
 

A COMPUTATIONAL ANALYSIS OF THE THYROID IMAGING AND REPORTING DATA 

SYSTEM 

 

By 

Olivia Luisi, Bachelor of Science, Computer Science 

  

A thesis submitted to the Graduate Committee of  

Ramapo College of New Jersey in partial fulfillment  

of the requirements for the degree of 

Master of Science in Computer Science 

Spring, 2025 

                                                           

Committee Members: 

         Lawrence D’Antonio, Advisor 

         Sourav Dutta, Reader 

         Scott Frees, Reader 

 



 

COPYRIGHT 

© Olivia Luisi 

2025 

ii 



 

 

iii 



 

Dedication 

The work of this Thesis is dedicated to my family, my loved ones and my dearest friends. 

I complained often, I leaned on you and I cherish what I could do because of you. To my mother 

who has given me the kindness and strength to push forward, and to my father whose 

unwavering support has guided my confidence and perseverance. 

iv 



 

Acknowledgments 

I’d like to acknowledge the Thyroid Cancer Survivors Subreddit where I spent many 

nights trying to read information on cases like mine, results like mine, and experiences like mine. 

The community of cancer survivors there gave me a level of curiosity away from my worries that 

allowed me to do my favorite thing: read about a topic until I’m no longer afraid of it. At the end 

of this thesis work I will be starting preparations to undergo radiation therapy, satisfied but eager 

to continue learning about this topic of research I found myself a part of.  

May we all be healthier tomorrow. 

v 



 

Table of Contents 

 

Dedication 4 
Acknowledgments 5 
Table of Contents 6 
List of Tables 7 
List of Figures 8 
Glossary 1 
Abstract 3 
Introduction 4 
Literature Review 8 
Methodology 13 
Analysis and Discussion 29 
Conclusions 32 
References 35 
Appendices 38 

 

 

vi 



 

List of Tables 

Table 1: Malignant Dataset 

Table 2: ACR & C TI-RADS Dataset 

 

 

vii 



 

List of Figures 

Figure 1: ACR Point System 

Figure 2: Malignancy Dataset Breakdown 

Figure 3: Malignancy Dataset: Regression Plots for Size feature 

Figure 4: ACR & C TI-RADS Data Distribution 

Figure 5: ACR & C TI-RADS: T Regression Plot 

Figure 6: ACR& C TI-RADS: Margin Regression Plot 

Figure 7: ACR & C TI-RADS: Echogenicity Regression Plot 

Figure 8: ACR & C TI-RADS: Actual vs. Predicted Plot) 

Figure 9: ACR & C TI-RADS: C TI-RADS Point-value Prediction Difference 

Figure 10: ACR TI-RADS Flow Chart 

 

 

viii 

 



 

Glossary 

FNA - A Fine-Needle Aspiration is a biopsy procedure used to collect cells, tissues and fluid 

from a malignancy suspicious lump or nodule. 

Calcification - Calcification is the occurrence of calcium deposits in an area of tissue. 

Echogenicity - Echogenicity refers to the ability of an area to reflect the sound waves of an 

ultrasound. It is used to determine a solid or fluid filled tissue. 

Margin - Margins of a thyroid nodule are classified as protruding into adjacent tissue, irregularly 

angled, invasive to nearby tissue or unable to be determined. 

Shape - The shape of nodules are classified as Wider-than-Tall or Taller-than-Wide, 

Taller-than-Wide nodules are heavily associated with malignancy. 

Composition - Composition refers to the physical internal structure of a nodule. Spongiform or 

predominantly cystic composition is a clear sign of a benign nodule whereas a mixed or fully 

solid nodule is indicative of needing further assessment. 

Echogenic Foci - Referring to calcification or calcium deposits on the nodule or surrounding 

area. 

Comet Tail Artifact - A comet tail artifact refers to a reverberation artifact seen on ultrasound 

imaging. It is considered a sign of a benign nodule. 
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TI-RADS -The Thyroids Imaging Reporting and Data System is a standardized system coined 

by the American College of Radiology. 

TR Level System - The TI-RADS score system refers to its levels as TR#, where TR1 refers to 

benign and TR5 refers to the highest possible risk. 
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Abstract 

The detection of thyroid cancer is uniquely based upon a standardized system of 

numerical analysis. After a nodule is detected on a patient’s thyroid, the ultrasound images are 

analyzed to determine the level of need for a biopsy. The majority of first world countries follow 

the basis of the Thyroid Imaging Reporting and Data System created by the American College of 

