
i

Building an ML Driven System

for Real-Time Code-Performance Monitoring

by

Mikhail Delyusto

A thesis submitted to the

Graduate Committee of Ramapo College of New Jersey

in partial fulfillment of the requirements for the degree of

Master of Science in Data Science

Spring, 2023

Committee Members:

Sourav Dutta Ph.D., Advisor

Debbie Yuster Ph.D., Reader

Scott Frees Ph.D., Reader

ii

COPYRIGHT

© Mikhail Delyusto 2023

iii

iv

Acknowledgments.

I would like to thank all the professors who helped me to fulfill my dreams and learn

data science throughout the course of my master’s studies at Ramapo College of New

Jersey.

Special thanks to Professor Dutta for agreeing to help me finalize this course as my

thesis advisor. Your knowledge, expertise and insight helped me to better understand my

thesis and is greatly appreciated. Thank you for your time and effort!

v

Table of Contents

Acknowledgements

Table of contents

List of tables

List of figures

Abstract 1

CHAPTER

1. Introduction 3

2. Background 6

3. Methodology 10

- Dataset approach 13

- Moving average 25

- ARIMA model 28

- Random Forest 32

4. Conclusions 36

Future work 40

vi

References 42

Appendices 44

vii

List of tables

Table 1. Data about real executions, parsed from log files. 14-18

Table 2. Results of a batch of 20 jobs execution (label 0 - good data) 20-21

Table 3. Results of a batch of 20 jobs execution (label 1 - bad data) 22

Table 4. List of features in the dataset. 22-23

Table 5. Results of rolling mean predictions for job 0. 25

Table 6. Classification report for moving average is the same for every job. 27

Table 7. Classification report for the ARIMA model for job 0. 29

Table 8. List of accuracies of label 1 predictions for the ARIMA model

along with average accuracy and average F1-score.

31

Table 9. Classification report for Random Forest Classifier on full dataset

(20 jobs).

33

Table 10. Classification report for Random Forest Classifier on job 0. 34

Table 11. A comparison of the models’ results 37-38

viii

List of figures

Figure 1. Current state of testing versus future state. 12

Figure 2. Confusion matrix of the predictions for job 0. 26

Figure 3. Confusion matrix for the ARIMA model for job 0. 30

Figure 4. Confusion matrix for Random Forest Classifier on full dataset (20

jobs).

33

Figure 5. Confusion matrix for Random Forest Classifier on job 0. 34

Figure 6. Example of metrics collected from one log file. 40

1

Abstract

This project is a part of a multidirectional attempt to increase quality of the software

and data product that is being produced by Science and Engineering departments of

Aetion Inc., the company that is transforming the healthcare industry by providing its

partners (major healthcare industry players) with a real-world evidence generation

platform, that helps to drive greater safety, effectiveness, and value of health treatments.

Large datasets (up to 100Tb each) of healthcare market data (for example, insurance

claims) get ingested into the platform and get transformed into Aetion’s proprietary

longitudinal format.

This attempt is being led by the Quality Engineering Team and is envisioned to move

away from conventional testing techniques by decoupling different moving parts and

isolating them in separate, maintainable and reliable tools.

A subject of this thesis is a particular branch of a large quality initiative that will be

helping to continuously monitor a number of metrics that are involved in execution of the

two most common types of jobs that run on Aetion’s platform: cohorts and analyses.

These jobs may take up to a few hours to generate depending on the size of a dataset

and the complexity of an analysis.

Implemented, this monitoring system would be supplied with a feed of logs that

contain certain data points, like timestamps. Enhanced with a built-in algorithm to set a

threshold on the metrics and notify its users (stakeholders from Engineering and Science)

2

when said threshold is exceeded, would be a game-changing capability in Aetion’s quality

space. Currently, there is no way to say if any given job is taking more or, otherwise,

significantly less time and most of the defects get identified in upper environments

(including production).

The issues identified in upper environments are the costlier of all the types and, by

different industry considerations, can cost $5000 - $10000 each.

As a result of implementing said system we would expect a steep decrease in a

number of issues in upper environments, as well as an increase in release frequency,

that the organization will greatly benefit from.

3

Introduction

In a modern world of software development testing has become a very powerful

discipline as it does allow us to iterate frequently when adding new features or updating

existing ones.

It is being established as industry standard to build and maintain automation

frameworks that run against the new features that usually come as code or configuration

changes that are built and deployed into certain environments.

A simple example of how these testing automation frameworks can be integrated into

the Software Development Life Cycle (SDLC):

1. A pull request (PR) containing a code or configuration change for a repository is

open at one of the code version control systems like GitHub or Bitbucket;

2. The repository gets built and deployed into one of the lower environments (pre-

production environments);

3. A test automation suite that contains tests that covers most (ideally 100%)

functionality runs in that environment;

4. The result of the suite is used as a mark for making a programmatic go/no go

decision of whether the code is okay to be added.

