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ABSTRACT 

 Skyline queries are a popular and useful technique for multi-criteria analysis, but the 

presence of incomplete data complicates the retrieval of the skyline. Namely, incompleteness 

introduces the problems of intransitivity and cyclic dominance. Over the years, many algorithms 

have been developed to find skylines over incomplete data by addressing the two aforementioned 

problems. For software engineers working on Big Data applications or for researchers interested 

in the incomplete Skyline problem, it can be useful to know in which contexts a particular class of 

algorithm may perform best. We sought to investigate the differing approaches to dealing with the 

unique challenges of computing the skyline over incomplete data. We picked three recently 

developed algorithms to represent certain classes of incomplete skyline algorithms, and 

benchmarked them in different contexts. We controlled for the correlation of the dataset, the size 

of the dataset, and the dimensionality of the dataset. The three algorithms, PFSIDS (Liu et. tal), 

TSI (He et. al) and BTIS(Yuan et. al) represent sorting-based, table-scan based, and bucket-based 

approaches respectively. We found that the sorting-based algorithm performed the best in general, 

except in the case of high dimensional anti-correlated data. The table-scan based algorithm was 

observed to work best in small, higher-dimensional datasets and its performance did not change 

significantly with respect to the correlation of the data. The bucket-based approach generally 

performed the worst, which we believe to be due to the overhead of initializing the possibly large 

number of buckets for each data class. 
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CHAPTER ONE 
 

INTRODUCTION 
 
1.1 Overview  
 

Skyline queries are a popular method for supporting multi-criteria analysis in a dataset (Tiakas et. 

al; Choi et al). The skyline of a dataset is a set of tuples such that none of the tuples are dominated 

by any other tuple in the dataset (Chomicki et. al, 2013; Borzsonyi et. al). We say tuple t1 dominates 

tuple t2 when t1 is as good as t2 across all dimensions, and is better in at least one (Borzsonyi et. 

al). What defines “as good” and “better” is dependent on the dominance relation defined between 

tuples. The dominance relation can be any one that defines an ordering among the values of each 

tuple’s dimensions, but is typically either a less than or equal to, or greater than or equal to 

relationship. A dominance relation with this structure is known as Pareto dominance (Chomicki 

et. al, 2013). When all pareto-dominated tuples of a dataset are removed, the result is the Pareto 

frontier (i.e, the skyline). The traditional skyline query problem assumes a complete dataset, 

meaning that all tuples have values present for all of their dimensions. When this holds true, the 

transitivity of the dominance relationship can be exploited to prune many tuples out of the search 

for those in the skyline. 

A typical example of an application of the skyline query is a hotel recommendation system. 

A user may desire to find hotels that are both the cheapest and closest to the beach, which present 

a multi-criteria optimization problem. A skyline query can return to the user the set of hotels that 

represent the optimal trade-offs between price and location. Suppose we have the set of tuples {(5, 

3), (7, 2), (7, 3), (6, 4), (5, 8)} where the first value is the hotel’s price, and the second is the hotel’s 

distance from the beach. In this scenario, the dominance relation used to compare tuples would be 
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less than or equal to, as we want to minimize both cost and distance. The resulting skyline would 

consist of hotels that may only be worse along one dimension, but better along another dimension. 

In this scenario, the tuples making up our skyline are {(5, 3), (7, 2)}. We can see that {(7, 3), (6,4), 

and (5, 8)} are all dominated by (5, 3). Tuple (5,3) is better than (7,3) in price, and is equally good 

in distance, is better than (6, 4) along all dimensions, and is better than (5,8) in distance and equally 

good in price. The only tuple not dominated by (5, 3) is (7, 2), as (7, 2) is worse in price but better 

in distance. 

Understanding traditional skyline algorithms is still relevant to our discussion of the 

incomplete-case, as many incomplete skyline algorithms process the incomplete data in such a 

way that allows for the use of traditional skyline algorithms to be employed (Khalefa et. al; Yuan 

et al; Dehaki et. al; Rahman, Hasan). The most basic approach is the nested loop, or NL, which 

naively calculates the skyline by comparing every object with every other object in the dataset via 

a nested loop (Borzsonyi et. al). Another version is the Block-Nested Loop, more practicable for 

database applications, where a window is maintained that holds some limited number of records. 

The BNL has a worst-case performance of O (n2), leading to the development of more efficient 

variations of BNL such as the Sort-Filter Skyline algorithm (SFS) that topologically sorts the data 

beforehand, leading to a worst-case performance of O (ln + n log n), where l is the size of the 

skyline (Chomicki et. al, 2003). The Divide and Conquer algorithm (DC) computes the skyline 

through recursive partitioning of the dataset (Borszonyi et. al). The median value of a dimension 

is calculated to partition the dataset into two partitions P1 and P2. Sub-skylines for each partition 

are calculated by further dividing each partition into smaller partitions until they consist of one, or 

a few objects. The sub-skylines are then merged and dominated tuples are removed from the 

merged skylines. This merging continues until all sub-skylines are merged into one skyline for the 
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entire dataset. DC has a worst case time complexity of O (n(log n)(d - 2)) + O (n log n), where d is 

the dimensionality of the data. (Tiakas et al; Borzsony et. al). 

 An important class of traditional skyline algorithms are those that utilize a spatial index, 

typically in the form of an R-tree (Tiakas et al; Luo et al;). The basic idea behind these algorithms 

involves traversing an R-tree in a depth-first-search manner and using a set of candidate nodes to 

prune entire branches away from the search space. Two examples of such algorithms are the 

Nearest Neighbor search (NN), and the Branch and Bound Algorithm (BBS) (Papadias et. al; 

Kossman et al). In the NN algorithm, all data objects are indexed an R-tree, and a suitable distance 

measure is chosen for the Nearest Neighbor search. (e.g, Euclidean distance in two-dimensional 

data). The next nearest neighbor is found iteratively from a defined origin point, and some region 

of the R-tree can be pruned as each neighbor is visited. The BBS algorithm expands upon NN by 

introducing the use of a heap and the defined distance measure is the L1 norm of the data vectors. 

Both NN and BBS are I/O efficient and progressively construct the skyline as they run, which can 

be useful if live reporting of the skyline is preferred (Tiakas et. al). 

 

1.2 Problem Statement 

There are many cases in which a dataset will have missing values, making comparisons between 

tuples across their different dimensions difficult. “Big Data” and Machine learning applications 

dealing with millions of data points and IoT systems that receive data from possibly unreliable 

devices are some common examples where missing data is common (Adhikari et. al; Emmanuel 

et. al). In a dataset with missing values, comparisons are not guaranteed to be transitive, and cyclic 

dominance is possible. The three main categories of incomplete data skyline algorithms are 

replace-based (Khalefa et. al), sorting-based (Bharuka, Kumar), and bucket-based approaches (Lee 
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et al), all of which use different methods to bring back transitivity to skyline comparisons and 

eliminate the problem of cyclic dominance. 

A replace-based approach seeks to replace missing values with some value, making the 

incomplete dataset a complete dataset. A traditional skyline algorithm is then applied to the 

transformed dataset. The value replacing the incomplete dimension is typically a prediction of 

what that value should be, based on inferred dependencies between attributes (Alwan et. al). 

Another proposed approach involves replacing the missing value with a sentinel value, such as 

negative infinity, and then applying a traditional skyline algorithm on the transformed dataset 

(Khalefa et. al). The resulting skyline on this transformed dataset is a superset of the skyline. The 

actual skyline is calculated by reverting the replaced dimensions back to incomplete dimensions 

in the computed skyline, and then doing pairwise comparisons among all of the tuples in the 

computed skyline to filter out dominated tuples. 

Bucket-based approaches group tuples into buckets based on their bitmap representation 

(Khalefa et. al; Lee et. al; Dehatki et al). The bitmap representation of a tuple is a bit-string where 

1’s represents a complete dimension and 0’s represents incomplete dimensions. Thus, a bucket is 

created for every possible combination of complete and incomplete dimensions that exist within 

the data set. There can be at most 2d of these buckets, where d is the number of dimensions. The 

problems of intransitivity and cyclic dominance are not an issue for tuples within a bucket, as they 

all have the same complete dimensions. This allows for a traditional skyline algorithm to be used 

to calculate local skylines on each bucket. These local skylines are then merged into a candidate 

skyline, and then a final pairwise comparison is done among all tuples in the candidate skyline to 

calculate the final skyline. 
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Sort-based algorithms such as SIDS typically create an index of tuples through the creation 

of sorted lists (Bharuka, Kumar). In SIDS for example, sorted lists of tuples for each dimension is 

created, with the idea that tuples at the front of the list have a high likelihood of pruning many 

non-skyline tuples. If a tuple is incomplete on some dimension d, is it not present in the sorted list 

for that particular dimension. Each of the lists are accessed in a round robin fashion, and so tuples 

with the best values across each dimension are accessed on every pass through of the lists in an 

attempt to prune as many tuples as possible. 