Radiology [1]. Each country however has their own rating system to determine the level of 

danger or suspicion surrounding the nodule, this has led to some country’s systems being more or 

less sensitive in electing for a biopsy of the nodule. While the United States has a numerical 

value system, the European Union and South Korea have an algorithmic flow chart to determine 

the nodules rating, and the newer Chinese system focuses on dominant features of likely 

malignancy [1][3]. Each has their own strengths and weaknesses and in an attempt to better 

explain their differences, comparing their rates of positive identification will allow for a greater 

understanding. Patients of Thyroid Cancer are rarely given such insight into the mechanisms 

which declare the safety of their own health, this project seeks to allow patients to see the data 

behind what they are being told in their reports and compare their own cases against the systems 

handling of cases like their own. 
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Introduction 

1.1 Background 

Thyroid cancer detection rates have rapidly increased in the past decade of improvement 

in detection technology. To a casual observer it may seem as though people are becoming more 

likely to develop Thyroid Cancer, however the increasing rate is actually due to the system of 

detection as well as the technology of ultrasounds improving [5]. Such an increase has even 

drawn criticism that the FNA biopsy and cancer may be over diagnosed. This has left tens of 

thousands of people grasping at information regarding their own ultrasound results, struggling to 

understand the Thyroid Imaging Reporting and Data System or how it applies its level of 

“suspicion”. This system, better known as TI-RADS, accepts the perceived features from a 

thyroid ultrasound and calculates the possible levels of suspicion of cancer before outputting 

whether the patient should receive a biopsy [1]. The system that the United States uses is based 

out of the American College of Radiology, though many countries and the European Union have 

their own personalized version of the TI-RAD system; each with differing levels of sensitivity 

and specificity. This information is not easy to come by as a patient going through ultrasound 

testing, but would give a more robust understanding to them. Thus this thesis seeks to explore the 

statistical value in a handful of  TI-RADS. 

1.2 Problem Statement 

 Given our current technological decade of using search engines for medical questions, it 

believes it would benefit the vast majority of patients and practitioners to understand the key 
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differences in TI-RAD systems around the world, as well as the analysis of the systems key 

points combined. Medical data is not easy to find, reputable data even less so, therefore a clear 

description with example data will give the best chance of understanding for patients like myself. 

This project does not seek to be as informative, definitive, or absolute as a medically lead project 

would be. But it does seek to set a groundwork for exploring multiple systems’ sensitivities to 

give a more comprehensive view than a suspicion percentage. By showing the system they are 

being rated into, the differences it may have with other country’s systems, as well as how cases 

like their own were determined by these cases, we provide patients with information allowing 

them to understand more of their own medical situation. This project is not ethically intact as 

medical adjacent programming rarely is. As such, the medical ethicacy will be an important 

element spoken on throughout the project's planning and execution. 

1.3 Significance of the Study 

The online sphere is filled with an influx of information with varying degrees of 

correctness and applicability. It is the foundation of design for the intention to have as many 

people as possible interact with a given product. This leads to some of the most vital pieces of 

information for Thyroid Cancer patients to be spread out across the vast ocean of internet 

articles, websites or thinkpieces. As many countries have their own version of the TI-RAD 

system it is important to show why these distinctions exist and how they can differ in answer 

between different cases. This research is designed for patients like myself: unable to find specific 

information with answers to the many uncertainties that come with a system that gives you a 

percentage score rather than a false or positive. There is no certainty in cancer until the tumor has 
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been removed and the pathology studied. Ergo the TI-RAD system cannot provide any more 

information than its suspicion. This paper believes that the system would benefit from including 

a depth of understanding how the individual systems of America, EU and China differ from one 

another.  

The TI-RADS Calculator is an online website which allows users to input their features 

reported on their ultrasound report and view the TI-RADS level which is also already included in 

their thyroid ultrasound report [1]. The information here is obviously reductive. The patient must 

have already received their ultrasound report in order to input this information; including the TR 

level, features, and level of suspicion. The TR levels themselves are a simple risk level 

calculation where starting at TR1 the nodule is considered benign. The risk percentage increases 

up to TR5, which is considered the greatest suspicion level of malignancy [1]. There is no bridge 

from the system to similar cases or easily available datasets. The datasets themselves are another 

unfortunate but important aspect of the study. The vast majority of posted data is specifically for 

deep learning on the ultrasound images themselves. They have no information pertaining to the 

features, the outcome or the rating system. Datasets posted outside of the United States never 

fully contain the specifications required for the ACR TI-RADS numerical system. The data 

needed for comparison has to be of the TI-RADS standards from each region, specifically 

addressing each region's own way of describing feature points. That data simply did not exist in 

my months of researching. Even when repositories reported that the data was held for request, 

the data would end up being inaccessible or pulled entirely leaving a blank entry. Ultimately this 

project had to use a 1,000 entry dataset and a 332 entry dataset, requiring a level of abstraction 

over some of the terms which did not apply smoothly to the US system. Part of this project's 
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importance ought to highlight how the data acquisition relied on countries with released 

healthcare datasets for the general public.  

