

TSHWANE UNIVERSITY OF TECHNOLOGY

Capitalistic Constraints on Sustainable Development

Rasigan Maharajh An Alternative @ Rio+20: Peoples' Sustainability Treaties & the Manifesto 18th October 2012, Ramapo College.

- 1. Introduction
- 2. Contemporary Crises
- 3. Developmental Impacts
- 4. Emergent Challenges

- Concurrent crises all emanate from the current mode of production and consumption, waste, and environmental degradation
- Accelerated distribution through neo-liberal globalisation
- Hegemonic World System, Unilateralism & State violence

"the issue is not what will magically solve the immediate dilemmas of our world-system but the basis on which we shall create the successor worldsystem"

Wallerstein (2005)

- Long geological timescales
- Evolutionary change punctuated by revolutionary transformations:
- Palaeolithic –
 Neolithic Urban Industrial GREEN

. . .

Cultural history

The demands of complex technology may have pushed human culture to accelerate, though it seems to have evolved not steadily but in leaps and bounds

2.5 million years ago Oldest stone tools	400 years age Earliest s evidence dates fro	b,000 trong of cooking m this period	12 years Early s use su emerg cultur	0,000 ago signs of pigment uggest the gence of symbolic e at this time	50,0 years ag The "cult including burials, c and com techniqu	00 tural revolution", gritualistic clothes-making plicated hunting ues	10,0 years a Agricul	00 ago Iture begins	4500 years ago Great Pyramid at Giza built
2.5 MILLION YEARS A	AGO	2 MILLION YEAR	IS AGO	1.5 MILLION Y	'EARS AGO	1 MILLION YE	ARS AGO	500,00	O YEARS AGO
1.6 million years a Tools begin to l more complex, skilfully shaped symmetrical ha	a go become including d, and-axes	160,0 years ago Early humans to use fire to t stone tools	00 begin treat	100,000 years ago Shell beads give earliest evidence jewellery) the e of	35,000 years ago An explosion of in Europe. First s statue of a worm	cave art surviving an	5000 years ago Oldest known writing	420 years ago Shakespeare's plays first performed in London

© NewScientist

Used

Dense Settlements
Urban
Mixed settlements

Villages

- Rice villages Irrigated villages Rainfed villages
- Pastoral villages

Croplands

- Residential irrigated croplands Residential rainfed croplands Populated croplands
- Remote croplands

Rangelands

Seminatural

Seminatural

- Populated woodlands Remote woodlands Inhabited treeless &
 - barren lands

Wild

Wildlands

- Wild woodlands
 - Wild treeless & barren lands

Used

Dense Settlements

Mixed settlements

Villages

- Rice villages Irrigated villages Rainfed villages
- Pastoral villages

Croplands

- Residential irrigated croplands
 Residential rainfed croplands
 Populated croplands
- Remote croplands

Rangelands

Seminatural

Seminatural

- Populated woodlands Remote woodlands Inhabited treeless &
 - barren lands

Wild

Wildlands

- Wild woodlands
 - Wild treeless & barren lands

Used

Dense Settlements
Urban
Mixed settlements

Mixed settleme

Villages

- Rice villages Irrigated villages Rainfed villages
- Pastoral villages

Croplands

- Residential irrigated croplands
 Residential rainfed croplands
 Populated croplands
- Remote croplands

Rangelands

Seminatural

Seminatural

- Populated woodlands Remote woodlands Inhabited treeless &
 - barren lands

Wild

Wildlands

- Wild woodlands
 - Wild treeless & barren lands

Used

Dense Settlements
Urban
Mixed settlements
Villages
Rice villages
Rainfed villages
Pastoral villages

Croplands

- Residential irrigated croplands
 Residential rainfed croplands
 Populated croplands
- Remote croplands

