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Abstract 

Predictive models in healthcare often rely solely on structured data, missing crucial 

context contained in free-text clinical notes and thereby limiting accurate outcome prediction. 

This study quantified the impact of incorporating free-text discharge summaries alongside 

structured data to improve one-year mortality prediction by evaluating both resampling 

techniques and Natural Language Processing (NLP) methods. 

Using the MIMIC-IV and MIMIC-IV-Note datasets, five machine learning model types 

were trained with structured data alone versus structured data combined with insights extracted 

from clinicals notes using four NLP techniques (Bag of Words (BoW), Binary BoW, Term 

Frequency-Inverse Document Frequency (TF-IDF), and Sentiment Analysis). A hybrid 

resampling method addressed severe class imbalance. Performance was primarily evaluated 

using recall due to the nature of outcomes being predicted. 

Baseline models, trained using only structured data, obtained poor recall scores (~0.17). 

Resampling was essential, boosting average recall by ~61.5%. Integrating clinical notes further 

improved performance. The gradient boosting model trained using TF-IDF features achieved the 

highest recall (0.779), a 4.6% gain over its baseline after resampling. TF-IDF and BoW were the 

most effective NLP methods overall. Key features from the best performing model included age 

and discharge location (from the structure data) and note terms (i.e. CT, disease). 
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Overall, the inclusion of free-text clinical notes, combined with effective resampling, 

significantly enhances the performance of healthcare models, resulting in improved identification 

of high-risk patients and ultimately contributing to better patient care. 
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I.​ Introduction 

​ The use of predictive models in healthcare has significantly progressed over the past 

decades as healthcare data, machine learning models, and computational power have all vastly 

improved. To fully understand this progress, however, it is important to consider the historical 

foundations of medical data. Ancient civilizations like Egypt, Greece, and Mesopotamia, 

recorded early forms of medical records and treatments on papyrus and tablets. Despite the 

limited technology during this time, the foundations of modern medicine were laid as 

Hippocrates of Greece created the Hippocratic Corpus, one of the earliest works which 

methodically recorded medical observations. During the Middle Ages, scholars compiled and 

further developed medical knowledge and by the 18th century, manual record-keeping of 

medical observations became a more formal process. This shift allowed for a more systematic 

approach to documentation of patient information, facilitating patient diagnosis and treatment. 

This time also saw the field of medical statistics emerge and develop as statistician John Graunt 

and epidemiologist William Farr used data to identify disease trends, categorize causes of death, 

and compile national health data. During the mid 19th century, one of the most noteworthy 

applications of medical statistics occurred as statistician Florence Nightingale demonstrated how 

health outcomes were affected by sanitation through statistical analysis during the Crimean War. 

This marked a pivotal moment in exemplifying the power of data in medicine. The introduction 

of computing power to the medical field in the mid twentieth century marked an even more 

transformative time. Early computers were used to process and analyze large quantities of data 

and ultimately led hospitals to digitize patient records. As statistical software developed in the 

last twentieth centuries, the complexity of the analysis that could be carried out on these now 
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digitized patient records only increased. By the 2000s, the widespread adoption of electronic 

health records created centralized repositories of accessible patient records, improving healthcare 

coordination and paving the way for more advanced analytics. (Olusegun, 2023).  

Today, advanced analytical methods are used for predictive modeling in many different 

areas of healthcare. One common way predictive modeling is used in healthcare is to identify 

patients with high risk of developing certain diseases. This is done through the creation of 

machine learning models that predict whether a patient will develop a disease based on a variety 

of medical and socioeconomic factors. By using these models to identify high risk individuals, 

targeted intervention and disease prevention measures can be provided to those that need it the 

most. This ultimately leads to more personalized healthcare and overall improves medical 

decision making. This is especially important in oncology as frequent hospitalizations and visits 

to the emergency department can cause increasingly high costs of care while also impacting the 

quality of life of patients. Identifying high-risk cancer patients at early stages and providing these 

patients with personalized care can help them avoid expensive visits to the hospital while also 

improving the care they are provided.  

Another way advanced analytical methods are used in healthcare is to assist in the 

creation of new therapeutic agents. Recent studies have revealed that computational modeling is 

able to identify which drug targets are most promising for treating various cancers. Researchers 

have also deployed simulation techniques to mimic the human brain and thus create models that 

mimic human brain activity. These models can be used to help formulate new therapeutic agents 

for various diseases. For example, several studies have been conducted using technology like this 

in order to identify new biomarkers related to Alzeheimer’s. Overall, the use of these new 

advanced technologies allows medical professionals to develop new therapeutic agents more 
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efficiently (Toma & Wei, 2023). Not only does this allow new treatments to be created and thus 

more patients to be treated, but it also could reduce some of the incredibly high costs associated 

with the drug development process. As drug discovery and development becomes more 

cost-effective, drug costs could decrease and thus create a more affordable healthcare landscape.  

Predictive modeling is also used to predict surgery outcomes. For example, a predictive 

model for patients with epilepsy was able to effectively distinguish patients who no longer had 

seizures after surgery from those who continued to have them. Similar models were also 

developed for patients undergoing cataract surgery, neurosurgery, spine surgery, and more. 

Overall, models like these enable healthcare professionals to offer individualized information to 

each patient when discussing surgical risks and thus ultimately leads to more informed patients 

(Toma & Wei, 2023). 

There are many more applications of predictive models in healthcare. Despite all their 

advantages, many models share the same limitation: structured data. Structured data refers to 

data that is highly organized and preformatted to fall within certain criteria. The organized nature 

of structured data is one of its greatest strengths as it allows the data to be easily handled and 

analyzed. Because of this, most electronic health records come in the form of structured data and 

thus structured data is often the sole source of information used to train predictive models in 

healthcare. However, the rigid format of structured data often excludes valuable contextual 

details. As mentioned prior, in order to ensure structured data is organized, it must be 

preformatted to fall within a certain criteria. What this means is that structured data must be 

broken up into certain variables. An example entry from structured data can be found in Table 

1.1 below. 
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Table 1.1. Example entry from structured data 

Age Gender Diagnosis Ejection 
Fraction 

Blood 
Pressure 

Sodium 
Level 

Discharge 
Medications 

Length 
of Stay 

72 Female Congestive 
Heart Failure 
(ICD-10: 
150.9) 

35% 140/90 134 Beta-blocker, 
ACE 
inhibitor, 
Diuretic 

4 days 

This example entry contains standard patient information that is typically found in an electronic 

health record. As shown, the variables this dataset contains are age, gender, diagnosis, ejection 

fraction, blood pressure, sodium level, discharge medications, and length of stay. All of these 

variables contain crucial information regarding this patient’s situation but context is clearly 

lacking. Context is very difficult to capture in structured data due to its dynamic nature. For 

example, the data in Table 1.1 reveals that the patient is not doing well given their low ejection 

fraction, elevated blood pressure, and low sodium levels. This would lead one to believe that this 

patient is at high risk for hospital readmission. However, this may not be so true when 

considering the context. For example, if this patient has a strong support system of friends and 

family members who can help them, they would likely be less at risk for readmission. 

Unfortunately, this information is very difficult to capture within a variable and thus is often left 

out of predictive models. 

Fortunately, there are medical data sources that do capture information like this called 

clinical notes, or clinical documentation. Clinical notes typically contain summaries of medical 

observations that arise from patient care and serve multiple purposes, such as creating a record of 

a patient’s history and medical findings, recounting care and procedures in case of any future 

arbitration, justifying the amount of reimbursement for provided services, and determining the 

quality of care a patient received (Rosenbloom et al., 2010). Clinical notes arise from many 
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different aspects of healthcare, such as outpatient visits, inpatient admission, inpatient discharge, 

and medical procedure protocols and results. Studies have found that clinical notes containing 

natural prose are more reliable for identifying patients with certain diseases, easier for healthcare 

personnel to understand, and overall more accurate (Rosenbloom et al., 2011). Evidently, clinical 

notes contain valuable information that is lacking in structured data. As a result, including 

clinical notes in the data used to train predictive models could improve the predictive power of 

such models and thus improve medical outcomes. 

This study aims to analyze the effect that free-text clinical notes have on the predictive 

power of models in healthcare. To achieve this, various predictive models will first be developed 

using only structured data to establish baseline performance and identify which models perform 

best. These same models will then be retrained using the same structured data combined with 

free-text clinical notes, and their performances will be subsequently analyzed to determine the 

added value of the clinical notes. To extract insights from the free-text clinical notes so that they 

can be used to train the models, this study will explore multiple natural language processing 

(NLP) techniques. Consequently, the results of this study will also provide an analysis of which 

natural language processing methods contribute most to high model performance.  

The remainder of this paper is structured as follows: It begins with a literature review and 

discussion of prior work completed on this subject. Next, it examines the ethical considerations 

of working with medical data and predicting medical outcomes. The Methodology section then 

outlines the process used to address the research question. Finally, results and implications are 

presented, followed by a conclusion summarizing key findings. 
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II.​ Background 

Literature Review 

While structured data has traditionally been the sole source used to train predictive 

models in medicine, researchers have increasingly begun utilizing free-text clinical notes to 

improve model performance. This chapter will review some of the prior research completed that 

leverages clinical notes in their predictive models. It will analyze different methodologies used 

with emphasis on different model types, natural language processing techniques, and model 

evaluation methods. Additionally, it will examine the model performances obtained using 

different data types. Overall, this chapter aims to summarize the progress made in the research of 

this subject while also highlighting the gap this study will fill. 