1.4 Objectives of the Study 

This thesis aims to address the following objectives: 

- To obtain datasets of a sizable amount of patients with data pertaining to the TI-RAD 

system features. This data must contain each feature and if the case was determined to be 

malignant or benign. 

- To write and produce code exploring linear regression on a benign and malignant dataset, 

exploring the sensitivities in the different features of thyroid cancer 

- To write and produce code exploring linear regression on a TI-RADS level dataset for the 

ACR & C TI-RADS score system. 

- To determine sensitivities or irregularities of the point-score systems viewed 

algorithmically side by side.  

- To conceptualize an algorithm which takes in the positives and negatives of like systems. 
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Literature Review 

2.1 Introduction to Diagnostic Statistics 

The many Thyroid Imaging Reporting and Data Systems are simply algorithmic decision 

systems at their core. Each is held against disease screening statistical measures of Sensitivity 

and Specificity, a statistic used for how an algorithm correctly diagnoses a disease [2]. These 

values are what ultimately determine the usefulness and drawbacks of each algorithm, as it 

identifies the under or over diagnosis which in this case leads to a Fine Needle Aspiration biopsy, 

the final step of malignancy testing a patient can receive before surgery. Sensitivity refers to the 

number of correctly diagnosed positives within the system, categorized by the equation [12]: 

 𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 =  𝑇𝑟𝑢𝑒𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠(𝐴) / ((𝑇𝑟𝑢𝑒𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠(𝐴) +  𝐹𝑎𝑙𝑠𝑒𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒𝑠(𝐵))

It determines that of the full number of people with the disease, this many were correctly 

found. Specificity similarly refers to the number of correctly diagnosed negatives. In our case it 

will refer to the percentage of people incorrectly referred to an FNA biopsy procedure. The 

equation for Specificity is [12]:

  𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦 =  𝑇𝑟𝑢𝑒𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒𝑠(𝐴) / ((𝑇𝑟𝑢𝑒𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒𝑠(𝐴) +  𝐹𝑎𝑙𝑠𝑒𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠(𝐵))

These are the guidelines with which I reviewed each TI-RADS system and began my 

analysis of each.  

2.2 An Overview of the TI-RADS 
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The American College of Radiation TI-RADS is a score system which adds points of 

suspicion for feature categories: Composition, Echogenicity, Shape, Margin, and Echogenic Foci. 

Composition refers to the makeup of the nodule tissue, if it is cystic or solid. Echogenicity refers 

to the sound reflection of the tissue. Shape refers to the nodule either being Wider-than-Tall or 

Taller-than-Wide, the later being a sign of malignancy. Margin refers to the shape and possibly 

invasive tissue of the nodule. And Echogenic Foci refers to calcification or calcium deposits on 

the nodule. These points are added and classified as TR1-5, on a 0-7+ point scale. Each level in 

the American system displays a different malignancy rate percentage from 0.3% to 35% and a 

preferred action for FNA biopsy. An important goal of this tool, besides identifying malignancy, 

is to reduce the number of unnecessary FNA biopsies; the American system in this regard has a 

fantastic history of overall performance compared to EU or South Korean systems but this has a 

very interesting reason and cost.  

The EU TI-RADS operates very differently from the ACR TI-RADS. Rather than assign 

point values to the features, the EU TI-RADS determines the risk level simply by the appearance 

of low, intermediate, or high risk features [3]. There is no added numerical score, if 

microcalcifications appear on the nodule, the risk is immediately determined to be TR5. The 

percentage risk also varies widely from the ACR system: EU TI-RADS levels 1 and 2 are a 0% 

risk, but level 5 has a variance of 26-87% [3]. This system has a higher sensitivity and lower 

specificity, which increases its number of unnecessary biopsies [3]. Often the size of the nodule 

is used to assess the need for biopsy as well. The K TI-RADS is similar in design to the EU 

TI-RADS but suffers even higher rates of unnecessary FNA biopsies [6]. The system is highly 

sensitive, perhaps in part to how its standards for nodule size are much lower than the EU. It is 
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however worth noting that while the comparison of these systems aims to create a more accurate 

version, the EU and K TI-RADS referring a higher number of patients to biopsies is not 

necessarily negative when working with medical data. For the majority of computer science 

work, these algorithms would be called too finicky to provide the correct assessment. But as the 

reference is for a non-invasive procedure which would produce a more concrete assessment of 

the nodule it can be argued that the higher sensitivity has more to gain than lose in some 

environments.  