Rangelands

Seminatural

Seminatural

- Populated woodlands Remote woodlands Inhabited treeless &
 - barren lands

Wild

Wildlands

- Wild woodlands
 - Wild treeless & barren lands

ieri Contemporary Global Dynamics

ieri Belanetary Boundaries

	Earth-system process	Parameters	Proposed boundary	Current status	Pre- industrial value
Climate change Chemical pollution Ocean	Climate change	(i) Atmospheric carbon dioxide concentration (parts per million by volume)	350	387	280
Not yet acidification		(ii) Change in radiative forcing (watts per metre squared)	1	1.5	0
quantined	Rate of biodiversity	Extinction rate (number of species per million species per year)	10	>100	0.1-1
Atmospheric	Nitrogen cycle	Amount of N2 removed from the atmosphere for human use (millions of tonnes per year)	35	121	0
aerosol loading Stratospheric	Phosphorus cycle	Quantity of P flowing into the oceans (millions of tonnes per year)	11	8.5-9.5	-1
Not yet	Statospheric ozone depletion	Concentration of ozone (Dobson unit)	276	283	290
quantified	Ocean acidification	Global mean saturation state of aragonite in surface sea water	2.75	2.90	3.44
	Global freshwater use	Consumption of freshwater by humans (km ³ per year)	4000	2600	415
Rate of Cycle	Change in land use	Percentage of global land cover converted to cropland	15	11.7	low
loss	Atmospheric aerosol loading	Overall particulate concentration in the atmosphere, on a regional basis	to	to be determined	
Land-use change Global freshwater use	Chemical pollution	For example, amount emitted to or concentration of persistent organic pollutants, plastics, endocrine disrupt- ers, heavy metals and nuclear waste in the global environment, or the effects on ecosystem and functioning of the Earth system	to	be determin	ed

Boundaries for processes in red have been crossed. Data source: Rockström et al. (2009) Nature

*Carlota Perez, Technological Revolutions and Financial Capital, Page 74, Edward Elger Publishing, 2002

Expected growth estimates of world MVA at constant 2000 US\$

GDP per Capita: Annual Growth Rates (%)

Ecological Footprints and Human Development Source

e r

nstitute for Economi Research on Innovatio Source: UNEP (2011)

Source: UNEP (2012)

Source: Dorling (2009)

Contemporary Capital Flight

WHERE AND WHAT ARE TAX HAVENS?

A tax haven is any jurisdiction that uses the promise of secrecy for overseas investors to compete for financial flows. As well as a low-tax regime, or special rules that allow foreigners to slash their liabilities, a tax haven often has a network of law yers and accountants who help the wealthy shield assets from their home country's tax authorities

World's Largest Economies based on 2010 GDP or Revenues in US\$ Billions

1	USA	29	Austria	57	Czech Republic	85	Hewlett-Packard		
2	China	30	Argentina	58	Total	86	E.ON		
3	Japan	31	South Africa	59	ConocoPhillips	87	AT&T		
4	Germany	32	Exxon Mobil	60	Pakistan	88	Nippon Telegraph &		
5	France 33		Thailand	61	61 Volkswagen		Telephone		
6	United Kingdom	34	Denmark	62	AXA Group	89	Carrefour		
7	Brazil	35	BP	63	Romania	90	Assicurazioni Generali		
8	Italy	36	Greece	64	Algeria	91	Petrobras		
9	India	37	United Arab Emirates	65	Peru	92	Gazprom		
10	Canada	38	Venezuela	66	Fannie Mae	93	J.P. Morgan Chase & Co.		
11	Russia	39	Colombia	67	General Electric	94	McKesson		
12	Spain	40	Sinopec Group	68	Kazakhstan	95	GDF Suez		
13	Australia	41	PetroChina	69	ING Group	96	Citigroup		
14	Mexico	42	Finland	70	Glencore International	97	Hitachi		
15	Korea	43	Malaysia	71	New Zealand	98	Verizon Communications		
16	Netherlands	44	Portugal	72	Ukraine	99	Nestlé		
17	Turkey	45	State Grid	73	Berkshire Hathaway	100	Crédit Agricole		
18	Indonesia	46	Hong Kong SAR	74	General Motors	101	American International		
19	Switzerland	47	Singapore	75	Bank of America	Group			
20	Poland	48	Toyota Motor	76	Samsung Electronics	102	Honda Motor		
21	Belgium	49	Egypt	77	Kuwait	103	HSBC Holdings		
22	Sweden	50	Israel	78	ENI	104	Siemens		
23	Saudi Arabia	51	Ireland	79	Hungary	105	Nissan Motor		
24	Taiwan	52	Japan Post Holdings	80	Daimler	106	Pemex		
25	Wal-Mart Stores	53	Nigeria	81	Ford Motor	107	Panasonic		
26	Norway	54	Chile	82	BNP Paribas	108	Banco Santander		
27	Iran	55	Philippines	83	Allianz	109	IBM		
28	Royal Dutch Shell	56	Chevron	84	Qatar				

Source: TNI, 2012.

