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Abstract

The goal of this research is to address the challenge of deck construction in Magic the

Gathering's Commander format, a task requiring players to create a deck of 100 cards from a

card pool of over 28,000 different cards while also adhering to the color identity constraints of

the card chosen to be their commander. The objective is to develop a recommendation system, a

tool that uses collaborative filtering to suggest relevant cards to the player based deck

construction patterns of the commander community.

The recommender system utilizes Alternating Least Squares (ALS) matrix factorization

to identify latent features which capture the relationship between cards in a Commander deck. A

model was trained using 220,000 player-created decks scraped from a popular deck building

website. The model was tuned by systematically testing various configurations of

hyperparameters which include latent factors, regularization values, confidence scaling, and

iteration counts to determine the optimal configuration.

A final model was produced using 600 latent factors, regularization of 2.25, alpha of 10,

and iteration count of 25. This parameter configuration resulted in an F1 score of 0.33 and MRR

of 0.063. Additionally, it had a precision@5 of 0.64 and precision@10 of 0.58 when tested with

a seed of 40%, meaning that 64% of the top 5 and 58% of the top 10 recommendations appeared

in the test decks.
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Introduction

Magic the Gathering (MTG) is a collectable trading card game created by mathematician

Richard Garfield and published by Wizards of the Coast in 1993. Despite being over 30 years

old, Magic has maintained its position as one of the world's most popular trading card games

with a player base of over 40 million people. Magic has many formats which dictate how the

game is played, one of which being Commander. Commander has become one of Magic's most

popular formats due to its focus on casual play and unique deck-building structure.

Building a Commander deck can be a daunting task for both new and experienced

players. This process requires players to create a deck of 100 card deck (one of which being their

commander) from a pool of over 28,000 unique cards. The format also imposes additional

constraints in that each deck may contain no more than one copy of any non-basic land and all

cards must adhere to their chosen commander's color identity. Given these constraints and the

large number of cards to pick from, Commander deck construction requires extensive knowledge

of the game and its cards. The current deck building process involves users having to look

through extensive card lists or manually search for other decks for inspiration. There is a popular

recommender system used by the Magic community, however their methods are not public and

seem to be based only on card frequency rather than identifying card synergies.

This research intends to develop a recommender system which assists players in this

deck construction process. It will provide players with suggested cards based on the player's

chosen commander, the commander's color identity, and cards they may or may not already have

chosen to be in their deck. To do this, collaborative filtering through Alternating Least Squares
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Matrix Factorization is used to identify patterns and card synergies based on historical deck list

data using over 200,000 player-created decks.
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Chapter 1 - Background

1.1 Introduction

This chapter covers the background of my work, covering the basics of Magic the

Gathering and Recommender systems

1.2 Overview of Magic the Gathering and the Commander Format

This section intends to cover the very basics of Magic the Gathering. Magic is a complex

game requiring strategic thinking and resource management. While this section will not give a

detailed guide on how to play the game, it will provide enough context for someone with zero

knowledge of the game to understand the core concepts of my recommender system.

1.2.1 Magic Basics

The main resource in Magic is "mana", which is generated from "lands" - a type of card.

Typically, a player may play one land on each of their turns, which can each be "tapped"

(indicated by turning the card sideways) once per turn to create mana. There are five basic land

types, each of which is associated with a different color, producing one mana of that color. This

mana is used as a cost to play the other non-land cards in

the player's hand. Figure 1 shows the different land types,

the color mana they produce, and the symbol used on cards

to indicate the mana type.
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These other non-land cards come in some combination of colors or may be colorless. A

card's color is determined by the symbols in its cost shown at the top right of the card.  This cost

could be represented as a generic cost, meaning any color of mana can be used to play it, or a

color symbol, meaning a specific color of mana must be used to play it. These cards have

various effects which are used to achieve the primary objective of dealing damage to reduce your

opponent's life total to 0 to win the game.

An example of the Magic card ‘Shivan Dragon’ is

shown in Figure 2. At the top-right corner of the card, we can

see the card's mana cost. The cost to play this card is 4

generic mana, which can be paid with any color mana, plus

two additional red mana.