 What we seek to accomplish is a comparative study of three state-of-the-art skyline 

algorithms for incomplete data. We have chosen one bucket-based (Yuan et. al), one sorting-based 

(Liu et. al), and one table-scan based algorithm (He et. al) to compare with each other. To our best 

knowledge, there does not exist any empirical comparative studies of recent skyline algorithms for 

incomplete data. We specifically chose these algorithms due to their recency and differing 

approaches in solving the issues of intransitivity, cyclical dominance, and search space pruning. 

Typical performance metrics for skyline algorithms will be used, such as number of comparisons, 

I/O usage, and execution time. 

 

1.3 Research Questions 

This section breaks down the questions we seek to answer in this research study.  

1. What is the impact of sorting versus bucketing as a strategy to deal with incomplete data? 

2. What is the impact of the size, dimensionality and correlation of the data on the 

performance of each algorithm? 

3. What are the limitations of the selected skyline algorithms when applied to datasets with 

missing values? 
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4. What are the key characteristics and operational principles of the selected skyline 

algorithms for incomplete datasets? 

5. What are the differences between bucket-based, sort-based, and table-scan-based skyline 

algorithms in terms of algorithmic design and handling of missing values? 

6. What conclusions can be drawn from the empirical comparison, and what 

recommendations can be made for selecting a skyline algorithm based on the 

characteristics of the input data? 

 

1.4 Scope of Research 

The scope of this research is focused on skyline algorithms over incomplete data. The selected 

algorithms that are compared are designed for batch-processing a dataset as opposed to stream-

processing incomplete data in real time. Skyline algorithms for dynamic incomplete datasets are 

discussed as part of the literature review of this research study. Top-k and k-dominant queries over 

incomplete data are also discussed in the literature review section. The datasets used to compare 

each algorithm include small, medium and large datasets from both synthetic and real sources. 

Synthetic datasets include independent, correlated, and anticorrelated data, and the real data 

contain NBA, insurance, and movie review data. All of the algorithms in question assume totally 

numeric data, and thus the real and synthetic data only contain numeric values. 

 

1.5 Significance of the Study 

The primary significance of this thesis is a comparative study of the performance of three well-

known skyline algorithms designed to operate on datasets with incomplete data. Many modern 

applications increasingly deal with data from possibly unreliable sources, such as IoT sensors or 
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crowd-sourced data, so the need to work with incomplete data becomes more prominent. This 

study offers valuable insights for software engineers and system designers working on a system 

with incomplete datasets highlighting the strengths and the limitations of each algorithm under 

various conditions. For instance, if a table has a large number of attributes (dimensions), they may 

choose to implement the skyline algorithm that handles high-dimensional data the most efficiently. 

Lastly, beyond its practical applications, this study can also serve as a reference point for future 

researchers on skyline queries over incomplete data, contributing to a deeper understanding of 

algorithmic trade-offs and guiding the development of more efficient solutions in this evolving 

field.  

 

1.6 Organization of the Thesis 

 Chapter 1 is an introduction to the topic of skyline queries and the problem that incomplete 

data poses. Some background information, research objectives, and the significance of the thesis 

are provided in this chapter. 

 Chapter 2 provides definitions needed to understand the fundamental concepts regarding 

skyline queries over incomplete data. This chapter will also contain the literature review, looking 

at previously proposed algorithms for the problem, as well as an explanation of the three algorithms 

used in the comparative study. 

 Chapter 3 outlines the methodology of the research. It will detail the metrics used to 

measure each algorithm’s performance, the specifications of the environment each benchmark is 

run on, the language used to implement the algorithms, and the data sets that will be used for the 

benchmarks. 
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 Chapter 4 is the analysis and discussion of the results of the benchmarks. It discusses the 

results of each algorithm, and contains figures and graphs that compare each algorithm along a 

specific metric. It will detail which contexts each algorithm appears to do better, and which ones 

it struggles with in comparison to the others. 

 Chapter 5 is the conclusion, which recommends when it may be appropriate to use any of 

the three algorithms. We consider the results of the analysis and discussion, and also consider some 

qualitative factors such as ease of implementation. 
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CHAPTER TWO 
 

BACKGROUND 
 

2.1 Introduction 

This chapter presents the fundamental concepts needed to understand the problems with 

calculating the skyline on incomplete data, as well as understanding the previous work on the topic. 

Mathematical definitions of a skyline, dominance, and an incomplete dataset have been given. 

Definitions for key concepts regarding incomplete data skyline algorithms are explained, such as 

the bitmap representation of tuples, bucketing, virtual points, and shadow skylines. A discussion 

of previous work is also included in this chapter, detailing their approaches to handling incomplete 

data. An explanation of the three chosen algorithms, Priority-First Sort-Based Incomplete Data 

Skyline (PFSIDS), Table-Scan based Skyline over Incomplete Data (TSI) and Multidimensional 

Incomplete Data based on Classification tree (BTIS) is also given in this chapter. 

 

2.2 Preliminaries and Definitions 

 We will denote the incomplete dataset as D, which consists of n tuples where each tuple t 

consists of m dimensions. The dimensions of some tuples, a1,… ,am, may be incomplete, which 

will be denoted by a ‘-’. For example, the tuple (1, -, 3) has an incomplete second dimension. The 

values for each dimension are assumed to be numerical in all of the algorithms presented in this 

chapter. We will define the dominance relationship to prefer greater values, although this has no 

bearing on how any of the algorithms work. We will also introduce the definitions of bucketing, 

shadow skylines, optimal virtual points, as these are key concepts used in the previous work section 

and in the algorithms benchmarked in our thesis  (Yuan et. al). 
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 Definition 1 (Skyline) Given a dataset D, the skyline of D consists of a subset S of D such that none 

of the elements in S are dominated by any of the elements in D. 

 Definition 2 (Dominance Relation) The dominance relation between two tuples t1 and t2 in some 

dataset D with m dimensions, where t1 is said to dominate t2, holds when t1 ≠ t2 and ∀i, t1[i] ≥ t2[i]. In 

other words, t1 dominates t2 when t1 is not worse than t2 in any dimension, and is at least better than t2 in 

one dimension. 

 Definition 3 (Bitmap and Bucketing) Let a bucket N consists of a set of tuples who share the same 

bitmap encoding. The bitmap encoding of a tuple is an m length bitstring, where m is the number of 

dimensions, that has a 1 in the i-th position if the i-th dimension is complete, and 0 otherwise.  

 Definition 4 (Virtual Point) Given a point p in the local skyline of a bucket Ni, if p dominates a 

point q in bucket Nj, then point p may be used as a virtual point. 

Definition 5 (Optimal Virtual Point) An optimal virtual point E = (e1, e2, … em) of a bucket consists 

of the optimal value of each dimension among tuples in the local skyline. The value of each dimension is 

labeled with the original source point. 

Definition 6 (Shadow Skyline) The shadow skyline is the result of filtering out points dominated 

by the optimal virtual point and its source points from a local skyline. 

 

2.3 Overview of Algorithms 

In this section, we present an overview of three state-of-the-art skyline algorithms that are designed 

specifically to deal with incomplete data. These algorithms address the challenges posed by 

missing attribute values when computing skylines. The first algorithm, BTIS (Yuan et. al), uses a 

weighted classification tree and optimal virtual points to efficiently compute skylines. The second, 

PFIDS (Liu et. al), builds on sort-based indexing and introduces a priority-based processing 

mechanism to improve skyline computation. The third, TSI (He et. al), adopts a sequential table-

scan approach optimized for large-scale datasets and proposes pruning enhancements to improve 
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performance. The following subsections provide detailed descriptions of each algorithm's design 

and implementation. 

 

2.3.1 Skyline Query on Incomplete Data based on Classification Tree (BTIS) 

The first incomplete skyline algorithm that we will discuss is BTIS which was introduced by Yuan 

et. al. This work proposes an algorithm for skylines on incomplete data that utilizes a weighted 

classification tree. The incomplete data set is classified using this tree, and it serves as a basis for 

the second step of the skyline query algorithm. The incomplete data-weighted classification tree is 

introduced to address the problems of data redundancy, low data classification efficiency and slow 

classification speed. Separate dimensions of incomplete data are separated in intermediate nodes, 

and each dimension is assigned a weight based on missing values. Classification is achieved by 

horizontal indexing of leaf nodes, which is guided by the weight values of each dimension. 

