”(curlede: ”(VxF)-ka’A §>F-nds = ”(divF)dA= ”(V~F)dA

SURFACE AREA
(Function Form)

(Parametrization
Form)

Let S be the surface z = f(x, y), where f'is a differentiable function
defined on a region D. The surface area of S, denoted by A(S), is
given by:

A(S) = [[ U+ I£,06 1+ [y (x, )]Pd4
D

Let S be the surface parametrized by the differentiable function
r(u,v) = x(u, v)i+y(u, v)j+z(u, v)k

defined on a region D in the uv-plane. The surface area of

S = r(D), denoted by A(S), is given by:

A(S) = [[|r, x r,)|dudv
D

SURFACE INTEGRAL
(Function Form)

(Parametrization Form)

Let S be the surface z = f{(x, y), where f'is a differentiable function,

and let g(x, y, z) be a continuous function on S. The surface integral
of g over §, is given by:

[[2(x.y.2)dS = [[alx, v, fie L1+ 06 )1 + [, (3, 9)]12dA
S D

Let S be the surface parametrized by the differentiable function
r(u,v) = x(u,v)i+y(u,v)j+z(u, v)k

defined on a region D in the uv-plane. The surface integral of g over

S is given by:

[[gCx.y.2ds = [ [glrtu,1|r, x r,|dudv
S D
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FLUX ACROSS A The flux of a three-dimensional vector field F across an oriented
SURFACE surface S is given by:
Flux(Fy) = j j F-ndsS
S
THEOREM Let the surface S be defined by a differentiable function

z = f(x,y) defined on a region D in the xy-plane.
If S is oriented by upward normals:

”F— nds = ”F (—~fi—f,j + k)dA
S D
If S is oriented by downward normals:

”F-ndS = ”F-(,;ny,'_k)dA
S D

STOKE’S THEOREM
%,

C

If S is an oriented surface that is bounded by a simple closed curve
C with positive orientation (counterclockwise), and if
F = Pi+ Qj+ Rk has continuous first-order partial derivatives
on some open region in three-space containing S, then:

§F- dr = ”curl(F) - ndS

C S
where the orientation of S is such that:

When walking around C in a counterclockwise direction
with your head pointing in the direction of n, the surface
will always be on your left.

In words: The line integral around the boundary curve of S of the tangential component of F is
equal to the surface integral of the normal component of the curl of F.

DIVERGENCE THEOREM

Z
n

x/ Y

Let the surface S be oriented in the outward direction and let £ be
the solid region enclosed by S. If F = Pi+ Qj + Rk is continu-
ously differentiable throughout £, then:

”F-ndSz I}{Jdiv(F) dv

S

In words: The flux of F across the boundary S of a solid region E is equal to the triple integral
of the divergence of F over E.




CYU SoLUTIONS A-1

CHECK YOUR UNDERSTANDING SOLUTIONS

CHAPTER 11: FUNCTIONS OF SEVERAL VARIABLES
1 1

x2-9 (x+3)(x-3)

which the denominator is not zero, namely: D, = {x|x#=£3}.
1 =

x2—yr  (x+y)(x-y)

for which the denominator is not zero, namely: Dp={(xy)|x#+y}.

CYU 11.1 (a) The domain of f(x) = consists of all real numbers for

(b) The domain of f(x) =

consists of all ordered pairs (x, y)

(¢) The domain of f(x,y,z) = z)fir_yl consists of all ordered 3-tuples for which the

denominator is not zero, namely: D, = {(x,y,2)|z#—-1}.

CYU 11.2 Since as x and y tend to 0, both x? and y? also tend to 0, we can certainly anticipate

that  lim  (x2+y»2) = 0. Kudos for our anticipation:
(x,») > (0,0)

Let € > 0 be given. We are to find 6 > 0 for which:
0<[(x,»)=(0,0)] <8 =|(x2+y2) -0 <¢
0<(x, Il <d=>x2+y?<e
Nx2+y2<d=>x2+y?<e

x2+y2<82=>xr+yr<e

uwes

The above will certainly be satisfied for 6 = JE: .

CYU 11.3 (a) Let lim  f(x,y) = L. To prove that lim [cf(x,¥)] = cL. For
(%, ) = (x, o) (x, ) = (x0, 7o)

given € > 0 we are to find 6 > 0 such that:
0 < |(x, ) = (xg, ¥o)| <O = leflx, y) —cLl <e
0 <||(x, ) = (xq, ¥o)|| <& = lel[fix,y) — Ll <

£ will

In the event that ¢ = 0, any 6 > 0 will surely work. If ¢#0 , then = ]

do the trick.

lim 5(x+y)(x2_y7=5[ lim (x+y)][ lim (xz‘yzﬂ
(®) () >, xX—y () > (L, 1) (ny) > (1, HN X =Y

5(2)(2) = 20

Example 11.1:



A-2 CYU SOLUTIONS

CYU 11.4 (a) Iffand g are continuous at (x, y,), then:

Theorem 11.1(c)

lim  [f(x,y) g(x,»)] = lim  [f(x,y)] lim  [g(x,»)]
(x, ) = (x0, ¥0) (x, ) = (x0, ¥0) (x, ) = (g, ¥g

since / and g are continuous at (x,, y)): = f(XO’ yo)g(x()’ yO)

(b) Since f(y) = »?, g(x) = sinx+e* and h(r) = JJr are continuous, so is

H(x,y)=Ay*(sinx + e¥) (Theorem 11.3).

CYU 11.5 The projected traces of z = f(x,y) = |x| -y for z = 0,z = 2,z = 4 onto the xy-
plane, appearing in (a) below, are hoisted 0, 2, and 4units up the z-axis in (b).

CYU 11.6 Since the variable z is missing in the equation
2
x2 +% = 1, the directrix resides in the xy-plane,

and the rullings are parallel to the z-axis. A portion
of the elliptical cylinder appears in the adjacent fig-
ure.

X

CYU 11.7 This is Example 11.6, with the roles of y and z reversed:

z
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CYU 11.8 Portions of the cross sections of the ellipsoid on the planes x = 0,y = 0,andz = 0,

along with that the planes z = 1, are depicted on the left side of the figure below. The
associated ellipsoid appears at the right.

z

2- 4 2 12 3 4
CYU11.10 y = (2x+y+3xy)dy |dx = 2xy + =y +—xy2 X
— 2 2
12 1
2
2
= j [(8x + 8 +24x) — (4x + 2 + 6x)]dx
1

2
~ [ @2x+6)dr = (1122 +6x)|,
1
— (44+12)—(11+6) = 39



A-4 CYU SOLUTIONS

2
dy
1
4 3
= J' [(4+2y+6y)—(1 +y+§yﬂdy
2

4
- () - (o)
2

= (44+12)—(11+6) = 39

42 4 3x2y
V= LDI(2x+y+3xy)dx}dy = jz( x2+xy+ T)

CYU 11.11
(a) y = Ax-1
1 =2 Sy=2
2 \ ”2xydA = I _[y 2xydydx+j Iy 2xydydx
R/' R 17y =—x+1 1%y = x-1
| | 2 =2
=y2+1
| i 5 (*) ”2xydA = I r 2xydxdy
R 0x=1-y
y=—-x+1
(b) Choosing (*) we have:

2 x=y*+
Jf2evar = [ | f 2xpdxdy = j 2y Ny = j (2 + 1 - y(1-)?1dy
R x=
= j O +2y7+ 1) —p(1 -2y +y?)]dy
= 20

2
= 5434 2 — ( _+y + y)
f (02 Fy? +2y5)dy = (et T3

CYUILI2 V = “( y+5) (— y+2)dA—”( §+3)dydx
2( ¥ 3)y=2d “Sav = 10
= —— 4 = =
.[0 4 yyzox IO x

—x+2

1 x? 2
CYU 11.13 Ljh(x,y)dfl = IO UO h(W)dde”fl UO

Fixing x between 0 and 1, we go from y = 0 (the x-axis) to ", = ;2 Y= —x+2
y = x? (hashed region). Fixing x between 1 and 2, we go Z
fromy =0toy = —x+2. x

0f ol 2

h(x, y)dy} dx
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y= We can get by with one integral if we reverse the order of
_\ij\zx - _,+2 integration. Fixing y between 0 and 1 we go from the curve

x = JJytothecurve x = —y+2:

1

0

i X B —-y+2
Ljh(x,y)dA - | U[y h(x,y)dx}dy

&

y=-x+1

1 —x+1 1 1
CYUI1L.14 y = .ijydA = Io UO xydy}dx = IO(ExyZ)

CYU 11.15 We have: M = j jxydA = j jxydA = 2i4 (see CYU 11.14). Moreover:
R R

—x+1

M, = _L[xé‘)(x,y)d/l = )szyd/l = jl UO

)

xzydy}dx
-x+1

11 2
dx = Ioéx (—x+1)2dx

0
1
= 1 4 3 1 2) = 1
= x4 34+ = = —
-[0(2x X*+ox dx 0
- —x+1
M, = 'LIyS(x,y)dA = JI;J.xysz = J.O Do xyzdy]dx
1 3 -x+1 11
= I (x-y—) dx = I ~x(—x+ 1)3dx
0 3 03
0
1
= LR B 1) _ 1
= oA 3 24 = = —
J-o( 3P —xt oy dx 0

ooy _ (1/60 1/60\ _ (2 2
Conclusion: (¥, y) = i) =55

CYU 11.16 (a) The paraboloid z = 1 —x2- y2 intersects the plane YA atayr=a

z = 0 in the circle x2+y2 = 1. It follows that the solid R

lies under the surface z = f(x,y) = 1-x2-y? over the \:
AN

region R = {(x,y)|x*>+y?<1}. Expressing the volume in

o v
QB/
—
=

polar form we have:
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2, 1
V= _[I!(l—xz—yz)dA = Lj(l—rz)dA = jo (jo(l—rz)rd”)de
2w -
(g
1 —cos6 1= cost r=1-cos6

o = Lao =
(b) 4 = jzn(jo (1 .rdr))de - jzn(@ 0 40 /

m
3% T3
27
- %j (1— cos0)2d0
0

27
= %J. (1—2cose+cos26)d9
0

27
= lJ- (1—20036+————————1 +cos26)de
2J, 2

21
1( ) 0 sin26)
= =[{9— + =+
> 0 —2sin0 > )

3
2

1+ sin6

CYUIL1T jf = j Q ,,.rd,,)de _ f”@)
0 0

27
- %j (1+ sin0)} do
0

T
- %12 (1+3sin0 + 3sin°0 + sin°0)d0

[ +3sinf + = (1 —c0s20) + sinB(1 — cos 6)]

( +4sm9—%c0529—smecos 9)619
21

J

dl

( 0-— 4cose——s1n26+ cos 9)
0

1
3\2
snoged (carl)]- 22
3 3 3 3
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T
= s .cosO

CYU11.18 M = Héi(x,y)dA = ji(jo sine~rdr)de
R

T
2

COS T
_ re I I DA :l(_l 3) _1
IL( sme) 9}a’e 2.[0(:08 0sin0do > 3cos 0 0 c
g cos0
M, = [[x3(x,y)dd = | (j rcose-sine-rdr)de
i 00
cos0
= _[ ( cosesmﬁ) do = —j cos GcosesmedG
0 T
n 2
_1p cos Gsmede —( l00556) - L
390 3\ 5 o 15
> cos0
M, = [[y8(x,y)d4 —j (j rsine-sine-rdr)de
T cos0 ) T
- jz(r—sinze) d0 = ={*(cos®)3sin’0d0
o\3 37_9
0
= 3'[ cose(l—sm e)sm 0d0
T
= ljz (—sin49 cosO + sin°0 cos 0)do
37
T
1/ 1 1.3 ? 2
.5 }
= —-|_= + = = =
3( 5sm 0 3sm 9) 0 15
Conclusion: (x,y) = (Aiy Ai) = (1/15 2/45) (6 12) = (2 i)
A MM /6 1/6 15" 45 515

CYU 11.19 Just as the area of a two-dimensional region R equals the volume of the solid of base

R and height 1, which is to say: ” 1dydx ; so does the volume of a three-dimensional
R

region W equal “j 1dzdydx . That being the case, we simply evaluate the integral of

[P

Example 11.12 w1th “1” replacing the “x
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V= ”J‘xdzdydx = J.j xJJ . ldzdydx = J-IJ.I_X Z|(1)‘x‘ydydx
—IIII x(l—x y)dydx

1-x
J(y xy_z

1 (1 -x)—x(1 —x)—( ;x)szx

dx

I
'—u
|—|

30,2
_ (x__)c_+§) S P S
6 2 6 2 2 6
CYU 11.20 We show that j j jxa(x, y,z)dV = j j j 18(x,y,2)dV = 0:
rooalr—x2 Y
[ ] [ x(kz)dzdyax [ 17 [ vkeyazava
—r —A/rz—xz 0 —r *A/IT)CZ 0
=h
W R NI Y oy z=h
=k (x—z) dydx - T (Z_Z)
pp—c J I 05) e
Jrr—x? N
N I J Xdy dx = I I ydydx
N/
il [(W s el
27 0
= k% 2xAr? —x2dx = —%khzj ﬁdu =0 y=—Nr?—x2
—r 0
) kh? ¢
u=r2—x%du = —2xdx - TI [(r?=x?) = (r?=x?)]dx = 0
x=—r=>u=0x=r=u=0 -

CYU 11.21 Keep in mind that you have to go from surface to sur- . Ly
face, then from curve to curve, and, finally, from point to ]T R N

|

l

point.Once you choose the surface to surface direction,
then the limits of integration of the remaining two inte-

grals can be observed by projecting W onto the coordi- |W
nate plane perpendicular to the initially chosen direction. /2/ _____ v




CYU SOLUTIONS A-9

1 2 2z+1 2 1 2z+1

M= jojojl_z zdydxdz = jojojl_z zdydzdsx
1 2z+1 2

= IO '[1 B J.O zdxdydz

1.1 2 3.1 2
- -[0-[1 _yjozdxdzdy+ J-IJ%%J.Ozdxdzdy
321

121
= jojojl  pedsdy+ UO jZ%zdzdxdy

N

2 .1 .1 2 3 .1
= Iojo J'l _yzdzdydx + Io'[1 J.Z%Zdzdydx

N

x = rcos0 =4cos§ =4-£ =2J§

2
CYU 11.22 (a)For P = (r,0,z) = (4, g,—Q:
y = rsin@ = 4sin

(b)For P = (x,,2) = (2,2,4): r = +Jx2+)2 = +.J/4+4 = £2.2
—tan Y = a2 = tan ' = Ty
0 tanx ‘[an2 tan 1 1 nw
Thus P = (2[2, 3 4)

CYU 11.23 To determine the region of intersection of the
paraboloid z = x2+3»2 and the sphere
x2+y2+z2 = 20 solve the system:

7 = x2+y2

=z+22=20=>2z2+2z-20 =0
x2+yr+z2 =20
(z+5)(z-4) =0

Hence z = 4 and x2 +y2 = 4. We then have:

21 2 20 -2 21 2 2= S0
V= ujlde jo joj rdzdrd® = jo JO(”)L:rzzO S
2n 2
IV«/ZO——VZ _ —%J'u”zdu _ —%u3/2+C = J'Onjo(sz—rZ_r - 12)drdo
u=20-r2

=- %(20 _r2pi24C

2
du = 2rdr ‘

21 1 74
= | (——(20—r2)3/2——) do
o\ 3 4/,

_ f”%@oﬁ_%)de - 2?“(40f5—76)
0
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Also, for 8(x, y,z) = k: M = me‘)(x,y, 2)dV = k”jdt/ 27"‘(40[ 76)
w w

By symmetry, the x and y coordinates of the center of mass are 0. As for Z:
1 21 2 /20— 2
= A—A j j z8(x, y, z)dV = Mj jo j zkrdzdrd®
w 20 72

21 2
“l, B e
2
on 2 k27 4 ,,6)
- 5 - 2
2Mj j (207 — 3 — r5)drdd = 2Mj (1or i Ode
_ k76 . _ T6mk
S 2M, 3 de - 3M
- %’—‘k(40ﬁ—76): - L ~14
40./5-176
CYU 11.24 (a) For P(x,y,z) = (0,2./3,-2):p = JO+12+4 = 4
From z = pcos¢ we have: -2 = 4cosdp = cosp = —% as0<¢<m, d = 2?n
From x = psingcos® we have: 0 = 4sin2?nc056:> cosO = 0;asy>0,0 = g
. _ (4 2m E)
Thus: P(p, 9, 0) (4, 35)
(b) For P(p,9,0) = ( 23n Sn) (see Figure 13.9):
_ = 25in 2oy 3 = o(L3)(-L2) - 3
x = psindcosO = 2sin 3 cos 7 2 5 5 >
- s = %52 o] - £
y = psingsin® = 2sin 3 sin g 5 5
z = pcosp = 20082?11 = 2( D = -
. _ (343 1)
Thus: P(x, y, z) ( > 5
As for the cylindrical coordinates, P(r, 0, z), we have 0 = %E; and, from above: z = —1.

Asforr r = Jx2+y? = J(—%)2+(§)2 = /3. Thus: P(r, 0,z) = (ﬁ, %,—l).
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CYU 11.25 Here is the sphere’s equation in spherical coordinates: z
x2+y2+z2 =z A
N w
p2=§zos¢:p=cos¢ R
And here is the cone’s equation in spherical coordinates: \~\—— )
B \ SANs = 2442
z = Jx2+)2? N _ xyy
pcosd = (psingcos0)? + (psindsind)2 x
= «/pzsin2(|)(cos29+sin29) = psind
|
cosd = sing = ¢ = 1—:
So: {(p,d) 0)[0<p < cosd,0< < EOSGS%:}; and:
cos ¢ q) 0 — J. J-g p3 p = cosé ¢ 0
Vo= 1dV = p2sinpdpdddd = (——sm ) ddd
fifar = 171 (Fane)]
T
4

CHAPTER 12: VECTORS AND VECTOR-VALUED FUNCTIONS

cyv12.1 7 2,1 To move the initial point to the origin, we have
to move that point two units to the left and one
x unit down. Doing the same to the terminal point
(4, —2) we end up with:
(aj,a,) = (4-2,-2-1) = (2,-3)

(4’ 72)
(2,-3)

CYU12.2 For v = (3,2),w = (-1, 1),r = 2,5 = 3:
Fv+sw = 2(3,2) +3(-1,1) = (6,4)+(-3,3) = (6-3,4+3) = (3,7

(1,-3, .5 - (1,2,3)

CYU 12.3 %[(2,—3,0>—<1,o,—ﬁ>]—<1,2,3>

2
1 3 .5
- <§a_§>77>7<1’2’ 3>
1 7./5-6
“ T
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CYU 12.4 Foru = (uy, uy, u3) and v = (v, v,, v3):
utrv= (U, iy, uy) + (v, vy, v3) = Uyt v, Uy TV, Uz +vy)
PofR: = (v, tu, vyt vytu)=vtu
Forv = (v, v,, ..., v,), and scalars » and s:
(r+s)y = (r+s)(v, vy, .0, V) =((r+8)v, (r+8)vy, ..., (r+s)v,)
PofR: = (rv, +sv,rvy +8v,, .., 7V, +5V,)
=1V Vg, ey FV,) T SV, SVy, ., 8V,)

=7V, Vo o V) TSV, Vg, o, v,) = PV ESY

CYU 12.5 () |3(2, 1,0) — (4,2, D)|| = [(6,3,0) - (4,2, )|
= 1€2,5, 1) = J22+52+(-1)% = ﬁ)

(®) llev| = A/c(vl, vy, V3) = A/(cvl, CV,y, V) = chvf +c2vd + c?v3
= J2, v} +v3+v3 = v

CYU 12.6 3(2i+4j—k)—5(3i—k) = 6i+12j—3k—15i + 5k = — 9i + 12j + 2k

Or, if you prefer: 3(2,4,-1) -5(3,0,-1) = (6,12,-3) — (15,0,-5) = (-9, 12, 2)

CYU 12.7 Here is the unit vector in the direction of F; : F,

1 3, .4
L agian = 34
sl W) T sty (3.4)

. ) ) ) (1,a)
Since we are not given a specific point on F,, we do the best we

can, and exhibit its unit vector in terms of the point (1, a) in the
1 = 100 pounds

figure: ———(i + aj).

J12+a?

From the equilibrium equation ¥, + F, + F = 0 we have:
sinee | = 2|F|

M(— 3i+ 4j) + 2R (i +aj)— 100j = 0i +0j
S J1+a?
Equating the i-components:

3 2 2 3 10 100
SRl Sl T s S T e sy s ety
91

a2 ==

9

The figure indicates that a is positive: g =

F,
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Turning to the j-components:

2,91
4 2a 4 3
S = 2] 100 0= S+ FFI - 100
4
(% +22) = 100
500
F =
jrl - 2
|Fo ., 20Fy .. Jo1;
Conclusion: F, = (i+aj) = (l+ ])
24 2 2 3
e (59
2( 500 )
4 + 91. 91,
- Pl BY) - a1 ai+ L)

CYU12.8 wu-rv = (upty, .utt,) 1V Voy ooty V) = (U, Uy, ooy Uy) - TV, FVyy oy TV,)

= u(rvy) tu,(rvy) + ...t u,(rv,)

= r(uv, tuv,+ ... tu,v,) = r(u-v)

CYU 12.9 (a) |3i—4j+2k| = J(3i—4j+2k)- (3i—4j +2k) = 32 +42+22 = 29
1€5, 1) = (2,-3)[1? = (3, H]? = (3,4)-(3,4) = 3(3)+4(4) =25

and ||<59 1>||2_2<5a 1> : <25 _3> + ||<2: _3>||2

= (51)-(51)—10,2) - (2,-3) + (2,-3) - (2,-3)

by —(25FD-(0-6)+(4+9) = 26-14+13 = 25

CYUI12.10 6 = cosfl((i %(J;—:)J)) = cosl(_}/%f) = cosfl(i) = cosfl(L)

CYU 12.11 (a) Since (2,3) - (1,—4) = 2-12 =0, the two vectors are not orthogonal.
(b) Since (2i +3j) - (—3i+2j) = —6+6 = 0, the two vectors are orthogonal.
(c) Since (1,2,3) - (-1,-1,1) = =1-2+3 = 0, the two vectors are orthogonal.
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CYU 12.12  proj,v = (%)u = [%J(O, 2) = %(0, 2) =<0, 1)

y
and v—proj,v = (3,1)—(0,1) = (3,0)
PHOJu proj g o v = (0, 1) v= (31
/ X

\
V—projg v = (0,3)

3

CYU 12.13 (a) det > _} =5.6-(-3:-0) =30 (b)det B _6} =2.6-(-3-4) =124

0 6

() det jj = 2.0-(5-4) = =20

1 1

1 L 11
det | 2 i—det |3 jt+det |3 2|k
0

-3 .2 0 .2

CYU 12.14
det

-1

S W= o~
NIl— .

