Introduction

Down syndrome is the leading genetic cause of intellectual disability, affecting 1 in 700 live births in the United States. The disorder results in a wide range of cognitive challenges and delays in developmental milestones.

Brain and Neurodevelopmental Alterations

- Brain development is affected leading to processing and retention deficits.
- Neuronal growth, connectivity, and function are impaired contributing to intellectual disabilities.

Current Therapy to Enhance Neurodevelopment

- Speech-language and occupational therapy help improve early cognitive and language skills.
- Therapies include picture exchange, sign language, communication boards, and cognitive games to enhance learning, memory, and communication.

Inhibiting the DYRK1A gene via EGCG to Restore Cognitive Function

EGCG is an optimal inhibitor because it has a high specificity for the gene involved in Down syndrome and their normally developing peers.

Towards a Cure: XIST and ZFN Technology

- A mechanism for chromosome inactivation already exists in nature to balance gene dosage of the X-chromosome between females (XX) and males (XY) → X-inactivation.

Conclusions and Future Directions

- Current therapies foster neurodevelopmental progress but do not target the genetic cause.
- Targeted inhibition of the DYRK1A gene has emerged as a promising strategy to enhance cognition.
- CRISPR-Cas9 gene editing could remove the DSCR, eliminating the genes involved in cognitive deficits.
- The revolutionary goal is to harness XIST technology to silence the extra chromosome and prevent the overexpression of its genes.

Acknowledgments

I want to express my sincere gratitude to my advisor, Dr. Joost Monen, who supported and guided me throughout my entire project. I would also like to thank Dr. Yan Xu for providing feedback on my paper.