Song et al. conducted a study aimed at improving risk prediction for hospitalization and 

emergency department visits in home health care patients. This study examined the performance 

of five different model types - logistic regression, random forest, Bayesian network, support 

vector machine, and naive Bayes - trained using only structured data and a combination of both 

structured data and free-text clinical notes. Two different natural language processing techniques 

were employed to extract information from the clinical notes: convolutional neural networks to 

label each clinical note as either concerning or not concerning and a rule-based approach which 

identified a set of predefined risk factors within each clinical note. The models were trained 

using ten-fold cross validation, with SMOTE applied to the data to address the class imbalance. 

This study ultimately found that the inclusion of the clinical notes using both natural language 

processing methods led to the best model performance. Overall, adding in the clinical notes to 

8 



 

the model training process on average improved each model’s F-score by roughly 17% and area 

under the precision-recall curve (AUPRC) by roughly 18% (Song et al., 2022). 

Garriga et al. explored the integration of free-text clinical notes with structured data to 

predict the probability of a mental health relapse within a period of twenty-eight days. Following 

the use of BERT to process the unstructured data, four different models were trained. A 

structured XGBoost model and structured deep neural network were fit to only the structured 

data. Correspondingly, an unstructured deep neural network was fit to only the unstructured data 

and a hybrid deep neural network was fit to both data types. Additionally, an ensemble deep 

neural network was trained. This study ultimately found that the models trained on both the 

structured and unstructured data performed better than the models trained on just one data 

source, with the ensemble model having the best performance of all models based on AUPRC 

and area under the receiver operating characteristic curve (AUROC). This study also conducted 

an analysis of how many clinical notes were needed in order for them to add value to predictive 

modeling by dividing the cohort of patients into six subsets based on the proportion of weeks in 

which they had a clinical note written while receiving care. This analysis showed that having as 

little as just 10% percent of weeks with at least one clinical note resulted in improved model 

performance, showcasing the value that even small amounts of clinical notes can add (Garriga et 

al., 2023). 

Huang et al. investigated the use of clinical notes when predicting in-hospital mortality or 

an ICU length of stay greater than seven days. The purpose of this study was not only to examine 

the performance of models trained purely on clinical notes, but also to analyze if performance 

differed when using nursing notes or physician notes. The dataset included patients that were at 

least eighteen years old and had ICU stays greater than two days. To extract insights from the 
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clinical notes, the bag of words method was used and the top 3,000 most frequent words were 

selected. Following this, ten percent of the dataset was separated to use as a holdout test set and 

the remaining ninety percent was randomly divided into training and testing sets five times. To 

show consistency among results, penalized logistic regression, random forest, and gradient 

boosting models were trained and tested. Using AUC to measure model performance, all three 

model types found that nursing notes contributed to better performance than physician notes, 

though the best model performance was obtained when using both the nursing notes and 

physician notes. This study also included a variable importance analysis (Huang et al., 2021). 

Gao et al. conducted a study during which free-text admission notes and structured data 

were used in the creation of predictive models which aimed to predict the mortality of patients 

with heart failure. To do this, all first time ICU admissions of patients with heart failure above 

the age of sixteen were extracted from multiple data sources and split into four subsets used to 

train and evaluate the models. The free-text clinical notes were also extracted and separated into 

five different categories. The models were created using a supervised multimodal deep learning 

framework and a pretrained BERT module was used to process the clinical notes. This study 

ultimately found that the models trained using both the structured data and all five categories of 

the clinical notes outperformed the models trained using only one data source - the structured 

data or the clinical notes. Model performance was evaluated using AUROC, F1 score, and 

AUPRC. This study also deployed feature analysis methods to further interpret the model 

outcomes and identify the most influential features (Gao et al., 2024).  

While prior studies have exemplified the value of using free-text clinical notes in the 

predictive modeling of healthcare outcomes, they often consider a limited number of different 

model types and natural language processing techniques. This study will take a more 
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comprehensive approach in that it will apply and analyze five different modeling approaches and 

four different natural language processing techniques. Furthermore, this study will provide a 

unique analysis of resampling techniques. Resampling is often crucial for training predictive 

models in healthcare due to the unbalanced nature of medical outcomes. While some prior 

studies have mentioned the use of specific resampling techniques, this study will test and 

compare six different resampling techniques. By including these additions to the methodology, 

this study aims to provide results that are more robust than prior work and thus contribute to an 

improved framework for using free-text clinical notes in predicting medical outcomes. 

Methods 

To analyze the effect of free-text clinical notes on models in healthcare, this study 

leveraged many different techniques and metrics. This section will discuss all model types, 

model evaluation metrics, resampling techniques, natural language processing techniques, and 

other associated techniques applied in this study. 

Modeling 

The selection of modelling techniques used in this study was made strategically to 

include a mix of simple and complex models, including some ensemble methods. In addition to 

describing each of these techniques, this section will also include a description of one-hot 

encoding, a data transformation technique vital for certain model types. All techniques described 

in this section are standard practice for classification tasks like that of this study. Note that the 

classification task in this study is binary. 

Logistic Regression 
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​ Logistic regression is one of the most widely used models for classification tasks. Based 

on the provided explanatory variables, this kind of model outputs the probability p(X) that the 

response variable (Y) belongs to a certain class using the logistic function, shown in Equation 

2.1.  

                                          Logistic Function: ​                             (2.1) 𝑝(𝑋) = 𝑒
β

0
+ β

1
𝑋

1
+ . . . + β

𝑛
𝑋

𝑛

1+ 𝑒
β

0
+ β

1
𝑋

1
+ . . . + β

𝑛
𝑋

𝑛

To determine the coefficients (β0, β1, . . ., βn), logistic regression uses maximum likelihood 

estimation, a fairly general approach often used for non-linear models. This method finds the 

coefficient values which result in probabilities that most closely resemble the given data, 

assigning a probability as close to one as possible for the positive class and as close to zero as 

possible for the negative class (James et al., 2023). Because logistic regression outputs 

probabilities, one must determine a threshold for assigning each probability to each class. While 

this can vary depending on the outcomes being modeled, it is common practice to use 0.5 as the 

threshold. That is, any possibility above 0.5 will be assigned to the positive class and any below 

0.5 will be assigned the negative class. All logistic regression models created in this study use 

0.5 as the threshold value. 

Decision Trees 

​ A decision tree is a simple and interpretable type of model that makes predictions by 

segmenting the predictor space into multiple regions based on certain decisions located at 

decision nodes. While decision trees can be used for both regression and classification tasks, this 

study leveraged the classification version due to the nature of outcomes being predicted. In a 

classification decision tree, each observation is predicted to belong to the most commonly 

occurring class of the training dataset within the region it lies. These regions are optimally 

determined by selecting the decision nodes that best split the data into separate groups. This is 
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commonly determined using either the Gini index or entropy criterion (the decision trees in this 

study use Gini index) (James et al., 2023). Figure 2.1 below displays an illustrative decision tree 

used to predict hospital admittance. 

 

Figure 2.1. Example decision tree used to predict hospital admittance - example was created for 

illustrative purposes and is not based on the data used in this study. 

The illustrative decision tree above consists of three decision nodes. The first decision node, 

located at the top, separates patients above and below age sixty. These two groups then have their 

own respective decision nodes related to blood pressure. Using this tree, a sixty five year old 

patient with a blood pressure of 120 would be predicted to not be admitted to the hospital as they 

would fall within the left region of the tree due to being older than sixty five and would then take 

the right path due to having a blood pressure below 140.  

Random Forests 

​ A random forest is an ensemble method that builds multiple decision trees using 

bootstrapped training data samples. When building each decision tree, only a subset of predictors 
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is considered so that each tree contains meaningful differences. Typically, the size of the subset 

of predictors used in each tree is roughly equal to the square root of the total number of 

predictors, meaning that each tree will not even consider the majority of the predictors in the 

overall training set. This is especially important in cases where either one feature is significantly 

more important than all others or where many predictors are very correlated to each other. Once 

all decision trees are fit, a random forest makes predictions by aggregating the results of each 

decision tree. In the context of classification, this means that the most common prediction of all 

trees is typically taken as the final prediction of the forest. In general, random forests avoid 

overfitting when a sufficiently large number of decision trees are created (James et al., 2023). 

Gradient Boosting 

​ Boosting is another ensemble method that can be applied to decision trees. In this 

method, decision trees are created sequentially with each tree using information from the tree 

that came before it. More specifically, with each decision tree, a new decision tree is fit to the 

residuals (the difference between the predicted values and actuals), rather than the response 

variable. This allows the model to improve gradually, improving in areas where the model does 

not perform well (James et al., 2023). Gradient boosting is a specific kind of boosting that fits 

each new decision tree to the negative gradient of the loss function, rather than simply the 

residuals.  

Neural Networks 

​ Artificial neural networks (ANN), commonly referred to as neural networks, are a type of 

machine learning model inspired by the function of the human brain. The human brain consists 

of billions of neurons, all of which receive input signals from stimulation or other neurons. These 

signals are then processed and transmitted to the output terminal where the output is then sent to 
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other neurons or other parts of the body to perform actions. Artificial neural networks perform in 

a similar manner wherein the predictor variables act as the input signals and are received by 

input nodes. Each feature is then weighted by importance and processed so that the output node 

can apply the activation function, combining information from the input nodes. These nodes are 

arranged in layers, with more layers resulting in a more complex model capable of handling 

more complex tasks (Zhang, 2016). An illustrative example of a neural network can be found in 

Figure 2.2 below. 

 

Figure 2.2. Example neural network. 

In the above neural network, there are three input nodes followed by two layers containing four 

nodes each. The number of nodes in each layer and the number of layers varies from model to 

model. 

 When training a neural network, the model aims to optimize the weights of each feature 

to the point at which the model’s predictions are most accurate. Through this process, neural 
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networks are able to identify underlying patterns in data better than most standard modeling 

techniques, making them well-suited for complex tasks (Zhang, 2016). 

