INVESTIGATING THE ROLE OF HCP-3 DURING CELL DIVISION IN THE NEMATODE C. ELEGANS

Presented by: Madeleine Maas
Faculty Mentor: Dr. Joost Monen
Faculty Readers: Dr. Catalin Martin and Dr. Thomas Owen
Outline of Talk

1. Why is cell division important?
2. *C. elegans* makes an ideal organism to study cell division
3. CENP-A
4. Purpose of the study
5. Immunofluorescence Assay
6. Conclusions and Future Directions
Outline of Talk

1. Why is cell division important?

2. *C. elegans* makes an ideal organism to study cell division

3. CENP-A

4. Purpose of the study

5. Immunofluorescence Assay

6. Live Imaging Assay

7. Conclusions and Future Directions
Why is cell division important?

All organisms undergo this process

Understanding at basic level translates to understanding in humans
Outline of Talk

1. Why is cell division important?

2. *C. elegans* makes an ideal organism to study cell division

3. CENP-A

4. Purpose of the study

5. Immunofluorescence Assay

6. Conclusions and Future Directions
C. elegans makes an ideal organism to study cell division

- Genetic model system
- Cheap
- Transparent
- Embryos are HUGE
- **Great model to study cell division**

[Image: http://makeagif.com/gif/c-elegans-movement-g8AeNh]
1. Why is cell division important?

2. *C. elegans* makes an ideal organism to study cell division

3. **CENP-A**

4. Purpose of the study

5. Immunofluorescence Assay

6. Conclusions and Future Directions
CENP-A

- Highly conserved Histone-H3 like protein
- Critical to centromere specificity and kinetochore assembly in all eukaryotes
- *C. elegans* are unique in that they have 2 CENP-A homologs
 - HCP-3
 - CPAR-1
CENP-A

- Highly conserved Histone-H3 like protein
- Critical to centromere specificity and kinetochore assembly in all eukaryotes
- *C. elegans* are unique in that they have 2 CENP-A homologs
 - HCP-3
 - CPAR-1
Outline of Talk

1. Why is cell division important?

2. *C. elegans* makes an ideal organism to study cell division

3. CENP-A

4. **Purpose of the study**

5. Immunofluorescence Assay

6. Conclusions and Future Directions
Purpose of the study

- To investigate the divergent roles of HCP-3 and CPAR-1 in cell division in *C. elegans*
 - To develop and optimize assays to be able to characterize the differences
 - Determine localization of HCP-3
 - Immunofluorescence
 - Characterize the functional consequences of depleting HCP-3
 - RNAi
Outline of Talk

1. Why is cell division important?

2. *C. elegans* makes an ideal organism to study cell division

3. CENP-A

4. Purpose of the study

5. Immunofluorescence Assay

6. Conclusions and Future Directions
Immunofluorescence

Allows us to visualize chromosomes, microtubules, and the CENP-A homologs in the developing embryo
Immunofluorescence Methodology

1. Make slides w/ embryos
 Dissect 30 worms on poly-K slides.

2. Freeze Crack embryos
 Add cover slip/place slides in liquid nitrogen/Flick off cover slip with razor blade.

3. Fix slides
 Place slides in -20 degree C MeOH fix.

4. Secondary Antibody
 Expose samples to secondary antibodies (anti:FITC/CY3.5, etc.)

5. Primary Antibody
 Expose samples to primary antibodies (anti:HCP-3/CPAR-1/Tubulin, etc.)

6. Wash with PBST

7. Wash with PBST

8. Wash with PBST

9. Wash with PBST

10. Hoechst
 Apply Hoechst to label DNA.

11. Mount Slides
 Apply photo-stable media/coverslip/seal w/ nail polish

12. Image
 Using Epi-Fluorescent Scope

13. Block
 Block with AbDil to prevent non-specific binding.
Western Blot of RNAi Through Feeding Protocol
HCP-3 RNAi 1st Cellular Division

Wild Type

RNAi knockdown
Anaphase in Wild Type

Anaphase in RNAi knockdown

DNA a-Tubulin Anti-HCP-3

Nonspecific binding of the antibody to the spindle
Outline of Talk

1. Why is cell division important?

2. *C. elegans* makes an ideal organism to study cell division

3. CENP-A

4. Purpose of the study

5. Immunofluorescence Assay

6. Conclusions and Future Directions
Concluding Remarks

- HCP-3 localizes to the centromere in mitosis
- Chromosome alignment and segregation is dependent on HCP-3
- Embryos lacking HCP-3 result in aneuploidy and embryonic lethality
Future Directions

• Perform similar experiment for CPAR-1
 • Localization of CPAR-1 in the embryo using CPAR-1 specific antibodies
 • Functional live imaging of CPAR-1 depleted embryos

• Differential roles of HCP-3 and CPAR-1 will be examined to tease out additional roles “CENP-A” may be playing in the cell
Acknowledgements

This work was supported by a grant from the Ramapo College Foundation and the TAS Research Honors Program

Thank you to Brianna Romer and JJ Fritsch for providing data from their experiments
References

Thank you!

Questions?