The way these approaches are designed is that the test automation suite always runs

against the environments that have a master (main) branch with a certain allowed degree

(most often, 0%) of failures. Commonly referred to as a “green” run, it is a state that

becomes a baseline for a validation of an incoming code change. A rationale used in this

4

approach is relatively simple: if the tests pass for the code in the master branch and fail

in a feature branch that means that that particular code is breaking existing functionality.

Most often pull requests that contain these breaking changes get rejected and reworked.

The testing automation frameworks have become very popular and diverse in recent

years. There are many different approaches and programming languages that are used

to build. The most common tools among these are Java + Selenium based test

automation tools that allow for running of up to tens of thousands of tests in parallel in

standalone internet browser windows. [1]

Building, maintaining and running these tests, though proven to be efficient in locating

bugs, are very expensive to run:

- Tests are hard to build and maintain:

- architecture cost - need to hire a test automation architect as the test

infrastructure can be very complex;

- organizational effort cost:

- every test should be properly written against acceptance criteria;

- tests should be timely updated if any of the acceptance criteria

change;

- need to maintain a team of quality assurance engineers;

- As these test suites may run against many of the feature branches deployed in

many environments in many iterations (until all the defects get fixed), the compute

cost can become exorbitant as the number of tests grows and the velocity of the

releases increases.

5

Many organizations struggle with proper set up in this field, resulting in:

- Lack of engineering skills and leadership lead to building testing frameworks

that are:

- over-inflated and therefore requiring extensive maintenance;

- consist of “flaky” test scenarios that intermittently fail for no apparent

reason and require additional effort to evaluate;

- The rate of spilling defects into the production increases.

A study by the National Institute of Standards and Technology found that it is five

times (5x) more expensive to fix a defect during the application development/coding

phase, ten times (10x) more expensive during integration testing, fifteen times (15x) more

expensive during customer beta testing, and an astounding thirty times (30x) more

expensive to fix post release than if it is addressed in the requirements development and

analysis phase. [2]

The higher velocity an organization is getting at with the software releases, the more

overhead cost it incurs while utilizing the traditional approach in creating testing

infrastructure for end to end testing in user interface (UI).

6

Background

A scope of this work will be around a methodology for designing a tool that would

help to significantly reduce the number and duration of the test automation suite that is

being used by the engineering organization at Aetion, Inc., the company that is

transforming the healthcare industry by providing its partners (major healthcare industry

players) with a real-world evidence generation platform, that helps to drive greater safety,

effectiveness, and value of health treatments.

Aetion’s existing flagship product, Substantiate (formerly/also known as “AEP”

(Aetion Evidence Platform)) is a complex tool used by epidemiologists to conduct

research and analysis based on real world evidence (RWE). [3] Substantiate in all its

complexity is a powerful tool, capable of generating regulatory-grade analyses.

Key Concepts:

- Environment: refers to the various collections of AWS resources provisioned for

specific purposes:

- Lower environments (CI, QA);

- Upper environments (CQA, Production).

- Instance: an instance is a client/purpose-specific instance of an application within

an environment;

- Jobs: refers to the operations performed against the patient datasets that are

ingested and made available within a customer’s instance. There are two main

types of jobs:

7

- Cohort Jobs: These jobs generate a cohort from a cohort definition,

essentially filtering all the patients within a dataset to create a subset of

patients that matches a set of specified criteria (e.g., male patients who

were diagnosed with rheumatoid arthritis during a given timeframe).

- Analysis Jobs: These jobs execute an analysis based on an analysis plan,

against a cohort which has already been generated. Analysis jobs are

complex; there are different subtypes of analysis with different

configurations to perform a variety of different calculations and

comparisons. A simple example is an analysis to show the average cost of

treatment for the patients in the specified cohort for the period of 5 years

following their RA diagnosis, grouped by patient age and geographic region.

- Populations and Cohorts: analyses are executed against cohorts, groups of

patients which match a set of criteria specified in a cohort definition.

- Outcomes and Analysis Plans:

- an Analysis Plan represents the definition of a job that needs to be executed

against a generated cohort;

- an Outcome is technically part of an Analysis Plan – it answers the question

“what are you trying to measure?”.

- Results: once an Analysis Job completes, results are made available for display,

exporting, etc.

A regular (industry standard) automated end to end test scenario for the purposes of

validating proper functionality of the platform from the user interface perspective would

include:

8

1. Logging into the platform;

2. Creating measures (essentially, filters for data);

3. Defining a cohort and triggering its generation;

4. Waiting on the web page for cohort generation;

5. Defining parameters for analysis and triggering its generation;

6. Waiting on the web page for analysis generation;

7. Navigating to the results section and validating those against some predefined

baseline.