)

L a)io (L) ok = 4226 42 4
(2 ) (3 )J 1

ij k
det|2 3 4
31-2

det|3 4|i—det|? 4 [j+det|? 3|k
1 -2 32 31

= (- 6-4)i—(—4—12)j+(2-9)k = (~10, 16,-7)

(29 35 4) X (35 1: _2)

CYU 12.15

CYU 12.16
(2,3,4) x (3,1,-2)- (3, 1,-2) T (~10,16,-7) - (3,1,-2) = —30+16+14 = 0

CYU 12.15
sy ijk
CYU12.17 (@)jxk =det | 1 ¢o| =i kxj=det|gqg 1| =—i
00 1] 010
i K] ijk
ixk =det|1 g =, kxi=det|gqg1|=J
00 1] 100

b)ix(ixj)=ixk=—and (ixi)xj=0xj=0
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CYU 12.18 The area of triangle OAB is one half its base
times it height:

_ Ly
N2

Theorem 12.6

1 1 )
2||V||h = 2||v||||u||s1n9

Flipping that triangle about and line segment
joining A4 to B yields the depicted parallelogram. It follows that the parallelogram
has area |u x v| .

CYU 12.19 (a) The given slope of % (over 3, down 2) gives us the direction vector:

u = (3,-2), and the given point (5,1) gives us the translation vector:

u = (5,1). Vector equation: w = (5, 1) +¢(3,-2) . Parametric equations:
x=5+3ty=1-2t

(b) A direction vector for any vertical line is j. Taking (3, 7) = 3i+ 7j as our trans-

lation vector we have: w = (3i+7j)+¢j,and: x =3,y = 7+¢.

CYU 12.20 Taking v = (0,1,-2)—(1,2,9) = —(1,-1,—11) as the direction vector, and
u = (1,2,9), as the translation vector we arrive at the vector equation:
w= (1,2, +t{-1,-1,-11) = (1 -£,2-1,9-116) (%)
Which brings us to the parametric equations:
x=1-t,y=2-t,z=9-11¢

Note: If you chose v = (1,2,9) -0, 1,-2) as the direction vector and (0, 1, -2)
as the translation vector you will end up with the vector equation:
w=(0,1,-2) +¢(1,1,11) = (£, 1+¢£—-2+11) (**), which certainly looks dif-

ferent than (*) above. But appearance can be deceiving, for if you replace ¢ in (**)
with 1—¢ you will arrive at (*), and as ¢ takes on all real numbers, so does 1—¢.

CYU 12.21 (a) A direction vector for the line L passing through (1,-2) and (2, 4):
u = <254>7<1772> = <1’6>
The vector from the point (1,-2) onLto P = (2,5):

v=1(2,5-(1,-2) = (L, 7)

. . . 1,6) - (1,7) 43
Applying Th 12.4: = (”—D - (—< ) 1,6) = (1,
pplying Theorem proj,y = )% = T e (16 (1,6) = 32(1,6)

_ — 43 258 |, 6 1 _Je2+12 1
Hence: |[v = proj, v = H<1’7>_ 37 37>H B H<_37’ 37>H 3 A7
(b)u: <1329291>_<1:29091>:<0307270>'v: <1:03123>_<1929091>: <O:_2:1:2>

: — u — <07 07 27 0> . <07 _2) 1>9 2) — l —
proj, v = (22 = (LSS 02 00.0.2.0) = 5(0.0.2,0) = (0.0.1.0)
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Hence: |[v—proj, v = [(0,-2,1,2) = (0,0, 1,0} = [0,-2,0,2) = V8 = 2./2.

CYU 12.22 A normal to the desired plane will have the same direction as that of the line passing
through the two given points; namely: n = (0,2, 1) - (1,1,0) = (-1,1,1).
Vector equation: (—1,1,1) - (x—1,y-3,z+2) = 0.
Scalar equation: —(x—1)+(y-3)+z+2 =0
General equation: —x+y+z = 0

CYU 12.23 We chose 4 = (0,16,0), B = (O, 0, —156) nd C = (196 0, 0) . Then:

AB = (0, 16, 0)—(0, 0,—1—5‘5) = (0, 16, 15§> and 4C = (0, 16,0)—(1—96- ) = (-16 16,0) .

Here is a normal to the plane:

i j k
16 162, 162, 162 162 162 162
= 0 16 - | = _-—.+——.+— =
n = det 5 T A N N R
1616 0
: (139 99 . _ 45 162 162 162
Here is a “nicer” normal: n = TOARERITE ) =(9,15).

Choosing the point 4 = (0, 16, 0) on the plane, we arrive at the vector and general equation
of the plane: (-9, 1,5) - (x,y—16,z) = 0, and 9x+y—5z = 16.

CYU 12.24 (a) From the given equation x + 2y +2z = 13, we see that n = (1,2,2) is a nor-
mal to the plane, and that Q = (13, 0, 0) is a point on the plane.
For v = QTD =(2,-3,4)-(13,0,0) = (—11,-3,4), we calculate the length
d of the vector w = proj,v, as that is the distance between P and the plane:
v-n _ [(=11,-3,4)-(1,2,2)] _ 9
Jnono J(1,2,2)-(1,2,2) 3

d = ||proj,v| = =3

(b) We know that n = (a, b, ¢) is a normal to the plane ax +by+cz+d = 0.
Let O = (x;,¥;,z;) be any point on the plane, and let:

v=0P= (xoayoazo)_(xpypzl) = <x0—x1,y0—y1,zo—zl>

Following the procedure of (a) above we calculate the distance d between
P = (xg,¥0 29) and the plane:
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_lven| _ |a(xg—x)) +b(yg—y)) +c(zg—2z))

Jn-n Ja? +b?+ 2
|axy + by +czg+ (—ax; —by,—czy)|  |axg+byy+czy+d|

Ja?+ b2+ c? % Ja?+ b2+ c?

since ax; + by, +cz; +d=0

d

CYU12.25 n; = i+2j+k,and n, = 3i—4j—k are normal vectors for the planes
x+2y+z =0 and 3x—4y—z = 1, respectively. Consequently:

o (2R - Gimdj—k)y (3-8
’ (a0 — (ﬁm)

The line of intersection is parallel to the vector:

i j k
nyxn, =det|1 2 1| =2i+4j-10k
34 -1
Setting y = 0 in the two given equations x+2y+z = 0 and 3x—-4y—z =1 ,and

solving for x and z we find that the line contains the point (}‘, 0, —i

).
Consequently: w = (ii— }lk) +t(2i +4j—10k) 1is a vector equation of the line of

intersection. [As is w = (3i— 1K) + 1(i + 2j — 5k)]

CYU 12.26 While y = x? represents a z

parabola in the plane, in R3 it represents
the parabolic cylinder with vector equa-
tion:

r(t) = ti+t3j+2tk = (¢, 12, 21). (3.9.6)
At time ¢ = 1 the particle has position
vector (1,1,2), and occupies the point
(1,1,2). At time ¢ = 3 it is at the point

(3,9, 6). As time progresses from 1 to 3, Y
the path remains on the parabolic cylinder Ly r=x
as is suggested in the adjacent figure. x

AV
o 1)]Jr(smt)k.

CYU 12.27 (a) For r(t) = (e)i+ (
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(1) limr(¢) = lim(e")i+ lim( ! )]4‘ lim (sint)k = ei+%i+(sinl)k
t—>1 t—>1 (> 12+ 1 t—>1

(i) (1) = (et)'i+(t2il)’j+(sint)’k
2 _ _ 42
— (eNi+ (i—(Jitz—lJ%—l—)tgzt—)j+(cost)k - (e’)i+(t2t++1;2i+(cost)k
(i) [r(ydr = (Iefdt)i+(jtzi1dt)j+[j(sint)dt]k
= efi+(%jc—l5)j— costk = e’i+(%ln|u|)j—(cost)k+ C
Zu:f;dlt = eli+ E In(#2 + 1)}]'— (cost)k+ C

(b) (1) = }}gao}l[ruw)—r(r)]

hlimo }ll([f(t +h)i+g(t+h)j+h(t+h)k]-[f(t)i+g(t)j+h()k])

m (U h) )i+ 10+ )~ () + 3 TG+ )~ h(1) 1K)

li

h—0

= lim L[f+ h)—f0)]i+ lim L[g(e+ h)— g(6)]j + lim L[h(e+ h) - h(2)]k
h—oh h—0h h—0h

= f()i+g()j+h'()k

CYU 1228 [1(t) +¥(D)]' = ([uy(1)i + uy (0 + uy(OK]+ [V, ()i +v,(1)] +v3 (K]’
= (g (1) + vy ()i + [u(0) + v (O] + [15(8) + vy (1))
= [y (1) + v, (O] + [y (1) + vy (O] + 5 (1) + w3 (D] 'k
= [/ (6) v, (i + [10y'(0) v (O + [ (1) + v3' (1) 1k
= [ (0)i + 1y ()] + 3 (K] + [v, (1) + v, (0 + 3/ (0)k]
= w'(1) +v'(1)

CYU 12.29 For s(t) = (cost)i+ (sint)j + tk:

w(£) = rF(£) = (—sint)i + (cost)j + k. |v(£)] = Nsin’t+cos’t+ 12 = /2
a(t) = v'(t) = (—cost)i— (sint)j

CYU 12.30 Since a(t) = i+2j—k:
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(1) = J.(i+2j—k)dt = {i+ 2t —th+(i—12j+k) = (¢+1)i+ 21— 12)j+(—t+ 1)k
initial velocity

Leading us to the speed function:

(O = J(t+1)2+ (2t —12)2+ (= ¢+ 1)2 = J612—48¢+ 146
Differentiating the above real-valued function we have:

)" = 1602 481+ 146)172(612 — 481 + 146)"
p

12148 B 61— 24 c
= SIGN: &0 = o+ %
2.J612 481+ 146  J612— 48t + 146 0 4 5

The above SIGN information tells us that the minimum speed occurs at t = 4. So:

minimum speed = /6 -42—48 -4+ 146 = /50 = 5./2 fisec.
We also see that the maximum speed occurs at either the endpoint 0 or the endpoint 5.

Calculating: [[v(0)| = /146 and |v(5)| = J6-52 48 .5+ 146 = /56, we see
that during the specified interval the particle attains a maximum speed of /146 ft/sec.

CYU 12.31 Due to the force of gravity, the projectile will be sub- z
jected to a downward acceleration of 9.8 m/sec” . Thus:

v(t) = [-9.8kdt = (-9.80)k +(175¢c0s45% + 1755in45°k)

45°) _

= (-980k+(12j+1Bp) \ 2 it y
J20 2 =
175, 175 &
= —j+(—9.8t+—)k *) £
J2 \2 b

And: s(f) = j[lﬂj + (— 9.87+ lﬂ)k]dz = (1—75- )j+ (— 4942 + lﬂz)k + (10k)
J2 J2 J2 J2 A
initial position:
= (17—5t)j+ (— 492+ 15,4 lo)k
J2 J2

The projectile will hit the ground when the vertical component of s(#) equals 0 (and #> 0):

175 + J(E}z +40(4.9) thlz positive rootﬂ

4924183410 2 g g = 2 N2 ~25.3 sec.
J2 -2(4.9)
Calculating the horizontal component of s(25.3), we conclude that the projectile will hit the

175

J2

Turning to (*) we can calculate its approximate impact speed:

_ [175y2 175\ _
||v(25.3)||—J(E) +(—9.8(25.3)+E) ~ 175 m/s

ground at a distance of (25.3) = 3131 meters from the base of the perch .
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2 2 2
CYU1232 L = j ' (0)|dt = j Ja+ 4+ 42d = j J(22 +2)2dt
1 1 1
2

= J'j(12+2)dz = (-%3+2t)

394 - &

CYU 12.33 (a) Noting that P(1) = (2,1,-2), westartat t = 1:

t !
s = s(t) = jl Ir (u)l|du = jlh/4+1+4du = 3ul| = 3t-3

(b) From s = 3t—3,we have ¢t = §+ 1. Replacing ¢ with §+1 n

r=2ti+tj—2tk for1<t<3 wehave:

N . S . N
=2(=+1)i+(=+1]j-2[=+ <s<6.
r 2(3 l)l (3 1)1 2(3 l)k for0<s<6

(c) Arc Length using r(¢) = 2¢ti+¢j—2tk for 1 <¢<3:
3 3
L=[lr@ld = [ JA+T+4de =31} =9-3 = 6
1 1

Arc Length using r(s) = (%+2)i+(§+ 1)j-(%§+2)k for 0<s<6:

L= s = [ (@) 3 ar = o

CYU 12.34 The solution is a tad tedious. The main thing is to understand the process:

Qa2 -0 (2,2t,-1) _ 1
T(1) el s and: 7(1) = 3(2,2,-1)
( 2 2t -1 >’
Ny = T _ 5+ 42 5 +42 [5tar
|77 ()| 2 2t -1 '
( ; ; )
H J5+412 J5+4r2 5+ 472
( -8t 10 41 )
(5 + 4t2)3/2’ (5 + 4t2)3/2’ (5 + 4t2)3/2
- (— 8¢ 10 ar
H (5 + 4t2)3/2’ (5 + 4t2)3/2’ (5 + 4t2)3/2




CYU SoLuTIONS A-21

8 10 4 1
. B <_279 279 27> 3 27<_89 109 4> B ﬁ
and: N(1) = = 75 =15

I G

ijok
Then: B(1) = T(1) x N(1) T 4£55det 291l = 4£55<9, 0,18) = §<1,0,2>
45 2

(-4,5,2)

Theorem 12.7(c), page 509

As for orthogonality:

T(1)-N(1) = %(2,2,-1)-—1[5§<—4,5,2> = {55(—2-4”-5—1 2) =0

§<1,0,2> = €(2.1+2-o—1~2) =0

7(1)- B(1) = %<2,2,—1>-

N(1)-B(1) = 1£55<4,5,2>-§<1,0,2> = 11—5(_4-1+5-o+2-2) =0

Since T(1) = %(2, 2,—1) is a normal to the normal plane, so then is (2,2,—1), and
since
r(1) = (2t 12, —t), the point (2, 1, 1) lies on the plane. Thus:
Normal Plane: (2,2,-1) - (x-2,y—1,z+1) =0 or:2x+2y—z =7
(consider Example 12.12, page 517)

Since B(1) = g (1,0, 2) is a normal to the osculating plane, so thenis (1, 0, 2) . Thus:

Osculating Plane: (1,0,2) - (x-2,y—1,z+1)=0 or:x+2z =0

CYU 12.35 For r(t) = ti+ 1%+ 3k we have:
r(t) = i+2tj+ 3%k
Pty = 2j+ 61k
i ok
P(0)x (1) = det|| 2, 32| = 62— 6tj+2k
0 2 6t

Thus: (1) = QX" J364+3622+4 _ 294+ 92+ 1
I ()] (J1+42+9%  (J1+42+944)

Note that (1,1, 1) and (2, 4, 8) are the terminal points of (1) and »(2), respec-

tively. Hence:
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Curvature at (1,1, 1) = (1) = ?:‘/Ezo.ﬁ and

_ _ 2181
Curvature at (2,4, 8) = «(2) = To32 "~ 0.01
Roughly speaking: The curve is bending about 17 times faster at (1, 1, 1) thanitis at (2, 4, 8)

CYU 12.36 The curve y = f{(x) is the curve traced out by the vector function
r(t) = ti+f(t)j + 0k. As such:

o = I xr"] _ [|@+/(0f+0k) x (0i+/"(1)j + 0k)|

I~ ()3 li +f'(2)j + OK]]3
i j k
det 1 f(t) 0
0/ of]) _ ()|

W rOr? D)2

CYU 12.37 The parabola f(x) = x? is traced out by the vector function (¢) = ti + t%j + Ok,

with corresponding unit tangent vector 7(¢) = r,(t) - 1F2y , for which:
JUT42(2) - (i + 247)—21
T'(t) = NI+42 _ (1+42)(2))—41(i+2y) _ —4ti+2j
1 +4¢2 (1 +412)3/2 (1 +4t2)3/2

In particular, the unit normals at # = Oand at # = 1 (corresponding to the points
(0,0) and (1, 1) on the curve, respectively) are:

_ Ty _ 2 . _T'(l) _ —4i+2j _ =2i+j
N0) = —; = —== =j and N(1)= =
O = ro) ~ g~/ e M

IT"(DIl 20 NG

It follows that:
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and is centered at

Al—
N =

The radius of the circle of curvature at (0, 0) is » =

i

2
(O, 9 (vector position: %] ). Equation: x2 + (y B %) _

3/2
The radius of the circle of curvature at (1, 1) is » = 57 and is centered at the

3/2/_n;
endpoint of i +j + 5—2-( k+1) = —4i+ %i, which is to say, at (—4, 9 .

_ 125
4

CHAPTER 13: DIFFERENTIATING FUNCTIONS OF SEVERAL VARIABLES

2
Equation: (x +4)% + (y - 9

constant
v V%

CYUI31 () F(x2p+er ) = 30324 ov+ 3 9 (x4 3y)
ox 0x 0ox

= y(2x) +e¥3(1) = 2xy + Xt

0 2y, 4 X+ 3y) = 26_y+ x+3ya +
() SOdyret ™) -2t vt 3y)

=x2.1 +ex+3y(3) = x2 4 3ext3y
(¢) Since f.(x,y) = 2xy+e* T3 [see (a)]: f(2,0) = €.

o _

oy

oz

= 4+3e2.
oy ¢

(d) Since x2+3e* T3y [see (b)]:

(2,0)

2
CYU 13.2 (a) 2y—22 = %[%(Sf%ﬂ = g_y[ (5+x—(;v)+;(iczy)+2y)(—l)]

_ i[ x2+x+5J
oyL (5+x-y)2

_0-(x2+x+5)2(5+x=y)(=1) _ 2(x2+x+5)
(5+x-7)3 (5+x-y)°
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(b)%: a[a( x2+yyﬂ _i[(5+x—y)2x—(x2+y)J

oxlox\S5+x-y/ ]  ox (5+x-y)?

0 [x2—2xy+10x—yJ

ol (5+x-y)?
_ (5+x-9)2(2x -2y +10) — (x2—2xy + 10x —y)2(5 + x — y)
(5+x-y)*
_2(5+x—p)[-x>—8x—y+2xy+10]
(5+x-y)*
2
In particular: oz _2-0%-8(0)-4%2:0:4+10] _ 12
0x?| g ) (5+0—4)3
(© S = (ﬂn _ [(5+x—y>—(x2+y>(—1)J
yx _5+x7yyx (5+x_y)2 .
_ [x2+x+5J
(5+X—y)2 x
_ BAx—px+ 1) = (2 +x+5)-2(5+x—y)
(5+x—y)hs
_ 2xy+t9x—y-5
(5+x-y)°
-2-2:3+49.2-3-5 -2 -1
D(2,3) (5+2-3) 43 32

CYU 13.3 (a)Forz = f(x,y) = x*3:
3 2 2
.az_aa“J_@ 3.3 8[8 33}
9z _ 99 - % 4 = 9194
@ ox3 6x2[8x(xy) 8x2( *y7) Ox x( xy7)

= a%(12x2y3) = 24xy3

(i) 2y = [2) ]y, = [4099°], = [(4x%0%),], = (12x)%), = 36x2y?

(i) 2, = [(F)] = Gx¥y?) = (1207)2), = 36x%y°

(b) Forw = f(x,y,z) = xy?+ 23y —x3yz

N
(i) % = S P+ 2y —adyz) = y2 - 3alyz



CYU SOLUTIONS A-25

2
(i1) 2}}—2‘/ = a%[%(xyz + 23y —x3yz)J = %(2)6)/ +23-x32) = 2x

(111) WXXX = [(xy2+z3y_x3yz)x]xx = [(y2_3x2yz)x]x = (_6xyz)x = _6yZ

V) Wy = (02 + 2y —x3y2), L, =[xy +22-x32).], = (32 —xd)y = —3x7
yzx yizx X

CYU 13.4 For f(x,y) = x2siny:
f.(x,y) = 2xsiny and fy(xy) = x2cosy
Theorem 11.3 assures us that both partial derivatives are continuous. It follows that f
is differentiable (Theorem 13.2).
CYU13.5(a)Forz= (2x+e” )% x = sint, y = £2:

dz _ Ozdx  Ozdy 3 3
=4+ = +e)3-2. + +e¥)er-
di  oxdi  dydi 4(2x+e¥ )’ -2 -cost+4(2x+e¥ )’er- 2t

8(2x + e¥)3(cost + te?)