 An algorithm for calculating a skyline in multidimensional incomplete data is proposed to 

deal with data redundancy and the presence of large amounts of useless data, which can both 

reduce query efficiency. It uses the classification tree and the concept of optimal virtual points to 

achieve this. An optimal point is a point that contains a maximum value for a dimension from a 

local skyline. Optimal virtual points can rapidly identify points with high dominating potential, 

which allows for greater point pruning and fewer comparisons. The incomplete data-weighted 

classification tree is a B+ tree like structure. The root node of a classification tree stores the 

dimensional values of data tuples to be classified. The dimensions are sequentially written from 1 

to n into the second layer's leaf nodes. Missing dimensions are given a weight of 0, and complete 

dimensions a weight of 1. The data on each dimension is stored in the leaf nodes of the third layer, 
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and data is extracted through horizontal indexing and then classified by the dimension’s weights. 

The classified data is then assigned to their respective classes.  

The algorithm for creating the weighted classification tree consists of two stages. In the 

first stage, a random training set consisting of 70% of the original data is created. This training set 

must contain all classification scenarios to ensure the accuracy of the training tree. The root of the 

tree contains all of the data tuples, and the intermediate branch nodes contain the dimension 

attributes of the tuples. The intermediate nodes branch based on the completeness of its dimension 

attribute. Incomplete attributes branch to a leaf node with a weight of 0, and complete ones to a 

node with a weight of 1. In the second stage, a horizontal index accesses the varying weights of 

each dimension, and the tuple is classified based on these weights. Finally, the classified tuple is 

placed into the bucket corresponding to its classification. Leaf nodes are then emptied, and the 

processes repeated with the next tuple until all data is classified. 

Skyline queries are calculated in each bucket, with the remaining points being the local 

skyline. The optimal virtual point is then calculated for each bucket, by picking the maximum 

value for each dimension among all tuples in the local skyline. The locus point, the points from 

which maximum dimension values are derived, are maintained for each virtual point Vi. The 

virtual points are added to each local skyline, resulting in the creation of a shadow skyline and a 

candidate skyline for each bucket. The candidate skyline are points not dominated by the virtual 

point’s constituent points. The candidate skyline points are then compared to the points in the 

shadow skyline, and if any are not dominated by any shadow points, they remain in the candidate 

skyline. Finally, the candidate skyline points are compared with one another to produce the final 

global skyline. 
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2.3.2 Priority-Based Skyline Query Processing for Incomplete Data (PFSIDS) 

In the work introduced by Liu et. al, an algorithm based on SIDS is proposed. In the Sort-Based 

Incomplete Data Skyline (SIDS) algorithm, d lists are created for each dimension of the data set, 

where each list is sorted on one dimension. A list is picked as a starting point, and then each point 

in the list is compared to one another to remove dominated tuples. The algorithm moves to another 

list and repeats the process in a round-robin fashion, visiting the first list again after completing 

the last list. If a tuple has been processed k times, where k is the number of complete dimensions 

a tuple has, it is determined to be part of the skyline. Drawbacks of this approach are that it ignores 

the fact that the dominance of a point is also dependent on the number of complete dimensions it 

has, and that the addition of new data is costly because all of the lists would need to be remade and 

resorted.  

In the PFIDS (Liu et. al) algorithm, an index is created based on the cumulative number of 

complete dimensions and the points sorted order across a dimension. All of the points with i 

complete dimensions are aggregate and placed into a list Li. is created for each combination of 

cumulative complete dimensions. Li consists of d sorted arrays, where each array contains points 

with i complete dimensions sorted on some dimension d. Finally, each of the lists Li are put in 

another list in ascending order of i, completing the index. 

 The next stage uses the index to create the skyline. A CandidateSet data structure is 

initialized, and at first contains the entire dataset D, and the skyline is initialized to null. Points 

with multiple complete dimensions are in multiple arrays within a list Li and so a variable 

processedCount for each point is maintained to count how many times it has been processed. If a 

point has been processed the same number of times as the number of its complete dimensions, it 

can be made part of the skyline. The lists of the index are accessed in a round-robin fashion, and 
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points are iteratively processed according to a position pointer. A point is processed by comparing 

to every other point currently in the CandidateSet. For example, if the pointer is at 0, then each 

point at index 0 across all the arrays in a list will be processed. Missing dimensions are skipped 

when a point is being processed. After the last list is processed, the position pointer is increased 

by one, and the process repeats until the CandidateSet is empty, meaning all points have either 

been pruned or added to the Skyline. 

 

2.3.3 Table-scan based Skyline over Incomplete data (TSI) 

The final algorithm in question, devised by He & Han, is based on a sequential table scan, and is 

optimized for massive amounts of data. The basic idea behind TSI is that possible candidate tuples 

are identified in an initial scan of the table, and then the set of candidates is further refined in 

another scan to discard dominated tuples. In stage 1, tuples are retrieved sequentially from the 

table, and a set of candidate tuples is maintained. If the selected tuple dominates anything in the 

set of candidates, they are removed from the set. Likewise, if the tuple is dominated by anything 

in the set, it is discarded. In this first scan, intransitivity and cyclic dominance of incomplete data 

tuples are not considered. This means that the resulting set of candidates is a superset of the skyline, 

rather than the final skyline. 

 In the second scan, the tuples are once again accessed sequentially in the table. At each 

iteration, each tuple in the candidate set is checked to see if it's dominated by the current tuple 

from the table. Tuples in the candidate set that are dominated by the current tuple are then removed 

from the set. At the end of this scan, everything left in the candidate set forms the final skyline of 

the data set. 
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 Another version of the TSI algorithm is proposed that includes a pruning operation in the 

first stage. A majority of the execution time cost has been analyzed to occur in the first stage of 

TSI. In the pruning version, a preconstructed data structure helps the first stage skip a large number 

of dominated tuples. A small number of “pruning tuples” are extracted from the data set, which 

are expected to dominate a larger number of tuples.  Due to the possibly high dimensionality of 

the data, pruning tuples are chosen in respect to values of a single dimension, and in regards to its 

number of complete attributes. Tuples with a larger number of incomplete attributes, and greater 

values in its complete attributes have the potential to prune many points. At the beginning of stage 

1, m pruning tuples are maintained in a min-heap to keep tuples in order of highest dominance 

capability. The pruning tuples are used to generate the initial set of candidates in stage 1, rather 

than needing to scan through the entire table like in the basic version. Stage 1 determines which 

pruning tuples should be kept in the candidate set to be used in Stage 2, which remains unchanged 

from the basic version of TSI. 

 

2.4 Previous Work 

In this section, we give an overview of other algorithms for the skyline query over incomplete 

data. These algorithms are designed for a variety of contexts, such as dynamic databases, crowd-

sourced data, and parallel systems, but all have in common that they are meant for incomplete data. 

Some are algorithms for specific cases of the skyline query, such as the top-k query, k-dominant 

query, and the skyline-join query. Algorithms in these categories face the same problems of cyclic 

dominance and intransitivity as the regular skyline query and only differ in their final output. and 

so are still relevant to the discussion of skyline queries over incomplete data. 

 



17 

2.4.1 Answering Skyline Queries over Incomplete Data with Crowdsourcing 

 Miao et. al explores a crowdsourcing-based approach to creating skylines on incomplete 

data. The name of their query framework is called BayesCrowd, and it makes use of Bayesian 

networks to take into account data correlation. It also uses a c-table (conditional database) to 

represent objects with incomplete data. In a c-table, objects are paired with a propositional logic 

formula that, when satisfied, means that object is in the skyline. The probability of this 

propositional formula being true is the probability that this object is in the skyline. The 

BayesCrowd framework consists of two phases, modeling and crowdsourcing. The modeling 

phase involves constructing the c-table, and the crowdsourcing phase consists of three task 

selection strategies under budget and latency constraints. A marginal utility function is developed 

to measure the benefit of crowdsourcing a particular task. This function takes into account the 

difficulty in computing the probability of an object's conditional formula. An adaptive DPLL 

(Davis-Putnam-Logemann Loveland) algorithm is proposed to speed up this computation. The 

paper’s experiments show that the BayesCrowd framework outperforms existing crowd-sourcing 

based skyline methods along the metrics of efficiency, cost, and latency. 

 

2.4.2 Computing Skyline Query on Incomplete Data 

 The work proposed by Rahman & Hasan introduces an algorithm for computing a skyline 

query on incomplete data that deals with the issues of intransitivity, and cyclic dominance. The 

algorithm consists of eight phases: counting incompleteness, pruning, finding a weighting factor, 

creating a weighted matrix, grouping, finding local skylines, finding candidate skylines, and 

retrieving the final skyline. First, each tuple has the number of incomplete dimensions counted. 