One-hot encoding 

​ Of the models described above, logistic regression and neural networks require all 

training data to be quantitative. As a result, all categorical data must be converted to numerical 

prior to training these models. One very common method for making this conversion is one-hot 

encoding. Consider the example shown in Table 2.1 below. 

Table 2.1. Example of one-hot encoding 

ID Sex Age  ID Sex_M Sex_F Age 

1 M 34  1 1 0 34 

2 F 53  2 0 1 53 

3 F 28  3 0 1 28 
 

Above, the table on the left contains one categorical feature, sex, containing two unique 

categories, M and F. The result of applying one hot encoding is shown on the table on the right. 

Evidently, one-hot encoding creates one column for each category of a categorical feature, with 

each new column using binary to indicate the original value. For example, because the first row 

has the value M for sex, sex_M contains a one and sex_F contains a zero after one-hot encoding. 

The same logic can be applied for both remaining rows in the table. A best practice for applying 

one-hot encoding prior to modeling is to remove one of the newly created columns to avoid 

multicollinearity. This is evident through the example in Table 2.1 as having both the sex_M and 

sex_F columns is redundant because the value of one column can be immediately deduced from 

the other. For example, if the value of the sex_M column is one, the value of the sex_F column 

will always be zero. 
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Model Evaluation Metrics 

​ All models created in this study were evaluated using the following metrics: accuracy, 

precision, recall, F1 score, and area under the ROC curve (AUROC). This section will define 

each of these metrics as well as k-fold cross validation, a model evaluation technique which is 

used to assess model generalization. 

K-Fold Cross Validation 

​ K-fold cross validation is a model evaluation technique which splits the modeling dataset 

into k subsets of equal size and subsequently runs k experiments (Typically, k is chosen to be 

either five or ten. All models in this study use k equal to 5). For each experiment, all subsets but 

one are used to train the model and the remaining subset is used for testing. After all experiments 

are run, the average performance across all tests - measured using model evaluation metrics - is 

computed to provide a more stable and accurate idea of model performance. Not only does this 

technique more reliably assess model generalizability, but it also reduces the risk of overfitting 

by running multiple experiments.  

Accuracy 

​ Accuracy is a simple model evaluation metric that measures the amount of correct 

predictions made by a model. Accuracy is calculated using the below formula.  

                                   ​                 (2.2) 𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =  # 𝐶𝑜𝑟𝑟𝑒𝑐𝑡 𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛𝑠
# 𝑇𝑜𝑡𝑎𝑙 𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛𝑠  =  𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁

In the above formula, TP and TN denote true positive and true negative, respectively. A true 

positive represents a case where a model correctly predicts the positive class and a true negative 

represents a case where a model correctly predicts the negative class. Analogously, FP and FN 

denote false positive and false negative, respectively. A false positive represents a case where a 
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model incorrectly predicts the positive class and a false negative represents the case where a 

model incorrectly predicts the negative class. 

Precision 

​ Precision is a model evaluation metric which measures how accurate the positive 

predictions of a model are. It is calculated using the formula shown below. 

                                                                                                        ​     (2.3) 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =  𝑇𝑃
𝑇𝑃+𝐹𝑃

This metric is typically used when the cost of false positive predictions is high. 

Recall 

​ Recall is a model evaluation metric which measures how well a model predicts the actual 

positive class. It is calculated using the formula shown below. 

                                                                                                                     (2.4) 𝑅𝑒𝑐𝑎𝑙𝑙 =  𝑇𝑃
𝑇𝑃+𝐹𝑁

This metric is typically used when the cost of false negatives is high. 

F1 Score 

​ F1 score is a model evaluation metric that takes into account both precision and recall. It 

can be calculated using the formula shown below.  

                                                                                              (2.5) 𝐹1 𝑆𝑐𝑜𝑟𝑒 =  2 · 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛·𝑅𝑒𝑐𝑎𝑙𝑙
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛+𝑅𝑒𝑐𝑎𝑙𝑙

F1 score is typically used when both the cost of false positives and false negatives is 

considerable. 

AUROC 

​ The receiver operating characteristic curve (ROC) is a graph that plots the relationship 

between true positive rate (recall) and false positive rate ( ) across different classification 𝐹𝑃
𝐹𝑃+𝑇𝑁

thresholds. The area under the ROC curve (AUROC) quantifies this relationship as a value 
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between zero and one, with a score of one indicating a perfect model and a score of .5 indicating 

a random model. In general, higher values indicate stronger model performance. AUROC is 

typically used with imbalanced data, making it particularly useful in healthcare settings. 

Resampling 

​ Resampling is the process of altering a dataset in order to address class imbalance with 

the end goal of improving model performance. Resampling techniques can be categorized into 

two main categories: oversampling and undersampling. Oversampling is the process of 

increasing the number of data points in the minority class to increase its size relative to the 

majority class. Conversely, undersampling is the process of decreasing the number of data points 

in the majority class to decrease its size relative to the minority class. The method by which data 

points are added or removed depends on the resampling technique applied. This section will 

define all such techniques applied in this study. 

Random Oversampling 

​ Random oversampling is an oversampling technique which randomly creates copies of 

data entries from the minority class until the size of the minority class reaches a certain 

threshold. This increases the size of the minority class, thus reducing class imbalance. 

SMOTE 

​ Synthetic Minority Oversampling Technique (SMOTE) is an oversampling technique that 

creates synthetic data entries from the minority class until the size of the minority class reaches a 

certain threshold. SMOTE creates synthetic samples by using k-nearest neighbors. The first step 

is to take the difference between the data point of interest (a randomly selected data point from 

the minority class) and one of its k nearest neighbors (also randomly chosen). This difference is 

then multiplied by a random value between zero and one, and then added to the data point of 
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interest. This creates a random point in between the data point of interest and its nearest 

neighbor, ultimately reducing class imbalance and leading to more general decision regions of 

the minority class (Chawla et al., 2002). 

Random Undersampling 

Random undersampling is an undersampling technique which randomly removes data 

entries from the majority class until the size of the majority class reaches a certain threshold. 

This decreases the size of the majority class, thus reducing class imbalance. 

Edited Nearest Neighbors 

​ Edited nearest neighbors is a unique resampling technique in which data entries from 

both the majority and minority class are removed. For this technique, the k nearest neighbors of 

each data point are found and the majority class of each group of neighbors is assessed. For each 

data point, if the majority class of its neighbors differs from the class of the data point, the data 

point is removed. This helps remove noise and sharpen the decision boundaries within a dataset, 

often leading to improved model performance (Wilson, 1972). 

Hybrid Techniques 

​ Resampling techniques can be combined to form hybrid resampling techniques that can 

lead to further improved model performance. This is often done with one oversampling and one 

undersampling technique. In general, when combining an undersampling and oversampling 

technique, it is best to apply the undersampling technique first as, depending on the techniques 

applied, it may prevent unnecessary growth in data size, improve the decision boundary between 

the minority and majority classes, and reduce redundant majority samples before oversampling, 

allowing oversampling to be applied to a cleaner and more balanced dataset. In this study, both 
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random oversampling and SMOTE will be individually combined with random undersampling to 

form two hybrid techniques. 

Natural Language Processing  

Natural language processing (NLP) enables computers to understand human language. 

For this study, natural language processing will be applied to extract insights from free-text 

clinical notes so that they can be used for modeling. This is crucial for this study as all model 

types tested require all data to be entered in a structured form. As a result, various NLP 

techniques will be applied and their output will be formatted in structured form so that it can be 

used to train models. This section will discuss the four NLP techniques analyzed in this study. 

Bag of Words 

​ Bag of words is a simple NLP technique which counts the frequency of each word in a 

group of documents or notes. For example, consider the following two notes:  

Note 1: Patient has fractured left arm and right arm. 

Note 2: Patient has fractured leg. 

Table 2.2 below displays the structured output of applying bag of words to these notes. 

Table 2.2. Example of bag of words 

 patient has fractured left arm and right leg 

Note 1 1 1 1 1 2 1 1 0 

Note 2 1 1 1 0 0 0 0 1 
 

As shown above, bag of words creates a table in which each unique word from all notes has its 

own column and each row keeps track of how many times each word appears in each note. For 

instance, the row for note one contains a two in the arm column because that word appears twice 

in the note. Meanwhile, it contains a zero in the leg column as that word does not appear in the 
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note at all. When applying the bag of words method for analysis, it is typical to remove highly 

frequent but non-informative words (called stop words), like “and,” “the”, or “is.” If removing 

stop words from the given example, the and column would be removed from the table. 

Binary Bag of Words 

​ Binary bag of words is an NLP technique very similar to standard bag of words, 

described above. Instead of calculating the frequency of each word in each note, binary bag of 

words keeps track of whether or not each word exists in each note. Table 2.3 below displays the 

output of applying binary bag of words on the example described above. 

Table 2.3. Example of binary bag of words 

 patient has fractured left arm and right leg 

Note 1 1 1 1 1 1 1 1 0 

Note 2 1 1 1 0 0 0 0 1 
 

As shown in the above table, the output of binary bag of words is structurally identical to that of 

bag of words. The one key difference between Table 2.3 and Table 2.2 is that Table 2.3 contains 

a one instead of a two in the arm column for the first row. This is due to the fact that binary bag 

of words does not count the frequency of the word “arm” in note one, but rather uses the number 

one to indicate that the word “arm” exists in the note. Like with standard bag of words, it is also 

common practice to remove stop words when applying this technique. 

