Background
Focused attention is a human's ability to respond to certain stimuli in order to perform a certain task. The kind of attention that will be focused upon is when a human cancels or ignores stimuli in order to put all or most of their attention toward a task at hand. This involves multiple types of attention which includes sustained and selective attention. Selective attention is like described above, to choose which stimuli you want to focus on the most. However, Sustained Focus is just as important, as it is an ability to maintain attention once it has started. Between these two types of attention, concentration within college students would peak once mastered. However, a challenge most college students are faced with is unwanted sounds and noise surrounding them as they are trying to focus.

There is a process called Stochastic Resonance that is used to amplify a signal through the use of playing noise. As all of our brains transmit signals, it is just a matter of finding the right noise to amplify that signal that maximizes focused attention. The right amount of this noise can facilitate a signal transmission in the brain in order to increase the signal-to-noise ratio, and thus improving one's performance on various tasks. There is a link between this beneficial noise and attention explained by the Moderate Brain Arousal Model (MBA) that demonstrates how brains with low levels of internal neural noise, like those with ADHD, require more external noise to work at an optimum level.

Conclusion
Although in this sample Brown Noise led to the highest percentage of students who scored above average on their test, there is not enough evidence yet to prove the listening to colored noises can affect grades. On the other hand, there is enough evidence the listening to colored noise does increase a student's level of concentration when attempting to cancel out distracting environmental noises. In this sample, Pink Noise had the greatest positive affect on a student's level of concentration. A student's level of concentration also depends on the volume of the colored noise they listen to. Although White Noise listened to at 85 dbs led to the high FFL, Brown Noise may be the better choice as students achieved approximately the same FFL listening at a safer volume level.

Citations and Acknowledgements
I would like to thank the SSHS and TAS staff, Ramapo College Honors Program, Dr. Choudhury and Dr. Yuster for their support in this research.