

Introduction

- Animal regenerative medicine is an active field of research for developing new cells and tissues for animals.
- Planarians serve as an excellent research model for studying regenerative effects (6).
- They share major developmental signaling pathways with vertebrates (2). • Planarians contain almost every neurotransmitter found in mammals (6).
- High dopamine levels in planarians suggest a potential role in regeneration and make them suitable for caffeine studies (2).
- Energy drinks often contain caffeine, energy enhancers, and sugar (4).
- Caffeine enhances dopamine signaling by competitively binding to adenosine receptors (2).
- Blocking adenosine receptors prevents adenosine from slowing nerve activity, leading to increased dopamine release (8).

Hypothesis & Aims

Hypothesis: The growth of planarians is influenced by caffeine, with an expected acceleration in regeneration. **Null Hypothesis**: Caffeine does not affect planarian regeneration.

Specific Aims

How does caffeine intricately influence the dynamics of planarian regeneration?

- How do other ingredients in different caffeinated drinks affect the regenerative capabilities of planarians, and do they exhibit synergistic or antagonistic effects with caffeine?
- What is the impact of varying caffeine concentrations on the rate and quality of planarian regeneration?

KAMAPO The Impact of Different Caffeinated Drinks on Planaria Regeneration **COLLEGE** Emma Naprstek, Katelyn Molina, and Emily Brunner

School of Theoretical and Applied Science, Ramapo College of New Jersey, Mahwah, NJ, 07430

Figure 1: Average Length of Planarian Heads Per Day in Different Groups of Caffeinated Concentrations. Each day, planarian lengths were measured in three groups (Water, Coffee, Celsius) and various concentration groups. A one-way ANOVA rejected the null hypothesis (p = 1.07x10^-78). Tukey-Kramer tests revealed significance among some groups, notably a significant difference between water and coffee at 50µM concentration.

Progression Photos and Extras

Day 1

Key Points

Group Comparison

- Water vs. Celsius (25µM):
- Variations in regeneration effects on heads & tails.
- Water vs. Coffee (50µM):

Specific Concentrations Comparison:

- for more than 3 days.

Reproduction Behavior

- for a planarian (3).

Discussion

• Celcius led to death in majority of concentration groups. • Low levels of coffee increased planarian regeneration but higher concentrations had opposite effects.

• Significant differences observed in both heads & tails of planarians. • Coffee at 50µM demonstrated the greatest impact on regeneration length out of all the other concentration groups.

• Planarians at 500µM coffee survived for only 3 days. • Planarians exposed to 75μ M, 100μ M, and 500μ M of Celsius didn't survive

• Reproduction generally occurs approximately once a month

• Research has found that environmental factors, such as temperature, gravity, and light, an affect regeneration and division (1). • Planarians are very sensitive to their environments; the slightest disturbance can alter the timing of their division (1).

Results

Figure 2: Total Growth of Planarian Heads Per Day in Different **Caffeinated Groups.** Planarian lengths were measured daily, with initial lengths subtracted. Dead planarians were assigned 0 cm, causing negative growth. One-way ANOVA rejected the null hypothesis ($p = 2.01 \times 10^{-23}$). Tukey-Kramer tests revealed significant differences among all groups, highlighting a notable distinction between water and caffeinated groups.

References

Acknowledgements: Ramapo College of New Jersey TAS Lab Staff, Dr. Joost Monen of Ramapo College of New Jersey, Planaria Participants

Day of Experiment

Head detached separately

Disintegrated from Celsius

Future Research Recommendations

• Investigate the impact of individual ingredients in caffeinated beverages on planarian research.

• Explore lower dosages of coffee and plain caffeine (without other ingredients) to understand their potential benefits on planarian regeneration speeds.

• Examine the factors that trigger planarian reproduction, necessitating further research into the underlying causes. • Keep a more sterile environment to prevent mold growth.

1. Ge, Y., Han, X., Zhao, L., Cui, S., & Yang, G. (2022). An insight into planarian regeneration. Cell Proliferation, 55(9). https://doi.org/10.1111/cpr.13276

2. Lazorik, O. (2019). The effect of caffeine on the regeneration of Brown Planaria (Dugesia tigrina). Journal of Emerging Investigators, 2. https://doi.org/10.59720/18-061 3. Malinowski, P. T., Kaj, K. J., Ronan, E., Groisman, A., Diamond, P. H., & Collins, E. (2017). Mechanics dictate where and how freshwater planarians fission. *Proceedings of* the National Academy of Sciences, 114(41), 10888-10893. https://doi.org/10.1073/pnas.1700762114

4. Mokkarala, P., Shekarabi, A., Wiah, S., & Rawls, S. M. (2022). Energy drink produces aversive effects in planarians. Physiology & behavior, 255, 113933.

5. O Bertasi, R. A., Humeda, Y., O Bertasi, T. G., Zins, Z., Kimsey, J., & Pujalte, G. (2021). Caffeine Intake and Mental Health in College Students. Cureus, 13(4). 6. Pagán, O. R., Coudron, T., & Kaneria, T. (2009). The Flatworm Planaria as a

Toxicology and Behavioral Pharmacology Animal Model in Undergraduate Research Experiences. Journal of Undergraduate Neuroscience Education, 7(2), A48.

7. Sigrist, B. (n.d.). Caffeine stopping you sleep?. Welcome to Production Physiotherapy. https://www.productionphysiotherapy.com/blogs/caffeine-stopping-you-sleep

8. Volkow, N. D., Wang, J., Logan, J., Alexoff, D., Fowler, J. S., Thanos, P. K., Wong, C., Casado, V., Ferre, S., & Tomasi, D. (2015). Caffeine increases striatal dopamine D2/D3 receptor availability in the human brain. *Translational Psychiatry*, 5(4), e549. https://doi.org/10.1038/tp.2015.46