Term Frequency-Inverse Document Frequency (TF-IDF) 

​ TF-IDF is an NLP technique which measures how important each word is to a document, 

relative to a group of documents. This is done using the formula shown below, where t represents 

a term and d represents a document. 

                                                (2.6) 𝑇𝐹𝐼𝐷𝐹(𝑡, 𝑑) =  𝑐𝑜𝑢𝑛𝑡 𝑜𝑓 𝑡𝑒𝑟𝑚 𝑡 𝑖𝑛 𝑑𝑜𝑐𝑢𝑚𝑒𝑛𝑡 𝑑
𝑡𝑜𝑡𝑎𝑙 𝑡𝑒𝑟𝑚𝑠 𝑖𝑛 𝑑𝑜𝑐𝑢𝑚𝑒𝑛𝑡 𝑑  × 𝑙𝑜𝑔( 𝑁

𝐷𝐹(𝑡)+1 ) 
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,where N represents the total number of documents and DF(t) is the number of documents 

containing term t. For example, consider a collection of 100 clinical notes in which the word 

“patient” exists in every note. If applying TF-IDF to the only note that contains the word 

“hypertension” (one time), the TF-IDF score of hypertension would be much higher than that of 

the word “patient.” Essentially, the word “hypertension” would be deemed as very important in 

this note as it is the only note containing the word. Despite the fact that the word “patient” 

appears the same amount of times as the word “hypertension” in that note, the word “patient” 

would be deemed less important because it appears in every note. Although the TF-IDF formula 

should apply low scores to common words, it is still considered a best practice to remove stop 

words when applying the technique.  

Sentiment Analysis 

​ Sentiment analysis is an NLP technique that determines the overall sentiment in a text. 

Sentiment analysis can be conducted in a variety of ways and can result in different kinds of 

output. The method of sentiment analysis used in this study, acquired from the sentiment module 

of the NLTK (Natural Language Toolkit) Python library, results in a numeric output value 

between negative one and positive one, where positive one indicates a positive sentiment, 

negative one indicates a negative sentiment, and zero indicates neutrality. 
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III.​ Ethical Considerations 

​ While the purpose of this study is to examine the use of free-text clinical notes in 

predictive modeling through the use of various resampling, modeling, and natural language 

processing techniques - rather than developing models to be applied in real world medical 

settings - it is still important to discuss the ethical implications of predictive modeling in 

healthcare. A significant portion of the ethical concerns regarding modeling in healthcare arises 

from the use of medical data. The three main concerns within this domain are privacy, consent, 

and bias. Privacy is a major concern because medical data often includes personally identifiable 

information (PII) which, if obtained by malicious individuals, can be used to commit insurance 

fraud or identity theft. Because of this, it is critical to properly anonymize the medical data used 

to train models so that individuals cannot be identified, thus ensuring their sensitive information 

is safe (Uwinama et al., 2023).  

Informed consent has long been a key moral principle in medicine as it is important for 

patients to fully understand the risks and benefits associated with their medical care so that they 

can make informed decisions. However, the introduction of machine learning and big data has 

added some new complexities to this traditional idea as it is often difficult for patients to 

comprehend how their data will be used. As a result, it is crucial to clearly explain to patients 

how their data will be used and the implications of such uses before obtaining their consent 

(Uwinama et al., 2023). The one caveat to this is data de-identification as oftentimes consent is 

not required when data is fully de-identified.  

 Finally, bias is also an incredibly relevant topic as the use of biased data in the training 

of machine learning models can lead to substandard model performance - an issue that can be 
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especially detrimental given the severity of some medical scenarios. Bias in medical data can 

appear in several ways. One of the more straightforward forms of bias in data is imbalanced 

sample sizes. This is especially relevant for medical data as many medical outcomes are 

relatively uncommon. Additionally, medical data often contains imbalance in some demographic 

characteristics, like race, as the locations from which data is collected often does not represent 

the distribution of the general population due to a wide variety of reasons. Another common 

form of bias in medical data arises from missing data, which is often missing due to nonrandom 

reasons. For example, individuals of low socioeconomic status often receive less treatment for 

certain diseases, thus causing there to be less available data for this group of people. More 

broadly, if and how a patient seeks medical treatment varies among different socioeconomic 

groups, creating systemic gaps in data that ultimately carry over to predictive models. Bias in 

data can also be caused by data labels and misclassification. Of course, misclassification, like 

diagnosing a patient with hypertension when they are within the normal range of blood pressure, 

can have a negative effect on predictive modeling as the data is not accurate. However, data 

labels themselves, even when classifying a patient as intended, can still lead to bias because they 

often do not fully capture the complexities of medical outcomes due to the subjective nature of 

diagnoses made by each individual care provider. As a result, the way data labels are created can 

have a significant effect on how well a model understands real world medical settings (Cross et 

al., 2024). 

​ Ethical concerns regarding modeling in healthcare also arise from the use of the models 

themselves. For example, the use of predictive models in medicine raises ethical questions 

regarding trustworthy communication and the relationship between patients and clinicians as 

patients will no longer know if the medical recommendations given to them by their healthcare 
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providers are simply a professional medical opinion or if they were formed using predictive 

models. This can ultimately lead to a loss of trust between patients and healthcare personnel. 

More ethical concerns stem from autonomy and how to define responsibility for the outcomes of 

predictive models (Petersson et al., 2023). For example, consider a model that predicts patient 

mortality within some time frame. A model like this could be used to determine which patients 

need the most immediate care. However, there are serious implications of a model like this 

getting one of its predictions wrong. If the model were to predict that a patient had a very low 

probability of death in the near future when that patient was actually high risk, it could cause 

medical professionals to not prioritize the care of this individual and thus put them in a 

dangerous situation. Conversely, if the model were to predict that a patient had a very high 

probability of death when the patient was not actually high risk, it could lead to the expenditure 

of resources that were not needed for that patient and could have been used for someone else. It 

is also important to consider the outcomes of predictive models when they are correct. For 

example, considering this same model, if it were to predict that a patient has a very high 

probability of mortality, it could cause some to believe that resources should not be spent on that 

patient as their situation is too severe. Overall, the predictions made by models in healthcare can 

have drastic consequences and someone needs to be held accountable for those decisions even 

though they are not made by humans. Because of this, it is imperative to emphasize that 

predictive models should simply be used as tools to assist medical professionals and not as a 

replacement for human judgement.  
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IV.​ Methodology 

Dataset 

Version 3.1 of the Medical Information Mart for Intensive Care IV (MIMIC-IV) dataset 

was used to conduct this study. MIMIC-IV contains a large collection of de-identified data from 

adult patients admitted to the emergency department or intensive care unit (ICU) at the Beth 

Israel Deaconess Medical Center (BIDMC) located in Boston, Massachusetts. The dataset 

contains records from over 200,000 patients admitted to the emergency department and more 

than 65,000 patients admitted to the ICU. MIMIC-IV is derived from the BIDMC’s custom 

electronic health records and a clinical information system specific to the ICU. This dataset was 

formed through a multi-step process, beginning with data acquisition. During data acquisition, a 

master patient list was developed for all patients admitted to the emergency department or ICU 

between 2008 and 2022 to keep track of all patients within the dataset. The data was then 

reorganized to enable more efficient retrospective data analysis by removing audit trails, 

denormalizing tables, and restructuring the data into fewer tables. The final step in the creation 

of the dataset was de-identification. All patient identifiers as specified by the Health Insurance 

Portability and Accountability Act (HIPAA) were removed and replaced with random ciphers, 

while all free-text data was anonymized using a free-text de-identification algorithm. The dates 

and times for each hospital visit were also randomly shifted into the future to further de-identify 

the data while ensuring the data for each individual patient remained temporally ordered. So, for 

example, if a patient had two procedures done four hours apart, this time difference would still 

be reflected in the data. However, two distinct patients admitted to the emergency department on 

the same day would likely have two distinct days of admission in the data (Johnson et al., 2024).  
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​ The MIMIC-IV dataset is organized into two modules: the hosp module, sourced from 

EHRs, and the ICU module, sourced from the ICU information system. The hosp module 

primarily contains data collected during the hospital stays, though some information, such as 

outpatient lab tests, originate from outside hospital admissions. This module consists of  

twenty-two unique tables and includes information like patient demographics, hospitalizations, 

lab measurements, provider orders, medication administration, and more. Meanwhile, the ICU 

module contains data more specific to stays in the intensive care unit. This module is separated 

into nine tables and contains information regarding intravenous and fluid inputs, patient outputs, 

medical procedures, and other charted information (Johnson et al., 2024).  

​ This study also leveraged the MIMIC-IV-Note dataset, a companion to the MIMIC-IV 

dataset which contains de-identified free-text clinical notes. This study will make use of the over 

300,000 discharge summaries that are present for roughly 150,000 patients admitted to the 

emergency department or hospital at BIDMC. The same inclusion criteria defined for the 

MIMIC-IV dataset were also applied for this notes dataset. De-identification was performed 

using both a neural network trained for de-identification and a custom rule-based approach, 

achieving highly accurate removal of protected health information (Johnson et al., 2023). An 

example discharge summary from the MIMIC-IV-Note dataset can be found in Figure 4.1 below. 
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Figure 4.1. An example discharge summary from the MIMIC-IV-Note dataset. 

As shown in the above figure, the discharge summary contains free-text that follows standard 

sentence structure at many points throughout the note. It also seems that it follows a predefined 

structure in that it begins a general set of information about the patient, including name, unit 

number, admission date, discharge date, date of birth, and sex of the patient. After this, the note 

discusses the patient’s reason for attending the hospital and summarizes the care she received 

while admitted. The note then ends with instructions given to the patient at discharge.  