While this will be an exact replication of the actual workflow and this is what and how

most of the users of the platform would be using the platform for, there are many

disadvantages of replicating it to run in an automated fashion:

- Steps 4 and 6 can take any amount of time, completely depending on the size of

the dataset and number of measures, outcomes, etc. The more robust the scenario

is in terms of the input parameters for cohorts and analyses, the more it resembles

real tasks that the users would be stressing the system with, but respectively the

longer it will take to generate.

- Most of the valid cases of the end to end scenarios have long execution times and

can run for up to a few hours.

- Staying on the same page in the internet browser spun up by UI test automation

tool for up to a few hours polling every second, waiting for the generation status to

display as “Generated” is the most brittle and expensive solution. [4]

9

As a part of Quality Assurance practices we still need to have a continuous

confirmation of the platform’s ability to receive a user's input as well as generate and

display a desired outcome.

In the scope of this project we would like to elaborate an approach that would

significantly reduce time and cost of the UI piece by effectively decoupling parts of the

process where generation of jobs (cohorts and analyses) takes longer than 10-15 minutes

into a separate testing tool.

10

Methodology

In our proposed solution we would like to split long running tests suites into two

different categories of testing capabilities:

1. On one hand we still would like to run end to end scenarios to make sure that all

the components of the system as well as UI respond well to a user input. To

achieve scalability of these suites in terms of time and cost we will select the input

that would result in extra small cohorts, limiting the total time of test suite execution

to 10-15 minutes. This will allow us to:

a. incorporate this lightweight suite into any CI process;

b. produce test results for faster feedback;

c. make go/no go decisions on the pull requests;

d. significantly decrease compute cost and maintenance.

2. We would still like to execute valid end to end scenarios (long running cohorts and

analyses), but orthogonal to the regular (lightweight) test automation suite. The

test suite will bear the following distinct characteristics:

a. It will consist of two dependent structures:

i. First will be a UI automation test suite that works as a cron job,

effectively just starting a set of distinct jobs (cohorts and analyses

with predefined input); this automation just triggers execution, it does

not wait for it to finish nor does it perform any validations;

11

ii. A python script that will start as soon as the UI automation triggers a

set of the predefined jobs, that predicts the execution times for each

and every job based on the historical data.

b. This way the system will acquire the predictions and will use those to:

i. Stop executions as soon as the systems learns that those are not

going to be executed within a predicted time frame;

ii. Send a signal to the maintainers of the repositories that contain the

code for cohorts and analyses’ generation to check the latest

commits for possible errors.

In the scope of this project we will concentrate on expanding on the methodology

around point 2.a.ii. (predicting execution time frames for a set of the predefined jobs).

12

Figure 1. Current state of testing versus future state.

13

Dataset approach

For the purposes of creating data to train our models and predict on, we used the

historical data of the past executions in the lower environment CI.

The baseline for data comes as a result of parsing ~5000 log files, filtering those by

the following criteria:

- log file should contain {"metrics": …} JSON, effective filtering out the log files

pertaining to the jobs ran before 10/2022, when those metrics about the executions

started to be collected;

- log file should contain [jobSucceeded], effectively filtering out jobs that did not run

successfully;

- cohortid or analysisid are present in {"metrics": …} JSON (Appendix A and B)

While parsing the log files, we collected the following metrics:

1. Execution time, as a difference in time elapsed between the timestamp in the first

line of the log JSON and the timestamp in the last line of the log JSON:

𝐸𝑛𝑑 𝑒𝑥𝑒𝑐𝑢𝑡𝑖𝑜𝑛 𝑡𝑖𝑚𝑒 − 𝑆𝑡𝑎𝑟𝑡 𝑒𝑥𝑒𝑐𝑢𝑡𝑖𝑜𝑛 𝑡𝑖𝑚𝑒

(Appendix C)

2. Number of occurrences of {"metrics": …} JSON in one file.

3. Metrics’ JSON, containing job and system info, example:

{"metrics":[{"size":56623104000,"committed":1.2847222222222223E-

4,"init":4.513888888888889E-

14

5,"max":0.0021551649305555556,"used":1.2815574363425925E-

4},{"count":115,"peak":115,"started":115},{"sysavg":0.83,"processors":16,"cpuavg":0.051

875}],"jobid":129726,"jobtype":"GENERATE_COHORT","cohortid":82097,"anchor":"_JM

T_"}

We identified the unique jobs using pairs of the corresponding values of objects

jobtype and cohortid (or analysisid). Example of a unique job id:

GENERATE_COHORT_82097.