On the card, directly below the art, we can see the

creature's type-line - in this case ‘Creature - Dragon’.

‘Creature’ is the main type and ‘Dragon’ is the subtype.

Going forward, when ‘card type’ is mentioned it will be referring specifically to the main type.

Below the type-line, is any rules text for the card which describes what the card does.

Each card has a unique effect which creates synergies between cards.

1.2.1 Commander Format

The Commander format differs from a typical game of Magic. It alters how the game is played

and the rules for deck construction in the following ways:

1. Gameplay Differences:

5



a. Commander is played with 3-5 players (compared to 2 players in a typical

non-Commander game)

b. Players start at a higher life total of 40 (compared to 20)

c. Each player's commander starts outside the deck and may be played multiple

times for an increase cost each time it's played

d. An alternate lose condition is in place, in which taking 21 or more damage from a

specific commander causes you to lose the game

2. Deck Construction:

a. Each deck must contain exactly 100 cards (99 cards and a commander)

b. Only one copy of any specific card may be included in your deck (excluding

basic lands)

c. All cards in a players deck must adhere to their chosen commander's color

identity

A card's color identity may be different from a card's color. The color identity of a card is

determined by the color of the mana symbols in its casting cost in addition to and colors of mana

symbols appearing in its rules text. Using a commander with a single color identity would

restrict a player's card choices to only using cards of that color and colorless cards (e.g. a red

commander would restrict a player to only red and colorless

cards). Using a commander with a multi-color color identity

would restrict a player to cards which are a subset of those

colors and colorless cards.

In Figure 3, we see a card named ‘Kenrith, the

Returned King’. This card has a white symbol in its casting

cost, meaning this card’s color is white. However, the card’s

rules text contains symbols for each other color, meaning this

card’s color identity includes all colors. This would mean a
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person constructing a Commander deck with Kenrith as the commander may add cards of any

color combination to their deck.

Additionally, there are restrictions on which cards may be designated as a commander.

This commander typically defines the goal and strategy of the deck.

1.3 Recommender Systems

This section gives an overview of the different types of recommender systems. Special

attention will be made to collaborative filtering, as it is the implementation chosen for the deck

recommender system.

The field of recommender systems encompasses the tools and methods used to provide

suggestions, prioritizing items likely to be of interest to the user. It achieves this by learning

from a large quantity of data to identify patterns. [1] An example of a Recommender System

would be Netflix recommending shows to a user by analyzing their watch history and comparing

it to the watch history of similar users.

Recommender systems generally fall under three categories[3]:

● Content-based filtering

● Collaborative filtering

● Hybrid Approach

1.3.1 Content Based Filtering

Content-based Filtering recommends items based on an analysis of their features to

match them with user preferences. This method focuses on a single user's behavior and relies

heavily on item descriptions and user profiles. We commonly interact with these types of
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recommender systems when we get suggested news articles or restaurants. The advantage of this

method is that it provides personalized recommendations based on the individual's past behavior.

A common hurdle to overcome for this type of recommender system is the "new user" problem,

in which a new user has little to no behavior history to base recommendations off of.[3]

1.3.2 Collaborative Filtering

Collaborative filtering provides recommendations to a user based on the behavior of

multiple similar users.[3] It finds a set of nearest neighbors associated with each user and how

they rate each item to predict the preferences of a specific user.[2] Unlike content-based filtering,

collaborative filtering does not require explicit knowledge of an item’s features to make

predictions. Collaborative filtering can be further split into memory-based collaborative filtering

or model based collaborative filtering.[3]

Memory-based collaborative filtering uses the entire database to generate

recommendations. This method can be further split into two additional subcategories; user-based

memory filtering and item-based filtering. User-based memory filtering computes the similarity

between users. It identifies similar users and compares their rating on a given item to predict

how the target user would rate items they have not rated yet. In contrast, Item-based

collaborative filtering computes the similarity between items. It calculates how similar other

items are to items the user has already interacted with, then recommends a set of the most similar

items.[3]

Model-based collaborative filtering generates a model from the data and learns from past

user interactions to improve the performance of the model. A common method to achieve this is
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through matrix factorization - the method used by my recommender system. The key advantages

of model-based collaborative filtering is it's scalability and ability to handle sparse matrices.[3]

My implementation for the Magic Commander deck recommender utilizes model-based

collaborative filtering, where 'decks' are treated as 'users' and 'cards' are treated as the 'items'.