Data Preparation & Modeling 

​ Following the acquisition of the MIMIC data sources, I began preparing the data for 

analysis using Python. As discussed prior, the MIMIC data sources contain large amounts of 

data, most of which were not required for this study. Therefore, I first identified which features 
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from the structured data to use for modeling by reviewing the content within each table of the 

MIMIC-IV dataset. I chose the admissions table from the hosp module as the starting point as it 

contains information about all 546,028 hospitalizations across the dataset. Each entry in this 

table represents a unique hospitalization and contains sixteen variables, including unique patient 

and admission identification codes, admission and discharge information, and demographic 

information. Table 4.1 below displays a sample of the admissions table. 

Table 4.1. A subset of the admissions table 

Subject ID 
HADM 
ID Admit Time Disch Time Admission Type 

Admission 
Location 

Discharge 
Location Insurance Race 

Hospital 
Expire Flag 

10000032 22595853 
2180-05-06 

22:23:00 
2180-05-07 

17:15:00 URGENT 

TRANSFER 
FROM 
HOSPITAL HOME Medicaid WHITE 0 

10000032 22841357 
2180-06-27 

18:27:00 
2180-06-27 

18:49:00 EW EMER. 
EMERGENCY 
ROOM HOME Medicaid WHITE 0 

10000032 25742920 
2180-08-05 

23:44:00 
2180-08-07 

17:50:00 EW EMER. 
EMERGENCY 
ROOM HOSPICE Medicaid WHITE 0 

10000032 29079034 
2180-07-23 

12:35:00 
2180-07-25 

17:55:00 EW EMER. 
EMERGENCY 
ROOM HOME Medicaid WHITE 0 

10000068 25022803 
2160-03-03 

23:16:00 
2160-03-04 

6:26:00 
EU 
OBSERVATION 

EMERGENCY 
ROOM NaN NaN WHITE 0 

 

Using the admission time and discharge time variables shown in the above table, I created a new 

variable to measure the length of stay of each patient by subtracting the discharge time from the 

admittance time, measuring the time in days. In order to carry out this calculation, I first 

converted both the time variables into datetime objects.  

Next, I turned to the patients table to extract more demographic information about each 

patient. More specifically, I extracted both age and gender from the patients table, using subject 

ID as the primary key. In addition to age and gender, I also extracted the date of death of each 

patient. As part of the de-identification process, date of death is only contained within the 

MIMIC-IV dataset if the patient’s death occurred within one year of their most recent hospital 

discharge. As a result, this variable allowed me to define one-year mortality by finding the 
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difference between the date of death and discharge time. To do this, I also had to convert the date 

of death variable into a datetime object. I called the resulting variable death_flag as it was binary 

(1 indicating the patient died within one year of their discharge) and decided to use this as my 

dependent variable when modeling.  

After defining this variable, I then reviewed the icustays table in the ICU module which 

contains information about 94,458 unique ICU stays. Because the ICU module contains data on a 

relatively small sample of the overall patients, I decided not to use any of its variables to keep 

my model as general as possible. However, I did create a new binary variable based on the ICU 

module to indicate whether or not each patient was admitted to the ICU during their hospital 

stay. This was done by using the hospital admission ID (hadm_id) as the primary key. I then 

created the final variable, previous hospitalizations, which contains the number of 

hospitalizations each patient has within the MIMIC-IV database prior to their current 

hospitalization. Table 4.2 below displays a sample of the final set of variables extracted from the 

structured data that were used for modeling.  

Table 4.2. The final set of variables used for modeling extracted from the structured data 

Admission 
Type 

Admission 
Location 

Discharge 
Location Insurance Race 

Length of 
Stay Age Gender 

ICU 
Flag 

Previous 
Hospitalizations 

Death 
Flag 

URGENT 
TRANSFER 
FROM 
HOSPITAL 

HOME Medicaid WHITE 0.786111 52 F 0 0 1 

EW EMER. EMERGENCY 
ROOM HOME Medicaid WHITE 1.015278 52 F 0 1 1 

EW EMER. EMERGENCY 
ROOM HOME Medicaid WHITE 2.222222 52 F 1 2 1 

EW EMER. EMERGENCY 
ROOM HOSPICE Medicaid WHITE 1.754167 52 F 0 3 1 

EW EMER. 
WALK-IN / 
SELF 
REFERRAL 

HOME 
HEALTH 
CARE 

Medicare WHITE 4.538889 72 M 0 0 1 
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In total, a set of eleven variables were selected from the structured data, including the dependent 

variable. This set includes the newly created variables, demographic information from the 

patients table, and some of the variables originally in the admissions table. When comparing this 

set to Table 4.1, it is clear that the two ID variables, the admission and discharge times, and the 

hospital expire flag variable (which defines which patients died during their hospital visit) were 

removed as I did not consider them meaningful predictors. 

Having established a set of variables to use for the structured data portion of my 

modeling, I completed the final steps of data preparation by removing certain entries. First, I 

removed all patients who died during their hospital stay as their inclusion would not be 

appropriate for a model that predicts one-year mortality post hospital discharge. Following this, I 

removed all patients with any missing data values for the selected variables. Finally, I removed 

all patients without a free-text discharge summary using the discharge table of the 

MIMIC-IV-Note dataset. This step was critical to ensure a one-to-one comparison between the 

models created using just the structured data and the combined structured and unstructured data. 

Figure 4.2 below summarizes how the dataset was narrowed down.  

 

Figure 4.2. Funnel plot summarizing the data preparation process. 
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As shown in Figure 4.2, the data preparation process resulted in the removal of roughly half of 

all hospitalizations in the MIMIC-IV dataset. Nonetheless, the resulting set of patients was still 

more than adequate for the modeling task of this study. 

​ Using the modeling dataset of patients defined above, I then carried out some exploratory 

data analysis to better understand the data prior to modeling. Figure 4.3 below displays the 

different locations patients were admitted from and their frequencies. 

 

Figure 4.3. The distribution of admission locations in the modeling dataset. 

This bar plot shows that the most common admission location of all patients in the modeling set 

is the emergency room. This is not very surprising considering that hundreds of millions of 

individuals go to the emergency room each year. The next most common admission location is 

physical referral which means that the patient was deemed to require hospitalization by their 

physician and thus referred to the hospital. All other admission locations are far less common. I 

also conducted a similar analysis of discharge location. This can be found in Figure 4.4 below. 
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Figure 4.4. The distribution of discharge locations in the modeling dataset. 

Based on Figures 4.3 and 4.4, it seems that both admission and discharge location variables 

follow a similar distribution. In the case of the discharge location, the most common location is 

home. This is logical as most people that go to the hospital receive care to the point where they 

no longer need it and can thus go home. Interestingly, the second most common location is home 

health care which means that patients are leaving the hospital and receiving more care at home 

by a professional.  

Following the analysis of admission and discharge location, I examined demographic 

features, like insurance, race, gender, and age. In this case, I am considering insurance a 

demographic feature due to its relationship with socioeconomic status. The distribution of 

insurance types can be found in Figure 4.5 below.  
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Figure 4.5. The distribution of insurance types in the modeling dataset. 

As shown in the above bar plot, Medicare is the most common type of insurance of the patients 

within the modeling dataset. This is logical given that Medicare is specifically for people over 

the age of sixty-five, a population more likely to experience illness and require hospitalization. 

After Medicare, the next most common insurance is private, followed by Medicaid. All other 

admissions then fall under alternate forms of insurance or no charge. Based on the distribution of 

insurances, it does not seem that the socioeconomic status of the population within the modeling 

dataset is outside the norm of the United States. The same can be said of the overall distribution 

of races and genders within the modeling set. Of all patients used for modeling, roughly 66% are 

white and 12% are black. Additionally, roughly 50.5% are female and 49.5% are male. This is 

fairly aligned with the general population of the US. The final demographic feature analyzed was 

age. Figure 4.6 below displays the distribution of patient age within the modeling dataset. 
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Figure 4.6. The distribution of age in the modeling dataset. 

As shown in the above histogram, the distribution of ages is left skewed and roughly centered 

around the age of sixty-three. This means that there is a disproportionately large number of 

patients above the age of roughly sixty-three which, again, aligns with the fact that older 

individuals are more likely to require hospitalization. This is also in alignment with the fact that 

the most common form of insurance in the modeling set is Medicare. 

​ At this point, I created several models to predict one-year mortality based on the 

structured data to form an idea of the baseline predictive power of the structured data and to 

understand which model types performed best. Prior to fitting the models, I used one-hot 

encoding to convert all categorical variables into numeric variables and scaled each numeric 

feature so that it had a mean of zero and standard deviation of one. This is standard practice 

when modeling with categorical data and numeric data that varies in scale. Also in accordance 

with modeling best practices, I set up a cross-validation framework with five folds to better 

assess model performance and prevent overfitting. Using the five fold cross validation, I fit a 

logistic regression model, a decision tree, a random forest, a gradient boosting classifier, and a 
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neural network. All of these models are common practice for classification tasks like the one in 

this study. 

To evaluate each model, I mainly considered the average recall of all five folds, given the 

nature of the models created. Because the models were predicting whether a patient would die 

within a year of being discharged, I wanted to ensure the models predicted as many of those 

patients who would go on to die correctly. I considered this as the most important predictive 

outcome with the underlying logic being that if a model predicting one year mortality were used 

in practice, identifying high risk patients could allow them to receive more urgent care and thus 

potentially save lives. There are other ethical factors to consider here, but this was the main 

criteria I maintained throughout the entire modeling process. Of course, when measuring recall, 

it is also important to consider precision or F1 score to ensure the overall model performance 

improves, not just that of the positive class. As a result, F1 score will also be discussed when 

evaluating model performance. In addition to recall and F1 score, accuracy, precision, and 

AUROC were also calculated for each trained model. 