8(2sint + e’)3(cost + te’)

Alternatively:
z = (2x+e¥)* = (2sint +e?)*
% — 4(2sint+ et2)3%(2sint+ )

4(2sint + e”)3(2cost + 2te’) = 8(2sint + e’)3(cost + te’’)

(b)Forz=e%,x = s+3t,y = st?:

0z _0z0x, 020 _ yeXy -3 +xeXV - 2st = 3512e(8 T3NS 4 (g + 3¢)e(s T3NS D5t
ot OxoOt Oyot
= steS*P T3 (31 4+ 25 + 61)
= gteo(s*+ 3st3)(9t +25)
Alternatively:

7 = XV = pls+30)st2 = o522+ 3s8

0 202 3 242 30
and: Z(estPt3sP) = o8P+ 358 (6242 4 F643
Er ) Er )

= es2t2+3sz3(2ts2+9st2) = Ste(52t2+35’3)(9t+2s)

CYU 13.6 (a)Forz = f(x,y) = ¥ +xIny:
3
.\ 0
() 25 = [V +xlnp) ], = (e + Iny)], = (2e); = yle¥



A-26 CYU SOLUTIONS

1
(ii) Zype = [(@ +xIny),], = [(ve™ + Iny),], = (yxexy+exy+;)

X

= xyzexy+)’exy+yexy = yeV(xy+2)
b) Forw = fix,y,z) = xy2+ 23y —xyz:
( y y Y =Xy

(l)a ye-yz

2
(ii) gy—vg = 68)/[ (xy2+2z3y— xyz)} = —y(2xy+z3—xz) = 2x
(iii) w,,, = [(p? + 2y —xy2),],, = [0 -p2)], = (2y-2), =
(c) Let w = f(x,y,z) = zy?e>*. Since the partial derivatives f, = 3zy?e3*, /= 2zye3x
and f, = y%e3 are defined and continuous everywhere, fis differentiable.
(d) Forw = xy2z3, x =2, y = sint, z = el:

dw _ Owdx Owdy owdz

.2 . .2
= 2te3tsin"t + 2¢2e3!sintcost + 3t2e3lsin’ ¢t
= te3!(sint)(2sint + 2tcost + 3tsint)

(e) For w = xe¥?, x = rst?, y = sint,z = cosr?:

ow _ Owox 8w8y owOz
ot oxot 6y ot 62 ot
— zl,stesintcosr2 + 512 COsr2esintcosr2 cos?

= e¥?.2rst+xze¥?*cost +xye¥z- 0

= rsteSintcosr(2 +tcosr2cost)

CYU 13.7 If u = ai—+ bj is a unit vector making an angle 0 with the posi- u = ai+bj
tive x-axis then ¢ = cos0 and b = sin6. 1
b
In particular, for 6 = g: u= (cosg)i+(s1n6)1 = —[l ;] | 9 -

. T ﬁ m), 1 o
Bringing us to: Duf(l, 5) =7 x(l, E)Jr Efy(l’ —J

Since f, = a%[xsinxy] = xycosxy + sinxy, fy = a%[xsinxy] =X

fx(Lg)z 1 and fy(l,g)z 0

2cosxy:

ol

Thus: Duf(l, g) =

CYU 13.8 Unit vector in the directionof —i+j: u = %(— i+j).

Gradient vector: VA(x,y) = f.(x, )i+, (x,p)j = e+ i+2yes*rj
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In particular, Vf(0, 1) = ei + 2¢j, and therefore:
Ze e

D,f(0,1) = VAO,1)-u = (ei+2ej)~%(—i+j) _ _[2 +2 -2

CYU 13.9 Gradient of f(x, y) = xsiny at (x, y):
Vix, y) = fi(x, »)it[f(x,y)j = sinyi+xcosyj
In particular: V£(2,0) = £.(2,0)i +fy(2, 0)j = (sin0)i+ (2cos0)j = 2j.
By Theorem 13.6, the greatest value of the directional derivative at (2,0) is
IVA2,0)| = [2jll = 2, and the smallest value is —|V£(2, 0)] = -2.

CYU 13.10 Gradient of f(x,y,z) = In(x2+y2+2z2) at (1,1,2):
2x . 2y . 2z
Vix, v, z) = + +
ftx,y, 2) RN S LN U S JOUNC B

In particular: Vf(1,1,2) = %i+%j+ﬂk = li+%j+%k.

6 3
By Theorem 13. 6 the greatest value of the directional derivative at (1,1,2) is
VA1, 1,2)| = 5 1,1 5 +§ = “[6 , and the smallest value is —[|Vf(1, 1, 2)| = —“/6.

CYU 13.11 From f(x,y) = 3y?—2x2+x we have:
f.(x,y) = —4x+1 and fy(x,y) = 6y=f.(2,-1) = =7 and fy(2,—l) = -6

Normal to the plane: n = —7i—6j — k.
Consequently:

-7,-6,-1) - (x-2,y+1,z2+3) = 0=>-7(x-2)-6(y+1)-1(z+3) =
—Tx—6y—z=-5 =>Tx+6y+z=5

CYU 13.12 Let the curve C,, with position vector r(f) = x(t)i +y(t)j, be the intersection of the
surface z = f(x, y) with the plane z = k.

Applying the Chain Rule (Theorem 13.4(a), page 555), to
f(x(?),y(t)) = k we have .

d of dx, of dy _ >.
Ef(X(t),y(t)) = oy di 0 ! A |

Recalling that i-i = j-j = 1 and that i-j = 0, we can express |
the above equation in vector form: | !

L ) —
( i+ ) ( «y 0 tangent
o o)) @' T bt

in one direction
or the ohter



A-28 CYU SOLUTIONS

of . of. . dx, dy. _dr
g+ 2L g = 1+ =7 = — -
It follows that ERAS y] V/ is orthogonal to the tangent vector it = gon the k-level

curve at each point (x,, y,) on that curve.

CYU 13.13 Tuming to F(x,y,z) = x2+4y?+2z2 we have:
VF(x,y,z) = 2xi+8yj+ 2zk
Using the normal VF(x,y,z) = 2i+16j—2k and the point (1, 2,—-1) we arrive at
the equation of the tangent plane:
2(x—=1)+16(y—2)—-2(z+1) =0 or:x+8y—z = 18

CYU 13.14 Since z = f(x,y) = Jx2+y?:
1 1

1 - X 1 - y
[l y) = 5(x2+p?) 2(2x) = . L) =52+ p?) 2(2y) =
X 2 [x2 + 2 Y 2 [x2 + 2
: 3 3 4 4
In particular: .(3,4) = —— = =,f.(3,4) = ——— = =
n particular: f,.(3, 4) ip 5 £,(3,4) a4 5

Consequently:

Azxdz = £,(3, 4)Ax +£,(3,4)Ay = %(3.01—3)+;—1(3.98—4) - %(0.01)—%(0.02)%—0.01

CYU 13.15 For f(x,y) = y2—x2, f(x,y) = ~2x and f,(x,) = 2y.
Since f.(0,0) = fy(O, 0) = 0, (0,0) is a critical point of /.
Since there are both positive and negative function values in any open region con-
taining (0, 0):
£(0,y) = y2>0 forall y= 0, and f(x,0) = —x2< 0 forany x# 0
neither a maximum nor minimum occurs at (0, 0).

CYU 13.16 For f(x,y) = x2+3y2+3xy—6x—3y:
f(x,y) = 2x+3y—6 and fy(x,y) = 6y + 3x—3 , and both exist for all x,y.
Finding f’s critical points:
2x+3y-6 =0 2x+3y = 6 dx+6y = 12
6x+3y 3 0}33x+6y 3}:3x+6y 3
x-3 = X = X =
d X Y -3(9)+3

subtract: x = 9and y = ————— = 4
7 6

Substituting y = —4 in 2x+3y = 6, we can now say that the only critical point

occurs at (9, —4). To determine the nature of that critical point we turn to Theorem
13.9:

From f_ (x,y) = 2 ,fyy(x,y) =0, andfxy(x,y) = 3, we have:
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D = f..(9,-4)f,,(9,—4) - [/, (9, -4)1? = (2)(6)-32 = 3>0 and
fex(9,—4) = 2>0

Conclusion: A (local) minimum occurs at (9, —4).

CYU 13.17 Forx, y, and z positive, we are to minimize:
S =x2+y2+z2 given(*)x+y+z =1
From (*): z = 1 —x—y. Hence:
S =x2+y?2+(1-x-y)? = 2x2+2y2+2xy-2x -2y +1
Employing Theorem 13.8:
Sy =4x+2y-2=0and §, =4y+2x-2 =0

4x+2y—-2 =4y+2x-2
2x = 2y
X=y

Repeating the above argument, but now with the substitution y = 1 —x —z leads to
the conclusion that x = z. Consequently: x = y = z. Returning to (*), we have:

W=

We leave it to you to verify, via Theorem 13.9, that S achieves its minimum value at

the point (1 ! 1) .

333
CYU 13.18 We know, from the solution of Example 13.14, that the absolute 48
extremes of the function f{(x,y) = x2—2y3 —3x + 2y must occur on a/ |p
the boundary of the domain D. Turning to the three boundary pieces
we have: ¢ 1

(4,8) On line a:
%y - g(x) = flx,2x) = x2-2(2x)3 - 3x+2(2x) = —16x3 +x% +x
0 Since g'(x) = —48x2+2x+1 = (—6x+1)(8x+1), g has a critical point at

X =

. It follows that fmay assume an extreme value at (é, %) ,(0,0) and (4, 8).

A=

t@s  |Online b: g(y) = f(4,y) = 16-2)3—12+2y = —2)3 +2y +4
x = 49"7 Since g'(y) = — 6y2+2, g has a critical point at y = % It follows that f may
3

(4,0)

. 1
also assume its extreme values at (4, E) and (4,0).
¢ On line ¢: g(x) = f(x,0) = x2—3x. Since g'(x) = 2x— 3, ghas a critical point
(O’yo)f o U Jatx = % . It follows that f may assume an extreme value at @, 0) .

Upon evaluating the function f{(x, y) = x2—2y3 —3x+ 2y, at each of the above 6
boundary critical points, we found that:

£(0,0) =0 1(4,0) = 4 f(4, 71__3) _ 36 +94«/§ ~4.8
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Y-8 G- wm -

Conclusion: On the region D, f achieves its absolute maximum value of w at

(4, %) , and its absolute minimum value of —1004 at (4, 8).

CYU 13.19 For f(x,y) = x2+ 4y? with constraint g(x) = x2+y% = 1 we have:
VAx,y) = AVg(x,y)
2xi+ 8yj = A(2xi+ 2yj)
Leading us to the following system of equations:
(1): 2x = A2x (2): 8y = A2y (3): x2+y?2 =1

From(1): x = Qor A = 1.

If x = 0, then, from (3): y = +1; and (2) is also satisfied for A = 4.

If A = 1, then, from (2): y = 0 and x = £1 [from (3)].
Also, Vg(x,y) = 2xi+2yj = 0=>x =y = 0, but (0, 0) is not a candidate as it

does not lie on the circle x2+y2 = 1.
Evaluating f{(x, y) = x2+ 4y? at the four critical points
(0,1),(0,-1),(1,0), and (-1, 0), we have:
f(0,1) =4, f(0,-1) =4, f({1,0) =1, and f(—1,0) = 1
Conclusion: The function f{(x,y) = x2+ 4y?, when restricted to points on the circle
x2+y% = 1, assumes a maximum value of 4 at (0, 1) and (0, 1), and a minimum
value of 1 at (1,0) and (-1, 0).

CYU 13.20 We are given f(x, y,z) = xy + yz with constraints x +2y—5 = 0 and x—4z = 0.
Setting g(x,y,z) = x+ 2y and h(x,y,z) = x— 4z, the vector equation:
VAx, y,z) = AVg(x,y,z) + uVh(x, y, z)
becomes: yi+ (x +z)j+yk = Mi+2j+0k)+ p(i+0j—4k)
Leading us to the following (linear) system of equations:

(1): y=Ax+p (2): x+z =2\ (3): y = -4p
(4): x+2y-5=20 (5): x-4z =0
From (3): u = —%. Substituting in (1): y = 7»—% => A= SZy

Substituting in (2): x +z = 2A=>x+z = 57)/ =2x+2z-5y =0 (%
Taking us to the following system of three equations in three unknowns:
(*): 2x-5y+2z =0
5 _5__5
4): x+2y =5 :x——,y—z,z—g

2
(5): x-4z =0 steps ommited
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555
24

While we did what we were asked to do in CYU 13.20, let’s do more:

We found but one critical point. Shouldn't there be at least two: one at which f'assumes its
minimum value and one for its maximum value? Not necessarily, for f'is restricted to the
region D consisting of those points satisfying both of the given constraints:

x+2y—-5=0andx—4z = 0.

We see that there is but one critical point for f'; namely: (

That region turns out to be the plane D = {(x, v, z)|y=—- %z + 5} (just substitute 4z for

xinx+2y—5 = 0). Since D is not bounded, there is no assurance that f will assume
either a maximum or minimum value on D (see Theorem 13.4, page 502). To make mat-
ters worse, there is no second derivative (like Theorem 13.3) associated with the Lagrange
method. So what can one do? In this comparably easy situation, we can do this:

X
__|__ _ = = =
3 2and x—4z=0=z 2

So:  g(x) = f(x,y,z) = xy+yz = x( %C 2) ( 2)4 % 25x

x+2y-5=0=>y = —

Then: g'(x) = —2x+2 = 2(—2x+5) SIGN: —F~ & =
4 8 8 max
) ) . 55 125
Conclusion: On D, the function f'assumes the (absolute) maximum value f (5, 7 g) = EVR
CHAPTER 14: VECTOR CALCULUS
2m dx) d dz
cria o - e
CYU 14.1 jxy ds J.o cost - sin t«/&lt o 7 dt
c
21 2 - 2n .2
= J. cost - sin t«/(—smt)&2 +¢(cost)2+(1)2dt = ﬁj cost - sin” tdt
0 =1 0 27
=0

- ﬁ(%(sinst))
0

CYU 14.2 Using the parametrization:

Y
Cpirg = (1-16)(2,2)+1(-1,0) = (2-31,2-2¢),0<¢<1: 2%
G
1 ./

jxyds=j0(2—3t)(2—2t)A/(—3)2+(—2)2dt 7%/52 *

Cy

1
= mj (4—10¢+ 612)dt = m(4t—5t2+2t3)\é =
0
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We then have: Ixyds = Ixyds + Ixyds + '[xyds + Ixyds = é(ﬁ —2.5+24)+ /13
C (oN C, Cy C,
\Example 14.3

67
CYU 143y = [§(x,y)ds = [(1+x+z)ds = jo (1+ cost+ £)/(—sint)2 + (cost)? + 1dt
C C

67
= fzj (1 + cost+ t)dt
0

61

= ﬁ(ﬁr sint + 9
0

= J2(6m+ 1872)

b 1
CYU 4y = [ F(r(0))- ' (dt = [ F(2,0,1) - (20 + 302 + k)dt
a 0

1
= j (20 + (22 + 3)j+ th) - (2ti + 362 + k)dt
0

1
1 4 345 46 ¢
= 3434 +35+ = :(?_4___4__4__2) =
IO(Zt 317+ 3¢ +t)dt > 5 573

CYU14.5 For F(x,y,z) = yi+2xj+ 3zk and r(¢) = (¢,2t,21),0<t<1
we have:

jF-dr = le(r(t))-r’(t)dt = jl (20 + 24 + 6tk) - (i + 2j + 2k)dt
o 0 0

1 1
~ [ @+4+12)dr = [ 181t = (92)]) = 9
0 0

CYU 14.6 We know that J. F -dr = 8 (Example 14.6), and now show
C

that IF-dr = -8, where F(x,y,z) = yi+2xj+3zk.

-C
As noted above Theorem 14.3:
For a given parametrization r(¢), a <t < b of a curve C, the parame-
trization r(¢) = r(a+b—1t),a<t<b, denoted by —C, traverses C in the opposite direction.
Firstly, a = 0 and » = 1 throughout =>a+b—-t = 1-¢. So:

(1) = (0,24,0) = i (1) = r,(1—1) = (0,2(1—1),0) = (0,2-2£0) for 0< <1
(1) = (4,2,0) =y (1) =ry(1—1) = (1-1,2,0) for 0< /<1

ry(t) = (L,2,20 =>r(t) =ry(1—t) = (1,2,2(1-¢)) = (1,2,2-2f) for 0<¢<1
Thus:
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jF dr—jOF(rl(t)) fl'(t)dHf F(iy(1)) - fz'(z)de F(i(1)) - 75 (¢)dt

- =jl(2—2t)z-(—2j)dt+j [2i+2(1-0)j]- (- l)dt+J. [2i+2j+3(2—-20)k] - (—2k)dt
0

1 ! 1 !
= 0+ [ (-2)di—6[ (2-20)dt = (-20)[,~6(21—1*)|; = 8 = — [F-dr
0 0
C
CYU 14.7 For x(¢) = 2 , y(t) = 5¢,and z(t) = —2¢2,1<¢<2, we have: % = 2t, CZ =2,
and Z,—i = —4t Consequently:
[xydx+ydy +yzdz = J [’2<5t)_+5t O, J
C

= jz [563(28) + 5¢(5) — 4t4(~41)]dt = j2(10z4 +25¢+ 16£5)dt
1 1

2
6
- (2t5+2i+8_f) _ 335
2 3 2
CYU 14.8 If C, and C, are two paths in § from P, to P,,then C = C, U (-C,) P,
c
is a closed path in S. As such §F dr =0 . : c,
c
P
Since §F - dr = [F-dr—[F-dr, [F-dr= [F-dr ?
C Cl C2 C] C2
Theorem 14.3
CYU 14.9 If F is conservative with potential function f; then:
F = Pi+Qj+Rk = Vfix,y,z) = fitfj+/k
=fo 9=/, R=F
" I Tw & i ST w ; T = 5

Theorem 13.1, page 552

CYU 14.10 If, for given F = P(x,y,z)i+ Q(x,y,z)j+ R(x,y,z)k, any one of the equations
oP _ 00 OP_OR 00 _OR fails to hold in S, then F is not conservative in S.

dy oOx’ 0z ox 0z Oy

While the first two of those equations do hold for F(x, y, z) = xi + zj + yzk , the third
00 _ 0z _ oR _

does not: % 5 1 while oy z.
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CYU 14.11 (a) Theorem 14.9(iv) holds for F(x,y) = 2xyi+x%j : (2xy), = (x?), [= 2x].
For f'such that F = Vf, we have: (2xy)i+ (x2)j = Vf(x,y) = f.(x,»)i +£,(x, 1)
Bringing us to: (1): f.(x,y) = 2xy and (2):fy(x,y) = x2.

Treating y as a constant in (1), we have: (3): f(x,y) = '[nydx = x2y+g(y).

Taking the partial derivative of (3) with respect to y: 1 (xy) = x2+g'(y).

Replacing £, (x, ) with x2 [seeQ:x2=x2+g'()=>g'(y) = 0=>g() = C

Letting C = 0 we have an answer: F(x,y) = 2xyi+x2%j = Vf = V(x%).

(b) Theorem 14.9(iv) holds for F(x, y,z) = (2xyz)i+ (x2z)j + (x2y)k:
(2xyz), = (x%2), = 2xz, (2xyz), = (¥%p), = 2xp, (x%2), = (x%), =
For f'such that 7 = Vf we have:

(2xy2)i + (x22)j + (x2)k = Vf = fi(x, 9, 2)i +[,(x, 3, 2)j T [,(x, v, )k
Bringing us to: (1): f.(x,y,z) = 2xyz, (2):fy(x, v.z) = x%z, 3): fu(x,y,2) = x2y
Treating y and z as constants in (1), we have: (4): f(x, y,z) = I 2xyzdx = x*yz+g(y,z).
Taking the partial derivative of (4) with respect to y: fy (%, 2) = x2z+[g(y, 2)] )
Replacing f,(x, y, z) with x2z [see (2)]:

X2z = X2+ [g(r,2)], = [g0h )], = 0= g(n.2) = h(2).
Returning to (4), we have: (5) f(x,y,z) = xZyz+ h(z).
Taking the partial derivative with respect to z: £.(x, y, z) = x2y +h'(z).
From (3): x2y = x2y+h'(z) = h(z) = C
Letting C = 0 and returning to (5) we have an answer: F(x, y,z) = V(x2yz).