The final and most important version of the TI-RADS system to be discussed is one 

based in China. The C TI-RADS differs from the other discussed systems as it has the highest 

level of specificity across studies, meaning it has the lowest number of false positives [10]. The 

system similarly to the ACR works on a point based system though is much less complex. There 

are five features which are worth +1 point each and one feature which is worth -1. The suspicion 

risk for the levels spans from 0% to over 90%, heavily dramatizing the increase in each level 

[10]. This is perhaps why the system can achieve such high specificity, as by horizontally 

limiting the point system there is less room for a nodule score to reach higher and higher levels.  

 An interesting discussion of these models is the healthcare that each country provides. In 

countries with higher access to healthcare like the EU or South Korea, their models reflect a 

great ease to recommend a biopsy. Whereas America has a private healthcare system and focuses 

more on accuracy in order to limit the amount of necessary biopsies. China is an interesting cross 

section between these two groups. It is a country with government healthcare so it should 

logically look to diagnose risk levels at a similar rate to the EU or South Korea. FNA biopsies 
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however are not widely available across China, leading them to take on a more specific approach 

similar to the ACR system [10]. This is a large reason for understanding why I chose to research 

and work specifically with the C and ACR TI-RADS. As discussed prior, the overdiagnosis of 

FNA biopsy to determine malignancy is not necessarily negative enough to invoke change in a 

system, but for the ACR and C TI-RADS the specificity is extremely important. It also is 

important to note that the datasets this project utilizes are both from Chinese institutions of 

research which only strengthens the decision to specifically look at the C and ACR TI-RADS. 

2.3 Data Assessment 

 After concluding that the ACR and C TI-RADS systems were best suited to one another 

it became necessary to study the best ways to implement improvements between the two. Each 

had clear higher and lower values which the other mirrored. Where ACR was best in sensitivity, 

C had a much higher specificity score. I decided to compare and contrast first with my own 

ultrasound and ACR TI-RADS test results to see how the system differed in my own case as it 

was a freely available dataset with a known outcome. The ACR TI-RADS listed my case as TR5 

suspicion, the highest possible level with a large variance of risk percentage. The C TI-RADS on 

the other hand had me listed at C-TR 4, still requiring an FNA biopsy but bringing my risk 

percentage down to 50-95%. This is consistent with the initial theory that the C TI-RADS 

horizontally shortens the point metric in order to cut down on unnecessary biopsy referrals, 

cutting off the fat of extra points. This was used as a base idea of how to go about combining the 

two systems, the ACR TI-RADS has a fantastic accuracy of positive detections but the C 

TI-RADS can serve as a weight to curb false positives. 
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 It was primarily important to research a few different implementation methods by reading 

through publications similarly attempting to apply logistic regression to the ACR TI-RADS. For 

the purposes of this project, the regression model would be used on both the ACR and C 

TI-RADS categorical system in order to see the key differences between them. For this, two 

different datasets were needed to correctly assess both points of key features desirable for a 

report. One dataset needed to have the information required for ACR TI-RADS & C TI-RADS 

so that the regression models would be easily compared. The other dataset needed to have cases 

which resulted in both benign and malignant outcomes in order to be useful if viewed by a 

patient researching outcomes of similar cases to their own. Oftentimes patients like myself would 

think to search their own case description online to see potential outcomes, this has a 

compositional fallacy as people who do not end up having cancer do not go onto cancer forms to 

post that they do not have cancer. Therefore producing the viewpoint of cases which do end up 

benign is of particular importance. As stated towards the beginning of this project the use of 

medical data for research or informing a public carries the risk of unethical use, the skewing of 

any presented data can lead to a negative reaction or outcome if the viewer is uninformed of the 

data’s pitfalls. 
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Methodology 

The research required for this project is about as much work as the project itself. It was 

an extremely lengthy process of finding data which suited the needs of the work. The main entry 

point was figuring out what data was available, what it contained and if it would cover the 

majority of areas which I wanted to use. This methodology will touch first on the dead ends of 

the project before going into discussion of the actual development points. Unfortunately the 

medical landscape is not filled with datasets that anyone can use to research their own interests 

and instead the project ended up relying on Chinese research institutions which posted their 

datasets alongside their research. 

3.1 Introduction to Data Acquisition 

Going into this project there was an assumed level of difficulty in locating the data 

necessary for the analysis desired. However it became quickly apparent that this would be more 

than just difficult to obtain but rather impossible in the specific aspects which were desired. A 

quick look throughout many databases will return a false sense of security in the many Thyroid 

Imagining datasets posted to the web for image-based deep learning [8]. Once these datasets are 

obtained and explored it becomes apparent that they do not meet the standard for research which 

the project required. Without the clear features weighted in the TI-RADS system, the area of 

analysis to be done shrunk quickly. Most were datasets which recorded only parts of the full 

picture, and while emails continued to be sent to the point of contact or database owners of many 
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different research papers to find something more detailed, almost all were left unreplied. This 

research ended up with just two datasets that had most of what was required. 