Parsing all the available log files, we collected the following existing historical data

about past executions:

Job ID Date Time Execution time (s)

GENERATE_COHORT_82097 2022-11-14 4:20:52 54.23

GENERATE_COHORT_82097 2022-11-14 4:04:00 57.71

GENERATE_COHORT_82097 2022-11-14 4:33:32 57.90

DESCRIPTIVE_ANALYSIS_166884 2022-11-09 17:52:15 44.80

DESCRIPTIVE_ANALYSIS_166884 2022-11-08 14:14:56 50.57

DESCRIPTIVE_ANALYSIS_166884 2022-11-07 10:01:31 59.85

DESCRIPTIVE_ANALYSIS_166884 2022-11-04 19:42:58 41.50

GENERATE_COHORT_82198 2022-11-14 20:55:30 59.27

GENERATE_COHORT_82198 2022-11-14 17:46:38 59.39

GENERATE_COHORT_82198 2022-11-14 21:01:07 58.91

GENERATE_COHORT_82198 2022-11-14 17:47:26 58.92

ML_SUBGROUPS_ANALYSIS_143642 2022-12-08 21:23:12 45.17

15

ML_SUBGROUPS_ANALYSIS_143642 2022-12-08 21:40:48 44.33

ML_SUBGROUPS_ANALYSIS_143642 2022-11-18 19:32:17 44.25

ML_SUBGROUPS_ANALYSIS_143642 2022-12-06 19:50:48 37.00

ML_SUBGROUPS_ANALYSIS_143642 2022-12-06 19:25:57 39.50

ML_SUBGROUPS_ANALYSIS_143642 2022-12-06 19:33:33 30.00

ML_SUBGROUPS_ANALYSIS_143642 2022-12-07 22:19:42 46.71

ML_SUBGROUPS_ANALYSIS_143642 2022-12-06 20:01:44 50.17

ML_SUBGROUPS_ANALYSIS_143642 2022-12-07 22:35:33 43.67

ML_SUBGROUPS_ANALYSIS_143642 2022-12-07 22:10:08 42.80

ML_SUBGROUPS_ANALYSIS_143642 2022-12-08 18:43:18 44.83

ML_SUBGROUPS_ANALYSIS_143642 2022-12-07 21:09:10 44.50

GENERATE_COHORT_86451 2022-12-07 22:13:00 56.67

GENERATE_COHORT_86451 2022-12-08 22:06:05 56.67

GENERATE_COHORT_86451 2022-12-08 22:08:26 56.75

GENERATE_COHORT_86451 2022-12-08 22:12:27 55.26

GENERATE_COHORT_86451 2022-12-08 22:48:19 55.95

GENERATE_COHORT_86451 2022-12-12 19:53:05 57.75

GENERATE_COHORT_86451 2022-12-07 22:11:28 57.84

GENERATE_COHORT_86451 2022-12-09 8:51:39 56.52

DESCRIPTIVE_ANALYSIS_143642 2022-12-08 21:22:19 52.25

DESCRIPTIVE_ANALYSIS_143642 2022-12-07 22:18:28 54.22

DESCRIPTIVE_ANALYSIS_143642 2022-12-07 22:35:03 52.25

DESCRIPTIVE_ANALYSIS_143642 2022-11-14 21:10:01 45.33

16

DESCRIPTIVE_ANALYSIS_143642 2022-12-06 19:22:24 50.12

DESCRIPTIVE_ANALYSIS_143642 2022-12-06 19:20:04 53.12

DESCRIPTIVE_ANALYSIS_143642 2022-12-07 22:08:44 45.00

DESCRIPTIVE_ANALYSIS_143642 2022-12-08 21:40:17 50.62

DESCRIPTIVE_ANALYSIS_143642 2022-12-07 21:06:36 53.12

DESCRIPTIVE_ANALYSIS_143642 2022-12-08 18:40:46 50.88

AUTO_FEAT_GEN_167736 2022-11-19 11:16:08 59.57

AUTO_FEAT_GEN_167736 2022-11-19 11:13:28 59.54

AUTO_FEAT_GEN_167736 2022-11-19 11:20:01 59.08

AUTO_FEAT_GEN_167736 2022-11-18 17:56:35 47.00

GENERATE_COHORT_86680 2022-12-14 1:59:06 42.67

GENERATE_COHORT_86680 2022-12-14 1:10:49 43.00

GENERATE_COHORT_86680 2022-12-08 22:47:09 42.00

GENERATE_COHORT_86680 2022-12-08 21:34:03 42.33

GENERATE_COHORT_86680 2022-12-14 1:25:57 41.00

GENERATE_COHORT_81958 2022-11-11 22:33:54 57.56

GENERATE_COHORT_81958 2022-11-11 22:08:04 57.11

GENERATE_COHORT_81958 2022-11-11 22:25:40 55.08

GENERATE_COHORT_87608 2022-12-15 18:26:55 32.00

GENERATE_COHORT_87608 2022-12-15 18:28:36 32.67

GENERATE_COHORT_87608 2022-12-15 18:25:46 43.00

GENERATE_COHORT_87608 2022-12-15 18:25:35 46.67

DESCRIPTIVE_ANALYSIS_170796 2022-12-08 22:23:11 54.00

17

DESCRIPTIVE_ANALYSIS_170796 2022-12-09 19:15:25 54.29

DESCRIPTIVE_ANALYSIS_170796 2022-12-12 19:53:46 56.67

DESCRIPTIVE_ANALYSIS_170796 2022-12-09 21:25:32 56.00

DESCRIPTIVE_ANALYSIS_170796 2022-12-09 20:14:46 55.50

GENERATE_COHORT_80780 2022-11-07 16:26:54 55.90