This number is then used to determine what percent “complete” the tuple is, which is calculated 
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as a ratio of the number of complete dimensions over the total number of dimensions. Any tuple 

with a completeness less than 25% is removed from the dataset. Next, a weighting factor is applied 

to each tuple to smooth the dataset and deprioritize more incomplete objects. The weighting factor 

for each tuple is computed like so: Wi = (incomplete dimensions of i) + 1. A weighted matrix of 

the data set is then computed by dividing the values of each dimension by the tuples weighting 

factor. Tuples with more incomplete dimensions have a greater weight, and thus their values are 

reduced more than tuples with more complete dimensions. Tuples are then grouped together by 

their bitmap representation, which denotes the complete dimensions a tuple has. Tuples with the 

same set of complete dimensions are thus grouped together. In the next stage, local skylines are 

calculated within these groups. This is possible since all tuples in these groups have the same 

complete dimensions, so a traditional skyline algorithm can be used to acquire these local skylines. 

Finally, all of the local skylines are merged into a candidate skyline, and each tuple is compared 

with one another to create the final skyline result. Experimental results show that this algorithm 

outperforms the SCSA algorithm, which was the most current skyline approach as of the writing 

of this thesis. 

 

2.4.3 CrowdSJ Skyline - Join Query Processing of Incomplete Datasets with 

Crowdsourcing 

 In the paper by Ding et. al, they created a crowdsourcing-based approach to the skyline-

join query, which is a variant of the skyline query that returns the skyline of multiple datasets. The 

name of their proposed method is CrowdSJ. The problem is divided into two possible scenarios. 

One is where the skyline-join only involves the unknown crowdsourcing attribute and the join 

attribute, known as Partial Skyline Join with Crowdsourcing (PSJCrowd). The other is when the 
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skyline-join involves all attributes, known as the All-Skyline Join with Crowdsourcing 

(ASJCrowd). In the PSJCrowd case, the known data set is filtered and a level-preference tree index 

is employed. For ASJCrowd, the database is also filtered, and level-preference tree index is built 

based on the known attributes of the incomplete. The paper also proposes a third algorithm, Crowd-

SJ single, which is simply a crowdsourcing skyline-join algorithm applied on a single database. 

 

2.4.4 Efficient Computation of Skyline Queries Over a Dynamic and Incomplete 

Database 

 The work introduced by Dehaki et. al proposes an algorithm for computing the skyline 

query over incomplete and dynamic databases, called DyIn-Skyline. In a dynamic database, 

insertions, updates, and deletes invalidate earlier produced skyline results. In order to avoid 

needing to recompute the skyline over the entire database, the analysis of the dominance relations 

between data points needs to be preserved. The first phase of the algorithm involves computing 

the initial skyline over the entire incomplete database. The second phase involves processing 

skyline queries over a dynamic database. In phase 1, three list data structures are computed to be 

used to capture dominance relations. These lists are: Domination History (DH), Bucket 

Dominating (BDG), and Bucket Dominated. These lists can be used in phase 2 to avoid re-

examining the entire database to compute a skyline, a dynamic database. Phase 1 uses a bucket-

based approach for computing a skyline over an incomplete database, which groups tuples into 

buckets based on their bitmap representation. This allows tuples to be placed in groups where they 

are directly comparable, as they will all have the same complete dimensions. During this process, 

the DH, BDG, and BD data structures are created, which are then used in phase 2. 
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2.4.5 Efficient k-dominant skyline query over incomplete data using MapReduce 

 The work by Ding et. al introduces an algorithm for a k-dominant skyline query overt an 

incomplete data set. A k-dominant skyline differs from a traditional skyline, as only k of the d 

dimensions are considered during comparison. Changing the parameter k can increase the 

selectivity of what is placed in the skyline, which can be useful in cases where the skyline is large. 

The algorithm proposed in the paper is based on a dominant-hierarchical tree in a MapReduce 

environment. The data set is preprocessed via the construction of an Incomplete Data index, based 

on a dominant hierarchical tree (ID-DHT), that divides data into subspaces where dominance 

calculations can be made, based on the possible values of k. The MapReduce environment 

leverages distributed computing to improve the efficiency of the data preprocessing. 

 

2.4.6 IDSA: An Efficient Algorithm for Skyline Queries Computation on Dynamic 

and Incomplete Data with Changing States 

 The work presented by Gulzar et. al devised an algorithm for skyline queries on dynamic 

databases with incomplete data, known as the Incomplete Dynamic Skyline Algorithm (IDSA). 

The IDSA algorithm integrates two key optimization techniques: pruning and selecting superior 

local skylines. The pruning process identifies new skylines before insert/update operations by 

leveraging derived skylines, while the selection of superior local skylines further refines the results 

by eliminating non-skylines. These optimizations significantly reduce the number of domination 

tests, avoiding the need to recompute skylines for the entire updated database. Extensive 

experiments on both real and synthetic datasets show that IDSA outperforms existing methods in 

terms of both the number of domination tests and processing time. 

 



21 

2.4.7 Top-k Dominating Queries on Incomplete Data 

 A top-k dominating query is defined as a query which returns k objects that dominate the 

maximum number of objects in a given dataset. The work presented by Miao et. al is a systematic 

review of TKD queries on incomplete databases, and proposes efficient algorithms for computing 

TKD queries on incomplete data. Novel techniques such as upper bound score pruning, bitmap 

pruning, and partial score pruning to boost query efficiency. The results demonstrate that the new 

heuristics significantly boost TKD query efficiency. 
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CHAPTER THREE 
 

METHODOLOGY 
 

3.1 Introduction 

In this chapter, we discuss the implementation details of each algorithm, their execution 

environment, and how each algorithm is benchmarked. The most important aspect of this chapter 

is the discussion of the different types of datasets that the algorithms are run on. The results will 

serve to draw conclusions on which contexts an algorithm is better suited for. Variables such as 

the number of dimensions, missing rate, total number of rows, and correlation between dimensions 

will be changed to observe their effects. Additional parameters concerning the execution 

environment will be tweaked to observe the effect of memory usage for each algorithm. The time 

complexity of each algorithm will be given, as well as pseudocode for each algorithm. Since a 

functional programming language was used for implementation (Scala), the pseudo code will also 

resemble a functional style of programming. 

 

3.2 Implementation and Execution Environment 

 PFSIDS, TSI and BTIS were implemented in Scala 3.6.3 and written in a functional style 

when possible. This is important to note, as it may increase the memory footprint due to the 

copying of data structures. Another important implementation detail to note is that the basic 

version of the TSI version was used, as opposed to the version that utilizes a min-heap to prune 

out dominated tuples. Each algorithm was run in a single-threaded context and benchmarked using 

Java Microbenching Harness (JMH). The benchmarks were run in SingleShotTime mode, meaning 

that test did not have warm-up iterations. The purpose of warm-up iterations is to get a more 
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realistic run-time result, as the JVM needs to “warm-up” on a particular code path by executing it 

multiple times to allow for JIT compiler optimization. The run-times collected from the single-

shot benchmarks are still useful for the sake of comparing the performance of each algorithm, but 

it could be a path of future work to determine which algorithms benefit the most from a warm-up 

period on the JVM. The metrics of interest are execution time, number of comparisons, and 

memory usage. Memory usage is quantified by the garbage-collector’s allocation rate, which 

measures the amount of memory allocated in MB per second. Five single shot benchmarks are run 

consecutively for each dataset tested, and the final results are the average of all runs. The number 

of comparisons cannot be ascertained from the JMH, so that is tracked through the use of a variable 

that increments whenever two tuples are checked for dominance. The specifications of the machine 

executing the algorithm are: AMD Ryzen 5 2600 Six-Core Processor 3.40 GHz, 32 GB DDR4 

RAM, AMD RX 580, Windows 10 Home Edition 64 bit. The default JVM heap size of 1GB is 

used.  

 

3.3 Datasets 

 Both real and synthetic datasets are used for benchmarking each algorithm. For the 

synthetic datasets, anti-correlated, correlated, and independent datasets were generated. For each 

type of data, there is a three, five, seven and nine dimensional dataset. For each dimension, datasets 

of size 60 KB, 80 KB and 100 KB are created. The three dimensional datasets have a missing rate 

of 33.33%, the five dimensional a missing rate of 20%, and the 9 dimensional a missing rate of 

11%. It's important to note that as the number of dimensions increases as the size of the file stays 

constant, the number of tuples will decrease. The total number of data processed does not change 

but the logical size of the input, defined as the number of tuples, will decrease. The real-world 
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datasets are from NBA player statistics (https://www.nba.com/stats), The Insurance Company 

Benchmark (COIL 2000) (https://kdd.ics.uci.edu/databases/tic/tic.html), and Movielens movie 

reviews (https://grouplens.org/datasets/movielens/). The NBA dataset consists of player statistics 

during the regular season, and eleven, thirteen, and fifteen dimensional versions of the dataset will 

be used. Each dataset will be the same size at 100 KB. The COIL 2000 dataset contains information 

about customers at an insurance company. Eleven, thirteen, and fifteen dimensional versions of 

the data set a size of 100 KB are used. For both the NBA and COIL 2000 datasets, the eleven 

dimensional dataset has a missing rate of 9.1%, the thirteen dimensional 7.7% and fifteen 

dimensional 6.7%. Lastly is the Movielens data set consisting of movie review data. Each dataset 

contains three dimensions and is tested at sizes 300 KB, 600 KB, 900 KB and 1200 KB. All of the 

Movielens datasets have a missing rate of 33.3%. From this selection of datasets, we can test the 

effects of correlation, large amounts of data, and high dimensionality on the performance of each 

algorithm. 