CYU 14.12 One approach: F(x,y) = 2xyi+x%j is a conservative field with potential function

2
f(x,y) = x2y (see CYU 14.11). Since r(0) = (0, 0) and r@ = <§co zg %>

2
the curve C starts at the point (0, 0) and ends at the point (g, Tlc— . Hence:
4

{F'd’ :f(s 16) —f(0,0) = OZG%)_OzﬁiZ

Another approach: Choosing to integrate along the path C = C; U C, with 4
th
16

parametrizations:

2

T
- = -7+ < <_
8 for C; and r,(t) = 81 4,0<¢< T

we have: g

r(t) = ti,0<¢
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[F-dr=[F-dr= [F-dr,+[F-dr,

c ¢ ¢, G,
= | [Qxyi+x%) - ilde + [ [2xyi +x%) - j1dt
C, G,
n
T2 16
— 2 2 4
_ +{x2dt = 0+ 16(72) - (W_) A
J.2xya't J'x dt = 0 IO o) dt = (gt T
¢, G, 0

CYU 14.13 The force field F(x,y,z) = 0i+0j+ (—mg)k is conservative:
F(xaya Z) = Vf(xayaz)a Withf(xayaz) = —mgz.
It follows that for any path C from (0, 0, 0) to (x, v, Z() :

W= .[F dr = f('x()ay()a Z()) _f(oa 05 0) = _ngO
C
[Negative work indicates that the force field impedes movement along the curve (see page 594)]

CYU 14.14 Using the parametrization of a line segment from r, to r;:
r(t) = rgtt{r,—ro} = (1-Hry+try, 0<t<1
Ciir=(1-0(0,0)+£(1,0) = (£,0),0<¢<1

We have: Cy: r = (1-16)(1,0) +#(0,1) = (1-¢£,1),0<t<1 ¢
Cy:r=(1-0(0,1)+£(0,0) = (0,1-5,0<¢<1

—'g

Thus: §F - Tds = $(s2i +xpj) - dr = [ (52 +xpj) - dr+ [ (i +xpj) - dr+ [ (2 +xpj) - dr

c c C, C, C,

= Il[(tzi).i]dt+J'l{[(1 —t)2i+t(1 —1)j]- (_i+j)}dt+j10dt
0 0 0

B 1 B 1 3 l -:)1
= jo[z2—(1—t)2+t(1—t)]dz = jo(—t2+3t—1)dt = (—3t3+2t2—t)

Using Green’s Theorem, with F(x,y) = Pi+ Qj = x2i+xyj and

-x+1
00 ap) s _l(y_z) _ 1,
II(& = dA = II ydydx —I > dx = ZI (x*—2x+ 1)dx
5 y 070 0 0 0
1
I ey =L
2\3 6

0

CYU 14.15 From the adjacent figure we see that:



A-36 CYU SOLUTIONS

W= lj)j@_g—g_f)m = [[(-2y- Dy

+1

D
.-y

=H1 (- 2y — 1)dxdy
073 -1)

_ j;(zyxX)‘Zytldy
2 2
_ J.:,{[—2y(—y+ 1= (-y+ 1)]_[_2y%_9 _@_%ﬂ}dy
(Yo b B) 13-
0

1 1t 3 2 . 3. .2
CYU 14.16 4 = §{>—ydx+xdy = 5-[ [—sin"#(3cos t)(—sint) + cos™ t(3sin"t)cost]dt
0
C

21
= %I [sin4t(coszt) + cos4t(sin2t)]dt
0

27
= %J. sinzt-coszt[sin2t+coszt]dt

0

Y V2 B S 3
= EIO sin” ¢ - cos” tdt ’:F E(gt—ﬁsmh) = 1—6~2n = gn

Example 7.11(b), page 281

CYU 14.17 Using the parametrization of a line segment from r;, to r,:
r(t) = rgti(r;—ry) = (1-t)ry+itr;, 0<t<1
We have:C,: r = (1-1)(0,0) +2(3,0) = (3£,0),0<¢<1
Cyir=(1-0(3,0)+1¢(3,3) = (3,31),0<¢<1
Cy:r=(1-1)(3,3)+1(0,0) = (3-31,3-31),0<¢<1

$F - nds = [ (102 -xDi+ 2y (3di+ [ (162 =i+ 2yl Bi)idi
C C G,
+ 11023+ (2421 (= 30+ 3j)Ldr
c,
= [ B2 +y2)di+ [302-xyde+ [[3(2-x2) +3(x2+)2)]di
C, C, C, Ne”

1 1 1
=j —3(9t2)dr+j 3(9r2—9)dt+j 6(3 — 31)2dt
0 0 0

1
= [ (5412 1080+ 27)ds = (1883 — 542+ 271)|) = -9
0
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CYU 14.18 For F(x,y) = P(x, )i+ O(x,y)j = (02 —x2)i+ (x2 +»2)j and

we have: §F nds = ”(6]) aQ)dA - ”( 2+ 2y)dA = —2j r(x )dvdx

- _2I (xy 2
—2J‘ - Z)a’x
2] e {5)

(Compare with solution of CYI?14. 17)
CYU 14.19 For F(x,y,z) = sin(xy)i + e*3j + In(z2 + 1)k we have:

X

dx

3
= -9

i Jj k
curl(F) = Vx F = det o 9 9
ox 0Oy oz

sin(xy) e** In(z2 + 1)

[;;yln(zm)—%(eﬂ)]i O inz2+ 1)~ Zsinay) Jj+ [ 2 (e) - sm(xy)]

= —xe¥?i+ (ze¥* —xcosxy)k

_ 00 __oP 00
+ — = =
CYU 14.20 (a) For F = P(x,y)i+ Q(x, y)] o ox = o ox =0<curl(F)=0

For F = P(x,y,2)i+ Q(x,y,z)j+ R(x,y,2)k:
OP _ 00 OP_0OR 00 _ 8R<:>6P 00 _ OaP OR 08Q aR—O<:>curl(F)=0

dy ox’ 0z ox 0z 08y oy ox 0z ox 0z Oy

(b) In Example 14.9 we showed that F = LA — -j fails to be conservative
(x*+y%) (2 +)?)
on the (not simply connected) open region S = {(x,»)|(x,»)# (0,0)}, even though

curl(F) = 0 (G_P = Q)

CYU 14.21 (a) From:
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i j ok
curl(F)=VxF=detii 9
Ox 0y Oz

xz e¥ —sinz
= [(-sinz), — (%), ]i — [(~sinz), — (x2),1j + [(¢%), — (x2), ]k
= —xe“i+ xj+ze¥k
we have: div[curl(F)] = div(—xe*?i +xj +ze**k) = (—xe™), + (x), + (ze*%),
= (_ xzeX? — exz) + 0 + (erxz + exz) = 0

(b) Since divF is a scalar, and since the curl function acts on vectors, the expression
curl[divF] is not defined.

CYU14.22 div(curl[P(x, y)i + O(x,y)j]) = div[0i+0j+(Q,~ P k] = (O,~P,). = 0

CYU 14.23 Since z = +/x2+ )2, we have:
2 2
A(S)=”Jl+[ X ]{ Y JdAz”ﬁdA
D X2+ y? X2 +y? D

24y 24y
= fzjjdA 5 3./2n

D
Areaof D: 122 —112 = 3n

CYU 1424 v = [[[x, y, /06, )11+ [ )12 + [, (x, ) 1A
D

= [ 432+ (24221 + (2x)2 +(2y)2dA
D

Converting to polar coordinates (see page 405), we have:

1
2 -

M = J nd@jz (2 +rHrf1 +4r2dr
0 0
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4

1
= 2 2
2004 4y / 2 _ I fu-1 (“—1_) 1/2
Now: J.O (r=+r*)J1 +4r I"dl’/ Il |: + I u''“du

u=1+4r2=2 = u—1

du = 8rdr 4 = sz(u5/2+2u3/2—3u”2)du
8- 163,

2
= _1_(2u7/2 + 3,50 2u3/2>

128\7 5 1
. |
Steps omitted: = —— +
Tiag(1342+8)
Sot M = = (13.3+8)[ d0 = Z=(13./3+8
M= — + = -
o 2013 8)10 560" )

CYU 14.25 FOI‘f(X,y) = l—xz—yz; _fxi_fyi_pk = 2xi+2yj+k )
Thus: FIux(Fy) = [[F-(=fi—/f,j+k)dA

D

= _”(xi+yj+zk) - (2xi+2yj + k)dA
D

= [[(x?+2y? + z)a4
D

= 1222+ 22+ 1-x2—)20dd = [[(x2+y2+ 1)dA
D D

271 1
= jo jo(rz+ 1)rdrdo

2TE 1 3
= _[ I (P +r)drdd = =n
0 70 2

CYU 14.26 Cylindrical coordinates (page 575) provide a direct parametrization for the surface:
r(r,0) = (rcos0)i+ (rsin@)j+rk ,0<r<1, 0<0<2xn
Linking with the notation of Definition 14.13:
r(u,v) = x(u, v)i +y(u, v)j+z(u, v)k

r(r,0) = (rcos0)i+ (rsin0)j + rk
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i j k
det| cosO sin® 1
—rsin® rcosO 0

Grinding away: r,. x ry

= —rcos0i —rsinbj + (rcos26 + rsinzﬁ)k

And so: |r,. x rg| = «/r2c0526+rzsin29+r2 = J2r2 = J2r

Bringing us to:

A(S) = J.'[H(ruxrv)Hdrde = ﬁjznj-;rdrde

D
1
Y. 2
| (—2)‘ - L) = n.pp
. 0 \2/|, 2
ijk
CYU 14.27 HruxrvH = |det|1 v ol|| = lluk] = |ul = u (since 0<u<1)
Ouo
”gdS = Jjg[r(u, v)]|r, xr|dudv = jjg(u, uv, —1)ududv
5 b Dl u 1 3|
- [ [ ewtma = ()] do
0%0 0 0
1
1
= _ 7 = _—
310” du =54

CYU 14.28 The positively oriented curve C can be represented by:
x =cost, y=sint, z =1, 0<t<2n
r(t) = costi+sintj+k, 0<t<2xn

Then: r'(t) = —sinti + costj

F(x,y,z) = y?i+xj+z%k = sin’ i + costj + k

271 2
And: {>F~ dr = .[ (sin”ti + costj + k) - (—sinti + costj)dt
0
C

21 21 21
.3 2 .3 1 + cos2¢
= J. (—sin"t+cost)dt = I —sin tdt+I —dt
0 0 0 2
3 2n 12 2n
Example 7.10(a), page 280: — (cost _ co8 t) n (5 4 S t) -
37, 2 4 o
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i j k
For [[curl(F) - ndS: curl(F) = det| & 9 9} = (1-2y)k. So:
! ox 0y 0z Y
y: x z

curl(F) - ndS = (1 =2y)k-(—fi-fj+tk)dAd = (1 =2y)k - (—2xi—2yj+ k)dA
y]
D

N

—j j (1—2y)dA

—1°_ 1-— x2
using polar coordinates: — J‘ J‘ (1 —2sin0)rdrdo
0 70

1

=], 1, (5 o)
—j ( ~sin0)do

2n

do

= @Jr cos@) 0

CYU 14.29 If curl(F) = 0, then §>F dr = ”curl(F) -ndS = 0 for every closed path in S. It
then follows, from Théorem 14.4 (gpage 636), that F is path independent.

CYU 14.30 Since: div(F) = (x), + (y)y +(z),=1+1+1 = 3:

Flux(Fg) = [[F-nds = [[[div Fav = 3[[[dv = 3(§nr3) — 4(nrd)
S volume of the sphere E of radius
(Exercise 37, page 206)

CYU 14.31 Since: div(F) = (xsin’y)y + (€97 — tanx), + (zc0s°y): = sin’y +cos'y = 1:
Flux(Fg) = [[F-ndS = [[[divFav=[[[aV=n-32-7 = 63x

S E
volume of the cylinder £

of radius 3 and height 7

CYU 14.32 Since: div(F) = (5xy2),i + (5yz%),j+ (5x%2),k = 5(y* + 22+ x?):
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Flux(Fy) = ”F-ndS = ”jdideVz j”s(x2+y2+zz)dV

S E 5?
T .3
Turning to spherical coordinates: = J. I J. 5 p2p2 sin d)dpdd)d@
(see Figure 13.12, page 580) 0 7070

_ Jz jz(pssin¢)\3d¢de = 35 f)njo singdddo

27 n
35J'O (—cos¢)|,d6

21
35j 2d0 = 9721
0
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APPENDIX B
ADDITIONAL THEORETICAL DEVELOPMENT

THEOREM 11.3, PAGE 431

THEOREM 12.6 (a) If f and g are real-valued continuous functions of one variable,
then:

(1) H(x,y) = flx) +g(y) and (i) K(x,y) = f(x)g(»)
are continuous functions of two variables.

(b) If g is a real-valued continuous function of two variables, and if '
is a real-valued continuous function of one variable, then:

H(x,y) = flg(x,»)]
is a continuous function of two variables.

PROOF: (a) Let (x,, y,) be in the domain of H.

lim  H(x,y) = lim  [flx)+g()] = lim flx) + lim g()
(x,¥) = (g, ) (x,¥) = (x¢, ¥9) (x, ) = (%0, ¥9) (x,¥) = (x4, ¥9)
= lim f{x)+ lim g(y)
X =Xy Y=Y
= f(x()) +g()’()) = H(xo,yo)
and: lim  K(x,y) = lim  [f(x)g(»)] = lim  flx) - lIm  g(x)
(x,3) = (x0, ¥0) (x, ) = (x0, o) (x,¥) = (x0, 0) (x, ) = (x¢, 0)
= lim f(x)- lim g(y)
X =X Y=

= f(xo)g(y()) = K(xoayO)

(b) (Compare with the proof of Theorem 2.5, page 58). Let (x, ) be inthe domainof H = gof,
and let €>0 be given. Since f is continuous at g(x,,y,), we can find a 5 such that

v —g(x¢, ¥p)| < 5= [f(y) —f1g(xp> ¥)]| < €. Now, think of S as being an “g -challenge” for the
function g. By the continuity of g we can find a & such that:
10, ) = (xg, yo)|| <8 = |g(x, ¥) — g(x¢, ¥g)| < 5 . Putting this together, we have:

|(x, ) = (xg, y)| <8 = [g(x, ) — g(xg )| <8

= |[flg(x,¥) —flg(xg. yo)1| = |H(x,y) = H(xp, yo)| <t
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THEOREM 13.2, PAGE 554

THEOREM 13.2 If the partial derivatives f, and f|, exist and are continuous in an open

region about (x, y,), then f1s differentiable at (x,, y,) .
PROOF: We show that
Az = flxy+Ax,yy+ Ay) —f(xg, yo) (¥)
can be expressed in the form

Az =fx(x0,y0)Ax +fy(x0, yO)Ay +&,Ax +¢&,Ay where g,,6, —> 0 as Ax,Ay >0

Adjoining a clever zero to Az in (*) we obtain:

v V%
Az = [f(xo + Ax, Yot Ay) _f(xoa.V() +Ay)] + [f(xoa.)’() +Ay) _f(xoa yo)]

Applying the Mean Value Theorem to the single-variable function:
g(x) = flx,yy+Ay) (**)
on the interval [x,, x, + Ax], we have:
g(xg+ Ax) —g(x¢)
Ax
for some ¢ between x,, and x, + Ax.

g'(c) = or: g'(c)Ax = g(xy+ Ax) —g(x)

Noting that g'(c) = f.(c,y,+ Ay) we canrewrite g'(¢)Ax = g(x,+ Ax)—g(x,) inthe form:
i€, yo+ Ay)Ax = flxy+ Ax, vy + Ay) = flxp, o + Ay)

S, yo + Ay)Ax + [f(xg, yo + Ay) — f(x4, ¥y)]
We then have: = f(x,+Ax,yq+Ay) —f(xg, yo + AV) + [f(x0, yo + AY) — f(x0, ¥o)]
= f(xo + Ax, Yot Ay) _f(x()a yo) = Az in (*)

In a similar fashion, by applying the Mean Value Theorem to the single-valued function
h(y) = f(x,,y) on the interval [y, ¥, + Ax] we can arrive at:

Az = f(c,yy+ Ay)Ax +fy(x0, d)Ay, for some y,<d<y,+ Ay
Adding two more cleaver zeros we have:

Az = fx(xO, yO)Ax + [fx(ca yO + Ay) _fx(x()a yO)]Ax +.fy(x()s yO)Ay + [fy(-xo, d) _f;y(x0>y0)]Ay
1 A 2 A

Or: Az =fx(x0,y0)Ax +fy(x0, yO)Ay +&,Ax +¢&,Ay , where:
g1 = fi(e,yo+ Ay) —f(xp, V) and g, = fy(x(): d) _fy(xo, Vo)

Finally, the continuity of /, and f, assures us that &,,e, > 0 as Ax, Ay > 0.
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THEOREM 13.5, PAGE 561

THEOREM 13.5 If z = f(x,y) is differentiable, then for any unit vector
u= (a,b) = ai+bj:
D, f(x,y) = af(x,y) + bfy(x,y)

PROOF: For any point (x, ) in the domain of f we define the single variable function:

g(h) = f(xyg+ah,y,+bh)
We then have:

2(0) = hliglo‘w _ hliinof(xo—i-ah,yo +hbh) —f(x0, ¥p) = D, f(xg,vo) (*)

On the other hand, we can write g(4) = f(x,y) where x = x,+ah and y = y,+bh,and

be applying Theorem 12.8(a), page 473, with 4 replacing ¢, we have:
oy = S ofdy . of  ,0f
=2 TR pe
g = srantavan “ox oy
Substitution 0 for 4, we then have x = x,, y = y,, and:
g'(O) = af;c(x()a J’o) + b]py(x()’ yO)
Returning to (*) we have:

Duf(xoa yo) = afx(xoa J’()) + bfy(xos yo)

THEOREM 14.18, PAGE 644

THEOREM 14.18 IfSisan oriented surface that is bounded by a simple closed curve C with
positive orientation (counterclockwise), and if F = Pi+ Qj+ Rk has
continuous first-order partial derivatives on some open region in three-
space containing S, then:

§F- dr = ”curl(F) -ndS
C S

STOKE’S THEOREM

PROOF (When the surface S is the graph of a function):
We assume that S is the graph of a function f over a simple closed

region whose boundary C; corresponds to the boundary C of S D. We

also assume that /' has continuous second-order partial derivative on
D. Appealing to Theorem 14.17, page 637, with F replaced by

curl(F) we have:

ycuﬂm-nds - y(g_ﬁg_g)g_i(gg_f)g_;+(g_gg_fy’)d,4

*)
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If x = x(t),y = y(t), a<t<b,is a parametrization of C, then
x =x(t),y =y(),z = flx(t), y(1)), a<t<b
is a parametrization of C. We then have:

d d.
§F dr = J’( = dJ;+Rdj)dt

dx | o4y, R(a—Z@C +a_2dyﬂdt

Chain Rule, page 555: = P= it
" I [ di Zdi \Gxdi  aydt

I (e nG) (0 g

0z 0z
£P+R X)d +(0+RE y)dy

Green’s Theorem 8 8 82
page 617: ID a—|:Q R :| ay |:P Rax:| dA

2
Chain Rule, page 555: = I J- aQ a_Qa_Z a_Ra_Z a_RaZ 0z Ra z opP apa_z a_Ra_Z 0ROz 62 dA
ox 62 O0x 0Ox0y 0zoxdy oxdy) |oy 82 oy 0Oyox oz 8y8x 8y8x

Four of the terms in the above double integral cancel, and the remaining six terms can be rear-
ranged to coincide with the double integral (*) at the bottom of the previous page.

THEOREM 14.19, PAGE 654

THEOREM 14.19 Let the surface S be oriented in the outward direction and let £ be the
solid region enclosed by S. If F = Pi+ Qj + Rk is continuously dif-
ferentiable throughout E, then:

ijF-ndS=j£jdiv(F)dV

THE DIVERGENCE
THEOREM

PROOF: Restricted to the case where E lies between the graphs of two continuous functions of x
and y, two continuous functions of y and z, and two continuous functions of x and z:

E= {6y 2)[xy) €D,z 1(x,y)<z<2)(x, y)}

= {62, 2)|(0,2) € D, x, (3, 2) Sx<x5(, 2) }
(.2, 2)|(x.2) € D,y (%, 2) <y <y (x, 2))
Let F = Pi+ Qj+ Rk.Then div (F) = Px+Qy+RZ,and:

j}J;Idiv(F) dv = jlj?jpxdmjggydmjylezdy

Moreover:
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”F-ndSZ ”(Pi+Qj+Rk)-ndS= ”Pi-ndS+”Qj-ndS+”Rk-ndS
S s S S S
To prove the theorem it suffices to establish the following three equations:

(1) ijPi~ndS= J';!IdeV (2)ijQi-ndS= j]{jdeV (3)LIRk-ndS= j]{ijdV

For (3), we take advantage or the fact that
E = {(xaya Z)|(an’) € Dzazl(xay) SZSZz(xay)}
We then have:

Sy:z,(x,¥)

23(%, )

Ifrear- g J[177 Rty zpae aa

zy(x, )
(*)
= [JIRGey, 2306 ») = R(x, y, 2,(x, ¥))1dA

D D |

z z

Moreover: ”Rk -ndS = '”Rk -ndS+ “-Rk -ndS

S S, S,
(Note that n is perpendicular to i and j)
The equation for S, 1s f = z,(x,¥), (x,y) € D,, with upward normal n (see Theorem 14.17,

page 597). Thus:
”Rk-nds = J'J.Rk-(—fxi—fyi+k)dA = ”R(x,y, z,(x, y))dA
s, D D,
On S, we have g = z,(x, y) with downward normal (see Theorem 14.17, page 597). Thus:

”Rk - ndS = ”Rk (fi+fj—k)dd = J.I—R(x,y, z,(x, y))dA
Returning to (S":) we have > >
[[[R.av=[[Rk-nads+[[Rk-ndS= [[Rk-nds
The same argument cZn be used tf)1 establish equiitions (1) and (2;.

z
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APPENDIX C

ANSWERS TO ODD EXERCISES

CHAPTER 11
FUNCTIONS OF SEVERAL VARIABLES

11.1 Limits and Continui ace 427

1. R? 3. {(x,y)|xy is not an odd multiple of g} 5. {(x,y,2)|x+y+z=0}

7. For given € > 0 we are to find 8 > 0 such that: 0 < |(x,y)— (1, 1) <d=|2x+y)-3| <&(®
Noting that |(2x +y) —3| = [2(x— 1)+ (y—1)| £2|x— 1| + |y — 1| we can conclude that (*) will

be satisfied for any & > 0 for which 0 < ||(x, y) — (1, 1)[| <8 = 2[x — 1] <§ and |y — 1| <§,that
is [x — 1] <§ and |y — 1| <§.1t follows that & = 2 fits the bill.

x2 —4xy +4y?
x—2y

= =2 = [(x-2)-20-DI<x=-2[+2]y-1]

9.Forgiven ¢ > 0 weareto find 8 > 0 suchthat: 0 < [|(x,y) — (2, 1) <3 = <E(®

x2 —dxy + 4y? (x —2y)?
x—=2y x-2y
we see that (*) will be satisfied for any & > 0 for which:

Noting that

0<](x,y)— (2, D<= |x—2| <§ and |y — 1| <§,and5 = 2 fits that bill.