GENERATE_COHORT_80780 2022-11-07 16:26:31 55.56

GENERATE_COHORT_80780 2022-11-07 16:36:03 59.79

GENERATE_COHORT_80364 2022-11-02 21:50:12 55.62

GENERATE_COHORT_80364 2022-11-02 20:57:02 55.76

GENERATE_COHORT_80364 2022-11-02 19:16:21 59.68

GENERATE_COHORT_80364 2022-11-02 23:12:40 56.42

GENERATE_COHORT_80364 2022-11-02 23:11:57 57.10

GENERATE_COHORT_80674 2022-11-07 1:11:50 54.91

GENERATE_COHORT_80674 2022-11-07 1:11:18 57.94

GENERATE_COHORT_80674 2022-11-07 1:12:20 57.15

GENERATE_COHORT_80608 2022-11-05 4:18:14 55.15

GENERATE_COHORT_80608 2022-11-05 4:18:16 57.47

GENERATE_COHORT_80608 2022-11-05 4:18:45 57.70

DESCRIPTIVE_ANALYSIS_172248 2022-12-16 21:17:48 38.25

DESCRIPTIVE_ANALYSIS_172248 2022-12-16 21:30:02 47.50

DESCRIPTIVE_ANALYSIS_172248 2022-12-16 21:29:33 55.40

DESCRIPTIVE_ANALYSIS_166783 2022-11-02 22:09:30 44.25

DESCRIPTIVE_ANALYSIS_166783 2022-11-02 21:48:22 43.60

18

DESCRIPTIVE_ANALYSIS_166783 2022-11-02 23:11:57 44.25

DESCRIPTIVE_ANALYSIS_166783 2022-11-02 21:46:00 43.40

DESCRIPTIVE_ANALYSIS_168097 2022-12-01 0:59:09 26.50

DESCRIPTIVE_ANALYSIS_168097 2022-12-01 1:14:53 25.00

DESCRIPTIVE_ANALYSIS_168097 2022-12-01 1:06:30 27.50

GENERATE_COHORT_84908 2022-12-07 22:25:10 51.67

GENERATE_COHORT_84908 2022-12-07 22:25:01 54.67

GENERATE_COHORT_84908 2022-12-07 22:56:48 48.67

GENERATE_COHORT_86416 2022-12-07 19:13:28 17.00

GENERATE_COHORT_86416 2022-12-07 18:53:15 17.00

GENERATE_COHORT_86416 2022-12-07 18:43:22 17.50

Table 1. Data about real executions, parsed from log files.

As we can see, there are 20 distinct jobs that have run intermittently. Unfortunately,

there was no automation in place that would run the same jobs every day, which would

be ideal in our case. The number of execution times varies but is not enough for us to

make any predictions on.

For the purposes of this project we generated synthetic data off the real data, using

its mean and standard deviation.

We assumed that when implemented, this tool would consume data of daily

executions of these jobs and should be able to have enough data points to predict a

baseline for the future executions.

19

For the purposes of finding the best model of predicting that baseline, we generated

365 synthetic data points for every job.

To test our algorithm on whether it is capable of properly predicting the outcome, we

also ingested noise following a Gaussian distribution using the following approach:

1. Calculated the means and standard deviation of the distributions for every distinct

job. Example:

GENERATE_COHORT_82097:

Job number=0,

min observation=54.23,

max observation=57.90,

mean=56.613333,

standard deviation=1.687055

2. Used the mean and standard deviation to generate 54 noised data points (15%) of

the total dataset;

3. In order to emulate noised data properly to better resemble the outliers, we exclude

noised data that falls inside the range of:

[one standard deviation - min of the regular data … max of the regular data + one

standard deviation].

4. Randomly injected noised data points into the dataset the way it would resemble

a logical flow:

a. 20 different jobs get run every day by the system that use the same code;

20

b. if there has been a change in the codebase that affects performance, it

should affect the performance of all 20 jobs;

c. therefore we inject the noised data points using the blocks of 20 noised data

for the same date.