This is achieved through Alternating Least Squares (ALS) matrix factorization to capture the

latent feature relationships between decks and cards, which will be covered in Section 1.4.

A common issue needed to overcome with this type of recommender system is the

“cold-start” problem, which is when there is not enough context given to generate meaningful

recommendations. This would apply to my recommender system in the scenario where a user

provides their chosen commander but no additional cards.

1.3.3 Hybrid Filtering

Hybrid recommenders utilize both content-based filtering and collaborative filtering to

provide more optimized recommendations and avoid some limitations of each technique. [3]

1.4 Alternating Least Squares (ALS)

Alternating least squares is the matrix factorization technique used by my deck

recommender system. It is a process for taking a large matrix and factoring it into a smaller

representation of the original matrix. This section will cover the process of matrix factorization

and why it was the chosen technique.
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1.4.1 How ALS Works

ALS works by attempting to decompose a large, sparse matrix into two smaller, dense

matrices. The original matrix is sparse because there are only 100 cards included in each deck,

out of over 28,000 possible cards. These smaller matrices represent the user and item matrices -

or in my case, deck and card matrices. These matrices contain the hidden, latent factors which

explain why certain cards appear together.[4] Each deck and card is represented by a vector of

latent features. The dot product of these vectors predicts the likelihood a card is going to be

included in a deck.

ALS solves the matrix factorization problem through the following steps:

1. Start with random values for both matrices

2. Fix the item (card) factors and solve for the user (deck) factors

3. Fix the user factors and solve for item factors

4. Repeat this process until convergence

This can be represented with the equation R ≈ U x V, where R is the original deck-card

matrix, U is the deck-feature matrix, and V is the card-feature matrix. The number of features

(factors) is a hyperparameter, which must be tuned to find the appropriate value. Figure 4 shows

how Alternating Least Squares matrix factorization is applied to my dataset.
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1.4.2 ALS Hyperparameters

The performance of an ALS model can be tuned using the following hyperparameters:

● Latent Factors: This parameter controls the number of factors used in the smaller, dense

matrices (U and V) produced by the ALS algorithm. Increasing the number of factors

enables the model to capture more complex patterns from the data, however too many

factors can lead to overfitting.

● Regularization: This parameter helps prevent overfitting by penalizing large values in

the factor matrices. Increasing this value provides more of that penalty. Higher

regularization produces a more generalized model, whereas lower regularization

produces a model which matches the training data more closely.

● Alpha: This parameter provides the confidence scaling which increases the importance

of implicit feedback. Higher alpha values provide more weight to cards that appear in

many decks compared to cards that do not.

● Iterations: This parameter controls the number of times the ALS algorithm alternates

between fixing the deck factor matrix and card factor matrix. Generally, more iterations

lead to better convergence, however there are diminishing returns after a certain point.

1.4.3 ALS with Implicit Feedback

A key feature of ALS is its ability to work with implicit feedback. Unlike explicit

feedback, such as rating something on a scale from 1-5 stars, implicit feedback simply indicates

whether a user interacted with an item. ALS incorporates this implicit feedback through the

tunable confidence parameter, alpha. When solving for deck and card factors,  higher alpha
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values increase the importance of observed positive interactions. [4,5] For my system, the

implicit feedback is represented by a card being included in a deck. This is based on the

assumption that a card included in a given deck is considered a positive interaction for that deck.

1.5 Conclusion

This chapter provided the background of the Magic the Gathering Commander format,

recommendation systems with a focus on collaborative filtering, and Alternating Least Squares

which is the method used for matrix factorization. This background provides context for the

methodology I used to implement my recommender system described in the next chapter.
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Chapter 2 - Methodology

2.1 Introduction

This chapter outlines the methodology used to develop my Magic the Gathering

Commander deck recommendation system. It covers data collection and processing, system

design, and approach to hyperparameter tuning.