11. i 13. 8 15. 1 17. 6 19. 1 21. {(x, £x)|x € R}
23. {(0,y)|y e R} 25. {(x,x,z)|x,z € R} 27. & 29. No unique answer.

31. No unique answer.
33. Let € > 0 be given. Then:
0 <||(x, ) = (xg, ¥o)| <O = (f - )%, ») (L -M)| <e = |flx, y) —g(x,y) — L+ M| <¢
Since: |[f(x, y) —g(x,y) — L+ M| = |[fix,y) - L] - [g(x,y) - M]| < |[fx, y) - L| + |g(x, ) — M|
we choose &, >0 and &, > 0 such that:

(6 ) = (g vg)| <81 = 1w, ) ~ LI <§ and 0 < (x, ») ~ (xg, )| <8, = lg(x.») - Ml < % :

It follows that for & the smaller of 8, and 3,:
0< H(an/)_(xoaJ’o)H <6:> |(f_g)(xsy)_(L+M)| <&

0<‘

35,  lim  (f+g)x,y) = lim  [fx,y)+g(x, )]
(st/)—>(xo,J’o) (xay)_>(x0=y0)

[ lim f(x,y)} + [ lim g(x,y)J

(xay)_’(Xano) (x»y)_>(x0=J’0)

= f(xoaJ’o) +8(xp, ¥9) = (f+ g)(xg, o)
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lim flx,»)
37. lim (— (x y) = im |:f(x9 y):| _ (x, ) _> (X0, ¥o)
(x,¥) = (x0, 0) & (x,¥) > (x0, ¥0) g(x, y) lim g(x, y)

(%, ) = (x0, y0)
S y) (,_')
" Gy g o)
39. Consider the following continuous functions of one variable: g(x) = x and A(y) = 1.By

Theorem 11.4, the function f(x, y) = g(x)h(y) = x-1 = x is a continuous function of two vari-

ables. Thus: lim S(x,y) = f(xg,¥0) = Xp-
(xa y) - (Xano)

41. For given ¢ > 0, any & will “work,” and, for the simple reason that:
0 <[(x,») = (xp,¥9)| <O =lc—¢| = O<e

11.2 Graphing Functions of Two Variables (page 443

1. 3.4x+5y-2z2=0 5.

Ellipsoid

»2+z=0 x x2-2y2 =1
36x2+9y2+4z2 = 36
Hyperbolic paraboloid

z
p | [
Circular cone Hyperboloid of two sheets ‘
15. 19.
y Y >y
X
x2-y2+72 = 25x2 —4y2+ 2522+ 100 = 0

x2+4y—-z2 =0
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Hyperboloid or one sheet

o Hyperboloid of one sheet

/L
21. xR , 2.
|

| 25x2 —4y2+2522 = 100

Hyperbolic paraboloid

11.3 Double Intgegrals (page 454)

7 7 96 96 1

L@y O 3.2 (b2 S(@n (b= 7.5 ()3 9. ¢
31 56 4 23 1 4 13

11. = 13. 22 15. 2 17. = 19. 21. =(e* - 1 23. =
8 3715 53 [ )-8 4(6 ) 320
T 12 1yl e 1

5.2 27, j j h(x, y)dxdy 29. j jy h(x, y)dxdy 31. H h(x, y)dxdy
2 0”-3 0° Jy =y

X
33. j z j;h(x, V)dydx 35. j: j f— h(x, y)dydx

6
37 1.1 2 1 4 1
H h(x,y)dydx+” h(x, y)dydx 39. ¢4 — 1 41. =(1—cos1)
07-x+1 1°x-1 2

13 4 2x | 128
43. Iojyh(x,y)dxdy 45. jl jx hCoy)dvdy 4o 4907 5L S

12 23) 23 (190 6 g (L£EL drerl) (z, 16
55'(7’21 7. 4 > 273’ 13 61. 2(e2-1) 9(e+1) 63. 2’9

11.4 Double Integrals in Polar Coordinates (page 461

T (e—Dm 1 11.3-2n 2
-3 5. == T.¢ 9. = 1. =

13. y/ 15. 17.

16 x

—2>* 79 F——>x 36 | "7 (1 -m2)
Y
19. Y 21. ﬁ 23. Y
X X
1 n
“(1—;)

2(277 16.2) . 8
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3n 9ﬁ T 3 T T ﬁ
LA S L22m+ 2= s
25. - = 27.5-1 29. 2(2m 3./3) 31.2-7 3.2+
35. 30 37,180 39 3T 4 2T 3.3 4a. 64—“(8 3.3) 45 2%
3 3 2 3 3
21) ( 9./3 (129 )
2(-m+ =ik = 0, —=2
47.2(-n+3.3) 49 24{ +.3 - ] 51. (o =) s 0’6ﬁ—2n 55. (505 0
11.5 Triple Integrals (page 469
43 1 1 1 73
Lz 35 50 730 9.5 Lz 13. 2-(1 - cos1)
5.~ 1 letozy 192 23en 231 25.3% 0 974
200 8 3 N
1 4k ( ‘_‘) (é i) (7_61 Ta 7_61) (3_1 31 _124)
2.7 3.7 33.(003 35.2.0.2) (555 355

_1 z
41. j j j k(x, y, z)dzdxdy jzzjjjz k(x, v, z)dzdydx j j e j_; k(x, v, z)dxdydz

1
Lp N
.CJ-Z zy_[ J_k(x , ¥, z)dxdzdy, J. J.j‘;;szz +4k(x,y, z)dydxdz ,

.[ .[ JZZ+4k(xay,Z)dydzdx

iy G : L
.[ .[ Jzt—". A/ik(x , ¥, 2)dzdxdy, I j J. k(x,y, z)dzdydx
- L
1
J.11-[2—422-" /444222y k(x v, Z)dxdydz I JizlA/“/——yJ‘«/: 4:223’ k(x, ’, Z)dxdzdy
_ _JA—arsy yvo-
J‘;J‘_;_“—iﬁ—xz—%z k(x,y, z)dydxdz, J- J‘_;/j—ir " 4sz(x, v, z)dydzdx

45, j:) J’; [(y) k(x, y, 2)dzdydx j:) | ljl k(x, y, 2)dxdydz j;j(y) | 1 k(x, y, z)dxdzdy
z%y y
Ll)jlrk(x, v, z)dydxdz, I;J/;J)k(x’ y, z)dydzdx
0 (le” Lzl 0 g1
47. 'l.—l'[oﬁ k(x,y, z)dzdxdy, J.Oj_l Iok(x, v, z)dxdydz, '[_1.[; .[Ok(x, v, z)dxdzdy

iy s
I;I:Jl k(x,y, z)dydxdz, I:) I;jl k(x, v, z)dydzdx
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11.6 Cylindrical and Coordinates (page 479)
1. (=/3,1,2) 3.(342,3.42, 1) 5. (8,4——” —8) 7. (2, i3 —2) 9.z = 2

3° 2

P 2n n Teg_ 8lm 16m
11. = 2sin® 13. 3 15. 2 17. 2(8 3./3) 19. = 21. =
23.20n 25 19—6(31c—4) 27. 167k 29.(a) "—k (b) %k 31. (0 0, 23—“)
33. (0, 0, %) 35.(0,0,15)  37.(J6,.6,2)  39.(-7,0,0)  4l. (4, g 9

3n 3n T _3n 2y 2 2 2.
43. | 2, = T 45.¢—Zor¢—7 47. p~(sin"dpcos ¢ +cos p) = 9 49. &t
5.5 53. 12 55. i(4[2—5) 57. 2na3 59. a3 61. 9n(2 - /2)
64 10 15 3

63. tka*  65. 2(2 -J2)  6T.4n-n2 6. (O’ 0, %@ 7. (0’ 0.2 +169[2)

CHAPTER 12
VECTORS AND VECTOR-VALUED FUNCTIONS

12.1 Vectors in the Plane and Bevond (page 497

1. s 3. 5.
3l (2,3) B = (-2,3) 37 3
/)
2t v (3,2) ’\ 2
B=(0,7i/ 17\4’=(1,1) )
/
N B A I — 3 3 2 -] 1 2-3
! D) BN
% Ll 4 =(-2,-1) B = (1,-1)
A= (-2,-2)
7.(2,0,-2) 9.(-9,-1,11) 11. (13, —13) 13. (-3,-1,-1)
5
15. 4i —28j 17. - 7i+j— 6k 19. ( f(— —
f9 f J29" /29
2 4 1
21 i——j+—k,v = f( )
J21 21 21 f f f
23,32 L., _ @(3f2 ! j) 25.(a) r=—l4.s = 10 (b)r=-L5 =+
J19 /19 J19 19 5 10
5 1 19 17 11 (5 5)
=25 = — 2. r=—Z,s=—,ft= — 29. | =, ——
(c)r 7,s T 1. r 6’S 6,2‘ c [ [

31. F, = (5.3=5)(=3i+j) F, = (15=5./3)(i +J)
33. F; = 5(=3i+j), Fy = (5.3-5)(i+))
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20-5.J2, . . 1542-20, .
35.F, = T[(—Zl—]), F, = [T(—])
3. % and 1o 39. ~460.06 kmvhr. 41 ~15.1°,290.1 kmvhr
A AP = rupy = LB-ay=pP = a+iB-4)
P 2 2 2
43. (a) / p lB lA lA lB
= A+=-B—_—=4 = =4+ -
0 2 2 2 2
(b) Let P and Q be the midpoints of AB and BC, respectively.
B
1 1 1 1
P =-A+= = =B+ =
From (a): P 2A 2B and Q 2B 2C
7 N ths: 76 = 0P = (18 1c) - (La+ 1)
2 2 2 2
A W ¢ Le—ay = Lac
= 3(C-4) = 3
0 — — —
It follows that PQ is half the length of AC and is parallel to AC
ArP RN 7 — 7
45. % P=A+AP=A+(—)AB =A+(—)(B—A)
B rt+s rt+s
; (Rl - (e (e
rts r+ts rts r+s

- (L)/H(L)B
r+s r+s
47.Let v = (v}, v,). Clearly if » = 0 or v = 0, then rv = 0. Conversely, if v = 0, then
rv = r(vy,vy) = (rvy,rv,) = 0=rv;, = 0andrv, = 0. From rv, =0: r=0 or
v; = 0.From rv, = 0:7 = 0 orv, = 0.It follows that » = 0 or v; = v, = 0, and that

therefore: » = 0 orv = 0.

49. (u+v)+w = [(upuy, ..,u,) (Vi Ve s V)1 T (W, Wy ooy w,)
= (U tvpuyt vy, o u, Ty, )t (W, Wy oo, w,)
= [(uytv) +wy, (uy +vy)twy, oo, (u, +v,)+w,]
= [ug+(vytw)uy+(vytwy), . u, + (v, tw,)]

= (U, uy, .. u,) T [(vi+tw), (vatwy), o, (v, tw,)] = ut+(v+w)

51. (r+s)v = (r+5)(vp vas ooy V) = [+ 85I, (r+8)vy, o (rts)v, ]
= (rvy T sV, rvy T SVy, o, 1Y, TSV,

= (1Vy PVay cees 1V,) T (SV1, 8V5, oy 8V,) = TV + 5V
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12.2 Dot and Cross Products (Page 510)
1. -26 3. -7 5. 60 7. 90° 9. cosfl(

-5 )
~110° 11. 90°
J17.J/13
-1 5 .
13. 60° 15. 135° 17. cos (—) ~ 81° 19. orthogonal 21. neither
1015
12 8 14 21 3

23.(2,1)=(E,E)+(E+E) 25.3j+4k=@i+§-)+(_§i+§j+4k)
P BB n (20220 (50

31. (-25,-20,5) 33.40i-3j+42k 35. 55
37. (a) Expand both (u —v) - (u —v) = (u;—v{, uy—v,) - (u;—vy, uy—v,) and

u-(u—v)—v-(u—v) and observe that each is equal to uf — 2u, v, + v + u3 — 2u,v, + v3.

(b) Expand both (u—v) - (u—v) = (u;— v, uy—vy,u3—v3) - (g =V, Uy —Vy, Uy —V3)
andu - (u—v)—v- (u —v) directly and observe that each is equal to:

—2uy vyt v+ ud = 2u,vy +v3 +u3 —2uzvy t+v3
(c) Expand both
(w—=v) - (u—v) = (Uy—vy,uy—vy ...,u,—v,) (U =V, Uy—Vy, ..., u,—v,) and
u-(u—v)—v- (u — v) directly and observe that each is equal to:

T-2uv, tvitud—2uyv, +vi+ . tul-2uv, +v2

39. (a)
J’_
AR I el b Bl A <1 |ugvy +uyvy| < Jud +u3 Jvi+v3
(s Juz+uZ V2 +v3

< (ugvy +uyvy)? < (uf +u3)(vi+v3)

202+ u? 2

21,2
<:>u1v1 +2uyv u2v2+u2v2 <ujv %
2
True, since u?vs —2u v u,v, + uvi = (uyv, +uyv,

(b) Omitted here. A solution appears in the Student Solutions Manual.
41. (a) First: (u+v)xw = (uy + vy, Uy + vy, iy +3) X (W, Wy, W3)

i j k

det |u; +v, uy+ v, uy+v,

Wi Wy W3

3T uzvi+uzvi

2

)2

= (UyW3 T VyWs — Uz Wy — VW, )i — (U W3 + VW3 — UsWy — V3w, )jf

)
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i j k i j k
Then show that u x w+v xw = det |u; u, uy| +det|v, v, v3| equals (*)
Wy Wy W3 Wi Wy W3
i j k

(b) Expand cv xw = det |cv, cv, cvs|, vxcw, and c(v x w), and observe that each can
Wy W, Wy

be expressed in the form c[(v, w3 —vyw,)i — (viwy —vaw,)j + (viw, —vow, ) k]

2 V3 Vi V3 Vi Vo

i j k
Vv

Vi Va V3

r i j k
= det[v2 V3]i+ det[v1 v3]jdet Y1 v2]k = —det|v, vy v3| = ~(vxu)

UH U u, u u, u
2 73 1 %3 1 %2
= Uy Uy Us

det|? 5| = ad—be = —(bc—ad) = —det|€ 9
cd a b

Y ai +bj Diagonals are orhogonal < (ai + bj) - (ai—bj) = 0
43. b\ S g Sal-b2 =0
T~ - < a = b (since both a and b are positive)
ai — bj

45. Omitted here. A solution appears in the Student Solutions Manual.
47. 20 foot-pounds  49. 10,000./3 foot-pounds

51.t=0PxF= || = HOAID X FH = H(ﬁ’H | Fllsin® (Theorem 12.6)
53. (a) 11.25 foot-pounds (b) 22.5 foot-pounds (c) 4—} ~ 15.9 foot-pounds
242

55. Show, directly, that both u - (v x w) and (u x v) - w can be expressed in the form:
UPVW3 — U V3Wy — UpVi W3 T Uy V3 Wy T U3V Wy — U3V W)
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12.3 Lines and Planes (Page 520)
1L.w=(1,3)+t(1,3);x = 1+t,y = 3+3¢
3ow=00,1,-1)+e(,,1);x =t,y=1+t,z=—-1+¢
5. First, we show that for any given ¢ there is a ¢’ such that
(L, D) +(1,1)-(1,0)] = (1,0)+[(1,0)—-(1,1)] (*)
re. (1,1)+(0,7) = (1,0)+(0,—¢') ie. (1,1+¢) = (1,-¢)=>¢t = —(1+¢)
From the above we also see that for any given ¢’ there is a ¢ for which (*) is satisfied; namely:
t=—(1+1).
7.0 38 ) L (o L
9.(1,4,2) - (x-2,y,2-3) = 0,(x—2)+4y+2(z-3) = 0, x+4y+2z = 8
11.3,2,-1)-(x-1,y-1,z-2) = 0,3(x-1)+2(y—-1)—(z-2) = 0,3x+2y—z =3

17,46 19 421 5y 8422 oy 3%

13. 7x+y+3z =9 1S.x+z =1

2 7 11 4
25. No unique answers.  27. cos_l(%) ~70.5° 29.w = (0,1,2) +#(3,-1,-2)
3.5x+t2y+32=3  33.2x-Ty—3z=-13 35 —2_
1817

12.4 Vector-Valued Functions (Page 531)

1. . 3. 5.
3,-1,1)
1
X
3
7.2i+5j, 2i+ 104, t2i+§t3j+C 9. (sin 1)i—j, (cost)i-24j, (—cost)i—-%jJrC
2 _ 2 2
W itj+k, i %i+tj+tk+C 13.i-3j, i+ tzln’k, %i3tj+(lnTt)k+C

2 3
15.i—j+ (tan 1)k, i—2¢j + (sec’ D)k, %i—%jJr (In[sec)k+C 17.x = 2+2¢y = 5+ 10t
19.x =ty=-2,z=1 21.v(1) = i+2j, a(l) =0, |v(1)| = /5
L. B B 755 11 B
23. v(0) = i+j, a(0) = —k, |v(0)] = 2 25. == (ate = 2, J230 (at 1 = 6)

27. (a) Proof of Theorem 12.8(a):
[cu(D)]" = {cluy(O)i+uy(0)j +us(Ok]}" = [cu ()i + cuy()j + cuz(D)k]’
= [cu (O)]'i+ [cuy ()] + [cuz(D)]'k = cu;'(2)i+ cu,'(1)j + cus(1)'k
= clu,"(£)i +u,' (1)j + us(t)'k] = cu'(t)
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(b) Proof of Theorem 12.8(e):
[u() =v(D)] = [u ()i +uy()j + uz(D)k] = [v ()i + v, ()] + v3()k]
= [ul(t) —Vl(t)]i"' [uz(t) —Vz(t)li+ [”3(0 —Vg(f)]k
[u()) =v(O)]" = [u;" () =v" (D) + [uy (1) = v, (O + [us' (1) —v5' () ]k
= Ly (0)i + 0y (1) + 3" (k] ~ [y (i + v, (0 + v3'(DK] = w'(£) = v'(1)

29. {ulf(D]}" = {u fO]i+uy[A) ] + us )]k}

L D1 i+ {uy D] T+ {us (D]} 'k

uy ' [fIO @i+ uy (O (0)f + uy" (D (D)k

= Oy 0]i+uy [AO) + uy TADTKY = [ (D' [f(1)]

31. Since ([ Andnli + [[e(dnlj + [[hnydntk) = Li[rndni+ Lifewadnj+ L[ ek,
= f0)i+g(0j+ h(Dk = r(1)
jr(z)dz = [jf(t)dt]i + [jg(z)dz]j + [_[h(t)dt]k +C

33. = 500.6 m/sec. 35. Max height: 625/4 ft, Range: 625 ft, Impact speed: 100./2 ft/sec

37.40.3ft  39. ~95 fi/sec 41 239 (39 fusec 43, 2290 L 43 fysec
J21 3

45. Let o be the angle at which a projectile is fired at a speed of v, ft/sec from the origin, so ry = 0.
Then:

v(t) = J-(—32k)dt = =32k + (vocosa)j + (vosina)k = (vocosa)j + (=32t +v,sina)k

initial velocity

And: r(t) = .[v(t)dt = [(vocosa)t]j + [- 1612 + (vysina)t]k (as ry=0)
Maximum range occurs when the vertical component of »(¢) is zero, so:
) ) Vosino
— 1682 + (vysina)t = 0 = 16¢ = vysina = ¢ = T

The range at that time is the horizontal component of r(¢):

16 32 32
Maximum value of the range occurs when sin2a = 1 = 2a = 90° = o = 45°.

) 2 . 2 ) 2 .
Vosino Vosinocosa Vo * 2sinocosa Vosin2o
(vocosa) 6 = =

47. The range, d, when a a projectile is fired at an angle o at an initials peed v, ft/sec is

2 . 5
Vosin2o ) o ) (2vy)sin2a
TR Doubling the initial speed results in the range -
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49. Since acceleration r”(¢) is zero, the velocity v(¢) = r'(¢) must be constant; say
r'(t) = bj+ ck. It follows that:

r(t) = Ir’(t)dt = btj+ctk+ry = ry+t(bj+ ck) (vector equation of a line).

51. Letting g denote the force of gravity we have:a(t) = r"(¢t) = —gk. Integrating twice we have:
v(t) = —gtk+vy = — gtk + (aj + bk) and:

—gt? . .
Lkt (atj + bek) + (cj + dk)

)
(az+c)j+(g7t+bt+d)k

_ —gt? .
r(t) = Tk+(atj+btk)+r0

Letting r(t) = xj + yk we have:

X—C
X =attc=>t = (note that since the trajectory is non-vertical, a # 0)

a
) _ 1 (x-c 2 X—c
y = %’+bt+d$y B —2g( a ) H’( a )“i
since y is a quadratic function of x,
the graph is a parabola.