5. Assigned labels 0 and 1 to every data point depending on the type (regular data,

noised data respectively):

Job number

Date

(integer) Execution time Label

0 20220323 56.98 0

1 20220323 51.97 0

2 20220323 59.35 0

3 20220323 40.52 0

4 20220323 56.21 0

5 20220323 53.41 0

6 20220323 59.20 0

7 20220323 42.26 0

8 20220323 55.56 0

9 20220323 35.60 0

10 20220323 55.83 0

11 20220323 55.91 0

12 20220323 58.25 0

13 20220323 55.92 0

14 20220323 57.61 0

21

15 20220323 53.39 0

16 20220323 43.68 0

17 20220323 26.94 0

18 20220323 54.15 0

19 20220323 17.27 0

Table 2. Results of a batch of 20 jobs execution (label 0 - good data)

Job number

Date

(integer) Execution time Label

0 20220324 52.25 1

1 20220324 67.92 1

2 20220324 58.65 1

3 20220324 55.90 1

4 20220324 53.91 1

5 20220324 38.83 1

6 20220324 71.84 1

7 20220324 43.73 1

8 20220324 59.08 1

9 20220324 52.22 1

10 20220324 58.67 1

11 20220324 52.82 1

12 20220324 52.92 1

13 20220324 58.75 1

22

14 20220324 59.44 1

15 20220324 28.77 1

16 20220324 45.12 1

17 20220324 28.64 1

18 20220324 46.58 1

19 20220324 17.70 1

Table 3. Results of a batch of 20 jobs execution (label 1 - bad data)

As a result of these transformations, we prepared a dataset that contains simulated

data of one year of the observations for the execution times of 20 distinct jobs.

Total number of observations = 7300.

Features:

 Type Range

job_id
Numeric 0…19

date
Numeric, continuous 20220314…20230313

execution_time
Numeric -

23

is_bad
Binary 0 or 1

Table 4. List of features in the dataset.

The dataset is created this way, the farthest the execution times are from the mean in

both directions, the higher chance there is that there was an invasive change in the

codebase that affected the execution in some way. Lesser execution time does not

always mean better as it can mean that the code is now skipping some parts of the data

that can lead to an incorrectly produced cohort or analysis and therefore an incorrect real

world evidence.

In this regard, “good” will be referred to as a data point that does not deviate from the

mean drastically, and “bad” will be referred to as the data point that does.

This dataset works as an input into our following models that are utilized in the scope

of this project to predict whether data of new executions is good or bad:

- Moving average;

- ARIMA model;

- Random Forest.

24

Moving average

The first and most intuitive approach to predict the next value of the execution time

will be to calculate a rolling mean of previous periods in a time series.

For a sequence of values, we calculate the simple moving average at time period t as

follows: [5]

To calculate the rolling mean of our dataset we used the following syntax:

job_features['volume_moving'] =

job_features['execution_time'].rolling(window=7).mean(),

where job_features is a subset of the total data that contains data points only

pertaining to one particular job.

Applying rolling mean methodology:

- applying this rolling mean on all data;

- split results into training and testing part (75% train, 25% test);

- applying a function to assign labels (0 or 1) to test data;

- matching the predicted labels with the original labels:

- “good”: predicted data point is within a range of “good” source data;

25

- “bad”: predicted data point is:

- less than (minimum of good data minus one standard

deviation of good data);

- greater than (maximum of good data plus one standard

deviation of good data).

- calculating the number of properly predicted labels.

Results:

min and max of good source data 54.25 57.9

min and max of bad source data 50.75 61.81

standard deviation of good data 0.98701

number of matched predictions of bad data (1) 0

number of all matches (1) 77

accuracy 84%

Table 5. Results of rolling mean predictions for job 0.

26

Figure 2. Confusion matrix of the predictions for job 0.

Running the algorithm on 20 jobs provides us with average accuracy of 83.7%,

which correlates to:

- training dataset size = 365 * 25% = 92 data points;

- in all cases the rolling mean was able to predict 0-labeled data, which is 77 data

points;

- 77 / 92 = 0.836956 %

27

label precision recall f1-score support

0 0.84 1.00 0.91 77

1 0.00 0.00 0.00 15

accuracy 0.84 92

macro avg 0.42 0.50 0.46 92

weighted avg 0.70 0.84 0.76 92

Table 6. Classification report for moving average is the same for every job.

Most notable inferences on the results of this model are:

- All good data is predicted properly;

- This model does not predict any outliers.

28

ARIMA model

ARIMA stands for Autoregressive integrated moving average, and is used to

comprehend the data or to forecast upcoming series points when fitted to time series

data.