 

3.4 Algorithmic Analysis and Pseudocode 

 The algorithms in question have different asymptotic time complexity and can expect to 

scale differently as input size and dimensionality increases. Table 3.1 below shows the worst, 

average and best case run times of each algorithm, where n is the number of tuples in the dataset 

and d the number of dimensions. In the case of BTIS, n represents the size of the training set that 

creates the weighted classification tree, and m is the size of the incomplete data. 
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Table 3.1 - Asymptotic Complexity of Algorithms 

Algorithm Worst-Case Average Case Best Case 

PFSIDS (Liu et. al) O (dn2 + dn log n) ~ O(n log n) O(dn + dn log n) 

TSI (He et. al) O(n2) O(n2) O(n2) 

BTIS - training 
classification tree 
(Yuan et. al) 

O (2d * n + 2d *d log 
n) 

O (2dn + 2dd log n) O (2dn + 2dd log n) 

BTIS - classifying 
missing data 
(Yuan et. al) 

O (2d * m + 3d * 2d 
log m) 

O (2d * m + 3d * 2d 
log m) 

O (2d * m + 3d * 2d 
log m) 

 

3.4.1 General Constructs Used in Implementation 

 A Point class was created to represent a data point within each dataset. It contains a 

dominates method, which returns true if the first point dominates the second point, and false 

otherwise. There is also the completeDims method, which returns the set of complete dimensions 

a point has, and the instance variables numDims, which holds the number of complete dimensions 

of a point. Each point object maintaining a count of its complete dimensions slightly changes the 

implementation of PFSIDS. Originally, a dimCount data structure was initialized to represent the 

number of complete dimensions of each point, but this is now unnecessary. A wrapper around the 

dominates function called compare is present in each algorithm’s implementation. Whenever the 

compare function is called, a global comparison counter is incremented, and then dominates is 

called on the two points to be checked. This is important to note, as it means the number of 

comparisons represents the total number of dominance checks, rather than the total number of 

individual comparisons between the dimensions of points.  

Since the algorithms were implemented in a functional manner, when possible, the 

pseudocode will make use of functional constructions such as map and filter operations. Notice 
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the use of the map construct on lines 3 and 5 in Fig 3.2, for example. The left hand side is the 

input sequence to be mapped, and the right-hand side is the mapping function that returns what 

each element is to be mapped to. The output of map is a new sequence created by applying the 

mapping function to each element of the input. The “yield” keyword is used to specify what value 

the map operation returns for each element. The where construct in Fig 3.3 is a filter operation, 

where the elements of the sequence on the LHS satisfying the predicate on the RHS are returned. 

 

3.4.2 PFSIDS Pseudocode 

 The PFSIDs algorithm represents the sorting strategy for computing a skyline query over 

incomplete data. The idea behind PFSIDS is that tuples with fewer complete dimensions have a 

higher dominance capability than those with more complete dimensions. Tuples with few complete 

dimensions and optimal values in their complete dimensions are considered likely to prune many 

non-skyline tuples. The logic is that a tuple with fewer complete dimensions is less likely to be 

dominated, as it has fewer dimensions it can be compared against. Obviously, having a more 

optimal value along a certain dimension also makes the tuple more likely to prune other tuples. 

The sorted index built in PFSIDS thus ranks tuples by the value of a dimension, and its cumulative 

complete dimensions. Figures 3.2 and 3.3 show the pseudo code of the PFSIDS algorithm, which 

consists of building the index, and then iterating through the index to prune tuples and build the 

skyline. Lastly, we define M as the set of dimensions {d1, d2, … dm} in the dataset. 

On line 3 of Figure 3.1, we map each number of cumulative complete dimensions to a list 

li. List li is formed by mapping each dimension d in M to listPoints sorted on d. Thus, li consists of 

|M| arrays sorted along a dimension d, and L consists of i lists. Finally, L is sorted by i, the number 

of cumulative dimensions present in the tuples of each list.  
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PFSIDS - SortedIndex 

     Input: dataset D 
     Output: list of lists L containing arrays sorted along each dimension 
1        L ← 
2            cumulative number of complete dimensions across all points i map 
3                listPoints ← p ∊ D where |p| = i 
4                li ← d ∊ M map yield listPoints sorted on d. 
5                yield li 
6         return L sorted on i. 

Figure 3.1: PFSIDS Sorted Index Pseudocode  

PFSIDS - ComputeSkyline 

     Input: 
         list of lists L containing arrays sorted along each dimension 
         candidateSet initialized as the entire dataset D 
         skyline initialized as empty set 
         integer counter i 
         integer counter pos 
     Output: Skyline set S 
1        if candidateSet = ∅ then return Skyline 
2        else 
3            points ← d ∊ M map yield L[i][d][pos] 
4           candidateSet ← c ∊ candidateSet where ∄p ∊ points, p dominates c 
5         dominatedPoints ← p ∊ points where ∃c ∊ candidateSet,  c dominates p      
6           candidateSet ← candidateSet diff dominatedPoints 
7           for p in points do  
8               processedCount[p] ← processedCount[p] + 1 
9          skylinePoints ← p ∊ points where  
                                         candidateSet contains p and p.numDims = processedCount[p] 
10          candidateSet ←  candidateSet diff skylinePoints  
11        skyline ← skyline union skylinePoints 
12          if i = L.length then ComputeSkyline(L, candidateSet, skyline, 0, pos + 1) 
13          else ComputeSkyline(L, candidateSet, skyline, i + 1, pos) 

Figure 3.2: PFSIDS Skyline Computation Pseudocode 

Our implementation differs from the original PFSIDS in that it is done tail-recursively 

rather than through iteration, but it achieves the same result in the same manner. Since we are 

using a functional language that uses immutable data structures by default, this was not amenable 
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to the iterative approach which mutates data structures. While this may seem inefficient, Scala 

makes key optimizations that greatly reduce the overhead of recursion and mutable data structures. 

Tail-recursion optimization prevents a new stack-frame from being allocated on each recursive 

call and achieves recursion in a way that mimics regular iteration. Scala utilizes persistent data 

structures to reduce the overhead of creating new copies of immutable data structures. When a new 

copy is made, it shares as much of the existing structure as possible with the old version. For 

example, if we have a list l1 and create a new list l2 by prepending a value to l2, l2 will have a new 

head, but then the rest of l2 will share its structure with l1. 

PFSIDS - Main Function 

     Input: list of lists L containing arrays sorted along each dimension 
     Output: Skyline set S 
1        processedCount[p] ← 0 for all points p in D 
2        candidateSet ← D 
3        skyline ← ∅ 
4        return ComputeSkyline(L, candidateSet, skyline, 0, 0) 

Figure 3.3: The PFSIDS Main Function 

 

Line 3 of the ComputeSkyline function selects the pruning points from index L by mapping 

each dimension to a point from L. We select list li from L, the array sorted along dimension d from 

li, and the point at index pos from the sorted array. At the first iteration, we would grab points from 

l1, where each point has only one complete dimension. Each list li contains arrays sorted along 

each dimension. Thus on the first iteration, when pos equals 0, we are picking the points with one 

cumulative dimension that have the best value in a particular dimension d. In the next iteration, we 

pick the best points from l2, which have two cumulative points. This continues until the end of L 

is reached, and then the variable i is set to 0 and pos is incremented to 1 (Lines 11-12). When pos 
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equals 1, the second-best points are picked with respect to each dimension from each list. This 

process will repeat until all points are removed from candidateSet. 

 Line 5 is a filter operation that keeps points from candidateSet only if they are not 

dominated by any element in points. It's also possible that the points we selected to prune 

candidateSet are also dominated by a point in candidateSet. Line 6 filters for any pruning tuples 

that are dominated. In line 7 the diff operation removes from candidateSet the points in 

dominatedPoints to eliminate dominated pruning tuples. Line 9 updates processedCount, which 

keeps track of how many times a pruning tuple has been selected from the index. Since a point can 

appear multiple times in the index, we do not want to process it more times than the point has 

complete dimensions. If a point p has been processed p.numDims times and is still in candidateSet, 

it is removed from candidateSet (line 11) and promoted to the skyline (line 12). 

The ComputeSkyline function will continue to recur until candidateSet is eventually empty, and 

the conditional expression at line 2 returns the skyline. 