The two datasets this project worked with were both publicly available research datasets 

from Chinese based researcher groups. Because of this both datasets were not necessarily created 

with ACR TI-RADS analysis in mind, though one of the datasets did contain detailing of the C 

TI-RADS score alongside of the ACR TI-RADS score. The drawback of this dataset however 

was that the entire set contained malignant cases of thyroid cancer and that it did not contain 

clear documentation for three of the columns. It was published with the intent of research into 

the autoimmune and marker genes that affect many Thyroid Cancer cases, not TI-RADS 

analysis. The primary dataset I would use for linear regression contained both benign and 

malignant cases with additional patient data, but the columns were again not directly translatable 

to the ACR point system. The primary and secondary dataset is displayed below: 

 

(Table 1: Malignant Dataset) 
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(Table 2: ACR & C TI-RADS Dataset) 

 The second of the two datasets required quite a bit of cleaning and adjustment. It 

contained 332 rows in total across two CSV files. The files were combined rather than used as 

separate training-testing files as the data would need heavy manipulation to be functional to the 

needs of the model. This data had no documentation and while there was a research paper which  

the dataset was created for, it did not provide additional information on what exactly columns 

like “AT” or “pVI” represented. It did however have both the C TI-RADS and ACR TI-RADS 

score to compare to one another and the definitive outcome that each case ended in malignancy. 

Ergo it was pieced together which column represented which as well as what needed to be 

adjusted. It was quickly noticed that the “TIRADS” column was not the TR level but instead was 

the total score collected from the features. The numbers in the “TIRADS” column varied 

between five, six and seven representing the two highest levels of suspicion TR4 and TR5. It 

needed to be assumed that if any case reached more than seven points, the minimum for the TR5 

level, it would simply be scored at a 7. Next it was imperative that values consistent with the 

system's features were being used. This came about by manually adding together the points of 

the features to eventually find out which column represented which features. For example, there 

is no clarity on if the ‘T’ column represents the Taller-than-Wide risk feature. The column is 
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simply [1,2], ergo through as many columns as could be checked the ‘1’ value was applied as 

three points and the ‘2’ value as zero. This seemed to equal out to the “TIRADS” column score  

but in such a large data set it was decided to move forward, dropping rows if absolutely 

necessary. This approach continued until the data layout was satisfactory, then it was needed to  

match point value to features. For example, the ‘Margins’, ‘composition’, and ‘T’ columns all 

represented the array values of the features rather than the point values. The numbers were 

swapped, again paying attention to if they matched our point score, and proceeded to finish 

cleaning the dataframe. Below is the simplification of the point system process, converting the 

feature array into the designated point value: 

(Figure 1: ACR Point Adjustment) 

After this it was decided to copy the data frame into an ACR and C data frame in order to 

give better organization for future modeling. Additionally a row was added which reported the 

TR level so that it would not overwrite the total point score. It provided a much easier look at 

whether or not the point calculations were correct as well as separated out which data was being 

used for modeling versus which could be used for graphing the statistical makeup of the dataset. 

3.2 Linear Regression 
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With two sets of varying data the comparing and contrasting began with the scoring on 𝑅2

the malignancy dataset. This score represents the overarching value of the relationship between 

the features and outcome. The first model created was used to predict malignancy based on the 

appearance of certain features within a group. It started first with the original features included 

within the TI-RADS feature listing before more or less advanced features in attempts to push the 

prediction functionality to be closer and closer to the malignancy outcome. The basic 

information of the malignancy dataset is below: 

(Figure 2: Malignancy Dataset Breakdown) 

 The model struggled slightly with only features which are included in the five TI-RADS 

score pillars (Composition, Margins, Echogenicity, Shape, Echogenic Foci) as the data was not 

one to one. While it maintained a 22% variance based on the features of the TI-RADS 

information it was unable to predict consistently, assumedly because multiple columns referred 

to a single TI-RADS feature and the model needed those features to determine a score before 

using that score as a prediction value. This was fairly interesting as while the dataset variables 

were greater than five columns and presumably messed with the variation, they all represented 

information from the score system. This route ended up a backwards way of attempting to 
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recreate the TI-RADS five pillar system and provides a contextualization of how even in a model 

outside of the TI-RADS organizational features, it begins to mimic the same contextual structure 

of it through the variables value on the malignancy outcome.  

After finishing the data for the first model it was determined to not continue with SciKit 

Learn’s Linear Regression functionality and instead moved to learn how to work with 

Statsmodels Python module for Linear Regression. The module was entirely new to the 

workflow of the project but was integral for the amount of information being made from creating 

and running these models. Through this functionality it became clear to see the coefficients for 

each predictor variable within the model. For example, for each feature of marked composition 

which holds a 0, 1 or 2 point value the model boosted the expected binary outcome of 

malignancy by 0.1. Echogenicity on the other hand had a coefficient value of 0.04, this feature is 

worth up to three points within the TI-RADS system but has the lowest coefficient of the feature 

group. Calcification was easily the strongest predictor variable with the highest coefficient 

scoring. The  value determines if the regression model relationship is statically 𝑃 > |𝑇|

reveavent and exists. This told me which features within the model were statistically significant. 