We utilized the ARIMA(1,1,0) model suggested for non-seasonal data in “How to

Create an ARIMA Model for Time Series Forecasting in Python”. [6]

“ARIMA(1,1,0) = differenced first-order autoregressive model: If the errors of a random

walk model are autocorrelated, perhaps the problem can be fixed by adding one lag of

the dependent variable to the prediction equation--i.e., by regressing the first difference

of Y on itself lagged by one period. This would yield the following prediction equation:

Ŷt - Yt-1 = μ + ϕ1(Yt-1 - Yt-2)

Ŷt - Yt-1 = μ

which can be rearranged to

Ŷt = μ + Yt-1 + ϕ1 (Yt-1 - Yt-2)

This is a first-order autoregressive model with one order of nonseasonal differencing

and a constant term--i.e., an ARIMA(1,1,0) model.” [7]

We used the following approach while utilizing ARIMA model to make predictions, for

every distinct job we:

- split the data into training and testing part (75% train, 25% test);

- use walk-forward validation:

- looping over test data, starting from data point with the index 273;

29

- predicting next data point on the train data (i.e. history dataframe);

- adding data point with index that we predicted to history dataframe;

- predicting next data point on a history + 1;

- this way the prediction of test[x] is made using ARIMA model that is trained

on train[273 + x];

- collect all predictions into a list (size = 92, 25% of 365);

- convert the predictions into a (0, 1) form using minimum, maximum and standard

deviation of the good data as a rule to assign labels:

- if a predicted value is less than (minimum of good data - one standard

deviation) and is greater than (maximum of good data + one standard

deviation), label 1 gets assigned, 0 otherwise.

Results:

label precision recall f1-score support

0 0.83 0.91 0.87 77

1 0.12 0.07 0.09 15

accuracy 0.77 92

macro avg 0.48 0.49 0.48 92

weighted avg 0.72 0.77 0.74 92

Table 7. Classification report for the ARIMA model for job 0.

30

Figure 3. Confusion matrix for the ARIMA model for job 0.

31

accuracies for label 1, per job, %

0 9.0 10 3.0

1 2.0 11 3.0

2 2.0 12 7.0

3 2.0 13 0.0

4 2.0 14 1.0

5 5.0 15 4.0

6 5.0 16 2.0

7 1.0 17 7.0

8 2.0 18 3.0

9 4.0 19 2.0

average accuracy: 3.42%

average F1-score: 1.966

Table 8. List of accuracies of label 1 predictions for the ARIMA model along with

average accuracy and average F1-score.

32

Random Forest.

Attempted application of Random Forest Classifier, which is a supervised machine

learning algorithm that would make sense to apply in our case due to the nature of the

input data and its simplicity and flexibility.

“Random Forest is a group of decision trees. However, there are some differences

between the two. A decision tree tends to create rules, which it uses to make decisions.

A random forest will randomly choose features and make observations, build a forest of

decision trees, and then average out the results.

In a business, a random forest algorithm could be used in a scenario where there is a

range of input data and a complex set of circumstances. For instance, identifying when a

customer is going to leave a company. Customer churn is complex and usually involves

a range of factors: cost of products, satisfaction with the end product, customer support

efficiency, ease of payment, how long the contract is, extra features offered, as well as

demographics like gender, age, and location. A random forest algorithm creates decision

trees for all of these factors and can accurately predict which of the organization’s

customers are at high risk of churn.” [8].

In our case we will predict labels 0 and 1.

We applied Random Forest Classifier [9] in two different ways:

1. Apply Random Forest on the whole data (unfiltered dataset containing data points

for all 20 jobs):

- splitting data into training and testing datasets (75% train, 25% test);

- fitting a Random Forest Classifier, getting an average score of 0.87%;

33

- predicting on the testing dataset.

 Results:

Figure 4. Confusion matrix for Random Forest Classifier on full dataset (20 jobs).

label precision recall f1-score support

0 0.87 1.00 0.93 1560

1 1.00 0.14 0.25 265

accuracy 0.88 1825

macro avg 0.94 0.57 0.59 1825

weighted avg 0.89 0.88 0.83 1825

Table 9. Classification report for Random Forest Classifier on full dataset (20 jobs).

34

2. Apply Random Forest on the filtered data (running a classifier for every job in

isolation).

Figure 5. Confusion matrix for Random Forest Classifier on job 0.

label precision recall f1-score support

0 0.95 1.00 0.98 80

1 1.00 0.67 0.80 12

accuracy 0.96 92

macro avg 0.98 0.83 0.89 92

weighted avg 0.96 0.96 0.95 92

Table 10. Classification report for Random Forest Classifier on job 0.

35

Running 20 iterations of Random Forest Classifier (one for every job, splitting the

dataset into subsets containing only 365 values for one specific job each) returned the

following averages:

- average precision score: 95.92%

- average F1-score: 80.15%

36

Conclusions

In the scope of this project we attempted to expand on a possibility to find a new

approach for creating new testing capabilities that would significantly benefit

organizations in certain cases.

The traditional testing techniques become insufficient and an impediment to the

release cycles in the cases where there is a significant delay between the events that get

validated through the user interface.

We considered an example of testing at Aetion, Inc, where Aetion’s proprietary real

world evidence generation platform, capable of generating regulatory-grade analyses,

suffers from being built off the traditional approaches. Long running unstable testing jobs,

a need to incur heavy maintenance cost of the testing framework are among the factors

that slow the delivery speed of the product and drive up the cost.