12.5 Arc Length and Curvature (Page 543)

1.20429  3.27lal  5.2nda2+ b2 T.In(1+4J2)  9.x = %S—Z y =343

_1 231132 p = 1 2/3 _ - qinl 2 = S = 5
11. x 3[(3s+1) 1]°74y 2[(3s+1) 17 13.x sm(ﬁ),y cos(ﬁ),z 7
— (3 cost. Sins. 4 — (_sint.— — (4 cost “dainr 3) « = 2
15. T(¢) = (5 cost, 5smt, 5),N(t) (—sint, —cost, 0), B(t) (Scost, 5s1nt, 5), K 73
17. T(r) = -—la(cost— sint)i + —l—z(cost+ sint)j,
1 N | . . . 1
N(t) = —(—cost—sint)i + —(— sint + cost)j, B(t) = k,x =
NG) 2 el 2
19. T(t) = ( I ,OJ,N(t) = [ L, e ,OJ,B(t) = (0,0,-1), K =+3/2
JE2+1 J2+1 J2+1 J2+1 (2 +1)

21.—6x+y=mx+6y = 67 23.——+l+z:§,——l+z=

2 2
T 3) 1
. — +ly— = —
25 ( 4) (y 4 16
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27. Applying CYU 11.36 to f(x) = ax?, with f(x) = 2ax and f"(x) = 2a, we have:

S 5 I |
[1 + U'(x))2]3/2 (1 + 4a2x2)3/2

K is greatest when the above denominator (1 +4a2x2)3/2 is smallest; which is to say at
x = 0, which is where the vertex of the parabola is located.

_ i j k
29. We show that B(#) = det | /() o'(¢r) h'(¢)| 18 perpendicular to both 7(z) and N(7); and, as
f(1) g"(1) h" (1)
such, will be parallel to 7(¢) x N(¢t) = B(t). We first show that

— [} !
B=(g'h"—g"n")i—(f'n"—f"h")j+ (f'¢" —f"g' )k is perpendicular to T = _fogh k) :
/f’2+gr2 + h,2
D 1 R 1" 1o rl '
B-T=————[f(g'h"-g"h)-g' (fh"~f"h") + 1'(fg g)] =0

/f’2+g/2 +hr2

To show that B is also perpendicular to N = ” ;,” we first determine 7" :

’ b ’,h’ ! 1 ’ ’ 1 ’ n n
1= [ALELL T () (g, ) (g 1)
/f’2+gr2+h/2 /f’2+gr2+h/2 /f’2+g12+h/2

= C(f"g"h,)—i_D(f’ag"’h”) Where C = (;)’ andD = (;)

Then: -
BeN = B = [ BT = [ B 10 R+ DU )
= [ CLB- (78, 1)1+ DIB (', 8" 7))
|T'|{C[f(gh” @ hY— g (Fh" — R + B (f'g" — f"g)]

+D[f‘”(g h"* nh )_g"Uh" *f”h )+h!r(f'grr fﬂ r)] }

”T,”[C(O) D(0)] =0
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CHAPTER 13
DIFFERENTIATING FUNCTIONS OF SEVERAL VARIABLES

13.1 Partial Derivatives and Differentiability (page 557)

0z oz oz 0z 0z 2 Oz 2
.= =2x,— =2y 3.2==2xp?-2y,—— = 2x%y -2 5. 2= = 8xy3e*, == = 12y2e"
o X, By y ox Xy Vs By X7y —2x ax xy-e 3y yee
2 2 . .
7. a_Z — _&’ a_Z — _& 9, a_Z — sinyexsmy’ a_Z — xcosyexsmy
ox  (xy-1)2"0y  (xy—1)2 Ox dy
Oz _ eXeosy 0z .
L= = 4 xcosy 4 — _ XCOSy
11 o e Inxcosye ' 3y (xInxsiny)e
13. 1., = 12,fyy= 18,fxy= e = 8
15'fxx — 462x+3y,£}y - 9e2x+3y, fxy = o = Ge2xt+3y
2 2 _
17.f = —X ¢ =X ¢ = ) A
XX (xz +y2)3/2 Yy (xz +y2)3/2 xy yx (xz +y2)3/2
19 _ —sinx _ sinx(sin2y+ 1) _ _ sinycosx
.]pxx N cosy "]}y - 3 ’ fx - f)"x - 2
cos’y cos y
_ 1 _ 2y2 4+ 2yx —x? _ _ 1
e = Gt T Ty e T Ty

23 fro = Jor = 33975 Sy = Loy = Sape = 05 Sy = Srpe = O
25.f,, = [ = (xzy?+y)evs, Sypy = X3Z3€xyz,fzzy = foy: = (x3y2z + 2x2y)e™2,
Sroyz = opx = (x2y2z2 + 3xyz + 1)e¥*

27‘fxz = Jxx T yyy - zzy - zyz = zZyx - xyz =0

29. f, = 2xy and f, = x? are continuous throughout the domain of f{x, y) = x?y-9.

31.f, = 2e¢?**3 and /= 3e2x* 3y are continuous throughout the domain of f(x, y) = e2**37,

33. 1. = J 5 = ! (asy#0) and fy k' are continuous throughout the domain of
Xy =y x=y Xy =y

fGx,y) = In(xy—»?).
35. f, = 3x%y%z4, /= 2x3yz4 and f, = 4x3y?z3 are continuous throughout the domain of

fx,y,2) = x3y2zt.
_ 2 2 2
37,02 o _Z2xz 0z 1tAyz? a9 O X h2yz 0z pot2xz g0
Ox  x2+4y2?z Oy x2+4y2z Ox z2+2xy Oy z2+2xy
Y = _ _ _ _ 2y
43‘fx = gy = 2x andfy = =g = —2y 45. Zyy = _Zyy = m
47. [y = [g() +h()],, = ([)] + [A)]), = ([g(x)],+0), =0

49. x% +yg—; = x(4x3 + 4xy?) + y(4x2y + 4y3) = 4(x* +x22 +x2p2 + %) = 4z
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51. g:: g}vf+22} = 2xy+22+x2+2yz+y2+2zx and (x+y+z)2=(x+y+z)(x+y+z)
St =Xy ED)Fyty o) oty

= xX2+xy+xz+yx+y +yz+zx+zy+z2

[—sin(x +y) —sin(x—y)], — [~ sin(x + y) + sin(x - y)],
—cos(x+y)—cos(x—y)—[-cos(x+y)—cos(x—y)] = 0
A p

53. Zix —Zyy =

55. V—— v V("T) - V KTV = KTV(-V) =
/
VgV 21;_ P TaT k7) ll__ﬁ;@ -0
(576557 = [ [ [y o)

S HE- R

2 2
57 O0R OR _ [ (R1+R2)_R1} 0 [R (R1+R2)_R2J
B Tl EJLAN - R A
ORT OR, OR| 2 (R,+R)* | OR,l ' (R, +R,)?
_ 0 _ 0 _
= G—RI[R%(RI +R,) 2] .G—RZ[R%(RI +R,) 2]
_ 2R3 2R} ARRY)ARAR TR 4R
(R, +R2)3 (R, +R2)3 (R, +R2)6 T (R, +R2)6 (R, +R2)4
_ R1R2
R *R,
59. —% 61. cos2t 63. 1 + cos2t
= t+2te"

67.w, = s+ 2se’—3cost, w,

65. z, = 3sins? + (25t + 6¢*)cost?, z, = sins?
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13.2 Directional Derivatives, Gradient Vectors, and Tangent Planes (page 570
L. D, flx,y) = im [(x + 71c0s45°, y + hsind5°) — f(x, )

h—>0 h
A+ hoy+ =) - (2 +x)
= lim 2 2
h—0 h
1
+—h) +( +——h)(y+—h)—(x2+xy)
_1.( i A
= lim
h—0 h
h? hx | hy  h?
2+ e+ ety ZE T 2y
2 2
= lim “[ “[2
h—>0
2
ﬁhx+£+h_x+h_y h_

h—0 h h—0 2 1 E
3x+

_ fxr Xy Bty

22020 2

3.1-2/3 . %(1+J§) 7. —% 9. 82 160  13. —11—6

15. 3 17 _?)—ﬁ 19 L 21.3 23. e 25.30./2 27. B 13

5 "8 2.2 20 2
29. /2, -2 31. ./5,-./5 33.2,-2  35.3./3,-3.3 37.1,-1
39.2./3,-2./3 41. 6x—47y—z = —123 43.8x+2y+z =0 45.y-z =0
47.3y—z = -1 49. 4x+3y+z = 10 51.2x—y+2z =0 53.x+y+z=¢e3-1
55.300.00  57.-032  59.023cm”  61.-032  63.235cm’
65. Vf(xg, vo) = f(x0, )i +fy(x0, Yo = 0= f.(xp,¥9) = fy(xo, ¥o) = 0.1t follows that for
any u = ai+bj: D, f(xy,y,) = afx(xo,yo)-irbf(xo,yo) =a-0+b-0=0.

2 2 2
67. For f(x,y,z) = x_2 + L= , Vilx,y,z) = 2y] — 2—Zk It follows that
a? b2 %’ a’?  b?
VA ) = 2xy. 2yo. 2z, k o . y J) .
Xo» Vo Z 20+ Ok is anorma totesurace—+ -==1at
0 Yo %o a? b? c? a? b2 (?

(X0» Y0 2) » and that, therefore %)(x—xo) + — 2o (y Vo) — 2% (z z,) = 0 is the tangent
plane at that point — a plane which can be rewrltten in the form:
So W0 o _ % Ny F _
a* b 2 a* b
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69. () V(r/) = (1) i+ (iN),j+ Nk = rfi+rfj+rfk = r(fi+f,j+fk) = rVf
(b) V(f+g) = (fxg), it (fxg),jt(f£g).k = (f,xg)i+t(/,£g)jt (8. )k
= (it S+ k) (g i+gj+g.k) = VftVg

(©) V(fg) = (/g), i+ (f2),+ (fg).k = (fg, +&f )i+ (fg, +&f, )i+ (fg, + gf )k
= flgitg,jtek)te(fiitfjtgk) =fVg+gVf

@ (L) = (4 i+(2) (5 & - gfnggx gfnggy gfgfgz
_ gOpxl-lrfy]-Ierk) f(gx1+gyj+gyk) _ gV/-—fVg

g g’

13.3 Extreme Values (page 585
1. Saddle point at (5, 2). 3. Saddle point at (0, 0). 5. Local maximum at (-2, -2).
7. Local minimum at (1, 1) and at (—1,—1), saddle point at (0, 0).
9. Local minimum at (2, 1), saddle point at (0, 0). 11. Local minimum at (2,-1).
13. None. 15. Local maximum at (-1, 0). 17. Local maximum at (2 2)
19. Absolute minimum: f(3,0) = —11; absolute maximum: f(3, 5) = 34.

mimum: (1, 1) = L. imum: (1, 2) = 61
21. Absolute minimum: > e absolute maximum: f 7 2 e

.. 2 1y 13
23. Absolute minimum: 33 = 3 ; absolute maximum: f(2,0) = 6.
25. Absolute minimum: f(2, 0) = -3 ; absolute maximum: /( ) = —43—1.
27. Absolute minimum: f{(—2,2) = -9 absolute maximum: f(l, 2) = 34—7
29. Absolute minimum: f{0, —4) = —40; absolute maximum: f(+./15, 1) =
31. Minimum: /(——, —) ﬁ maximum: f ( ) ﬁ

N2 2 J2 2
33. Minimum: f(-3,3) = f(3,-3) = 5; maximum: (3, 3) = f(-3,-3) = 23.
35. Minimum: f(£1,0) = 1; maximum: (0, £1) = 2.
37. Minimum: f(4, 0) = 11 ; maximum: f{(-2, +2./3) = 47.
39. Minimum: f' ( ﬁ) = -3./2; maximum: f ( ﬁ) =3./2.
72 f 22

41. Minimum: £{0,0, 1) = f(0,1,0) = f(1,0,0) = 0; maximum: ](3 3 3) 21—7

43. Minimum: {0, 0) = 0; maximum: {0, £1) = 2.
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45. Minimum: f{( 1, 0) = —7; maximum: f{-2, +2./3) = 47.

= —2«[6; maximum: f(i = 2J6.

. 2 3 1 3 1
47. Mlmmum:/(—ﬁ, %, ﬁ) , _T’ _r[g)
49, Min:f(—fz,——l—, 71_-) Zj(ﬁ, 71_5—%) = —; max: f( J2, - f J—) f(f [ f) = %

51M1nf£f } 2+ f]_4 2./13; maxf(f} 2 }j—4+2f.

53. (0,0, 1) 55. Square base of side 2 - 41/3 ft. and height of 6 - 41/3ft.  57. %

59.2ab  6l.x = 50,y = 150  63.10in. by 20 in. by 15 in.

65. Base: «F by fs; height lﬁ 67. x = l, o = 60°
3 3 273

CHAPTER 14
VECTOR CALCULUS

(O8]

14.1 Line Interals (page 601)

L3920 30502 s 1B g lga gy 9 2279y, 20410218
3 5 4 6 27
4
13.0 15. -3./10x 17. 47 + 8 19. 45n+§39n3 21.0  23.¢ 25. 162—%
6 . 1069 29 8
. . .- + — .21 — . 3
27.1 29.7 31. 5~ cos1 + sinl 33. 03 35.2n 37. = 39. 3

14.2 Conservative Fields and Path Independence (page 614
1. Not conservative 3. f(x,y) = x2)3 +y 5. Not conservative 7. Not conservative

9. f(x,y,z) = e*cosy +xyz+ %zz 11. f(x,y,z) = xy? +ye3* 13. —n 15. 20

17. 3e +§e2 ?TZ 19.2 21.e3m+1 23. —§ 25. 2 +de+ 1 27. 2x2y

29.2xe" 31 %y4i+2xy3j+zk 33.0  35.1

37. Since f(x, y) and A(x, y) are both potential functions of the same conservative vector field,
Vf = Vh,which means that (1): f.(x,y) = h.(x,y) and (2):fy(x,y) = hy(x,y).
Let k(x,y) = fx,y)—h(x,y).From (1): k (x,y) = 0= k(x,y) = k(y).From (2):
k'(y) = 0= k(y) = C.It follows that f(x,y)—h(x,y) = C.

14.3 Green’s Theorem (page 623

1 1 s 2 4 .
1.27n 3. > 5. 7 7. > 9. 3 11. 247 13.0 15. -3 17.1—sinl

19. L 21. 12= 23. nr? 25

1 2
5 ‘1 27. 3na 29. 31.0
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14.4 Curl and Div (page 632)

1. (y+ Dk 3. (—ysinxy — xcosxy)k S5.xi—(y—y?)j+(-3x2-2y2)k
1

C(=2y—xy)itxjtyzk 9. (x+yer '—( ——)'

7. (=2y —xy)i+txj+yz (rtye)i—y-——)J

11. —x(cosxy + coszx)i + y(cosxy + cosyz)j + z(coszx — cosyz)k
13. —xcosxyi + y(cosxy + seczyz)j — (ysinxy + zseczyz)k 15. 2xy 17. y+z—-2x

19.¢¥2—e?7>Y  21.—ysinxy—zcosyz  23.Show curl(F) = 0  25.Show curl(F) = 0
35. Not meaningful 37. Meaningful  39. Meaningful 41. Meaningful

14.5 Surface Integral (page 641
1. 4.2n 3.38 5. 2(17Jﬁ—5ﬁ) 7. 107 9, %(275—36[6—49[7)

1. %(26«/276— 10/10) 13, 1—33—@ 15. 12436 17, ”——3-2@ 19. i(37j3’7— 1

NEP! 10./6 47 3
S ka 23— 25. 7.5 29.128n

21.
3

14.6 Stoke’s Theorem (page 650
3n

1. -324n 3.-112%= S. > 7. 127 9. -1 11.0 13.5 15. -18=
7. 19.-n  2L-2n 230 252 272
, L .., .
29. Since a normal to the plane x +y+z = 1 isi+j+k,n = —(i +j+ k), and:
3
i j ok
curl(F) = det| 9 9 9| = 3j+j 2k
Ox 0y Oz
z —2x 3y
1 2 2
curl F- ndS = ||(3i+j—2k)- —(i+j+ k)dS = —||dS = —(surface area of §)
et nas - [0 & 2ffus - 2

= i(area of the region enclosed by C)
3

14.7 The Divergence Theorem (page 657)

121a’ 21 81m 184
1. 5 3. 3 5. > 7.256m 9.32n 11. 35 13.3 15. 32~

17. F = ¢ = div(F) = 0:>”F-ndS= ”jdiv(F)de j”owz 0
S E E




INDEX

A

Absolute Convergence, 356

Absolute Value, 1, 577

Acceleration, 171, 527

Alternating Series, 337
Test, 337

Angle Between Vectors, 503

Antiderivative, 167
Arc Length, 208, 309, 534

Area, 177, 449
Between Curves, 197
Polar, 378
Surface, 633

Asymptote
Horizontal, 138
Oblique, 138
Vertical, 139

B

Binomial Series, 380
Binormal Vector, 536
Bounded Sequence, 327
Boundary Point, 578

C

Center of Mass, 216, 451
Chain Rule, 94, 555

Circle of Curvature, 542
Composition, 7

Comparison Test, 347
Concavity, 131

Conditional Convergence, 356
Conservative Field, 605, 612
Continuity, 57, 430, 432
Continuous Function, 50, 57, 430
Cross Product, 506

Critical Point, 125, 575
Curl(F), 626

Curvature, 539

Cylinder, 437

Cylindrical Coordinates, 472

D

Decomposition of Vectors, 504
Decreasing Function, 123
Decreasing Sequence, 327
Definite Integral, 177

Density, 450

Derivative

At a Point, 66

Directional, 560

Geometrical Insight, 71

Higher Order, 85

Of Functions, 29

In Polar Form, 373
Partial, 467

Higher Order, 551

Determinant, 505
Differentiability, 553
Differential, 82
Differential Equation, 172
Discontinuity 48

Jump, 49

Removable, 49
Directional Derivative, 560
Distance, 5, 14

Div(F), 628, 656
Divergence Test, 332
Divergence Theorem, 654
Domain, 3
Dot Product, 501
Double Integral 440

In Polar Coordinates 457

E

Elliptic Cone 440
Elliptic Paraboloid, 438
Ellipsoid, 439

Endpoint Extremes, 137

Exponential Function
General, 242
Natural, 231
Exponential Growth and Decay, 235
Extreme Values
Absolute 577
Local 574
Subject to a constraint, 580
Subject to two constraints, 583

F

Flux, 652
Across a Curve, 636
Across a Closed Curve, 620
Across a Surface, 536
Force Field, 612
Free Falling Object, 171, 529
Function, 2
Absolute Value, 35
Composition, 7



I-2 Index

Continupus, 50, 57, 430 Intermediate Value Theorem, 126
Decreasing, 123 Inverse Function, 13
Domaln, 3 Graph 14

Graphing, 131

Increasing, 123 Inverse Trigonometric Functions, 250

Inverse, 13 J

One-t0-One, 11 _ o
Piece-Wise Defined, 4 Jump Discontinuity, 11
Range, 3

Vector Valued, 523

Fundamental Theorem of Calculus, 180, 605 Lagrange Theorem and Multipliers, 580

G Lagrange Remainder Theorem, 339
L’Hopitals’ Rule, 301
Generalized Power Rule, 95 “0/0” Type, 301
Geometric Series, 334 “o0/00” Type, 304
Gradient (V/), 561 Other Forms, 205
Graphing Functions, 131 Level Curve, 566
Polynomial, 132 Level Surface, 566
Radical, 143 Limit. 55

Rational, 138
Graphing functions of Two Variables, 435
Green’s Theorem, 617, 622, 630

Definition, 55, 427, 431
Geometrical Interpretation, 47
Intuitive, 43

H One-Sided, 46
Uniqueness, 53
Helix, 523 Limit Comparison Test, 348
Higher Order Derivatives, 85 Line, 514
Hyperbolic Paraboloid, 441 Parametric Equation,514
Hyperboloid, 441 Vector Equation, 514
Horizontal Asymptote, 138 Line Integrals, 591 .
Of Scalar Valued Functions, 591
1 Of Vector Valued Functions, 597
o o Alternate Notation, 599
Implicit Differentiation, 103 Linearization, 82
Improper Integral, 310 Local Extremes, 121, 574
Discontinuous, 313 Logarithmic Function,223
Inﬁnlj[e Region, 310, 272, 275 Common, 2441
Increasing Sequence, 377 General, 233
Increasing Function, 123 Natural, 223
Indefinite Integral, 167 M
Induction, 83
Inflection Point, 131 Maclaurin Series, 375
Instantaneous Rate of Change, 70 Mass, 450, 594
Integral Center, {151 .
Definite. 178 Mathematical Induction, 83
Double, ’444 Maximum/Minimum Theorem, 127, 574
In Polar Coordinates, 449 Mean Value Theorem, 121
Improper, 310, 316 Monotone Sequence, 327
Indefinite, 167
Triple, 464 N

Integral Test, 345
Integration by Parts, 261
Interior Point, 125

Natural Exponential Function, 231
Natural Logarithmic Function, 223



INDEX

Net Change, 184
Norm, 502
Normal Vector, 536

O

Oblique Asymptote, 138
One-to-one function, 11
Optimization, 149, 574

Using a Graphing Utility, 157
Orthogonal Vectors, 503
Osculating Circle, 542
Osculating Plane, 538

P

Parallel Planes, 518
Parametrization of Curves, 392
Arc Length, 400, 401

Parameter, 393
Parametrization of Surfaces, 638
Partial Derivatives, 549
Partial Fractions, 272
Partial Sums, 332
Path Independent, 604
Pinching Theorem, 89, 324
Plane, 516