Ecological Catastrophe [2008]

US\$ 6.6 trillion
US\$ 2.15 trillion
>50%

- The estimated annual environmental costs from global human activity equating to 11% of global GDP
- The cost of environmental damage caused by the world's 3,000 largest publicly-listed companies (7% of Revenue)
- The proportion of company earnings that could be at risk from environmental costs in an equity portfolio weighted according to the MSCI All Country World Index

Source: Trucost, PRI & UNEP (2011)

SELECTED INDICATORS		2008	→	2009	→	2010
Global new investment in renewable energy (annual)	billion USD	130	→	160	→	211
Renewables power capacity (existing, not including hydro)	GW	200	->	250	•	312
Renewables power capacity (existing, including hydro)	GW	1,150	→	1,230	→	1,320
Hydropower capacity (existing)	GW	950	->	980	•	1,010
Wind power capacity (existing)	GW	121	→	159	→	198
Solar PV capacity (existing)	GW	16	→	23	•	40
Solar PV cell production (annual)	GW	6.9	→	11	→	24
Solar hot water capacity (existing)	GW_{th}	130	->	160	•	185
Ethanol production (annual)	billion liters	67	->	76	→	86
Biodiesel production (annual)	billion liters	12	->	17	->	19
Countries with policy targets	#	79	→	89	→	96
States/provinces/countries with feed-in policies ¹	#	71	->	82	→	87
States/provinces/countries with RPS/quota policies	#	60	->	61	→	63
States/provinces/countries with biofuels mandates	#	55	→	57	→	60

Alternative futures

NE UNIVERSITY OF TECHNOLOGY

TODAY

America gets 90% of its energy from oil, natural gas, coal and nuclear. Our aging infrastructure demands refurbishment to meet 21st century needs.

COAL NUCLEAR BIOMASS HYDRO OTHER OIL NATURAL RENEWABLES GAS SHARE OF U.S. PRIMARY ENERGY CONSUMPTION EXCLUDING FEEDSTOCKS. TOTAL ADDS TO 101% DUE TO ROUNDING

2050 Efficiency and renewables can end

our addiction to fossil fuels, create 49 the core industries of the new energy era, generate \$5 trillion in HYDRO HYDROGEN new economic value, and enhance

NON-CROPLAND NATURAL

BIOFUELS

GAS

10 WIND, SOLAR, AND

OTHER RENEWABLES

resilience and security. SHARE OF U.S. PRIMARY ENERGY CONSUMPTION. TRANSPORTATION 3.8 trillion Industry will have greater production. not spent on oil will 7 A B be pumped into the use 9-13 less energy, and save economy. Autos will Needing no oil, coal, reach an average of or nuclear power, at 50.5 trillion net. least The average square foot would use 1/2 to of our X pg-equivalen 3/4 less energy today electricity will come and save reliably from renewable energy. Source: RMI (2011)

TRANSPORTATION ELECTRICITY 86* 13 of oil – costing American drivers atural gas, coal, a uclear in large, entralized power BUILDINGS \$2 billion directly a's 120 n INDUSTRY \$4 billion more than any *country* but China and the U.S KEY DRIVERS TO CHANGE

China and the 'Green Economy'