Shape, Margin, Calcification and Composition held the most significance within the group of 

variables. As the features of the nodules are rated on an arbitrary 0-3 scale representing features 

across a binary outcome, I found it most interesting to plot the nodule size in the regression 

model and see how it affected the model as a data piece: 
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(Figure 3:Malignancy Dataset: Regression Plots for Size feature) 

The large growth of thyroid nodules is heavily attributed to malignancy as thyroid cells 

themselves are naturally slow growing [5]. The size of the nodule is a very important factor 

which can indicate an immediate need for biopsy, it is very interesting how the model prioritized 

size in determining a malignancy response, whether a false or true positive. 

The project then moved to the alternative dataset to explore how the performance of the 

model would change with predicting a score level rather than an actual malignancy. Logically 

speaking it would be assumed that this would not directly communicate the information which 

the first model had. Instead it would simply recreate the point system which each feature 
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contributed to. Nevertheless the model was set up in hopes that it would provide a methodology 

for future publicly available datasets. 

As spoken on in the previous section, the C and ACR TI-RADS dataset did not have clear 

documentation. Therefore the findings discussed are inherently flawed as the data is only as good 

as the interpretation. The data within the C and ACR TI-RADS dataset is entirely made up of 

malignant cases with both ACR and C features to describe the nodules. Additionally it holds the 

ages and genders of the patients. The dataset distribution is shown below: 

(Figure 4: ACR & C TI-RADS Data Distribution) 
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 There are two assumptions being made on the dataset’s information. The first is 

that there are 332 patients in total and that it is not a case by case breakdown. The second is that 

given the lack of documentation on the dataset it must be assumed that there are 332 malignant 

nodules in total for evaluation. There is a column named “cNodules” which contains values 0, 1, 

or 2 but two nodules being the maximum number out of 332 cases is too unlikely to draw a 

concrete conclusion on what the data represents. Ergo, it was decided to drop this table from any 

future analysis regardless of how useful it would have been to explore multiple nodules affecting 

the risk rating. For the first model produced the dataset from the manipulation done in Figure 1 

was used. It received the TI-RADS point accumulation as the y value and the five TI-RADS 

features as x values. It was predicted that the model would easily realize that the data was a 

simple point system adding up the features and that features with similar point totals would 

function the same while outlier features like “Taller-than-Wide” would be hard to compute. It 

was true that the “Taller-than-Wide” attribute came back with a -0.0195 coefficient, a strong 

indication that it did affect the final point score negatively. I reran the model, this time using the 

TR score instead of the full point scoring, it once again returned with a negative coefficient but 

was a slightly larger number. While this would be interesting in a complete dataset, this data only 

contained TR4 and TR5 level nodules so a three point feature being slightly more useful between 

only two possible outcomes had no significance. While a rare feature, it has the point value to 

immediately place any nodule into the “Moderately Suspicious” risk group which is why it was 

expected to be more effective in calculating the higher risk of nodule or at least not have a 

negative association. The regression plots are displayed below: 
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(Figure 5: ACR & C TI-RADS: T Regression Plot) 

 I then ran a regression plot on the Margins and Echogenicity features as they both 

had the lowest  values of approximately ~0.00. Both displayed interesting yet 𝑃 > |𝑡|

disappointing value at the relationship of the features to the TI-RADS point outcome: 
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(Figure 6: ACR& C TI-RADS: Margin Regression Plot) 
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(Figure 7: ACR & C TI-RADS: Echogenicity Regression Plot) 

 The information displayed in the regression plots made it abundantly clear that the data I 

had displayed only a small window of information. Similarly to the first dataset there was a very 

small amount of possible outcomes which hindered the models ability to determine a correlation. 

Each graph feature had an array of points which it could deal out, but if the dataset only contains 

the most suspicious nodules it is only fair to assume that the nodules will display the higher 

value point features. I calculated an Actual vs. Predicted Points graphic on the data so far: 

(Figure 8: ACR & C TI-RADS: Actual vs. Predicted ACR Plot) 
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 Next was to start graphing the data specifically associated with the C TI-RADS. Again 

the data was not documented and it was decided to use the column for Taller-than-Wide which 

had been used for the ACR data analysis. For this it was a similar workflow as with the ACR 

dataframe, and slowly adjusted the value of every feature to reflect the set up of the C TI-RADS. 