3.4.3 TSI (Basic) Pseudocode 

 The TSI algorithm represents a sequential table-scan approach to handling incomplete data. 

TSI appears to be unique in that it does not employ an index or use some bucketing strategy to 

solve intransitivity and cyclic dominance. TSI consists of two sequential passes over the dataset 

as shown in Figure 3.4. The first pass builds a set of possible candidates, and the second pass 

discards candidates that are dominated. The first pass starts with an empty candidate set, and as 

tuples are retrieved from the dataset, it is checked against the candidate set to see if either it 

dominates any candidates, or is dominated by a candidate. If the retrieved tuple is not dominated, 

it is added to the set, and any candidates dominated by the tuple are removed from the set. In the 

second pass, tuples are retrieved from the dataset and each retrieved tuple is checked against each 
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member of the candidate set to see if it is dominated. At the end of the second pass, whatever is 

left in the candidate set is the final skyline. 

TSI (Basic) 

     Input: dataset D 
     Output: Skyline set S 
1        candidates ← ∅ 
2        for p in D do 
3            if candidates = ∅ then candidates ← candidates union p 
4            else candidates ← c ∊ candidates where ¬ ( p dominates c ) 
5            if ∄c ∊ candidates, c dominates p then candidates ← candidates union p 
6 
7        for p in D do 
8            candidates ← c ∊ candidates where ¬ ( p dominates c ) 
9        return candidates 

Figure 3.4: Pseudocode for TSI (Basic) 

 

 He et. al provides a simple proof demonstrating that two sequential scans are sufficient for 

dealing with intransitivity and cyclic dominance, and will return the correct result. First, they 

propose that after the first scan, candidates will contain a superset of the skyline set. For every 

tuple in the dataset, if it is part of the skyline, it will definitely be in the candidate set at the end of 

the first pass. If a tuple t1 is not part of the skyline, there exists some other tuple t2 that dominates 

it. If t1 occurs prior to t2 in the dataset, t2 will remove t1 from the candidate set. However, if t2 

occurs prior to t1, it is possible some other tuple dominates t2 before t1 is reached, and t1 remains 

in the candidate set. On the second pass, every tuple in the dataset is again retrieved to see if it 

dominates something in the candidate set. This means that t2 will have a chance to dominate and 

remove t1 from the candidate set. After all dominated tuples are removed, the tuples that are left 

represent the skyline. 
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3.4.4 BTIS Pseudocode 

 BTIS is the representative algorithm for bucket-based approaches for incomplete data. A 

novel aspect of BTIS is that it utilizes a weighted classification tree to categories and bucket data. 

The structure of this classification tree is similar to that of a B+ tree (Yuan et. al), and consists of 

a root node N that stores a tuple. Let k be the number of dimensions of the dataset, then our tree 

has k internal nodes, which are direct children of the root. Each internal node has two leaf nodes, 

one with a weight of one and the other with a weight of zero. For a tuple stored in the root node, 

its values are sequentially written to the internal layer’s leaf nodes, left to right. For each dimension 

of a tuple, it will branch to the left leaf node with weight 0 if the dimension is missing, and branch 

to the right node with a weight of 1 if it is present. The leaf now contains the tuple’s data, and the 

resulting weights from the tree are used to classify the tuple. Using the combination of weights at 

each leaf node, the tuple is exported to a bucket corresponding to its classification. A classification 

is represented by a k-length bit vector, where a value of 1 on the i-th position means the ith 

dimension is complete, and is 0 otherwise. The data is cleared from the leaf nodes, and the next 

tuple is placed in the root node, repeating the process until all data is classified. Figure 3.5 

illustrates the steps of the BTIS algorithm.  

 Once each tuple is placed into a bucket for its respective class, local skylines are calculated 

within each bucket. Since all tuples within the bucket have the same complete and missing 

dimensions, the issues of intransitivity and cyclic dominance are avoided. Once a local skyline is 

calculated for each bucket, the optimal virtual point is calculated for each bucket. The optimal 

virtual point consists of the optimal value for each dimension among all tuples within a bucket. 

The optimal virtual point also maintains the original source points from which the optimal 

dimension values come from. The optimal virtual point of each bucket is introduced into every 
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other bucket, as long as the virtual point shares one common dimension with the tuples in the 

bucket. Any points in a local skyline dominated by an optimal virtual point and by one of its source 

points are placed in the shadow skyline. Points not dominated by an optimal virtual point are placed 

in the candidate skyline. Any candidate skyline points of a bucket that are dominated by shadow 

points in other buckets are removed from the shadow skyline. Finally, the points of the candidate 

skyline are compared with one another to determine if any of them dominate each other, and 

dominated tuples are removed. The tuples left in the candidate skyline after this represents the 

complete skyline. 

BTIS - Weighted Classification Tree 

     Input: Training sample set T, dataset D 
     Output: Classified datasets C1, C2, … , Cn 
1    N ← empty root node 
2    N.children ← k empty internal nodes 
3    buckets ← {} 
4    for c in N.children do  
5         c.leftChild ← empty leaf node with weight 0 
6         c.rightChild ← empty leaf node with weight 1 
7    for t in T do 
8       N.data ← t 
9         for i in 0..k do 
10           N.children[i].data ← t[i] 
11        for c in N.children do 
12            if c.data is missing then 
13                c.leftChild.data ← c.data 
14              else c.rightChild.data ← c.data 
15        classVector ← k-length vector of weights from leaf nodes 
16        buckets[classVector] ← t 
17    for d in D do 
18        use classification tree to place each tuple d into corresponding bucket 
19    return buckets /* the contents of the buckets are our classification sets C1, C2, …, Cn */ 

Figure 3.5: BTIS Weighted Classification Tree Pseudocode 

Lines 1-16 in Figure 3.5 represent the data modeling phase of the classification process. The 

sample dataset T is 70% of the size of the original data, and should contain tuples that represent 



33 

all possible cases of combinations of missing dimensions, so that every possible data class can be 

modeled. Lines 1-6 initialize the classification tree and the buckets data structure, which may be 

implemented as a hashmap or some other form of index. Lines 7-16 are responsible for uncovering 

all of the different types of classes of tuples that exist in the data. On lines 15-16, a vector is created 

from the weights of the leaf nodes, and then a new class is created in the bucket data structure from 

the vector. Lines 17-18 represent a similar process to Lines 7-16, except tuples are placed into the 

existing classes created in the first part, and the tree classifies the entire dataset rather than the 

sample set. 

 

BTIS - Skyline Computation 

     Input: Classification Datasets C1, C2, … Cn  /* The buckets variable */ 
     Output: Skyline set S 
1    localSkylines ← (class, b) ∊ buckets map yield (class, p ∊ b where ∄q ∊ b, q dominates p) 
2    optimalVPs ← (class, b) ∊ buckets map yield (class, optimalVP of bucket b)     
3    shadowSkyline ← (classi , localSky) ∊ localSkylines 
4                                  flatmap  
5                                      vps ← (classj, (vp, sources)) ∊ optimalVPs where (classj  ⋀ classi ≠ 

0) 
6                                      yield p ∊ localSky where  
                                           ∃(class, (vp, sources)) ∊ vps,  vp dominates p  
                                           ⋀ ∃s ∊ sources, s dominates p ) 
7    candSkyline ← ((class, localSky) ∊ localSkylines flatmap yield localSky)  
8                             diff shadowSkyline 
9   globalSkyline ← p ∊ candSkyline where  
10                              ∄q ∊ candSkyline, q dominates p ⋀ ∄s ∊ shadowSkyline, s 
dominates p 
11   return globalSkyline     

Figure 3.6: BTIS Skyline Computation Pseudocode 

Figure 3.6 demonstrates the steps of BTIS skyline computation process. sOn line 3, we create 

localSkyline, a hashmap containing the local skyline of each class. The mapping operation selects 

the points from each bucket that are not dominated by any other point in the bucket. At line 4, we 
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calculate the optimal virtual point of each bucket, creating another hashmap associating a data 

class (our k-length bit vector) with the optimal virtual point of that class’ bucket. The optimal 

virtual point as mentioned earlier, consists of the optimal value along all dimensions of a bucket, 

and also contains the original source points where those optimal values came from. On line 5, we 

use the flatmap operation, which flattens the result of a map operation by a single level. On line 

9, we compute the candidate skyline by flattening the localSkyline hashmap into a sequence of 

points, and then using the diff operation to remove any local skyline points also in the shadow 

skyline. However, since candidate skyline points could still be dominated by either another point 

in the candidate set and a shadow skyline point, we need to do additional dominance checks. 