- China has the highest public market financing in the clean energy sector
- The United States ranks 3rd in total clean energy investment in 2010, behind China and Germany. In 2008, the United States ranked first
- China has secured \$47.3 billion of asset financing in 2010 for clean energy projects. The U.S. attracted \$21 billion in 2010
- 60% of all clean energy technology IPOs in the world in 2010 were from Chinese companies
- According to Ernst and Young, for the first time, China beat the U.S. in terms of its attractiveness for renewable energy investment
- China received 20% of total global clean energy investment in 2010, while the U.S. saw 19%. In 2004, China only had 3% of the total, while the U.S. received 20% of investment.7
- China attracted \$54.4 billion clean energy financing in 2010, a 39% increase over 2009 and equal to the entire amount of clean energy investment worldwide in 2004. Similar financing in the U.S. stagnated last year at \$34.4 billion, approximately equal to 2007 levels
- China is expected to lead the world in overall number of patents filed in 2011, surpassing the United States and Japan for the first time
- China ranks 2nd in estimated number of people engaged in scientific and engineering research and development
- China has seen the largest increase of any nation in its innovation score over the last decade, up 19.5 points (compared to a 2.7 point increase in U.S. score)
- China is creating 16 national energy research and development centres intended specifically to drive innovation in the clean energy sector
- By the end of 2011, national Chinese R&D expenditures are targeted to rise 11% over levels earlier in the year
- Eight of ten companies with the largest R&D budgets have established R&D facilities in China, India, or both
- There has been a 600% increase in the number of college graduates in science fields in China between 1995 and 2005

Third Way (2011)

Inequality, Unemployment & Poverty
Neo-liberalism, Corruption & the 'hollowed-out' State
Monopolies, Oligopolies and Cartels
Financialisation & Commodification of Life/Nature ...

Rebuilding, Reskilling and Retooling Employment & Production Localisation & Global Governance

***** Inflexion Point

- ★ Persistence of Inequality, Material Deprivation, & Violence
- ★ Geopolitical Hegemon Treats
- ★ Neo-liberalism, Corruption and the 'hollow' state
- ★ Monopolies, Oligopolies and Cartels
- ⋆ Financialisation

- Emergent yet Unclear Alternative Paradigm
- Evolutionary Political Economics
 - Creative Destruction
 - Use Learning
 - Cooperation
- Systems of Innovation
 Local & Productive
 Global Public Goods (Knowledge Commons)

- Participatory Planning, Regulation, Monitoring, Evaluating and Learning
- Facilitate Equality, Redress & Sustainable Developmental Outcomes
- □ Support, consolidate & expand public goods
- Advance anti-Hegemonic Geo-political coalitions and alliances for Cooperation & Solidarity

Source: NASA/JPL-Caltech

TSHWANE UNIVERSITY OF TECHNOLOGY

Thank you, ...r

rasigan@ieri.org.za

- Bourguignon, François (2011) A Turning Point in Global Inequality ... and Beyond, OECD, Paris.
- Dorling, Danny (2009) World Inequality and Resources: Thinking outside the Goldfish Bowl, University of Sheffield.
- **Engels**, Friedrich (1877) Anti-Dühring: Herr Eugen Dühring's Revolution in Science, Progress Publishers, Moscow.
- Kharas, Homi (2011) The Emerging Middle Class In Developing Countries, Working Paper No. 285, OECD, Paris.
- Kleinknecht, Alfred, Ernest Mandel, and Immanual Wallerstein (1992) New Findings in Long Wave Research, St. Martin's Press, New York.
- Maharajh, Rasigan (2011) The Green Economy, Poverty and the Global Inequality, Working Paper of the International Workshop on Biocivilization for the Sustainability of Life and the Planet, FNWG & iBase, Rio de Janeiro.
- Mandel, Ernest (1980) The Long Waves of Capitalist Development, University Press, Cambridge.
- O'Hara, Phillip Anthony (2006) Growth and Development in the Global Political Economy: Social structures of accumulation and modes of regulation, Routledge, Oxon.
- Degano, Ugo (2008) Anticrisis Policies in Knowledge Intensive Economies.
- Perez, Carlota (2002) Technological Revolutions and Financial Capital: The Dynamics of Bubbles and Golden Ages, Edward Elgar, Cheltenham.
- RMI (2011) Reinventing Fire: Blueprint for a new Energy Future, Rocky Mountain Institute, Boulder.
- Third Way (2011) By the Numbers: China, the U.S. And Clean Energy
- UNIDO (2011) Report on world manufacturing production, Quarter II, 2011and expected annual growth rates of MVA for 2011, Geneva.
- Wallerstein, Immanuel (2005) After Developmentalism and Globalization, What? In Social Forces 83:3, (March).