​ Based on the results of the baseline models (which are provided in the Analysis & 

Discussion section), the need for data resampling was evident. Upon reviewing the data, I found 

that roughly 85% of all hospital admissions resulted in the patient surviving beyond one year 

post discharge, while the remaining 15% resulted in mortality within the year. Given the class 

imbalance, I tested multiple resampling methods to analyze their impact on model performance 

while determining which resampling method performed best. I used the neural network when 

testing the resampling methods as it performed best of all baseline models. I first tested two 

oversampling techniques, random oversampling and Synthetic Minority Oversampling 

Technique (SMOTE). I then tested random undersampling and edited nearest neighbors. Finally, 

37 



 

I tested two hybrid approaches by combining random oversampling with random undersampling 

and SMOTE with random undersampling. For all resampling methods applied (other than edited 

nearest neighbors) the minority and majority classes were made to be equal in size. Based on the 

model results, I ultimately decided upon using the hybrid random oversampling and random 

undersampling technique when creating all remaining models in this study.  

​ After testing the resampling methods, I recreated each baseline model using the hybrid 

random oversampling and undersampling technique for comparison purposes. I then began 

incorporating the unstructured clinical notes into each model type, leveraging different natural 

language processing techniques. Prior to applying specific techniques, I first cleaned and 

normalized the text. This process involved first changing all characters to lowercase and 

removing all special characters. After this, each word in each note was separated into tokens, all 

stop words (words such as ‘the’, ‘is’, ‘and’, etc.) were removed, and each word was lemmatized. 

The lemmatization process was important for this task as it ensures that each word is in its root 

form by changing all verbs to the same tense, all plural nouns to singular, and more. This allows 

NLP methods to derive clearer insights from each clinical note by reducing variations of the 

same words. The final step of the cleaning and normalization process was to recombine each 

token into a single string as they were before.  

With the discharge summaries cleaned and normalized, the first NLP method I applied 

was bag of words. Due to the large amount of clinical notes used for this analysis (which in total 

contain thousands of unique words), I decided to only consider the fifty most frequent words to 

significantly reduce the number of features for modeling while capturing the most important 

themes from the clinical notes. When obtaining the initial output, I found that even after data 

cleaning, some of the most common words in the notes were still not very meaningful. For 
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example, words like ‘date’ were included in the initial bag of words as all discharge summaries 

discuss the date on which it was written. Furthermore, there were many instances of numbers 

being very common. I subsequently removed these words and numbers and recreated the bag of 

words. Figure 4.7 below displays the fifty most common terms found using bag of words. 

 

 

 

Figure 4.7. A word cloud containing the fifty most common terms in the discharge summaries. 

In the word cloud above, size denotes the frequency of each term and color represents the 

category they fall within according to the given legend. The shown categories were created by 

myself based on the resulting words to drive insights and are separate from the natural language 

processing method of bag of words. The diagnosis and clinical assessment category contains 

words related to any diagnoses about a patient’s condition. As shown in red, the most common 

words within this category are patient and pain. The medications and prescriptions category 

contains words related to the medications a patient is taking. As shown in orange, the most 

common terms here are mg (milligram) and po (this term means a medication is to be taken by 

mouth). The procedures and imaging category contains words related to any clinical tests and 

procedures conducted to a patient. The only two words that fall under this category are exam and 

service, shown in yellow. Given the small size of these words, it is evident that they are relatively 
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uncommon compared to some of the other words shown. The timing and frequency category 

contains words indicating timeframes for monitoring or treatment. The most common word in 

this category is daily, as shown in green. The anatomy and body systems category contains terms 

referring to body parts or other physiological aspects. As shown in blue, the most common words 

in this category are left and right, perhaps indicating what side of the body a patient is 

experiencing a medical issue. The laboratory tests and results category contains words related to 

lab tests. Shown in purple, the most common word here is evidently blood, likely indicating that 

blood tests are very common. The final category is other and simply contains words that do not 

fall within the other listed categories. Words like home and history are within this category and 

are colored black. A subset of the table representation of the output of bag of words can be found 

in Figure A1 of the Appendix. 

​ After combining the bag of words output with the structured data previously used for 

modeling, I reran all five model types using the same data preparation and cross validation 

process. As mentioned prior, the hybrid random oversampling and undersampling was also 

applied to improve model performance. The same process was also applied for three more 

natural language processing techniques. Of these three, the first was binary bag of words. For 

this method, I also only selected the top fifty words but the selection criteria changed with the 

use of binary. Instead of selecting the most common words by using their total frequency in all 

documents, this method determined the most common words by how many notes they were 

present in. In other words, the sum of the binary values of each word was used. Figure 4.8 below 

displays the most common terms found using the binary bag of words method. 
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Figure 4.8. A word cloud containing the fifty most common terms using binary bag of words. 

Evidently, the binary bag of words method resulted in a significantly different set of words 

compared to the standard bag of words method. As shown by their size, the most common words 

in this case are allergy and birth. Interestingly, these two words were not even within the set of 

fifty words found using the standard bag of words method. This is due to one of the main 

limitations of using the binary version of bag of words for the discharge summaries in the 

MIMIC-IV-Note dataset. As shown in the example discharge summary in Figure 4.1, each 

clinical note begins with a standard set of information, including a patient’s name, admission 

date, date of birth, etc. Because of this, the words “name,” “admission,” “date,” “birth,” and 

more will be valued very highly using binary bag of words as they are present in all notes. While 

I removed most of these words from consideration when modeling, some instances remained, 

like birth and allergy. I decided against removing words like these as they could be important in 

other medical contexts. For example, the word “birth” could simply be used to denote one's date 

of birth, but could also be related to the birth of a child. Similarly, the word “allergies” (after 

lemmatizing, “allergies” turns into “allergy”) is listed in each discharge summary to denote any 
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medicine allergies a patient has but could also be used to discuss an allergic reaction a patient 

had during their hospital stay. A table representation of a subset of the output of binary bag of 

words can be found in Figure A2 of the Appendix.​

​ After testing the bag of words methods, I then tested the use of term frequency-inverse 

document frequency (TF-IDF). Like the bag of words methods described above, I also only 

considered the fifty most common words for this method. To determine which words were most 

common, I simply took the sum of the TF-IDF value of each word in each document and chose 

the words with the fifty highest values. Figure 4.9 below displays the most common words found 

using the TF-IDF method. 

 

 

 

Figure 4.9. A word cloud containing the fifty most common terms found using TF-IDF. 

Evidently, the most common words found using TF-IDF are related to medications and 

prescriptions as tablet refers to a pill and sig refers to the label of a prescription. Interestingly, 

one of the most common terms is also pm, which likely refers to post meridiem, indicating a time 

that occurred in the afternoon or evening. This could also be an abbreviation for past medical 

history. A table representation of a subset of the output of TF-IDF can be found in Figure A3 of 

the Appendix. 
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​ The final natural language processing technique applied was sentiment analysis, 

performed using the sentiment module of the NLTK Python library. Unlike the previous three 

methods described, sentiment analysis does not create features based on word frequency, but 

rather creates one feature that judges the overall sentiment of each discharge summary. Figure 

4.10 below displays the distribution of sentiments across all discharge summaries in the 

MIMC-IV-Note dataset.  

 

Figure 4.10. The distribution of sentiments across all discharge summaries 

Evidently, the distribution of sentiments is extremely right skewed as the vast majority of clinical 

notes have a sentiment score near -1, the most negative it can be. This is likely due to the unique 

qualities of medical data. First, medical dialogue tends to contain words that are innately 

associated with negative outcomes. Because the sentiment analysis is carried out based on the 

words in each note, it is logical that most would be negative. Additionally, sentiment analysis 

tools are not trained using medical data and thus do not fully understand the nuanced expressions 
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related to patient outcomes. Despite these challenges, sentiment analysis remained a valuable 

component to consider when modeling. The sentiment analysis model was the last to be fit, 

marking the completion of the modeling process. With all models created, the final step of this 

methodology was to carry out a feature importance analysis to better understand which features 

had the most impact on the prediction of one year mortality.  
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V.​ Analysis and Discussion 

​ This study aimed to evaluate the impact of using free-text clinical notes on the predictive 

modeling of healthcare outcomes. In doing so, five different model types - logistic regression,  

decision tree, random forest, gradient boosting classifier, and neural network - were applied to 

create one-year mortality predictive models using both structured data and the combination of 

structured data and free-text clinical notes. Additionally, this study leveraged and analyzed four 

natural language processing techniques and six resampling methods in order to maximize model 

performance. Below, I present the key findings derived from the previously described techniques 

using the MIMIC-IV and MIMIC-IV-Note datasets. The results are structured as follows: first, an 

overview of the baseline model performances without resampling, next, an analysis of the 

resampling methods and their application to the baseline models, and finally, an examination of 

the effects of the free-text clinical notes on model performance. 

​ As previously described, this study began with the creation of models trained using only 

structured data so that an idea of baseline model performance could be formed and thus used for 

comparison with later models. Table 5.1 below contains the results of these baseline models, 

created using the five different modeling techniques, and evaluated using accuracy, precision, 

recall, F1 score, and AUROC. 
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Table 5.1. Results of baseline models, trained using only structured data and no resampling 

 Logistic Regression Decision Tree Random Forest Gradient Boost Neural Network 

Accuracy 0.856 0.856 0.858 0.858 0.856 

Precision 0.708 0.675 0.79 0.739 0.595 

Recall 0.099 0.107 0.089 0.106 0.169 

F1 Score 0.173 0.185 0.16 0.185 0.262 

AUROC 0.546 0.549 0.542 0.55 0.574 

As shown in the above table, all baseline models perform very poorly. The only metric which 

seems to be positive is accuracy as every model type achieved an accuracy of roughly .86. 