This included adjusting every data variable point to [0, 1] based on the features existence and 

setting up the “cAT” feature as the Comet Tail Artifact feature at [-1, 0]. For clarity's sake  an 

Actual vs. Predicted graph was kept from the original data values to compare to my data edits. 

This had been done with the ACR data but the graphics did not change nearly as much as the 

point system still had the same amount of possible values per feature. The data for the C 

TI-RADS changed a lot as unfortunately it was unknown what each value in the features column 

represented for a system that only counts the appearance of the feature, not the description. 

Below are the two prediction graphics, the left is before the point value was edited and the right 

is after: 

(Figure 9: ACR & C TI-RADS: C TI-RADS Point-value Prediction Difference) 
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 The immediate variance in the model was a bit confusing at first before looking at the 

regression statistics. The  value was 0.740 which was much higher than the ACR model. This 𝑅2

was momentarily explained by the simplicity in the data points all being [-1, 0, 1], all of the data 

had the same coefficient values and strength over the model. When resetting the variables back 

to their original values the  value actually increased slightly and showed  values which 𝑅2 𝑃 > |𝑡|

had similar strength in the ACR model. The values with the highest influence were graphed 

below: 

\ 

(Figure 9: ACR & C TI-RADS: C Composition Regression Plots) 
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(Figure 9: ACR & C TI-RADS: C Calcification Regression Plots) 
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(Figure 9: ACR & C TI-RADS: C Margin Regression Plots) 

3.3 Combining Models 

 As shown in the models, regression plots, and prediction variance the three data 

groups were not strong models but did often show similarities in which features affected the 

general outcome of the data the most. The Margins feature showed significant strength in every 

data group’s model and the Echogenicity was important in both models within the ACR & C 

dataset. The regression plots for these values in the malignancy data set probably would have 

provided a lot of interesting information if the predicted outcome had more variance than the 
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binary benign or malignant. If there was a wider array of data which included multiple TR levels 

along with a malignancy variable, it can be assumed that the data would continue to show the 

strong effects of the Margins and Echogenicity. Perhaps enough so to heavily weigh that feature 

and return others to the C  TI-RADS weighting system.  
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Analysis and Discussion 

 The vast majority of research projects came across when working on this project seeked 

to rely on computational intelligence to determine malignancy at a higher outcome than current 

professionals and systems. When starting this project I knew I did not want to assume the same 

ideas but could not put into words exactly why. The TI-RAD system is not meant to determine 

cancer, it is meant to determine the risk and provide steps for the patient. When looking at these 

datasets it did not seem important to reinvent the wheel with fancier tools but rather reinforce it 

through examining the factors of malignancy which have a higher impact than other features 

within the system.  

4.1 Challenges and Solutions 

 As stated many times throughout this project, the data used renders the information 

gained as incomplete to the full picture of how TI-RADS features interact with the assumed risk 

level. That being said, it seemed best to treat the data as if it was the full picture and make 

assumptions afterwards. There are five pillars in the TI-RADS score system, six when counting 

the C TI-RADS negative Comet Tail feature, ergo all of them of course have a constant level of 

importance in determining risk. Of the three linear regression models created to more effectively 

view the importance of each feature, three of the five stood out amongst the others. Composition 

is an interesting feature within the TI-RADS family as it holds a feature which is commonly 

associated with benign nodules: purely cystic or spongiform composition [16]. The data treated 

composition differently between the benign vs malignant dataset and the high risk assessment 
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dataset. This is assumedly because the high risk nodules were all malignant, ergo it would not 

make sense for any of them to have a benign cystic feature. As the datasets were unable to be 

combined due to the difference in feature documentation, I started to theorize about an if-then 

model of the TI-RAD system and how it would boost larger indicators of cancer while leaving 

the middle of the pack nodules to be supervised depending on size. With this in mind we can 

examine the importance of two other features: Calcification and margins. Both of these features 

had a large impact on the predicted outcome of cases across datasets and it can be hypothesized 

from this research that there can exist a weighting of malignant features to help produce risk 

factor results. 

4.2 Comparative Analysis 

 The majority of computer science work within the medical field revolves around how 

computational force can replace the work of medical professionals. As spoken on during the 

literature review portion, models which review the ultrasound of nodules are very popular right 

now. Research determining which TI-RADS is superior is also very popular. This research argues 

that this direction is not as prolific as perfecting the TI-RADS algorithm itself. The TI-RADS 

does not need to diagnose cancer, it just needs to do its job well depending on the healthcare 

environment of the region it represents. It’s why working with EU or K TI-RADS data is 

unnecessary when the research is for a country like the United States which needs specificity 

because the patients the system serves do not have easy access to biopsies. EU and K TI-RADS 

do not attempt to curb their false positives and because of the healthcare environment of those 

regions do not have the same drive to do so as the United States or China does [3][15]. This is an 
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important and complex take away when comparing the design of this research to the majority of 

papers which were reviewed in preparation of the hypothesis. 