2.2 Data Collection and Processing

The data for my recommender system was over 250,000 player-created decks from the

popular deck-building website, Moxfield [6], using their API. This site allows users to build and

share their Commander decks. This data was web scraped from between September and

December of 2024 and stored into a MySQL database. Additional data about each card,

including images of the cards, was obtained from Scryfall [7], a public Magic Card database.

A MySQL relational database was implemented to give the ability to store and query the data

efficiently. The primary database entities are:

● Cards - This contains the card details, such as name and casting cost, for 28,052 unique

Magic cards.

● Commanders - The subset of 2,414 cards which can designated as your commander

● Decks - 257,103 player-created decks and their commander identities

● Colors - Contains color identities for the 5 different colors and colorless cards

● Types - Contains the different card types (Creature, Sorcery, etc.)

The tables to manage the many-to-many relationships between these tables are:
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● Deck_cards - maps the card identities to their associated decks

● Card_colors - links the cards with their colors

● Card_color_identity - associates the cards with their color identities to ensure adherence

to the Commander format restrictions

● Card_types - links the cards with their card types

This preprocessed data is what will be used to create the sparse card-deck matrix. The database

schema I designed can be seen in Figure 5, which illustrates the entity relationships of the tables

in the database.

2.3 System Design

There are two core components to the recommender system: the MTGDatabase class

which handles the database connection and common queries and the ALSRecommenderClass

which utilizes the collaborative filtering algorithm. These two components work together to

transform the card and deck data into personalized recommendations for the user.
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2.3.1 Database Integration

The MTGDatabase class serves as the Data Access Layer, managing database

connections and queries. This implementation utilizes SQLAlchemy to connect to the database

and Python's built in context manager to ensure connections are properly closed. This class

includes methods for all common database queries needed by the recommender system. The

query results are standardized, returning all data as python dictionaries.

2.3.2 Data Processing Pipeline

The ALSRecommender class serves as the data processing pipeline and consists of 3

main stages.

Initialization Stage

1. The recommender is initialized with passed through or default hyperparameters. These

hyperparameters are discussed in more detail in Section 2.4.

2. A model may optionally be loaded/saved, which gives the ability to avoid having to

rebuild the model each time.

Model Building Stage

If a model is loaded in the prior stage, this stage is skipped.

1. The system retrieves the deck data from the database

2. All unique card IDs are identified, filtering out basic lands

3. A sparse deck-card matrix is created where the rows represent decks, cards represent

cards, and values represent the confidence levels.
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4. The Alternating Least Squares algorithm performs matrix factorization to produce the

card-factors and deck-factors

Recommendation Stage

● The user provides their commander and any cards they may already have in their deck.

● A deck vector is created using a weighted combination of the average deck vector of

decks with the same commander (30%) and the average vector of existing cards in the

deck provided by the user (70%)

○ This implementation uses a weighted average of known decks with the

commander in an attempt to overcome the “cold-start” problem, where there is

not enough context to make accurate predictions. Cards already in the deck are

weighed higher to help provide more personalized recommendations as more

cards are added to the user's deck.

● The dot product of this deck vector and the card-factors is taken to calculate a score for

each card. This score is the likelihood that card belongs in the user’s deck.

● Once these scores are returned, additional filtering is applied to:

○ Remove the cards already in the deck, including the commander

○ Only keep cards matching the commanders color identity

● The recommendations are then sorted by their score and returned to the user.
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2.4 Hyperparameter Tuning

An ALSEvaluator class was created to evaluate different hyperparameter configurations

for the final model. This class takes a list of different hyperparameters to test ranges of

combinations of parameters. These hyperparameters included:

● Latent Factors - The number of hidden features for cards and decks

● Regularization - Prevents overfitting and increases generalization of the model

● Alpha - Confidence scaling of the model to increase the importance of implicit feedback

(card inclusion).