Normal, 565

Tangent, 565

Equations

General, 516
Scalar, 516
Vector, 516

Point of Inflection, 131
Polar Coordinates, 405

Polar Curves, 407
Area, 416
Length, 420
Power Series, 364
Functions, 367
Interval of Convergence, 365
Radius of Convergence, 365
Principal Theorem of Calculus, 161
P-Series, 347
Pythagorean Theorem, 14

Q

Quadrant Angle, 31
Quadratic Formula, 19
Quadratic Surfaces, 437

I-3

R

Range, 1

Rate of Change, 70
Average, 70

Instantaneous, 70
Ratio Test, 350, 358

Related Rates, 110
Removable Discontinuity, 49
Rolle’s Theorem, 121

Root Test, 351

S

Second Derivative Test, 137
Second Partial Derivative Test, 575
Sequences, 321

Bounded, 327

Convergent, 321

Decreasing, 327

Divergent, 321

Increasing, 327

Monotone, 327

Subsequence, 328

The Algebra of, 323

Set, 1
Intersection, 2
Union, 2
Series

Absolute Convergence, 356

Alternating, 327
Error Estimate, 340
Test,337

Binomial, 380

Conditional Convergence, 356
Rearranging Terms, 360

Convergent, 2332

Divergent, 232

Divergent Test, 332

Geometric, 334

Maclaurin, 375

Of Positive Terms, 347
Comparison Test, 347
Integral Test, 307
Limit Comparison Test, 348
Ratio Test, 350, 358
Root Test, 352

P-Series, 347

Partial Sums, 232

Power Series, 364
Interval of Convergence, 365
Radius of Convergence, 365

Taylor, 373
Polynomial, 376



1-4 Index

Smooth Curve, 534 Continuous,523
Spherical Coordinates, 475 Derivative, 523
Stoke’s Theorem, 644 Integral, 523
Subsequence, 328 Limit, 523

. . Vector Field, 604
Substitutuion Method, 189, 192 Conservative, 605
Surface Area, 633, 639 Path-Independent, 604
Surface Integral, 635, 640 Velocity, 171, 527

Vertical Asymptote, 139
T Volume of Solids of Revolution, 195
Tangent Line, 65 Disk Method, 199
Tangent Plane, 565 Shell Method, 202
Tangent Vector, 527, 536 Volume (Slicing), 203
Taylor Convergence Theorem, 378
Taylor Inequality, 377 W
Taylor Polynomial, 376 Work, 210, 595
Taylor Series, 373
Techniques of Integrations, 261 Z
By Part, 261 Zeros and Factors of a Polynomial, 19

Completing the Square, 270

Partial Fractions, 272

Trigonometric substitution, 280
Trigonometric Identities, 37

Triple Integrals, 454

U

Unit Vector, 493

\%

Vector, 487
Addition, 490
Component, 504
Angle Between Vectors, 503
Cross Product, 506
Right-Hand-Rule, 508
Decomposition, 504
Dot Product, 501
Initial Point and Terminal Point, 487
Norm, 493
Orthogonal Vectors, 504
Projection, 504
Scalar Product, 489
Standard Position, 487
Subtraction, 491
Tangent, 527
Unit, 493
Unit Binormal, 536
Unit Normal, 536
Unit Tangent, 536
Vector-Valued Functions, 523
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	THEOREM 11.1

	Proof: We content ourselves by establishing (a). The proof is “identical” to that of Theorem 2.3(a), page 55 (see margin).
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	29. Construct a function with domain which is discontinuous only at .
	30. Construct a function with domain which is discontinuous only at and .
	31. Construct a function with domain which is discontinuous only at .
	32. Show that the function approaches 0 as along any line . Does exist?
	33. Theorem 11.1(b)
	34. Theorem 11.1(c)
	35. Theorem 11.2(a)
	36. Theorem 11.2(b)
	37. Theorem 11.2(d)
	38. Theorem 11.2(e)
	39. If , then .
	40. If , then .
	41. For any constant c,
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	1. ; R: , .
	2. ; R: , .
	3. ; R: , .
	4. ; R: , .
	5. ; R: , .
	6. ; R: , .
	7. ; R is enclosed by and .
	8. ; R is enclosed by and .
	9. Find the volume of the solid enclosed in the first octant by the plane .
	10. Find the volume of the solid bounded by the coordinate planes and the plane .
	11. Find the volume of the solid below the graph of and above the triangle with vertices , , and .
	12. Find the volume of the solid below the graph of and inside .
	13. Find the volume of the solid bounded above by the plane , and below by the region in the xy-plane bounded by and .
	14. Find the volume of the solid bounded by the cylinder and the planes and .
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	26.
	27.
	28.
	29.
	30.
	31.
	32.
	33.
	34.
	35.
	36.
	37.
	38.
	39.
	40.
	41.
	42.
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	44.
	45.
	46. R is the triangular region with vertices , , , and .
	47. R is the region bounded by , , , and .
	48. R is the triangular region with vertices , , , and .
	49. R is the triangular region with vertices , , , and .
	50. R is the region bounded by , , , and .
	51. R is the region bounded by , , and .
	52. R is the region inside , and .
	53. R is the region bounded by , , , and .
	54. R is the region bounded by , , , and .
	55. R is the rectangular region with vertices , , , and .
	56. R is the triangular region with vertices , , , and
	57. R is the triangular region with vertices , , , and .
	58. R is the triangular region enclosed by the lines , , , and .
	59. R is the region bounded by , , , and .
	60. R is the region bounded by , , , and .
	61. R is the region bounded by , , , and .
	62. R is the region above the x-axis and inside the circle , and .
	63. R is the region bounded by, , , and .
	64. R is the region bounded by , , and .
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	19. where R is the region enclosed by the circle .
	20. where R is in the first quadrant bounded by , , and .
	21. where R is the region in the first quadrant enclosed by the circle .
	22. where R is the region enclosed by the circle .
	23. where R is the region enclosed by the circle .
	24. where R is the region enclosed by .
	25. The region lies inside the circle and to the right of the line (i.e. ).
	26. The region lies inside the circle and above the line (i.e. ).
	27. The region common to the circles and .
	28. The region that lies outside the circle and inside the circle .
	29. The region that lies inside the circle and outside the circle .
	30. The region inside the cardioid .
	31. The region inside the circle and outside the cardioid .
	32. One leaf of the rose .
	33. The region in the first quadrant that is inside the circle and outside the circle .
	34. The region common to the cardioids and .
	35. A sphere of radius a.
	36. The ellipsoid .
	37. The solid that is under the cone and above the disk .
	38. The solid that lies below by , above the xy-plane, and inside the cylinder .
	39. The solid that lies below the paraboloid , above the xy-plane, and inside the cylinder .
	40. The solid that is bounded by the paraboloids and .
	41. The solid that is bounded below by the xy-plane, above by the spherical surface , and on the sides by the cylinder .
	42. The solid that is bounded above by the cone , and below by the region which lies inside the circle.
	43. The solid that is inside the cylinder and the ellipsoid .
	44. The solid that is bounded above by the surface , below by the xy-plane, and enclosed between the cylinders and .
	45. R is the cardioid , and .
	46. R is the region outside the circle , inside the circle , and .
	47. R is the region outside the circle and inside the circle , and .
	48. R is the region inside the circle , outside , and .
	49. R is the region inside the circle , outside the circle , and .
	50. R is the washer between the circles , , if .
	51. R is the cardioid , and .
	52. R is the smaller region cut from the circle by the line if .
	53. R is the region outside the circle , inside the circle , and .
	54. R is the region bounded by , , and .
	55. R is the region bounded by , , and .
	§5. Triple Integrals


	In defining for , we had the luxury of being able to represent the graph of a function in the xy-plane (see page 177). Though considerably more challenging, when defining , we were still able to depict a function in three space (see page 445). But wh...
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	19. W is the solid in the first octant that lies between the planes and ,
	20. W is the solid bounded above by the paraboloid and below by the plane .
	21. W is the solid enclosed between the cylinder and the planes and .
	22. W is the solid bounded by the cylinders , , and the planes and .
	23. W is the tetrahedron bounded by the planes , , , and .
	24. W is the solid enclosed by the cylinders and .
	25. W is the solid enclosed by the paraboloids and .
	26. W is the solid enclosed by the surface and the planes , and .
	27. W is the cube given by ; .
	28. W is the solid bounded by the parabolic cylinder and the planes , , and ; , for a constant k.
	29. W is the solid bounded by the cylinder and the planes ; .
	30. W is the cube given by ;
	31. W is the solid bounded by the parabolic cylinder and the planes , , and ; , for a constant k.
	32. W is the solid bounded by the coordinate planes and the plane ; .
	33. W is the solid bounded above by the paraboloid and below by the plane ; .
	34. W is the solid enclosed by the surface , for , and the planes , , ; .
	35. W is the solid bounded by the parabolic cylinder and the planes , , and ; , for a constant k.
	36. W is the solid enclosed by the cylinder and the planes , , for ; ,
	37. W is the cube given by ; .
	38. ; .
	39. , .
	40. ; .
	41. , , .
	42. ,
	43.
	44.
	45.
	46.
	47.
	48.
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	19. The solid bounded by the paraboloid and the plane .
	20. The solid bounded by the paraboloid and the plane .
	21. The solid lying outside the cone and inside the cylinder .
	22. The solid lying above the cone and below the hemisphere .
	23. The solid enclosed by the cylinder and the planes and .
	24. The solid bounded by the cone and the plane .
	25. The solid cut from the sphere by the cylinder .
	26. The solid lying above the cone , below the plane , and bounded on the sides by the cylinder .
	27. The ellipsoid lying above the xy-plane, with density function .
	28. The circular cone of height h and circular base of radius a if the density at each point is proportional to its distance
	29. The solid bounded by the paraboloid and if the density is proportional to
	30. The solid bounded by the paraboloid and if .
	31. The solid is bounded by the paraboloid and the plane , for , and has constant density k.
	32. The solid that lies within the cylinder , below the plane , and above the paraboloid , if .
	33. The upper hemisphere of the unit sphere, and has constant density k.
	34. The cone of constant density with height h and a base of radius b.
	35. The solid is bounded by the paraboloids and and has constant density k.
	36. Verify that if , then:
	37.
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	39.
	40.
	41.
	42.
	43.
	44.
	45.
	46.
	47.
	48.
	49.
	50.
	51.
	52.
	53.
	54.
	55.
	56.
	57. A sphere of radius a.
	58. A spherical shell whose outer radius is 2 and whose inner radius is 1.
	59. The solid cut from the cone by the sphere .
	60. The solid inside both of the spheres and
	61. The solid bounded below by the cone lying above the xy-plane and bounded above by the sphere .
	62. A sphere or radius a if the density at a point is proportional to the square of its distance from the center.
	63. A sphere of radius a if the density at a point is proportional to its distance from the center.
	64. A hemisphere of radius a if the density at a point is proportional to its distance from the base.
	65. The solid common to the sphere and the cone if .
	66. The solid enclosed between the spheres and if .
	67. The solid ball of radius 1 if the density at each point d units from the center is .
	68. A hemispherical solid if its density is proportional to the distance from its base.
	69. A homogeneous cone of height h and base of radius a, positioned so that its vertex is at and the axis is the positive z-axis. 9
	70. A homogeneous solid bounded above by the sphere and below by the cone , where .
	71. The homogeneous solid bounded below by the cone lying above the xy- plane and bounded above by the sphere .
	72. The homogeneous solid that lies above the cone and below the hemisphere .
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	39. An airplane has an airspeed of 400 km/hr in an easterly direction. The wind velocity is 80 km/hr in a southeasterly direction. Determine, to two decimal places, the ground speed of the plane.
	40. A plane with airspeed of 250 km/hr is flying at a bearing of . A 23 km/hr wind is blowing at a bearing of . Determine, to one decimal place, the track and ground speed of the plane.
	41. A plane with airspeed of 300 km/hr is flying at a bearing of , against a 32 km/hr westerly wind. Determine, to one decimal place, the track and ground speed of the plane.
	42. A plane with airspeed of 250 km/hr is flying at a bearing of . A wind is blowing at a bearing of . Determine, to one decimal place, the speed of the wind if the ground speed of the plane is 270 km/hr.
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	45. Let A and B be two distinct points in the plane and let P be a point on the line segment joining A and B. Show that if and , then:
	46. A median of a triangle is a line segment from a vertex to the midpoint of the opposite side. Prove that the three medians of a triangle have a common point of intersection (see adjacent figure).
	47. Prove that for , if and only if or .
	48. Verify that Theorem 12.1(a) holds in .
	49. Verify that Theorem 12.1(b) holds in .
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	For any , is defined to be that angle whose cosine is x.
	In Exercise 39 you are asked to verify that
	Assuring us that: exists.
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	39. (a) Prove, without using the law of cosines, that , for:
	40. Prove: (a) Theorem 12.2 (a) (b) Theorem 12.2(b) (c) Theorem 12.2(d)
	41. Prove: (a) Theorem 12.7 (b) (b) Theorem 12.7(c) (c) Theorem 12.7(d)
	42. Prove that u and v are parallel if and only if , for:
	43. Prove that a rectangle is a square if and only if its diagonals are perpendicular.
	44. Prove that (a) for any .
	45. Establish the Jacoby Identity:
	46. Establish the Lagrange Identity:
	47. Find the work done by a force that moves an object along the line from the origin to the point (1,1,1). Assume that the force is measured in pounds and the distance in feet.
	48. Find the work done by a force that moves an object directly from the point to the point . Assume that the force is measured in newtons and the distance in meters.
	49. How much work does it take to pull a 200 pound railroad car 100 feet along a track by means of a rope that makes a angle with the track?
	50. Joe pushes on a lawnmower handle with a force of 30 pounds. Determine the angle the handle makes with the ground if 1125 foot-pounds of work is required to mow a line of 75 ft.
	51. Prove that .
	52. An 8-inch wrench is used to drive a bolt at point O. A force F of magnitude 60 lb is applied at the end of the handle (point P). Determine the magnitude of the torque produced if the angle of applications (see above figure) is:
	53. A 9-inch wrench is used to drive a bolt at point O. A force F of magnitude 30 lb is applied at the end of the handle (point P). Determine the magnitude of the torque produced if the angle of applications (see above figure) is:
	54. Prove that , where:
	55. Prove that
	56. Prove that is the volume of the parallelepiped with as adjacent sides (see adjacent figure).
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	1. L in has slope 3 and contains the point .
	2. L in passes through the points .
	3. L in passes through the points .
	4. L in passes through the points .
	5. With respect to the line L in passing through the points , show that the two vector equations
	6. With respect to the line L in passing through the points , show that the two vector equations
	7. (a) Find the distance from the point to the line L in passing through the points and .
	8. (a) Find the distance from the point to the line L in passing through the points and .
	9. ,
	10. ,
	11. ,
	12. ,
	13. , ,
	14. , ,
	15. , ,
	16. , ,
	17. Find the distance between the point and the plane .
	18. Find the distance between the point and the plane .
	19. Find the distance between the origin and the plane with normal that contains the point .
	20. Find the distance between the point and the plane containing the points , , .
	21. Find the distance between the point and the plane containing the point that is parallel to the plane .
	22. Find the values of x for which is 10 units from the plane .
	23. Find the values of a for which the point is 1 unit from the plane .
	24. Find an equation of the line that is common to the planes and .
	25. Find two planes that intersect in the line in the x, y-plane.
	26. Find the angle between the planes and .
	27. Find the angle between the planes and .
	28. Find an equation of the plane consisting of all point that are equidistant from the points and .
	29. Find an equation of the line containing the point that is parallel to the plane and perpendicular to the line .
	30. Verify that the plane contains the line .
	31. Find an equation of the plane that contains the point and the line of intersection of the planes and .
	32. Find an equation of the plane containing the point that is perpendicular to the line passing through the points and .
	33. Find an equation of the plane that is perpendicular to each of the planes and and contains the point .
	34. Show that the line is parallel to the plane and find the distance between them.
	35. Find the minimal distant between the line and the line .
	§4. Vector-Valued Functions
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	25. Determine the minimum and maximum speed of a particle with initial velocity (feet per second) and , within the interval .
	26. Determine the minimal and maximum speed of a particle with initial velocity (feet per second) and , within the interval for .
	27. Theorem 12.8(a) and (e)
	28. Theorem 12.8(g)
	29. Theorem 12.8(c)
	30. Show that if and exist, then:
	31. Show that for :
	32. Prove that any two antiderivatives of a vector-valued function can only differ by a constant vector C.
	33. A projectile is fired at a speed of 500 meters per second at a angle of elevation, from a point that is 30 meters above ground level. Find its speed when it hits the ground.
	34. A projectile is fired at a speed of 800 feet per second from ground level, at a angle of elevation. Determine its maximum height, range, and speed when it hits the ground.
	35. A projectile is fired from ground level with initial velocity feet per second. Determine its maximum height, range, and speed when it hits the ground.
	36. Repeat Exercise 32 given a constant wind velocity of:
	37. A stone is thrown downward from the top of a 168 foot building, at an angle of depression of at a speed of 80 ft/sec. How far from the base of the building will the stone land?
	38. A golf ball is hit at a speed of 90 feet per second at a angle of elevation. Will it clear the top of a 35 foot tree that is 135 feet away?
	39. Referring to Exercise 36, determine the minimum speed for which the ball will clear the tree (maintaining the angle of elevation).
	40. Referring to Exercise 36, can the angle of elevation be adjusted so as to clear the tree (maintaining the 90 feet per second initial speed)?
	41. At what speed must a stone be thrown horizontally from a point that is 25 feet above ground level if it is to hit a bottle sitting on a 4 foot pole 45 feet away?
	42. At what speed must a stone be thrown at an angle of elevation of so as to achieve a maximum height of 25 feet?
	43. At what speed must a stone be thrown at an angle of elevation of so as to achieve a range of 50 feet?
	44. Find two angles of elevation that will enable a projectile fired from ground level at a speed of 800 feet per second to hit a ground-level target 10,000 feet away.
	45. Show that in order to achieve maximum range, a projectile must be fired at a angle of elevation.
	46. Show that a projectile fired at an angle , with , has the same range as one fired at the same speed at the angle .
	47. Show that doubling a projectile’s initial speed while maintaining its launching angle will quadruple its range.
	48. Show that a projectile attains three-quarters of its maximum height in half the time it takes for it to reach its maximum height.
	49. Prove that if the acceleration vector of a particle is always 0, then the path of the particle is a line.
	50. Assume that you take true aim at a bottle that is sitting on a y foot pole that is x feet down the road from you. Show that if the bottle starts to fall just as you pull the trigger, then the bottle will be hit, regardless of the muzzle speed of ...
	51. Prove that any non-vertical trajectory of a projectile subjected solely to the force of gravity is parabolic.
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	26. Prove that if the curvature of a curve is 0, then the curve is a line.
	27. Show that the parabola achieves its maximum curvature at its vertex.
	28. Find the point on the graph of the function at which the curvature is maximum.
	29. Prove Theorem 12.11.
	30. Show that for a smooth curve : and .
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	Differentiating Functions of
	Several Variables
	§1. Partial Derivatives and Differentiability
	DEFINITION 13.1

	Note that, in both cases, only one of the variables is allowed to vary, while the other is held fixed — as if it were a constant! The partial derivative is therefore obtained by taking the “regular” derivative with respect to the “varying” ...
	Geometrically speaking, for given on the surface of , is the slope of the tangent line to the curve of intersection of the surface with the plane [see Figure 13.1(a)], while is the slope of the tangent line to the curve of intersection with the plane...
	Figure 13.1
	EXAMPLE 13.1
	EXAMPLE 13.2

	Solution:
	(a)
	(b)
	(c)
	(d)
	In Example 13.2 we observed that for :
	Was this a fluke? Nearly not, for one has to look pretty hard to find a function with existing mixed second order partial derivatives that differ. We offer the following useful result, without proof:
	THEOREM 13.1

	Both the notion and the notation of partial derivatives naturally extend to accommodate higher order partial derivatives and to include functions involving more that two variables. Nudging nature along:
	DEFINITION 13.2
	THEOREM 13.2
	EXAMPLE 13.3
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	45. Let . Show that .
	46. Let . Show that .
	47. Show that if , then .
	48. Show that if , then .
	49. Show that the function satisfies the partial differential equation .
	50. Show that the function satisfies the partial differential equation
	51. Show that the function satisfies the partial differential equation .
	52. Show that the function satisfies the partial differential equation .
	53. Show that the function satisfies the second order partial differential equation .
	54. Show that the function satisfies the second order partial differential equation: .
	55. The pressure P of a gas confined in a container of volume V and temperature T is related by an equation of the form , where k is a positive constant. Verify that:
	56. The kinetic energy of a body of mass m moving at a velocity v is given by . Verify that .
	57. When two resisters of resistance and ohms are connected in parallel, their combined resistance R in ohms is given by . Verify that .
	58. Find the slope of the tangent line to the curve of intersection of the curve and the plane if .
	59. Find the slope of the tangent line to the curve of intersection of the sphere and the plane at .
	60. Let . Verify that and .
	61. , ,
	62. , ,
	63. , , ,
	64. , , ,
	65.
	66.
	67.
	68.
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	§2. Directional Derivatives, Gradient Vectors, and Tangent Planes


	The partial derivatives, and , represent the rates of change of the function in directions parallel to the x- and y- axes, respectively [see Definition 13.1 and Figure 13.1 (page 549)].
	Here is a natural extension of that definition:
	DEFINITION 13.3 Directional
	EXAMPLE 13.5

	Solution: Since (see margin):
	In particular:
	and
	One seldom resorts to Definition 13.3 directly to compute the directional derivative of a function. Here is the preferred choice:
	THEOREM 13.5

