Spatial and Temporal Patterns of Tree Mortality in Two Mixed Hardwood Forests of the New Jersey Highlands

Eric Bartkowski, Lauren Lynch, Michael Stellitano, Zach Wisher, Eric Wiener
School of Theoretical and Applied Science - Ramapo College of New Jersey - 505 Ramapo Valley Rd, Mahwah, NJ 07430, USA

Introduction

A variety of mortality agents (e.g., invasive insects, diseases, severe weather) have led to increased rates of mortality for numerous tree species in northeastern U. S. forests (Lovett et al 2006)
Depending on the tree species composition of any given forest, the dynamics of tree mortality could vary dramatically over both space and time. Such of tree mortality could vary dramatically over both space and time. Suct spatial and temporal variation in tree mortality can have significant
implications for small-scale disturbance ecology within these forests. The purpose of this study was to examine the spatial and temporal dynamics The purpose of this study was to examine the spatial and temporal dynics
of tree mortality over the past 16 years at each of two forest sites in the New Jersey Highlands.

Objectives

The overall approach of this study was to create spatial maps of canopy and subcanopy trees that died within each of the four most recent 4 -year intervals within two different forest tracts. Specific objectives were to

- track spatial patterns of overall tree mortality over time, and examine how
different mortality agents influence the spatial and temporal dynamics; different mortality agents influence the spatial and temporal dynamics;
compare the relative densities of dead trees versus live trees in order to predict any possible shifts in tree species composition over time.

Methods

Study Sites (see maps below):
Ramapo Valley County Reservation (RVCR), Mahwah, NJ -belt transect (along hiking trails): 5.2 km x 80 m $=41.6$ hectares

- Norvin Green State Forest (NGSF), Bloomingdale, NJ -belt transect (along hiking trails): $8.7 \mathrm{~km} x 80 \mathrm{~m}$ $=69.6$ hectares
-Tree Surveys:
-all dead trees $\geq 10 \mathrm{~cm}$ trunk diameter within 20 equal-sized, adjacent plots
at each site
- Species, trunk diameter, approximate time since death, and GPS coordinates were recorded.
-all live trees $\geq 10 \mathrm{~cm}$ trunk diameter within thirty-one 0.1 hectare circular plots (at RVCR only) -Species and trunk diameter were recorded.
Analyses:
- Nearest Neighbor Analyses were used to determine the spatial dispersion patterns at each site overall and for each time period (2003-2006, 2007-2010 2011-2014, 2015-2018)
Regression analyses were used to compare spatial variation in tree mortality across the four time periods.
Wilcoxon Signed Ranks Tests were used to test for shifts in the numbers of trees that died at each site across the four time periods.
- Chi-squared Analysis was used to compare the number of dead trees of each species to an expected value based on the relative density of living species to anspecifics.
con

Results \& Discussion

- 784 dead trees (18.9 / hectare) of 20 species were recorded at RVCR, and 1,181 dead trees ($17.0 /$ hectare) of 24 species were recorded at NGSF. 1,289 live trees of 30 species were recorded in the survey of 31 smaller plots at RVCR (Table 1). - Tree mortality was patchily distributed. Dispersion patterns at both sites were Tree mortality was patchily distributed. Dispersion patterns at both stes we statistically significantly aggregated overall and within each of the four time
periods (Figures 1 and 2 ; Nearest Neighbor Analysis, p <0.05). The density of periods (Figures 1 and 2; Nearest Neighbor Analysis, $\mathrm{p}<0.05$). The density of
tree mortality within each site did not tend to be spatially correlated between tree mortality within each site did not tend to be spatially correlated between
time periods ($\mathrm{p}>0.05$ for all regression models except 2011-2014 versus 20152018 at NGSF), however, suggesting that the specific locations where high versus low levels of disturbance from tree mortality occurred shifted over time (Figures 1 and 2).
- Rates of tree mortality tended to shift among the different time periods. At RVCR, the number of dead trees were consistently greater in 2003-2006 than 2007-2010, and consistently greater in 2015-2018 than 2011-2014 (Wilcoxon Signed ranks test, $\mathrm{p}<0.05$). There was no consistent trend between the 20072010 and 2011-2014 periods ($p=0.628$). At NGSF, the number of dead trees were consistently greater in 2003-2006 than 2007-2010, and consistently fewer in 2007-2010 than 2011-2014 (Wilcoxon Signed ranks test, p < 0.05). There was no consistent trend between the 2011-2014 and 2015-2018 periods ($p=0.066$). Quercus spp. (oaks) were by far the most common species of trees that died, and they died at a statistically significantly higher rate than expected based on the species composition of living trees. Causes of oak mortality included outbreaks of both native (Archips semiferanus (oak leaf roller)) and non-native (Lymantria dispar (gypsy moth)) insect species, and high levels of Q. rubra toppling during severe storms. The number of dead F. americana (white ash) trees were also higher than expected, apparently due to fungal pathogens. (Evidence of Agrilus planipennis (Emerald ash borer) has not been observed at the sites.)
-There were fewer dead trees than expected for B. lenta (black birch), A. saccharum (sugar maple), and F. grandifolia (American beech). This trend is likely to change in the near future for F. grandifolia, given the high prevalence of beech bark disease at the sites. It is interesting to note that the other two species represent an early successional species (B. lenta) and a late successiona species (A. saccharum).
- Overall, tree mortality tended to be patchy over both space and time. Canopy opening dynamics, therefore, cannot be considered as a simple phenomenon where certain places within the forest experience consistently high or low levels of disturbance. The spatially and temporally dynamic nature of small-scale disturbances caused by the mosaic of shifting patches of mortality of canopy and subcanopy trees likely creales a highy complex context for ecological phenomena such as gap filling via hotspots of tree regeneration, as well as greatest pulses of disturbance occur. It is also important to recognize that tree mortality is not distributed evenly among the region's tree flora. Quercus spp. and F. americana have been dying at much higher rates than other species, and their populations may be in severe decline.

Acknowledgements
We thank Tiffany Khorozian, Michael Morales, and Sean Toms for assising he dead tree surveys, and Scott Campbell, Conor Garvey. Michael Lynch, and Eric Williams for assisting with the living tree surveys. We are
gratefulto Dominador Elefante for guidance for our GIS maps. We also hank Ramapo College of New Jersey's
 of Environmental Pro
to the sudy forests.
ett, G. M. Canham, C. D., Weathers, K. C., Arthur, M. A. \& \& Fithugh, R. D. (2006). Forest ceosystem
responses to exotic pests and pathogens in eastern North America. Bioscience 56(5): 395 -405.