● Iterations - The amount of times the ALS algorithm alternates between fixing card and

deck matrices

● Seed Percentage - How much of the deck is used as seed cards

For each hyperparameter configuration, a model was built using a random set of 200,000

decks, which were controlled by a random seed to ensure the same decks were used each time.

Each of these decks were tested against a set of test decks, which were split based on the seed

percentage. These seed cards would imitate the cards provided by the user as input. The

remaining cards, which are not being used as seed cards, would be “target cards” which would

be compared to the recommended cards to evaluate the quality of the recommendations

produced by the system.

Once the models were created, they were evaluated based on the following metrics:

● Precision: the proportion of recommended cards appearing in the target cards

● Recall: the proportion of target cards appearing in the recommended cards

● F1 Score: Harmonic mean of precision and recall, providing a balanced assessment of

precision and recall
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● Mean Reciprocal Rank (MRR): How earlier the target cards appear in the

recommendations, measuring the position of highly relevant cards.

● Precision@k: Precision for the top k recommendations, measuring the quality of the

recommendations in the first k recommendations.

Multiple evaluation runs were performed using different hyperparameter configurations

informed by the results of the previous rounds of testing. This approach allowed me to see how

each parameter impacted the recommendation quality and determine an optimal hyperparameter

configuration set. Tableau was used as a visualization tool to help interpret the results of these

tests, which is further discussed in Chapter 3.

2.5 Conclusion

This chapter detailed the methodology used to create the Magic the Gathering

Commander deck recommender system. It covered data collection and processing, system

design, and the tuning of model hyperparameters. The next chapter will discuss the results of

tuning the hyperparameter and the final model.
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Chapter 3 - Analysis and Discussion

3.1 Introduction

This chapter will discuss how the final model was created, using the results of the

hyperparameter tuning discussed at the end of chapter 2. It will show the final model was

obtained, which was trained on 200,000 decks and tested against 20,000 decks. It will also show

the impact of each hyperparameter on model performance by analysing the performance metrics

F1 Score, Mean Reciprocal Rank (MRR), and Precision@5 (P@5).

Trying to visualize many parameter configurations simultaneously can lead to overly

complex, and potentially uninterpretable, visualizations. Therefore, the visualizations in this

chapter will have certain hyperparameters intentionally fixed. This approach provides a way to

isolate the individual impact of specific parameters, allowing for a clearer interpretation of how

each parameter affects the model’s performance.

3.2 Hyper Parameter Tuning Results

3.2.1 Tuning Run 1

This initial run systematically tested each combination of the following hyperparameter

values: regularization (0.5, 1, 2), alpha (10, 20, 30), and iterations (20, 25). This resulted in 18

distinct ALS models, which were all evaluated using F1 score, MRR, and P@5. The number of

factors was set to 250 and a fixed seed percentage of 40%. This initial factor count was chosen

as a starting point, as it seemed like a good enough factor count to capture meaningful
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relationships while also keeping the training time low. The goal was to establish a good starting

point for my parameters. The results of this test can be seen in Table 1 below.

Factors Reg Alpha Iter F1 Score MRR P@5

250 0.5 10 20 0.3128 0.0571 0.5850

250 2 10 20 0.3256 0.0591 0.5898

250 1 10 20 0.3209 0.0589 0.6004

250 0.5 10 25 0.3136 0.0573 0.5866

250 2 10 25 0.3258 0.0591 0.5910

250 1 10 25 0.3223 0.0593 0.6038

250 0.5 20 20 0.3072 0.0561 0.5772

250 1 20 20 0.3137 0.0576 0.5892

250 2 20 20 0.3235 0.0592 0.5986

250 0.5 20 25 0.3081 0.0564 0.5768

250 1 20 25 0.3150 0.0578 0.5908

250 2 20 25 0.3244 0.0594 0.6004

250 0.5 30 20 0.3057 0.0557 0.5698

250 1 30 20 0.3102 0.0568 0.5820

250 2 30 20 0.3188 0.0585 0.5966

250 0.5 30 25 0.3063 0.0559 0.5710

250 1 30 25 0.3115 0.0571 0.5856

250 2 30 25 0.3197 0.0586 0.5958

Table 1 - Results from Tuning - Run 1

Figure 6  visualizes how regularization values (0.5, 1, 2) affect model performance, when