	Proof: Appendix B, page B-3.
	EXAMPLE 13.6

	Solution: (a) Applying Theorem 13.5 with and , we have:
	(b) Since , the unit vector in the direction of is . Appealing to Theorem 13.5, we then have:
	In particular:
	DEFINITION 13.4

	Returning to Theorem 13.5 we see that:
	The gradient vector is not merely a convenient notational device for representing the directional derivative of a function. A case in point:
	THEOREM 13.6

	Proof: Let be the angle between and an arbitrary unit vector u in the x-y plane. Then:
	It follows that the maximum value of is , and that it occurs when , or at (see margin); which is to say: when u has the same direction as .
	It also follows that the minimum value of is , and that it occurs when ; which is to say, when u is in the direction opposite to .
	EXAMPLE 13.7

	Solution: Turning to the gradient function:
	we conclude that the function values increase most rapidly in the direction of and decrease most rapidly in the direction of
	where:
	EXAMPLE 13.8

	Solution: (a) From:
	we have:
	In particular:
	Since the unit vector in the direction of is :
	(b) By Theorem 13.6, the greatest value is:
	and the smallest value is
	Just as the line in Figure 13.2(a) represents the tangent line to the graph of the function at , so then we can agree that the plane in Figure 13.2(b) represents the tangent plane to the surface at . Agreeing is all well and good, but what we really ...
	Figure 13.2

	The task at hand boils down to that of finding a normal to the plane at the point (reminiscent of finding the slope of the tangent line to a curve on page 71). Our intuition tells us that a normal n to the plane should be perpendicular to the tangent...
	Lets begin by finding a tangent vector v, at the point on the curve obtained by intersecting the surface with the vertical plane (see adjacent figure). Turning to the line L in the xy-plane with parametric represesentation
	we obtain the following parametric representation for
	with position vector: . Evaluating
	at , we obtain a vector tangent to the curve at :
	In a similar fashion one can show that the vector
	is tangent at to the curve obtained by intersecting the surface with the plane .
	Taking the cross product of u and v we arrive at a vector perpendicular to both u and v:
	In the exercises you are invited to show that the above vector is, in fact, perpendicular to the tangent line T at on any curve obtained by intersecting the surface with a vertical plane through . Bringing us to:
	DEFINITION 13.5 Tangent Plane
	EXAMPLE 13.9

	Solution: From we have:
	In particular:
	Normal to the plane (Definition 13.5):
	Consequently (see page 516):
	Consider the adjacent surface , along with the curve obtained by cutting that surface with a horizontal plane of height k. The projection of that curve onto the xy- plane, is said to be the k-level curve of the function f; specifically:
	Similarly, the k-level surface of consists of all points for which ; specifically:
	In CYU 13.12 you are invited to show that for :
	is normal to the k-level curve of f at .
	Moving up a notch we have:
	THEOREM 13.7

	Proof: Consider the k-level surface . We show that is perpendicular to the tangent plane to S at by showing that it is perpendicular to the tangent vector at (see Definition 12.9, page 527) of every curve C in S that passes through :
	Let C be such a curve, and let be a parametrization of C with .
	Differentiating both sides of with respect to t we have:
	In particular, which establishes the fact that is indeed perpendicular to the k-level surface of f at .
	In the following example we show how Theorem 13.7 enables us to find the tangent plane to a 3-dimensional surface that is not the graph of a function . We also illustrate, in (b), how it can be used to determine the tangent plane to a surface that is...
	EXAMPLE 13.10

	Solution: (a) Since the sphere is not the graph of a function of two variables (see margin), we cannot proceed directly as in Example 13.9 to find the desired tangent plane. Taking a different approach, we consider the function of three variables:
	Note that the sphere in question is the 1-level surface of . That being the case (see Theorem 13.7):
	is normal to the tangent plane at
	Grinding away:
	we find that:
	Conclusion:
	is the tangent plane to the sphere at the point .
	(b) We let the function direct us to the function:
	Noting that the 0-level surface of F is , we apply Theorem 13.7:
	We find, as we did in Example 13.9, that is the normal to the tangent plane at .
	.
	Figure 13.3(a), previously appearing on page 82, displays how the tangent line to the graph of a function can be used to approximate the change in function values .
	Specifically: (for “small”_
	Similarly, as is suggested in Figure 13.3(b), the tangent plane to the graph of a differentiable function can be used to approximate changes in function values .
	Specifically:
	Figure 13.3

	In support of :
	Since f is differentiable (see Definition 13.2, page 553):
	(*)
	The tangent plane to the graph of passing through the point P is given by (see Definition 13.5):
	Or:
	At that point, the tangent plane has height , and when and it has height:
	. So:
	[see Figure 13.3(b)]
	Returning to (*) we then have:
	or that as and tend to 0.
	EXAMPLE 13.11

	Solution: Turning to:
	, , and
	we have:
	From , :
	,
	Thus:
	1. If and if u is the unit vector making an angle with the x-axis, then .
	2. If and if u is the unit vector making an angle with the x-axis, then .
	3. at in the direction of .
	4. at in the direction of .
	5. at in the direction of .
	6. at in the direction of .
	7. at in the direction of .
	8. at in the direction of .
	9. at in the direction of .
	10. at in the direction of .
	11. at in the direction of .
	12. at in the direction of .
	13. at in the direction of .
	14. at in the direction from toward .
	15. at in the direction from toward .
	16. at in the direction of .
	17. at in the direction of .
	18. at in the direction of .
	19. at in the direction of .
	20. at in the direction from toward .
	21. at the point in the direction of the vector .
	22. at the point in the direction of the vector .
	23. at the point in the direction of the vector .
	24. at the point in the direction of the vector .
	25. at the point in the direction of the vector .
	26. at
	27. at
	28. at
	29. at
	30. at
	31. at
	32. at
	33. at
	34. at
	35. at
	36. at
	37. at
	38. at
	39. at
	40. at
	41. at
	42. at
	43. at
	44. at
	45. at
	46. at
	47. at
	48. at
	49. at
	50. at
	51. at
	52. at
	53. at
	54. Use a differential to approximate, to two decimal places, the value of .
	55. Use a differential to approximate, to two decimal places, the value of .
	56. Use differentials to estimate the change in from to .
	57. Use differentials to approximate, to two decimal places, the change in from to .
	58. Use differentials to approximate, to two decimal places, the increase in area of a triangle if its base in increased from 2 to 2.05 centimeters and its altitude is increased from 5 to 5.1 centimeters.
	59. Use differentials to approximate, to two decimal places, the increase in the area of a triangle if its base in increased from 2 to 2.05 cm, and its altitude is increased from 5 to 5.1 cm.
	60. Use differentials to approximate, to two decimal places, the increase in the volume of a right circular cylinder if the height is increased from 2 to 2.1 cm, and the radius from0,5 to 0.51 cm.
	61. Use differentials to approximate, to two decimal places, the change in from to .
	62. Use differentials to approximate, to two decimal places, the change in from to .
	63. The length, width, and height of a rectangular box are measured to be 3 cm, 4 cm, and 5 cm, respectively, each with a maximum error of 0.05 cm. Use differentials to approximate the maximum error in the calculated volume.
	64. Use differentials to approximate the percentage error in if x, y, and z have errors of at most 1%, 2%2, and 3%, respectively.
	65. Prove that if , then all directional derivatives of f at are 0.
	66. Show that is the tangent plane to at .
	67. Show that is the tangent plane to at .
	68. The normal line at a point on a surface S is the line that is perpendicular to the tangent plane at that point. Two surfaces are said to be orthogonal at a point of intersection if their normal lines are perpendicular at that point. Prove that th...
	69. (Reminiscent of familiar derivative formulas) For and differentiable functions, and any number r, prove that:
	70. Let be a point on a surface S with equation . Show that is perpendicular to the tangent vector to any smooth curve lying on S that passes through ; that is, for which .
	§3. Extreme Values

	Definition 4.2, page 125, readily generalizes to accommodate functions of two (or more) variables:
	DEFINITION 13.6
	Figure 13.4


	To summarize:
	THEOREM 13.8

	Just as the single-variable function is said to have a critical point at if (or if does not exist), so then we say that is a critical point of if (or if a partial derivative does not exist). And just as a local extremum need not occur at a critical p...
	Figure 13.5
	THEOREM 13.9
	EXAMPLE 13.12
	EXAMPLE 13.13
	THEOREM 13.10
	EXAMPLE 13.14
	THEOREM 13.11
	EXAMPLE 13.15
	EXAMPLE 13.16
	1.
	2.
	3.
	4.
	5.
	6.
	7.
	8.
	9.
	10.
	11.
	12.
	13.
	14.
	15.
	16.
	17. , ,
	18. , ,
	19. ; S:
	20. ; S:
	21. ; S:
	22. ; S:
	23. ; S:
	24. ; S
	25. ; S:
	26. ; S:
	27. ; S:
	28. ; S:
	29. ; S:
	30. ; S:
	31. ; C:
	32. ; C:
	33. ; C:
	34. ; C:
	35. ; C:
	36. ; C:
	37. ; C:
	38. ; C:
	39. ; C:
	40. ; C:
	41. ; C:
	42. ; C:
	43. ; S: (see exercise 32).
	44. ; S: (see Exercise 34).
	45. ; S: (see Exercise 35).
	46. ; S: (see Exercise 37).
	47. ;
	48. ;
	49. ;
	50. ;
	51. ;
	52. Find three positive numbers x, y, and z such that and is maximum.
	53. Find the points on the surface that are closest to the origin.
	54. Find the point in the plane that is nearest the origin.
	55. Find dimensions of the most economical closed rectangular crate 96 cubic feet in volume if the base and lid costs 30 cents per square foot and the sides cost 10 cents per square foot.
	56. Find the dimensions of a rectangular crate with maximum volume if the sum of the length of its 12 edges is 120 feet.
	57. Find the shortest distance from to .
	58. Find the dimensions of a closed box of largest volume with surface area.
	59. Find the area of the largest rectangle that can be inscribed in the ellipse .
	60. A triangular area is to enclose 100 square feet. What are the dimensions of the triangle requiring the least amount of fencing?
	61. Assume that the combined cost of producing x units of one product and y units of another is given by . How many units of each product should be produced to minimize cost, given that a total of 200 units are to be manufactured?
	62. The temperature at a point on the surface of the sphere is given by . Find the point of maximum temperature.
	63. The sum of the three dimensions of a rectangular box is not to exceed 45 inches, with the length of one of its sides not to exceed half of the length of one of its other sides. Determine the dimensions of such a box of maximum volume.
	64. Find three positive numbers x, y, and z such that and is maximum.
	65. An open rectangular box has a fixed surface area S. Find the dimensions for maximum volume.
	66. Find dimensions of the most economical open rectangular crate 96 cubic feet in volume if the base costs 30 cents per square foot and the sides cost 10 cents per square foot.
	67. An open symmetrical irrigation channel is to have a perimeter of length l (see adjacent figure). Find the values of x and to enable maximum flow.
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	EXAMPLE 14.7
	1. , and C is the line segment from to .
	2. and C is the line segment from to .
	3. , and C is the upper half of the unit circle , traversed in a counterclockwise direction.
	4. , and C is the lower half of the unit circle , traversed in a counterclockwise direction.
	5. , and C is the right half of the unit circle , traversed in a counterclockwise direction.
	6. , and C is the right half of the ellipse , traversed in a counterclockwise direction.
	7. , and C is the curve from to .
	8. , and C is the curve from to .
	9. , and C consists of the line segment from to followed by the line segment from to .
	10. , and C is given parametrically by for .
	11. , and C consists of the line segment from to followed by the graph of for , followed by the line segment from to .
	12. , and C is the line segment from to .
	13. , and C is the line segment from to .
	14. , and C is consists of the line segment from to followed by the line segment from to .
	15. , and C is the helix given by , , for .
	16. , and C is given parametrically by , , for .
	17. Find the mass of a wire in the shape of a semicircle , for , with density function .
	18. Find the mass of a wire in the shape of the curve , , for , with density function .
	19. Find the mass of a wire in the shape of the helix , , for , with density the square of the distance from the origin.
	20. , for .
	21. , for .
	22. , for .
	23. , for .
	24. , for .
	25. , for .
	26. , for .
	27. , for .
	28. , for .
	29. , for .
	30. , for .
	31. , for .
	32. Find the work done by the force field in moving a particle along the path , .
	33. Find the work done by the force field in moving a particle along the path , .
	34. Find the work done by the force field in moving a particle along the parabola from to .
	35. Find the work done by the force field in moving a particle along the path , .
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	39. Find the work done by the force field in moving a particle along the path , .
	40. Find the work done by the force field in moving a particle along the path , .
	§2. Conservative Fields and Path-Independence


	Here is one of the main characters of this section.
	DEFINITION 14.3

	As it turn out, to challenge a vector field for path-independence one need only consider closed paths (see margin):
	THEOREM 14.4

	Proof: Assume that F is path-independent. Consider the closed path C in Figure 14.3(a) (with indicated orientation). Choose two points and on C. Break C into two pieces , oriented so that they both start at and end at , as is indicated in Figure 14.3(b)
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	3. , .
	4. , .
	5. , .
	6. , .
	7. , .
	8. , .
	9. , .
	10. , .
	11. , .
	12. , .
	13. and C with parametrization for .
	14. and C with parametrization for .
	15. where C is any smooth curve from the origin to the origin to the point .
	16. and for .
	17. , for .
	18. , for .
	19. , for .
	20. , for .
	21. , for .
	22. , for .
	23. , for .
	24. , for .
	25. , for .
	26.
	27.
	28.
	29.
	30.
	31.
	32.
	33. Verify that is a conservative force field. Determine the work done if a particle subjected to F moves around the circle for .
	34. Verify that is a conservative force field. Determine the work done if a particle subjected to F moves over the semicircle for .
	35. Verify that is a conservative force field. Determine the work done if a particle subjected to F moves over the helix for .
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	1. , .
	2. , D is the rectangular region with vertices , and .
	3. , D is the rectangular region with vertices , and .
	4. ,
	5. , D is the triangular region with vertices , and .
	6. , D is the region bounded by the line segments from to and from to , along with the parabola from to .
	7. , D is the region bounded by the line segments to and from to , along with the quarter-circle in the first quadrant.
	8. and C is the triangle with vertices , and .
	9. and C is the triangle with vertices , and .
	10. , and C is the circle of radius 3 centered at the origin.
	11. and C is the circle of radius 2 centered at the origin.
	12. and C is the circle .
	13. and C is the ellipse .
	14. and C is the rectangle with vertices at , , , and .
	15. and C consists of the line segments joining to , joining to , and the parabola from to .
	16. and C is the circle of radius 3 centered at the origin.
	17. and C is the boundary of the unit square in the first quadrant with a vertex at the origin.
	18. and C is the region in the first quadrant enclosed by the x- axis, the line and the curve .
	19. and C is the triangle with vertices , , and .
	20. and C is the circle .
	21. and C is bounded by the line segment from to and the semicircle .
	22. and C is the circle of radius 3 centered at the origin.
	23. .
	24.
	25. D is the region between the curves and .
	26. D is the curve , .
	27. D is the region lying between the x-axis and one arch of the cycloid with parametric equations and .
	28. and C is the region in the first quadrant enclosed by the x-axis, the line and the curve .
	29. and .
	30. and C is the triangular region with vertices , , and .
	31. and C is the circle .
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	§5. Surface Integrals

	DEFINITION 14.8
	EXAMPLE 14.21
	DEFINITION 14.9
	EXAMPLE 14.22
	Surface Integral of Flux

	DEFINITION 14.10
	DEFINITION 14.11
	Figure 14.4

	THEOREM 14.17
	EXAMPLE 14.23
	Parametrized Surfaces

	DEFINITION 14.12
	EXAMPLE 14.24
	DEFINITION 14.13
	EXAMPLE 14.25
	1. That part of the surface that lies inside the cylinder .
	2. That part of the plane that lies within the cylinder .
	3. That part of the surface that lies above .
	4. That part of the parabolic cylinder that lies above the triangle with vertices , , .
	5. That part of the hyperbolic paraboloid that lies between the cylinders and .
	6. That part of the hyperbolic paraboloid that lies inside the cylinder .
	7. That part of the hemisphere that lies above the disk .
	8. That portion of the sphere that lies above the plane .
	9. That part of the surface that lies above .
	10. That part of the surface that lies above
	11. where S is the part of the surface that lies above the triangle with vertices .
	12. where S is the part of the paraboloid between the planes and .
	13. where S is the surface above .
	14. where S is the parabolic cylinder above .
	15. where S is the part of the circular cylinder , in the first octant between the planes and .
	16. where S is that part of the plane that lies in the first octant.
	17. over the surface of the cone which lies between and .
	18. where S is the surface of the parabolic cylinder cut by the planes , and .
	19. S is the portion of the parabolic cylinder between the planes , and , and .
	20. S is the portion of the cone between the planes and , and .
	21. S is the triangle , and .
	22. S is the surface that lies above , and .
	23. , with , .
	24. , with , .
	25. , with , .
	26. , with ,
	27. , and S is the rectangular plate with corners at , .
	28. , and S is the paraboloid , for .
	29. , and S is the surface that lies above the xy-plane.
	30. , and S is the parabolic cylinder that lies above
	§6. Stoke’s Theorem

	THEOREM 14.18
	EXAMPLE 14.26
	EXAMPLE 14.27
	EXAMPLE 14.28
	Figure 14.5

	EXAMPLE 14.29
	1. , S is the graph of that lies above the region: , and C is the boundary of S, oriented in the counterclockwise direction when viewed from above.
	2. and C is the triangle with vertices and , oriented in the counterclockwise direction when viewed from above.
	3. and C is the circle , , oriented in the counterclockwise direction when viewed from above.
	4. and C is the curve of intersection of the cone and the plane , oriented in the counterclockwise direction when viewed from above.
	5. and C is the intersection of the cylinder and the plane oriented in the counterclockwise direction when viewed from above.
	6. and C is the intersection of the sphere and the plane oriented in the counterclockwise direction when viewed from above.
	7. and C is the circle defined by the parametric equations .
	8. and C is the boundary of the part of the plane in the first octant, oriented in the counterclockwise direction when viewed from above.
	9. and C is the boundary of the portion of the plane in the first octant, oriented in the counterclockwise direction when viewed from above.
	10. and S is that part of the sphere that lies above the xy-plane, and within the cylinder .
	11. , and S is the part of that lies above the plane . Assume that S is oriented upwards.
	12. , and S is the surface oriented upwards.
	13. , and S is the square .
	14. and S is the part of the paraboloid that lies inside the cylinder , oriented upward.
	15. and S is the part of the hemisphere above the plane , oriented upward.
	16. and S is the part of the cone between the planes and , oriented upward.
	17. and S is the part of the plane inside the cylinder , oriented upward.
	18. and S is that part of the paraboloid for which , oriented upward.
	19. and S is that part of the paraboloid for which , oriented upward.
	20. and S is that graph of the function where , , oriented upward.
	21. and S is the upper half of the sphere , oriented upward.
	22. and S is the paraboloid , , oriented upward.
	23. and S is the upper half of the sphere , oriented upward.
	24. and S is the triangle , , , oriented upward.
	25. and S is the triangle , , traversed counterclockwise.
	26. and S is the part of the plane that lies in the first octant, oriented upward.
	27. and S is the part of the paraboloid that lies above the plane , oriented upward.
	28. A particle moves along the line segments from the origin to the points , , , and back to the origin under the influence of the force field . Determine the work done.
	29. Let C be a simple closed smooth curve that lies in the plane . Show that depends only on the area of the region enclosed by C and not on the shape of C or its location on the plane.
	§7. The Divergence Theorem

	EXAMPLE 14.30
	THEOREM 14.19
	EXAMPLE 14.31
	EXAMPLE 14.32
	1. and S is the sphere .
	2. and S is the sphere .
	3. and S is the surface of the solid hemisphere:
	4. and S is the surface of the solid:
	5. and S the surface of the solid:
	6. and S is the surface of the solid cylinder:
	7. and S is the surface of the solid cylinder:
	8. and S is the surface of the solid unit cube:
	9. and S is the surface of the solid:
	10. and S is the surface of the solid:
	11. and S is the surface of the solid bounded by the parabolic cylinder and the planes , and (with outward normal).
	12. and S is the surface, with outward normal, of the wedge cut from the first octant by the plane and the elliptical cylinder .
	13. Verify the divergence theorem for the vector field and S is the surface of the solid unit cube .
	14. Verify the divergence theorem for the vector field and S is the surface of the solid .
	15. Verify the divergence theorem for the vector field and S is the sphere .
	16. Show that for and for S the surface of any solid E satisfying the conditions of the divergence theorem:
	17. Show that the outward flux of a constant vector field across any closed surface satisfying the conditions of the divergence theorem is zero.
	18. Verify that if the conditions of the divergence theorem are satisfied, then:


	Chapter 13: Differentiating Functions of Several Variables
	CYU 13.11 From we have:
	Normal to the plane: .
	Consequently:
	CYU 13.12 Let the curve , with position vector , be the intersection of the surface with the plane .
	Applying the Chain Rule (Theorem 13.4(a), page 555), to we have .
	Recalling that and that , we can express the above equation in vector form:
	It follows that is orthogonal to the tangent vector on the k-level curve at each point on that curve.
	CYU 13.13 Turning to , we have:
	Using the normal and the point we arrive at the equation of the tangent plane:
	CYU 13.14 Since :
	In particular: ,
	Consequently:
	CYU 13.15 For , and .
	Since , is a critical point of f.
	Since there are both positive and negative function values in any open region containing :
	for all , and for any
	neither a maximum nor minimum occurs at .