However, when putting this value into the context that roughly 85% of the modeling dataset are 

patients who survived one year post-discharge, it is evident that the models are simply predicting 

the vast majority of patients to survive, thus incorrectly predicting the majority of patients who 

actually died. This is reflected in the very low recall scores of all the models. As explained prior, 

recall is the primary evaluation metric used in this study given the context of the models. Using 

the neural network as an example, its recall score of .169 means that only 16.9% of all patients 

who died are being predicted to do so. This means that if this model were to be put to practice, 

only 16.9% of all high risk patients would be flagged and thus given the additional care they 

require. Consequently, the remaining 83.1% would not receive any additional care. 

​ The high accuracy and low recall scores of the baseline models shown in Table 5.1 

exemplify the need for resampling. As a result, I tested six different resampling techniques using 

the same dataset. Because the neural network performed best of all models based on recall score, 

I used the neural network to test all resampling methods. Table 5.2 below shows the results of 

each resampling technique tested.  
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Table 5.2. The results of each resampling technique applied to the neural network, trained using 

only structured data 

 Baseline 
Random 

Oversampling SMOTE 
Random 

Undersampling 

Edited 
Nearest 

Neighbors 

Random 
Oversampling 
and Random 

Undersampling 

SMOTE and 
Random 

Undersampling 

Accuracy 0.856 0.71 0.726 0.696 0.805 0.702 0.72 

Precision 0.595 0.304 0.31 0.296 0.39 0.299 0.308 

Recall 0.169 0.701 0.646 0.716 0.487 0.714 0.664 

F1 0.262 0.424 0.418 0.419 0.432 0.422 0.42 

AUROC 0.574 0.706 0.693 0.705 0.676 0.706 0.697 

Using recall as the primary evaluation metric, it is evident that the use of resampling methods 

greatly improved model performance. In fact, the use of all resampling methods caused recall to 

increase by roughly forty-nine percentage points, on average. In this case, using random 

undersampling resulted in the model with the greatest recall score. Nonetheless, I ultimately 

decided against using random undersampling and instead chose the hybrid random oversampling 

and random undersampling technique for all other models in this study. I made this decision 

because random undersampling alone resulted in the loss of roughly 70% of the data in the 

modeling set. Meanwhile, the hybrid random oversampling and random undersampling 

technique resulted in a very similar recall score while maintaining much more of the data. 

Additionally, this hybrid technique outperformed the random undersampling technique in all 

other evaluation metrics calculated. It should be noted that the introduction of resampling 

techniques caused a notable decrease in accuracy and precision. For accuracy, one must 

remember that the resampling techniques removed the class imbalance. With this in mind, the 

new accuracy scores are actually quite positive as it is clear that the models are no longer 

predicting the same outcome for the majority of patients. For precision, the lower scores suggest 
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that more patients are being incorrectly predicted to die within a year-post discharge. 

Unfortunately, this is a necessary tradeoff if the desired goal is to predict as many of the patients 

who actually will die correctly. Considering the significant increase in recall, the subsequent 

decrease in precision is both understandable and acceptable. 

​ Having chosen to use the hybrid random undersampling and random oversampling 

technique based on the results shown in Table 5.2, I first recreated each baseline model from 

Table 5.1 so that they could be used as a basis of comparison for later models. The recall scores 

of each model type with this resampling technique applied can be found in Figure 5.1 below. The 

results in table form with all model evaluation metrics calculated can be found in Table A4 of the 

Appendix.

 

Figure 5.1. Recall scores of baseline models with resampling (using hybrid random 

oversampling and random undersampling), trained using only structured data. 

As shown with the neural network in Table 5.2, the use of random oversampling and random 

undersampling greatly improved model performance of all model types. On average, the recall 
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score of each model increased by roughly 61.5 percentage points. However, while the neural 

network model had the highest recall score prior to resampling, it had the lowest recall score 

after implementing random oversampling and random undersampling. This suggests that the 

neural network may be memorizing the resampled data rather than learning the underlying 

patterns of the data. Interestingly, the model with the highest recall score after applying random 

oversampling and random undersampling was the random forest model, which had the lowest 

recall score prior to resampling. This model’s recall score rose by roughly 65.5 percentage 

points, more than any other model.  

I then began incorporating the discharge summaries into the modeling process. In doing 

so, I tested four different natural language processing techniques: bag of words, binary bag of 

words, TF-IDF, and sentiment analysis. The recall scores of the models created using these 

techniques can be found in Figure 5.2 below. The results in table format with all model 

evaluation metrics can be found in Figure A5 in the Appendix. Note that these models were 

trained using both the structured data used in the baseline models and the insights derived from 

the discharge summaries using each individual natural language processing technique.  
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Figure 5.2. The recall scores of the models trained using both the structured data and discharge 

summaries, processed using four different NLP techniques. 

As shown in the above table, the best performing models were the gradient boosting classifiers 

trained using TF-IDF and bag of words, resulting in a recall score of .779 and .778, respectively. 

Interestingly, for all natural language processing techniques used, the gradient boosting classifier 

performed best out of all other model types. Notably, this is the only model type which improved 

with the introduction of each natural language processing technique compared to its baseline 

performance with resampling. The logistic regression improved for all NLP techniques other 

than sentiment analysis, where performance remained constant. The decision tree improved for 

bag of words and TF-IDF, while the random forest improved for all methods except binary bag 

of words. Interestingly, the neural network only improved with sentiment analysis. Given the 

limitations of binary bag of words and sentiment analysis that were discussed prior, it is logical 

that their inclusion resulted in worse performance relative to bag of words and TF-IDF. The 

reason the neural network only improved with sentiment analysis is likely related to the 

difference in dimensions of the training data: sentiment analysis resulted in only one new feature 
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for each data entry while the other methods resulted in fifty new features, based on the fifty most 

common words. The increased dimensionality likely caused the neural network to be unable to 

identify the underlying patterns of the data, thus causing it to not generalize well, decreasing 

model performance.  

Overall, model performance generally improved with the use of the clinical notes. This is 

shown in Figure 5.3 below, which displays the improvement in recall score caused by the 

inclusion of the discharge summaries for the best performing model of each model type. All 

recall score improvements are relative to each model’s baseline recall score with resampling.  

 

Figure 5.3. Highest improvement in recall score of each model type with the introduction of 

discharge summaries. 

As shown, the best performing neural network (with sentiment analysis) resulted in a recall score 

one percentage point higher than its baseline with resampling. Logistic regression improved by 

3.6 percentage points with TF-IDF, the decision tree improved by 2.7 percentage points with bag 
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of words, and the random forest improved by 2.1 percentage points with both TF-IDF and bag of 

words (these two models had the same recall score). Finally, the highest performing gradient 

boosting model, trained using TF-IDF, resulted in a recall score 4.6 percentage points higher than 

its baseline model with resampling. Overall, the use of the free-text clinical notes resulted in 

improved recall score for all model types.  

​ Of course, it is also important to consider precision or F1 score to ensure each model is 

not making a disproportionate amount of false negatives in order to increase the amount of true 

positives it predicts. Figure 5.4 below displays the change in F1 score for each model shown in 

Figure 5.3. All F1 score improvements are relative to each model’s baseline F1 score with 

resampling.  

 

Figure 5.4. Change in F1 score for the model of each type that showed the greatest improvement 

in recall with the inclusion of discharge summaries. 
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As shown in Figure 5.4, the majority of the models which improved the most in recall score also 

improved in F1 score, indicating that the overall predictive performance of these models 

improved while increasing the number of true positives predicted. Interestingly, the model which 

improved most in F1 score was also the model which improved most in recall score, the gradient 

boosting classifier with TF-IDF. In addition to having the highest recall score, this model also 

resulted in the highest F1 score of all models created in this study. The only model shown in 

Figure 5.4 that did not show an improvement in F1 score was the neural network with sentiment 

analysis, whose F1 score was just 0.1 percentage points lower than that of its baseline model 

with resampling. Nonetheless, the neural network did improve in F1 score with the introduction 

of the discharge summaries when using NLP techniques other than sentiment analysis. Overall, 

the use of the discharge summaries resulted in improved predictive performance for all model 

types.  

The final step of this study was to conduct a feature importance analysis to better 

understand which variables had the most effect on one-year mortality. Because the gradient 

boosting model trained using TF-IDF performed best out of all models, it was used for the 

feature importance analysis. Figure 5.5 below displays the feature importance of the ten most 

important features from the gradient boosting model using TF-IDF. Recall this model was trained 

using both the structured data and the words extracted from the discharge summaries using 

TF-IDF, so the most important features arise from both data sources. Also note that all of the 

categorical features from the structured data were one-hot encoded prior to modeling. 
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Figure 5.5. Feature importance of the ten most important features from the gradient boosting 

model using TF-IDF. 

In the above bar chart, dark red bars represent variables from the structured data and the pink 

bars denote words from the free-text discharge summaries. As shown, out of the top ten most 

important features, five are from the structured data and five are from the discharge summaries. 

However, the features from the structured data are overall more important to the predictions of 

the model as their average feature importance score is higher.  

Evidently, the feature deemed most important to the model was discharge location being 

equal to home, denoting that a patient was sent home after discharge from the hospital. It is likely 

that this feature decreases the probability of one year mortality as patients are only discharged to 

their home if deemed healthy enough to no longer require consistent care. The second most 

important feature was patient age, obtaining a feature importance score very similar to discharge 

location home. As patient age increases, it is likely that the chance of one-year mortality 

increases as well given that health tends to deteriorate as people age. The third most important 

feature was the term “ct” from the discharge summaries, with a feature importance score that 
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indicates it is roughly half as important as the discharge location home and patient age features. 