keeping latent factors fixed at 250 and iterations fixed at 20. The data used in this chart can be

seen in Table one, highlighted in yellow. This chart shows the F1 score consistently improving as

regularization increases from 0.5 to 2 across all alpha values. This suggests the model may be

prone to overfitting at lower regularization levels. MRR follows a similar positive trend, though

less pronounced when moving from regularization 1 to 2, indicating there may be some

diminishing returns. The effects on P@5 showed a different pattern, at an alpha value of 10, the

peak performance was observed at a regularization level of 1. However, when alpha was 20 and
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30, peak performance was observed to be at regularization level 2. This suggests that when the

implicit feedback is weighed more heavily, stronger regularization is necessary to prevent

overfitting. We can also see a general trend of performance increasing with lower alpha level.

Based on this analysis, I chose to focus future tuning runs on higher regulation levels and lower

alpha values.

3.2.2 Tuning Run 2

Based on the results from Run 1, I decided to focus on higher regularization values and

further refine the alpha values. This run also investigated increasing the number of latent factors.

This run tested each combination of the following hyperparameter values: factors (300, 350),

regularization (1, 2), alpha (5,10,15), and iterations (20, 25). This resulted in the creation of 24

distinct models. The results of Run 2 can be seen in Table 2 below.
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Factors Reg Alpha Iter F1 Score MRR P@5

300 1 5 20 0.3241 0.0598 0.6096

300 2 5 20 0.3167 0.0579 0.5820

300 1 10 20 0.3214 0.0594 0.6048

300 2 10 20 0.3283 0.0602 0.6044

300 1 15 20 0.3159 0.0585 0.5996

300 2 15 20 0.3263 0.0601 0.6118

300 1 5 25 0.3248 0.0599 0.6090

300 2 5 25 0.3174 0.0581 0.5826

300 1 10 25 0.3227 0.0597 0.6052

300 2 10 25 0.3287 0.0603 0.6076

300 1 15 25 0.3171 0.0588 0.6006

300 2 15 25 0.3276 0.0602 0.6098

350 1 5 20 0.3275 0.0605 0.6158

350 2 5 20 0.3211 0.0588 0.5946

350 1 10 20 0.3219 0.0595 0.6058

350 2 10 20 0.3305 0.0609 0.6194

350 1 15 20 0.3163 0.0587 0.6010

350 2 15 20 0.3270 0.0608 0.6144

350 1 5 25 0.3277 0.0605 0.6156

350 2 5 25 0.3208 0.0590 0.5970

350 1 10 25 0.3230 0.0598 0.6082

350 2 10 25 0.3304 0.0610 0.6194

350 1 15 25 0.3175 0.0589 0.6042

350 2 15 25 0.3281 0.0609 0.6150

Table 2 - Results from Tuning - Run 2

These results revealed several trends in the effect of the number of metrics.  First, when

looking at the result from increasing the number of factors, using regularization of 2, alpha of

10, and iteration count of 25 (highlighted in yellow), shows an increasing performance across all

performance metrics. Comparing the results from test one, when using 250 factors and

comparable regularization, alpha, and iteration count, the F1 score increased from 0.326 to 0.33
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(1.2% increase), MRR increased from 0.059 to 0.061 (3.4% increase), and P@5 increased from

0.59 to 0.62 (4.7% increase).

These trends can be seen in Figure

7.

The second insight was on

the effects of alpha and

regularization on performance

which can be seen in Figure 8. We

can see that F1 and MRR peak at

regularization 2 and alpha 10.

P@5 continues to increase slightly

beyond 10, but with diminishing

returns. Due to the downward

trend in F1 score and MRR when

increasing the alpha past 10, I

opted to use an alpha value of 10

in future tests.

The last insight I gained

was learning that there was only a

slight increase in performance

between 20 and 25 iterations. This

can be seen in Figure 9. This led

me to continue testing with only
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25 iterations. Even though the increase was marginal, the computational cost was minimal.

