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Fig. 2. Accuracy for non-hand-oriented activities     Fig. 3. Accuracy for  hand-oriented activities

Fig. 4.a. Confusion matrix of CNN-LSTM         Fig. 4.b. Confusion matrix of Bi-LSTM Table 1. Performance metrics of Bi-LSTM and CNN-LSTM 

8@.*'(5*? Due to the application of Human Activity Recognition
(HAR) in different fields such as health care, biometrics, and human-
machine interaction, a plethora of research works proposing different
neural networks have been conducted in the past. In this research, four
deep learning models - Bidirectional Long Short Term Memory
(LSTM), Convolutional Neural Network (CNN), ConvLSTM, and
CNN-LSTM - were trained and tested on the WISDM Smartphone and
Smartwatch Activity and Biometrics Dataset in a subject-independent
pattern for predicting different classes of human activities. It was found
that the CNN-LSTM model outperformed the rest of the neural network
models in classifying the classes of hand-oriented and non-hand-
oriented activities. It was also found that all the aforementioned models
performed better in data from the accelerometer than the same from the
gyroscope. Moreover, the difference in the efficiencies of the models in
the two sensors was much more significant in watches than in the
phones. Furthermore, in general, patterns in sensor data from watches
were found to be more distinct from one another and thus were being
captured more efficiently compared to the data from phones’ sensors.
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!(*(."* !".5'1#*1,6? The dataset consists of raw sensor data of 51
different subjects performing 18 activities collected from accelerometer and
gyroscope present within smart phone and smart watch. For each of the
activities, the dataset consists of X, Y and Z values from different sensors. In
the case of an accelerometer, these values measure the linear acceleration of the
subject along three orthogonal axes. Similarly, in data obtained from a
gyroscope, these values represent the angular velocity of the subject in three
orthogonal axes.

Fig.1.a. Accelerometer data                    Fig.1.b. Gyroscope data

4,65)&.1,6? The accuracy that the model has achieved is certainly
not the best but considering that it took a subject-independent approach
(which is what will occur in a real life scenario) and it was trained and
tested on raw data without applying any advanced preprocessing
techniques, it is believed that this work will give a clear direction for the
selection of models for future research for human activity recognition.
In our future work, emphasis on feature extraction and building a light-
weight, and hence easily deployable, CNN-LSTM model for classifying a
larger number of activities at once with higher accuracy will be considered.

In general, all the four models performed significantly better
in classifying the activities using the data from the smartwatch than using
the data from the phone. The highest accuracy for watch data was 86%
while the same for phone data was 78%. When comparing the efficiency of
the models among the sensors from the same type of device, sensor data
from the accelerometer was found to be more useful in distinguishing
different classes of human activities. The lower range-value for
accelerometer data was 74% while the same for gyroscope was 66%. As
for the models, CNN-LSTM outperformed all the other models by
achieving an accuracy of 86% for the tasks of predicting different classes
of non-hand-oriented and hand-oriented activities separately.

86():.1.?

Activities
Bi-LSTM CNN LSTM

Precision Recall F1 Score Precision Recall F1 Score

Brushing 0.73 0.90 0.80 0.98 0.90 0.94

Clapping 0.92 0.80 0.85 0.98 0.98 0.98

Dribbling 0.90 0.89 0.89 0.93 0.71 0.81

Eating 0.70 0.75 0.73 0.74 0.80 0.77

Folding 0.77 0.81 0.79 0.79 0.87 0.83

Playing 0.86 0.80 0.83 0.77 0.88 0.82

Typing 0.86 0.84 0.85 0.96 0.82 0.88

Writing 0.88 0.78 0.83 0.84 0.96 0.89