The high TF-IDF score of this term in a discharge summary likely indicates that multiple ct scans 

were performed or that the results of a ct scan were significant. This suggests that the patient’s 

condition is not well, thus suggesting that this feature likely increases the probability of one-year 

mortality. The next most important feature was the previous_hospitalizations variable which 

contains the number of hospitalizations a patient had prior to their current one within the 

MIMIC-IV dataset. Logically, the higher the number of previous hospitalizations, the more likely 

a patient is to die within a year of discharge as multiple hospitalizations suggests a patient has a 

persistent health issue severe enough to require hospitalization. The fifth most important feature 

was the word “disease” from the free-text discharge summaries. The high inclusion of this word 

in one’s discharge summary likely suggests a more complex patient situation as the patient could 

be suffering from multiple diseases or have a family history with many diseases. As a result, the 

probability of one year mortality likely increases as the TF-IDF of this term increases.  

Following the term “disease”, the next five most important features are admission type 

surgical same day admission, discharge location hospice, “lung,” “normal,” and “please.” The 

first two of these features are from the structured data, with the first denoting that a patient was 

admitted to the hospital for a same day surgery, and the second denoting that a patient was 

discharged to a hospice. Logically, both of these occurrences increase the chance of one-year 

mortality. The last three features are all from the free-text discharge summaries. The word “lung” 

suggests a patient has issues with their lungs, likely increasing their probability of one year 

mortality. The word “normal” suggests that a patient’s condition is normal, suggesting they are 

less likely to die within a year of discharge. The final word, please, does not have such a logical 

relationship with one year mortality. This word is mostly used in the discharge summaries when 
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discussing the discharge instructions given to patients or when making suggestions to other 

doctors for future visits. It is overall unclear if this would suggest a patient is more or less likely 

to die within a year of discharge. 
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VI.​ Conclusion 

Summary of Findings 

​ Predictive modeling in healthcare will only become more prominent in the coming years. 

Because of this, it is critical to fully understand the value of all healthcare data sources that can 

be used to train models. This study examined the effect of using free-text clinical notes to train 

predictive models in healthcare, leveraging over 300,000 discharge summaries from the 

MIMIC-IV-Note dataset. Through the application of these discharge summaries to five different 

modeling techniques and four different natural language processing methods, this study found 

their inclusion to incrementally improve model performance. All model types trained - logistic 

regression, decision tree, random forest, gradient boosting classifier, and neural network - 

improved with the use of at least one of the NLP techniques tested. Overall, the model that 

performed best was the gradient boosting classifier trained using TF-IDF, obtaining a recall score 

of .779 - 4.6 percentage points higher than that of its baseline with resampling. Applied to the 

dataset used to train the models, this increase in recall score equates to roughly 1,900 more 

admissions being correctly identified as high risk for one-year mortality. Not only did the 

gradient boosting classifier achieve the best recall score when trained using TF-IDF, it was also 

the only model type that saw improved predictive power with all NLP methods tested. Out of all 

these NLP techniques, both bag of words and TF-IDF seemed to be the most effective at deriving 

meaningful insights from the discharge summaries as the models trained using the outputs of 

these methods resulted in the highest average improvement.  

This study also highlighted the importance of using resampling techniques when training 

predictive models in healthcare. Like many healthcare outcomes, one-year mortality is heavily 
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unbalanced as the vast majority of patients tend to survive more than one-year post discharge. 

This imbalance resulted in the extremely poor performance of the initial baseline models. After 

testing and applying many different resampling techniques, this study found the hybrid random 

oversampling and random undersampling to result in the best model performance. Applying the 

technique caused an average increase in recall score of 61.54%. Overall, the model 

improvements caused by the application of resampling techniques and the inclusion of free-text 

clinical notes show that they are absolutely critical for models in healthcare. With the improved 

performance of these models, proper care can be provided to all patients who need it most, thus 

leading to improved health outcomes and even saving lives. 

Limitations 

​ The main limitations of this work lie in the techniques applied for resampling and natural 

language processing. Due to the large size of the data used to train the models, relatively simple 

resampling and NLP methods were used. More advanced techniques were applied but either 

resulted in prohibitively long runtimes or required more memory than my computational 

resources could provide. For example, when analyzing the resampling techniques, I tested 

random oversampling, random undersampling, SMOTE, edited nearest neighbors, and two 

hybrid techniques created by combining two of the previously mentioned methods. Random 

oversampling and random undersampling are two of the simplest resampling techniques as data 

entries are randomly selected and duplicated or removed. SMOTE and edited nearest neighbors 

are more complex, in comparison, as SMOTE generates synthetic data entries and edited nearest 

neighbors applies a clustering algorithm. In addition to these methods, I also tested Tomek Links, 

cluster centroids, and adaptive synthetic sampling (ADASYN), but all of these techniques proved 
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to be too complex in that they resulted in challenging runtimes. It is possible that these 

techniques would have provided better model performance than those shown in this study.  

The natural language processing techniques shared similar challenges. Firstly, as 

discussed prior, sentiment analysis and binary bag of words contain their own unique constraints, 

potentially leading to worse model performance. Nonetheless, both of these techniques in 

addition to bag of word and TF-IDF are all relatively simple and some even share similar 

underlying mechanisms. Besides these techniques, I also tried using Clinical BERT, a language 

representation model trained specifically for medical text, but unfortunately ran into memory 

constraints given the number of clinical notes being processed. This method, given that it was 

trained specifically for the medical domain, likely would have resulted in higher model 

performance than the NLP methods applied in this study. 

Future Work 

​ This thesis lays the foundation for further analysis of the effects of free-text clinical notes 

in healthcare modeling, presenting many potential areas for future research. For example, this 

study can be built upon by testing more complex resampling and NLP techniques, as discussed in 

the previous section. To do this, more powerful computation resources than those used for this 

study would be required if using the same training dataset. Another option that would likely 

allow for more complex techniques to be applied would be to use a smaller dataset to train the 

models. The simplest way to reduce the size of the dataset is to simply take a random subset. 

However, one can also more deliberately select a smaller dataset with the goal of analyzing a 

specific population of patients. For example, instead of using the entire patient population (after 

applying data cleaning) like in this study, future work could focus on patients with specific 

demographic features or specific diseases. This would greatly reduce the size of the data used for 
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modeling while still allowing for conclusions to be made regarding the use of clinical notes in 

healthcare models. Additionally, this type of study could also reveal interesting trends about the 

patient population used for modeling, thus adding another layer to this work.  

​ Another area for further research is to create models that predict outcomes other than 

mortality. These outcomes include, readmittance, length of stay, ICU admission, disease, and 

more. Of course, some of these outcomes would require clinical notes other than discharge 

summaries as outcomes like length of stay or ICU admission would already be known if the 

patient has been discharged. Not only would the prediction of different outcomes potentially 

provide different insights regarding the use of clinical notes, but the use of clinical notes other 

than discharge summaries may do the same. To add another layer of complexity to the outcomes 

being predicted, time can also be considered. For example, instead of predicting whether a 

patient will die within a year of discharge in a binary fashion, models can be trained to also 

predict when each patient will die within the year, if at all. This would require the use of more 

complex model types that can consider time, but would result in predictions that are more 

interpretable, as the severity of a patient’s situations could be assessed using their predicted date 

of death. 
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Appendix 

Table A1. A subset of the final output obtained using bag of words. 

 

Table A2. A subset of the final output obtained using binary bag of words. 

 

Table A3. A subset of the final output obtained using TF-IDF. 
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Table A4. Results of baseline models with resampling (using hybrid random oversampling and 

random undersampling), trained using only structured data 

 Logistic Regression Decision Tree Random Forest Gradient Boost Neural Network 

Accuracy 0.691 0.673 0.686 0.645 0.701 

Precision 0.291 0.283 0.292 0.262 0.299 

Recall 0.715 0.741 0.744 0.733 0.714 

F1 0.414 0.409 0.419 0.386 0.422 

AUROC 0.701 0.701 0.71 0.681 0.706 

 

Table A5. The results of the models trained using both the structured data and discharge 

summaries, processed using four different NLP techniques 

  Logistic Regression Decision Tree Random Forest Gradient Boost Neural Network 

Bag of Words 

Accuracy 0.728 0.673 0.707 0.714 0.746 
Precision 0.327 0.287 0.312 0.32 0.333 

Recall 0.74 0.768 0.765 0.778 0.666 
F1 0.453 0.418 0.443 0.453 0.444 

AUC 0.733 0.712 0.731 0.74 0.713 

Binary Bag of 
Words 

Accuracy 0.693 0.673 0.687 0.684 0.702 
Precision 0.293 0.282 0.291 0.292 0.293 

Recall 0.718 0.74 0.735 0.754 0.677 
F1 0.416 0.408 0.417 0.421 0.409 

AUC 0.703 0.7 0.707 0.713 0.692 

TF-IDF 

Accuracy 0.727 0.681 0.717 0.719 0.749 
Precision 0.327 0.291 0.32 0.325 0.338 

Recall 0.751 0.764 0.765 0.779 0.673 
F1 0.456 0.422 0.452 0.458 0.45 

AUC 0.737 0.715 0.737 0.744 0.718 

Sentiment 
Analysis 

Accuracy 0.691 0.678 0.689 0.688 0.696 
Precision 0.291 0.286 0.294 0.296 0.297 

Recall 0.715 0.741 0.745 0.759 0.724 
F1 0.414 0.412 0.422 0.426 0.421 

AUC 0.701 0.704 0.712 0.717 0.708 
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