Based on these results, I

chose to continue my tuning with a

regularization of 2, alpha of 10,

and iteration count of 25.

3.2.3 Tuning Run 3

For this run, I decided to

increase my factor count beyond

350, testing on 400-600 factors. The result of this run can be seen in Table 3.

Factors Reg Alpha Iter F1 Score MRR P@5

400 2 10 25 0.3322 0.0615 0.6242

450 2 10 25 0.3322 0.0619 0.6290

500 2 10 25 0.3313 0.0625 0.6312

550 2 10 25 0.3325 0.0625 0.6376

600 2 10 25 0.3312 0.0628 0.6390

Table 3 - Results from Tuning - Run 3

Figure 10 combines the results from multiple runs to visualize the effects of increasing

the factor count from 250 to 600. MRR and P@5 show continuous improvement, which begins

to level off around 550 to 600 factors. This suggests that increasing the number of factors gives

the model a better ability to rank the most relevant cards higher.
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F1 score appears to

level off around 400 factors,

indicating that the overall

quality of recommendations

begins to plateau around this

point. This shows how

different aspects of the

recommended cards change

based on model complexity.

Based on these results,

I chose to continue testing

using 600 factors, as at this

point there seemed to be a good balance between all of the performance metrics.

3.2.4 Tuning Run 4

For this run, I wanted to see if further regularization increased the performance of the

model. For this run I continued with a factor count of 600, Alpha of 10, and Iter count of 25. The

regularization values tested were 2, 2.25, 2.5, and 3. The results from this run can be seen in

Table 4.

Factors Reg Alpha Iter F1 Score MRR P@5 P@10

600 2 10 25 0.3330 0.0628 0.6381 0.5758

600 2.25 10 25 0.3326 0.0629 0.6428 0.5785

600 2.5 10 25 0.3329 0.0631 0.6426 0.5799

600 3 10 25 0.3326 0.0629 0.6418 0.5797

Table 4 - Results from Tuning - Run 4
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The effects of regularization from this run can be seen in Figure 11. From this run, I

could see there was an increase in F1 score and MRR up until regularization 2.5. P@5 peaked at

regularization 2.25, and P@10 peaked at 2.5. This suggests that using a regularization of 2.5

provides better overall recommendations when compared to using a regularization of 2.25.

However, when using regularization of 2.25, the early recommendations are more relevant.

3.2.5 Tuning Run 5

For my final tuning run, I decided to do further testing on the difference between

regularization 2.25 and 2.5. For this test, I chose to use different seed percentages of 0%, 25%,
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and 50% in order to see how this regularization impacts recommendation quality at varying

stages of the deck building process. The results from this can be seen in Table 5.

Factors Reg Alpha Iter Seed F1_Score MRR Precision@5 Precision@10

600 2.25 10 25 0% 0.2483 0.0262 0.3913 0.3538

600 2.25 10 25 25% 0.3662 0.0546 0.6721 0.6173

600 2.25 10 25 50% 0.2994 0.0703 0.6143 0.5393

600 2.5 10 25 0% 0.2375 0.0255 0.3822 0.3447

600 2.5 10 25 25% 0.3654 0.0543 0.6670 0.6143

600 2.5 10 25 50% 0.3000 0.0705 0.6152 0.5411

Table 5 - Results from Tuning - Run 5

From these results, we can see the effects of the cold start problem. The performance

metrics all increase dramatically from 0% seed percentage to 25% seed percentage. Comparing

regularization 2.25 to 2.5, we can see that 2.25 performs better during a cold start. The F1 score

increases by 4.5%, MRR increases 2.7%, P@5 increases by 2.4%, and P@10 increases by 2.7%.

At 25% seed regularization of 2.25 slightly out performs regularization 2.5, however the

increase is all less than 1% for all metrics. The largest difference is in P@5, where regularization

2.25 out performs regularization 2.5, increasing by 0.76% from 0.667 to 0.672. There is very

little difference between regularization 2.25 and 2.5 at 50% seed.