Candidate points dominated by another candidate point or by a shadow point are filtered out on 

line 11, and the result is the complete global skyline. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



35 

CHAPTER FOUR 
 

ANALYSIS AND DISCUSSION 
 

4.1 Introduction 

 This chapter presents and discusses the results of each benchmark and compares the 

performance of each algorithm along execution time, memory usage and the number of 

comparisons. The variables of interest are the number of dimensions, the total size of the input, 

and the correlation between dimensions. The analysis section will discuss the strengths and 

weaknesses of each algorithm, and seek to explain why an algorithm may perform better or worse 

in a particular context. 

 

4.2 Synthetic Datasets Results 

 Thirty-six different combinations of synthetic data were tested on each algorithm. For each 

type of data correlation (anti-correlated, correlated, random), four different dimensions (3, 5, 7 and 

9) and three different input sizes (60KB, 80KB, 100KB) were used. It is clear from the results of 

these benchmarks, that correlation, input size and dimensionality impact the performance of each 

algorithm. 

Figures 4.1, 4.2, and 4.3 concerning the results of the anti-correlated synthetic data, 

increases in dimensions had a large impact across all metrics. PFSIDS has the most significant 

jump in execution time, memory usage and number of comparisons in the 7 dimension and 9 

dimension datasets, performing worse than BTIS and TSI. However, PFSIDS performed 

considerably better than TSI and BTIS in the 3 and 5 dimensional anti-correlated datasets across 

all metrics. Garbage collection allocation rate in the 7 and 9 dimensional datasets were lowest for 
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the BTIS algorithm and highest for PFSIDS. Execution time was the lowest in the 7 and 9 

dimensional datasets for TSI. PFSIDS had a considerably lower number of comparisons for 3 and 

5 dimensional data, but saw a drastic increase in the 7 and 9 dimensional datasets. TSI did slightly 

worse in 7 dimensional data compared to BTIS, but BTIS was slightly worse than TSI with 9 

dimensional data. 

 

 

       (a) 60k dataset size with 3-9 dimensions  (b) 80k dataset size with 3-9 dimensions 

 

(c) 100k dataset size with 3-9 dimensions 

Figure 4.1 The Effect of Number of Dimensions on the Execution Times for Anti-correlated 

Synthetic Data 
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       (a) 60k dataset size with 3-9 dimensions     (b) 80k dataset size with 3-9 dimensions 

 

(c) 100k dataset size with 3-9 dimensions 

Figure 4.2: The Effect of Number of Dimensions on GC Allocation Rates for Anti-

correlated Synthetic Data 
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(a) 60k dataset size with 3-9 dimensions  (b) 80k dataset size with 3-9 dimensions 

 

(c) 100k dataset size with 3-9 dimensions 

Figure 4.3 The Effect of Number of Dimensions on Number of Comparisons for Anti-

correlated Synthetic Data 

 

The experimental results presented in Figures 4.4, 4.5, and 4.6 show the outcomes for the 

correlated synthetic data. We can notice that the performance of PFSIDS remains stable as 

dimensions increase, while the performance of TSI and BTIS appear to improve. TSI outperforms 

BTIS in the 3 and 5 dimensional cases regarding execution time, but both were outperformed by 

PFSIDS. TSI and BTIS both see a significant decrease in execution time in the 7 and 9 dimensional 



39 

cases, with TSI slightly outperforming PFSIDS, and BTIS being the slowest of the three. When 

looking at garbage collector allocations, TSI and BTIS have the highest allocation rates in the 3 

dimensional cases, have a sharp decline in the 5 dimensional case, and then steadily rise in the 7 

and 9 dimensional case. PFSIDS sees a minor increase in memory allocations as the number of 

dimensions increases.  

       

(a) 60k dataset size with 3-9 dimensions   (b) 80k dataset size wih 3-9 dimensions 

 

(c) 100k dataset size with 3-9 dimensions 

Figure 4.4: The Effect of Number of Dimensions on the Execution Time for Correlated Synthetic 

Data 

As with execution time, TSI has slightly better  memory allocation rates in the 7 and 9 

dimensional case than PFSIDS, and BTIS performs worse than both across all cases. For the 

number of comparisons, TSI and BTIS have considerably more than PFSIDS in the 3 dimensional 
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case, but both have a drastic improvement in the 5, 7 and 9 dimensional cases. TSI only has slightly 

more comparisons than PFSIDS in the 5, 7 and 9 dimensional cases, and BTIS has noticeably more 

comparisons than PFSIDS and TSI. 

 

       

(a) 60k dataset size with 3-9 dimensions  (b) 80k dataset size with 3-9 dimensions 

 

(c) 100k dataset size with 3-9 dimensions 

Figure 4.5: The Effect of Number of Dimensions on the GC Allocation Rates for Correlated Synthetic 

Data 
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(a) 60k dataset size with 3-9 dimensions          (b) 80k dataset size with 3-9 dimensions 

 

(c) 100k dataset size with 3-9 dimensions 

Figure 4.6: The Effect of Number of Dimensions on the Number of Comparisons for Correlated 

Synthetic Data 

Looking at the results of the synthetic random data in Figures 4.7, 4.8, and 4.9, we observe 

a similar pattern with correlated data. As dimensionality increases, PFSIDS has a stable increase 

in execution time, memory allocation and number of comparisons. TSI and BTIS perform 

considerably worse in the 3 dimensional case, see a drastic performance improvement in the 5 

dimensional case, and then have a steady decrease in performance as dimensionality increases. 

BTIS performs worse across all cases in terms of execution time than TSI and PFSIDS, and TSI 

slightly outperforms PFSIDS in the 9 dimensional case. In regards to garbage collector allocations, 
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BTIS performed the worst in all cases, PFSIDS performed the best in the 3 dimensional case, and 

TSI performed the best in the 5, 7, and 9 dimensions case, allocating memory at a slightly lower 

rate than PFSIDS. For the number of comparisons, TSI has the most in the 3 dimensional case 

while PFSIDS has the lowest. TSI has fewer comparisons than PFSIDS in the 5 and 7 dimensional 

100K dataset, and 5 dimensional 80K dataset. PFSIDS has fewer comparisons than BTIS and TSI 

in every other case. 

     

      (a) 60k dataset size with 3-9 dimensions       (b) 80k dataset size with 3-9 dimensions 

 

(c) 100k dataset size with 3-9 dimensions 

Figure 4.7: The Effect of the Number of Dimensions on the Execution Time for Independent 

Synthetic Data 
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          (a) 60k dataset size with 3- 9 dimensions   (b) 80k dataset size with 3-9 dimensions 

 

(c) 100k dataset size with 3-9 dimensions 

Figure 4.8: The Effect of Number of Dimensions son the GC Allocation Rate for Independent Data 
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(a) 60k dataset size with 3-9 dimensions  (b) 80k dataset size with 3-9 dimensions 

 

(c) 100k dataset size with 3-9 dimensions 

Figure 4.9: The Effect of the Number of Dimensions on Number of Comparison for Independent Synthetic 

Data 

4.3 NBA Results 

 Referring to Figure 4.10, we can observe that the execution time of TSI and PFSIDS 

slightly increases as the number of dimensions increases. Conversely, BTIS exhibits a faster 

execution time as dimensions increase. BTIS has the quickest execution time in the 15 and 13 

dimensional case, and PFSIDS has the fastest in the 11 dimensional case. TSI had the longest 

execution time in all cases. A similar trend is observed in the garbage collector allocation rates in 

Figure. 4.11, as the rate decreases for BTIS as dimensions increase, and slightly increases for TSI 
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and PFSIDS. TSI has a significantly higher memory allocation rate than both PFSIDS and BTIS 

in all cases. We observe the same trend again in the number of comparisons in Figure 4.12, 

however BTIS has more comparisons than PFSIDS in all cases, and TSI has significantly more 

comparisons than both algorithms in all cases. 

 

 

Figure 4.10: The Effect of Number of Dimensions on the Execution Time for NBA Real-world Data 

 

 

Figure 4.11: The Effect of the Number of Dimension on GC Allocation Rate for NBA Real-world Data  
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Figure 4.12: The Effect of Number of Dimension on Number of Comparison for NBA Real-world Data 

 

4.4 COIL 2000 Results 

 From Figure 4.13, we can see that BTIS has the slowest execution times and TSI has the 

fastest, slightly faster than PFSIDS, in all cases. PFSIDS execution times slightly increase as 

dimensions increase, while TSI remains mostly the same. BTIS has variable changes in execution 

time, being slower in the 11 dimensional case, faster in the 13, and then slower again in the 15. 

