Tree Species Most Likely to Replace White Ash Canopy Trees in the Ramapo Mountains

Kyle Sheldon, Aleah Germinario \& Eric Wiener, School of Theoretical and Applied Science - Ramapo College of New Jersey, Mahwah, NJ

Introduction

- Numerous tree species in the northeastern United States have been in decline in recent decades due to a variety of invasive insect species and diseases (Lovett et al, 2010; Potter et al, 2019).
- A prime example is that invasive emerald ash borers (Agrilus planipennis) are causing white ash tree (Fraxinus americana) populations to rapidly decline throughout much of their range (Sun et al, 2024).
- As large white ash trees die, other trees may benefit from the additional sunlight that penetrates through the large canopy openings left behind. However, few studies have addressed which tree species might replace dead canopy ash trees.
- The purpose of this study was to predict which tree species will most likely replace white ash canopy trees within a 30-hectare forest study plot in the Ramapo Mountains, New Jersey Highlands.

Methods

- Study area

- Ramapo Valley County Reservation, New Jersey Highlands - 80-meter belt transect along both sides of a narrow hiking trail (total area $=30$ hectares)
- Field methods:
- All patches of two or more neighboring canopy ash trees were included in the study ($\mathrm{n}=88$ trees across 26 patches). - GPS coordinates were recorded for each canopy ash tree \geq 5 m from the trail.
- Survey of possible replacement trees:

Within each patch of ash trees, the species and trunk diameter were recorded for each understory, midstory, and subcanopy tree $\geq 2.5 \mathrm{~m}$ height that was within 5 m of a vertical projection of any ash tree canopy within the patch. For fallen canopy ash trees, data were recorded for trees within 7.5 m of the original base of the ash tree.

- Predicting the species composition of replacement trees:
- For each patch of ash trees, the relative basal area of possible replacement trees was used to predict the relative densities of the tree species that will replace the total number of canopy ash trees in the patch. Relative densities were modified when needed so that the predicted number of replacement trees did not exceed the number of possible replacement trees present for any given specie. Relative densities of possible replacement trees for all patches in the study area combined were weighted by the number of ash trees in each patch
- Given that all white ash trees will likely die in the coming years, they were excluded from this replacement model. American beech trees were also excluded because all individuals at the site are visibly infected with deadly beech leaf disease.

- 808 possible replacement trees were encountered.
- Both the descriptive statistics from the survey (Table 1) and the results of the replacement model (Figure 3) suggest that sugar maple is likely to be by far the most common specie to replace the canopy ash trees, followed by black birch, red maple, and 13 other tree species
- Although American beech is the fourth most abundant tree specie in the survey, the presence of deadly beech leaf disease signifies that this late successional specie will not be among the tree assemblage that will replace dead canopy ash trees
Unfortunately, a relatively small proportion of the likely replacement trees are of nut-producing species on which many animal species rely. Therefore, it appears that the resultant increase in canopy openness from ash die-off is not likely to reverse the decline of nut-producing tree populations at the site (Klenk et al, 2023).
- The species composition of the replacement trees in this study are similar to the results of a separate study about the trees most likely to replace dying canopy beech trees in the same study area. In contrast, however, while 60% of the canopy beech trees will not likely be replaced by any trees in the near-to-medium future (Stone et al, 2023), we observed potential replacement trees beneath all of the canopy ash trees in our study. Hence, the demise of ash trees at this site will likely have less dramatic impact on the overall at this site will likely have le
- Overall, results of this study suggest that the increasing prevalence of maples and birches at the site (Bajracharya et al, 2024) will be accelerated by the rapid loss of ash trees. This raises concern because populations of at least two of these species are expected to decline due to climate change, indicating that tree species composition will likely continue to shift in the coming decades.

Acknowledgments

We would like to thank Bergen County Parks Department for access to the study site, and Ramapo College of New Jersey for institutional support.

Work Cited

Bairacharya, N. . Sgaramella, $N .$, , \& Wiener, E. (2024). Tree Growth, Mortality, and Recruitment in a Mixed
Hardmarya, N., Sgaramella, N., \& Wiener, E. (2024). Tree Growth, Mortality, and Recruitment in a Mixed
Hadion Forest in the New Jersey Highliands. Annual Conference of the Mid-Alantic Chapter of the Ecolog Hardowood Forest in the New Jersey
Society of America, Albany, New York.
 Temperate Hardwood Forests in Northerm New Jersey. Annual Conference of the Mid-Atiantic Chaplet
Ecological Society of America, Newark, Delaware. Lovett, G. M., Arthur, M. A. . Weathers, K. C., \& Gritifin, J. M. (2010). Long-term changes in forest carbon and
nitrogen cycling caused by an introduced pestpathogen complex. Ecosystems, 13(8), 1188 -1200. Poter, K. M., Escaniferla, M. E., Jetton, R. M., \& Man, G. (2019). Important insect and disease threats to United Potter, K. M., Escantera, M. E.,. Jetton, R. M., \& Man, G. (2019). Important insect and disease
States tree species and geographic patterns of their potential impacts. Forests, $10(4), 304$. Stone, R., Trippeda, C., \& Wiener, E. (2023). Predictions about changes in forest structure and tree species composition in two New Jersey forestst following the impending die-off of American beech trees (Fagus gial
Annual Conterence of the Mid-Alantic Chapter of the Ecological Society of America, Newark, Delaware. Sun, J., Koski, T. M., Wickham, J. D., Baranchikov, Y. N., \& Bushley. K. E. (2024). Emerald Ash Borer Mar
and Research: Decades of Damage and Still Expanding. Annual Review of Entomology, $69,239-258$.