3.3 Conclusion

Based on the results of this tuning, I decided on a final model built on 200,000 decks

with the configuration set of 600 latent factors, Regularization of 2.25, Alpha of 10, and 25

Iterations. When tested against 20,000 decks 40% seed, this configuration resulted in an F1

Score of 0.333, MRR of 0.063, P@5 of 0.643, and P@10 of 0.579.
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Chapter 4 - Conclusions

4.1 Summary

My goal was to set out to create a tool to assist both new and experienced Magic the

Gathering players in constructing a deck for the Commander format. This task involves the

player choosing 99 cards from a card pool of over 28,000 unique cards that adhere to their

chosen commander's color identity. This tool used collaborative filtering through Alternating

Least Squares matrix factorization to identify the relationship between cards in Commander

decks.

The final model was created using data from 200,000 decks using 600 features,

regularization of 2.25, alpha of 10, and 25 iterations. These model parameters were chosen by

systematically evaluating different hyperparameter sets to find an optimal configuration. With

this configuration, when tested against 20,000 decks at a 40% seed percentage, it was able to

achieve an F1 score of 0.333, MRR of 0.063, P@5 of 0.643, and P@10 of 0.579. The F1 score

of 0.333 indicates the model has a good balance between the precision and recall. The P@5

indicates that roughly two-thirds of the top 5 cards being recommended appeared in the target set

of cards. Additionally, the P@10 indicates that over half of the top 10 recommended cards

appeared in the target set of cards.

4.2 Future Work

I fully intend to continue developing this project and have many future goals:
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1. I would like to continue the web scraping process, giving me access to more deck lists.

This would require a process for adding new cards to the database as they are released.

2. Improve the evaluation process, as a new model would need to be trained as new cards

get released. The evaluation process as it stands is currently a single threaded application.

Splitting the evaluation step between multiple workers will decrease the time it takes

during the tuning stage dramatically.

3. Once the evaluation process is optimized, I would continue testing different

hyperparameters at a larger number of seed percentages. This would potentially lead to

an implementation where there are multiple models tuned at different seed percentages.

Based on the stage at which the user is in their deck building process, the system would

determine which model to use.

4. Implement an optional filter to only recommend certain card type(s). For example, if a

user really only wanted to be recommended Creature cards, they would have that option.

5. Use card price data to implement an optional restriction on card price or total deck price.

6. Implement a frontend for the recommender system. This will provide the users with a

web-based interface for interacting with the recommender system. I have included a

basic UML diagram (Figure 12) of how I envision the fully implemented recommender

system would operate in a production environment.
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Appendix

Appendix A:

The code for mtg_database.py, als_recommender.py, als_evaluator.py can be found on GitHub

using the following link: https://github.com/bdeni-ramapo/mtg_recommender

Appendix B:

I created a mockup of how I envisioned the recommender system working in a

production environment, which can be seen in Figure A1. It uses React for the frontend,

Tailwind CSS for styling, and FastAPI for the backend. On the top left, there is a section for the

user to input their chosen commander. Below that, there is an optional section where the user
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may input any cards they may already have in their deck. On the right side, there is a “Get

Recommendations” button. Once clicked, the recommendations and their scores are generated

and output to the user in the section below. Additionally, there is an ‘Add’ button below each

recommendation which the user can click which will add that card to their decklist. Once one or

many cards are added, the user may then click the ‘Get Recommendations’ button again to

generate new recommendations based on the new decklist.

The example in Figure A1 shows that the user has

chosen the card ‘Krenko, Mob Boss’ as their commander, a Red

commander which can be seen closer in Figure A2. From the rules

text, we can see Krenko has an effect that creates ‘Goblin’ tokens

equal to the number of ‘Goblin’ creatures you control. Based on that

clear synergy, we would expect the recommendations to include a lot

of Goblin creatures.

Figure A3 shows an enlarged version of the first row of cards from Figure A1. We

can see there are many Goblin cards being recommended, indicating we are getting useful

recommendations for this commander. Additionally, we can see all of the recommended cards

are Red, indicating that the color identity restriction put in place is being adhered to correctly.
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