Looking at Figure 4.14, we can see PFSIDS has the lowest allocation rates in the 11 and 13 

dimensional case, TSI has the lowest in the 15 dimensional case, and BTIS has the highest 

allocation rate in all cases. BTIS has a significantly higher rate of memory allocation in all cases 

compared to TSI and PFSIDS. When comparing the number of comparisons in Figure. 4.5, we see 

BTIS has significantly more comparisons than TSI and PFSIDS, although the number of 

comparisons decreases as dimensions increase. PFSIDS has the fewest number of comparisons, 

and appears to have a stable amount of comparisons as dimensions increase. 
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Figure 4.13: The Effect of Number of Dimensions on the Execution Time for COIL 2000 Real-world Data 

 

  

Figure 4.14: The Effect of the Number of Dimensions on the GC Allocation Rate for COIL 2000 Real-world 

Data  
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Figure 4.15: The Effect of the Number of Dimensions on Number of Comparison for COIL 2000 Real-world 

Data  

4.5 Movielens Results 

 In Figure 4.16, the execution times of each algorithm are compared on the Movielens 

dataset. PFSIDS clearly performs the best at all input sizes by a large margin, taking at most 2 

seconds on the largest data set (1200k), while TSI takes 40 seconds, and BTIS 26 seconds. This 

comes at the cost of the memory allocation rate as seen in Figure. 4.17 PFSIDS has a significantly 

higher rate of memory allocation that increases with the size of the dataset. TSI has the lowest 

memory allocation rate that appears to remain stable as the size of the dataset increases. BTIS has 

some variability in its memory allocation rate as dimensions change, but stays at a rate between 

TSI and PFSIDS. In the number of comparisons, as seen in Figure 4.18, PFSIDS clearly has the 

fewest number of comparisons for all sizes of the dataset, with BTIS having significantly more 

than both TSI and PFSIDS for all sizes. 
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Figure 4.16: The Effect of the Dataset Size on Execution Time for Movielens Real-world Data  

 

  

Figure 4.17: The Effect of the Dataset Size on the GC Allocation Rate for Movielens Real-world Data 
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Figure 4.18: The Effect of the Dataset Size on Number of Comparison for Movielens Real-world Data  

 

4.6 Analysis of Results 

In most cases, PFSIDS outperforms BTIS and TSI in execution time and number of 

comparisons. It performed particularly poorly in the higher-dimensional, anti-correlated datasets 

however. This performance could be explained by the fact that when sorting anti-correlated points 

by dimension, a point having a high dominance capability with respect to one dimension, will also 

mean that it has lower dominance capability with respect to some other dimension. This could 

reduce the effectiveness of sorting as a point pruning strategy. Another important result is that 

PFSIDS had a much larger memory footprint than TSI and BTIS in the Movielens dataset, which 

were the largest datasets tested. This is not an unsurprising result, as PFSIDS requires the creation 

of an in-memory index that contains every point k times, with k being the number of dimensions 

of the data. 

TSI performed the second best in general on the benchmarks, and did slightly better than 

PFSIDS in the higher dimensional synthetic datasets. However, the synthetic datasets are relatively 
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small inputs, and the asymptotic differences in runtime became much more pronounced in the 

larger Movielens dataset, where TSI performed much worse than both PFSIDS and BTIS. For 

smaller high dimensional datasets, TSI may be a better choice irrespective of how the data may be 

correlated. Another benefit of TSI over PFSIDS, unrelated to the benchmarks, is that it is a fairly 

straightforward algorithm to implement as it does not require building an index or some other 

auxiliary data structure like PFSIDS and BTIS. What was somewhat surprising was the memory 

allocation rate being higher than PFSIDS in some cases. TSI does not require any additional data 

structures, aside from a set data-structure that is iteratively built during the sequential scans. It's 

possible that the need to load the entire data set into memory twice in some scenarios results in 

more memory allocations than creating PFSID’s index. Some of this variability could be due to 

the nature of the JVM’s garbage collector and the single-shot benchmarks however. We should 

generally expect the least amount of memory usage from TSI, so this may indicate a need to tweak 

the parameters of the benchmarks. 

 BTIS generally performed the worse on the benchmarks, but performed noticeably better 

on the very high dimensional NBA dataset. The combination of high dimensionality, a low missing 

rate, and a high correlation among the dimensions may have provided good conditions for BTIS 

to succeed. A low missing rate may be important for BTIS to do well, as it may translate to fewer 

categories of data to classify. The classification and bucketing process introduces significant 

overhead, and as many as 2d - 1 different buckets could exist. However, BTIS did not perform well 

in the COIL 2000 benchmark, a dataset that also has a relatively low missing rate and high 

dimensionality. An important aspect of the data, namely the number of different combinations of 

missing dimensions, probably plays a role in how well BTIS may perform. Another possible 

consideration is that there is a high initial overhead in the creation of the classification tree and 
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bucket data structures, whose creation is factored into the benchmarks execution time and memory 

allocation. In a scenario where such data structures were already prepared, the process of 

classification and computing the skyline itself may result in better results from BTIS. 
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CHAPTER FIVE 

CONCLUSION 

5.1 Introduction 

 In this chapter, we make recommendations as to when each algorithm is appropriate, and 

talk about possible future work. The results of our benchmarks give insights into the strengths and 

weaknesses of each algorithm and to differing approaches to dealing with incomplete data. We 

also explored the key differences in how each algorithm handles the problems that arise from 

computing the skyline on incomplete data. It is also clear that dimensionality, input size, and 

correlation impacts the performance of each algorithm. We also have several avenues for possible 

future work. We could use additional benchmarking metrics such as disk usage, give the JVM a 

warm-up period so that results are more reflective of real-world performance and explore the 

impact of missing rate on performance. Other ideas include investigating how the number of 

unique combinations of missing dimensions in the data impacts BTIS, test the more advanced 

pruning version of TSI, and benchmarking specific portions of each algorithm, such as the 

overhead of creating the classification tree in BTIS. 

 

5.2 Conclusions 

 We recommend using PFSIDS for most cases, except when dealing with high dimensional, 

anti-correlated data. TSI is fine for smaller datasets and can give predictable performance 

irrespective of the data’s correlation. BTIS unfortunately did not appear to have any clear pattern 

established for a context in which it excels in. Sorting appeared to be a better strategy for pruning 

tuples than BTIS’s approach with bucketing and optimal virtual points. While in Yuan et. al, BTIS 

outperformed SIDs, another sorting-based skyline algorithm, the technique of ranking by 
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cumulative complete dimensions in PFSIDs appeared to have made a significant difference. More 

specifically, sorting not by just the values of each dimension, but also by cumulative complete 

dimensions was more effective than bucketing. TSI’s approach for handling missing data was 

novel in that it's very straightforward and requires no additional data structures, but clearly had the 

worse performance on larger datasets. This is not unexpected given its O (n2) time complexity. 

The pruning-based TSI algorithm, which processes pruning tuples with a high dominance 

capability from a min-heap, would have definitely fared better. However, it is important to notice 

the similarity between this version of TSI and PFSIDS, as using a min-heap is in itself a form of 

sorting. The key innovation of TSI is in how simply it handles the problems of intransitivity and 

cyclic dominance. BTIS clearly has the most initial overhead of the three algorithms. The need to 

model the classification tree on a sample of the dataset, as well as create buckets for each 

combination of missing values, likely caused it to perform poorly on most benchmarks. BTIS 

would probably perform better in a scenario where it could model the data once, and then each 

time the skyline needed to be computed, it could use the already prepared classification tree. This 

means that BTIS is probably best suited for static databases, as a dynamic environment would 

necessitate re-modelling the data every time a change was made. 

 

5.3 Additional Metrics and JVM Warmup Time 

Since a JVM language was used to benchmark these algorithms, single-shot benchmarks 

may not be the most accurate, as the JVM performs better on code paths that are “warmed up”, or 

already run a few times prior. The cold execution times are still valid for the use of comparison 

however. Investigating I/O usage could be interesting as well, but would also require the use of 

much larger datasets to necessitate batch processing of the data. With the size of the data used in 
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the study, it did not make sense to look into I/O usage, as the entire datasets could easily fit into 

memory. While missing rates of the data were mentioned, they were not controlled for in the 

benchmarks. Exploring the performance impact of the missing rate could thus be a good direction 

for future work. A feature of the data not mentioned at all is the number of different combinations 

of missing dimensions. This should only affect the performance of BTIS, as it relies on 

classification of the data by its missing dimensions, but might impact the other algorithms 

nonetheless.  

 

5.4 Considerations for BTIS and TSI 

An aspect of BTIS that likely led to its poor performance was its extensive setup. Since 

BTIS had to remodel and rebuild its classification tree on each benchmark, the results may not be 

the most indicative of real-world performance. Separately benchmarking the tree classification 

portion and the actual skyline computation would give a better idea of BTIS’s true performance. 

However, PFSIDS rebuilding its index on each run was also part of the benchmark, so the results 

still allow for fair comparison. Finally, testing the pruning version of the TSI algorithm that uses 

a min-heap to remove dominated tuples is obviously of interest. Its exclusion from this study was 

due to the interest of time and the complexity of implementing the algorithm. 
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