4.3 Future Research Directions 

 Using the structure of the analysis which I started within this project I aim to one day 

revisit it with whatever new data may be made available. I would like to revisit the hypothesis 

and idealism of a system aimed in the specificity needs of the region it resides over rather than 

attempting to create the perfect prediction of malignancy. That the prediction rating can have the 

outcome of a risk percentage rather than fruitlessly grasping towards an ultrasound's ability to 

view malignancy. Ultimately the treatment direction of thyroid cancer is not always a straight 

line to surgery. It involves a patient's informed decision to monitor the nodule, remove the half of 

the thyroid with the nodule, or completely remove the thyroid. Ergo, I find it much more 

important to be able to communicate the risk factor of features instead of training a model to 

report a cancer prediction which will not be proven until after the surgery. The point system does 

a great job of combining features in a presentable way but as shown in the data gathered, there 

are certain feature points not being fully represented such as how composition, margin and 

calcification lead the majority of strength across models yet do not pull ahead in point value on 

either the ACR or C TI-RADS models. Again, this research is easily disproved due to the lack of 

concrete data behind it. But I really do think that the relationships would continue to be 

expressed given a wider array of features within the data. 
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Conclusions 

 This paper concludes with a clear outline of TI-RADS improvements which would show 

themselves if given the data to do so. The deadends found throughout this project only 

emboldened the ending opinion that the current state of medical information access inhibits the 

uses of computer science in medical fields. It is not the belief of this paper that programming can 

replace the specialization and understanding of medical professionals but that in cases of abstract 

simplification computer science has a strong reason to be used as a helpful scoring tool. This 

project was challenging and required a lot of research into the topics discussed, the datasets, and 

if those datasets were even helpful to the specific point of direction.  

5.1 Summary of Findings 

 While the datasets accessed left much to be desired, the project itself still serves as a 

basis for what could be done if said data were one day freely available. There are clear 

relationships between the datasets, regardless of their vast differences, in the features which were 

continuously considered important to the end point of risk level or determined malignancy. This 

to a certain degree does prove that the features of TI-RADS can be individually weighed in order 

to draw more specific conclusions of risk and therefore adjusted to fit a better specificity and 

sensitivity. It is the hope of this research that breakthroughs in data significance could be much 

more common if there was a freedom of such data. The ACR and C TI-RADS face the risk 

assessment problem in two different ways which means there is a third way between them which 

may ultimately improve the system if only there existed the data to prove it. 
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 Ultimately there are many research projects describing the differences between the ACR, 

C, K, and EU systems. All attempted to prove which was the best but this project seeks to 

provide a differing route to combine the strengths of similar systems within these groups. 

TI-RADS does not need to diagnose cancer, it needs to recommend true positives to biopsy and 

lower the number of unnecessary false positives.  

5.2 Contributions to the Field  

 I would like to believe that this work is a proof of concept for the groundwork of 

discussion that could occur on the adjustments of the TI-RADS. Rather than replace the ACR 

system which is arguably the best in the world, I want to make clear that there are more options 

such as reviewing how the features weighting can increase or decrease sensitivity vs specificity. 

Each of the TI-RADS algorithms has some sort of worth which works for the specific region it is 

used in. China and the United States are in a unique position together where both systems match 

the others weakness. While my data is incomplete I hope to a certain extent that the ideas I am 

attempting to convey are worth something to a group of computer scientists who may also not 

have any medical knowledge but do know how to adjust values in order to narrow the output of a 

system. 

5.3 Final Thoughts 

 In conclusion, this project involved substantial effort to produce data analysis on a 

medical system which is not heavily documented. The acquisition of data was a substantial 

roadblock at each turn of the project, and there were many datasets which were repeatedly 

scrapped because of the lack of concrete information in them. It was increasingly necessary to be 
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strict with what data was acceptable vs what data would ultimately be fruitless. Overall, this 

project was created with patients of thyroid cancer in mind. It can absolutely be pushed further 

and it is the hope of this paper to continue its research as more data becomes publicly available 

for testing. This is not a topic I would have chosen a year ago, but I am really glad I did now for 

all the catharsis it provided. 
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Appendices 

Code & data for replication can be found in this Github repository here. 

● Linear Regression Data.ipynb - Main workspace 

● Thyroid_clean.csv - Benign vs Malignant dataset 

● Testing.csv - Malignant only ACR and C TI-RADS Dataset 

● Training.csv - Malignant only ACR and C TI-RADS Dataset, second file 

The original datasets can be found: 

● Testing.csv & Training.csv here. 

● Thyroid_clean.csv here. 
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