We postulated that this testing capability can be split into two orthogonal processes,

where we still would be able to check if a user can create input for those long running

jobs, as well as start their generation. Along with that, there will be another tool created

that would be analyzing a historical data of the jobs (cohorts, analyses) that had already

been generated in the past and suggesting a baseline on the execution times.

In the scope of this project we also attempted to elaborate an approach for predicting

the execution times of the future generations of these jobs in order to have a foundation

for the testing tool that we envision.

37

We proceeded with creating a synthetic dataset of a year of observations for 20

distinct jobs (cohorts and analyses) in order to be able to have enough data points to

successfully train a few prediction models. In order to create that dataset, we used the

population distribution characteristics of the data collected from ~5000 log files of

available data of real executions.

In order to properly train our models to find outliers we randomly injected 15% of

noised data that follows the population distribution characteristics of the real data, but

artificially adjusted to not include any data points from a range of the real data ± one

standard deviation of the real data. This approach would ensure that we have included

data points that would in real life resemble the cases of how the system would react to

the potentially invasive changes that could not only lead to an increased execution time,

but also to a decreased one (when, for example, some parts of data get skipped

unintentionally).

We then proceeded to train and validate the results of the predictions in a few different

models and their variations:

Moving average ARIMA model Random Forest

need to distinguish

between jobs as those

have different degrees of

the execution times

need to distinguish

between jobs as well

can be supplied with the whole

dataset, in this case scores at

87% of precision and does not

produce any false negatives

38

does not predict any

outliers

predicts very few outliers

with accuracy around

3.4%

when running a classifier per a

subset of data, per job:

- scores almost at 95% of

of precision;

- has an average F1-

score of 80.15%;

- still does not return any

false positives

predicts “good” data in

100% cases

predicts “good” data

relatively well (precision

is around 83%)

Table 11. A comparison of the models’ results.

Further analyzing the results of the research, we can conclude that it would be

applicable to use either a simple moving average to predict a baseline for “good” data or

Random Forest Classifier to try to identify incoming data as outliers.

In practice, that would make sense to use both to:

1. Predict the baseline and send a signal to recommend to stop the executions

as soon as the maximum threshold is passed.

2. Collect the execution times of the successfully generated jobs and use

those to predict the outliers and, respectively, identify a date when the

difference in the execution times became noticeable. This case is extremely

39

important as the code changes may lead to some parts of datasets skipped

during the cohorts and analysis’ generations which can lead to false real

world evidence reports.

40

Future work, challenges and opportunities.

1. There is a dependency on the size and number of the processors in the instance

where cohorts and analyses run. In the lower environments we can set these

parameters to some default values therefore providing consistency on the input

data. In the upper environments, the size and number of the processors varies and

therefore will require additional work on finding a way to normalize the input against

these parameters.

Figure 6. Example of metrics collected from one log file.

A challenge to properly normalize the execution times against a number of the

processors is that there is a sequential part and a parallel part of the execution

41

process run by the system and the number of the processors would be affecting

the parallel part of it.

2. We also should be able to use this testing capability to test the performance

changes.

3. Implement density scan to identify a phase change (when a potentially positive

code change takes place and the algorithm we use should adjust to a new

baseline).

42

References.

[1] Selenium Automation Testing

https://www.simplilearn.com/tutorials/selenium-tutorial/selenium-automation-

testing

[2] The Economic Impacts of Inadequate Infrastructure for Software Testing, National

Institute of Standards and Technology (Table 5-1. Relative Cost to Repair Defects When

Found at Different Stages of Software Development).

https://www.nist.gov/system/files/documents/director/planning/report02-3.pdf

[3] Real-World Evidence.

https://www.fda.gov/science-research/science-and-research-special-topics/real-world-

evidence

[4] The Truth About End-to-End Testing

https://www.qualitylogic.com/knowledge-center/the-truth-about-end-to-end-

testing/#:~:text=End%2Dto%2Dend%20testing%20can,script%20re%2Dwrites%20to%2

0match.

[5] Moving averages in python

https://towardsdatascience.com/moving-averages-in-python-16170e20f6c

[6] How to Create an ARIMA Model for Time Series Forecasting in Python.

https://www.simplilearn.com/tutorials/selenium-tutorial/selenium-automation-testing
https://www.simplilearn.com/tutorials/selenium-tutorial/selenium-automation-testing
https://www.nist.gov/system/files/documents/director/planning/report02-3.pdf
https://www.fda.gov/science-research/science-and-research-special-topics/real-world-evidence
https://www.fda.gov/science-research/science-and-research-special-topics/real-world-evidence
https://www.qualitylogic.com/knowledge-center/the-truth-about-end-to-end-testing/#:~:text=End%2Dto%2Dend%20testing%20can,script%20re%2Dwrites%20to%20match.
https://www.qualitylogic.com/knowledge-center/the-truth-about-end-to-end-testing/#:~:text=End%2Dto%2Dend%20testing%20can,script%20re%2Dwrites%20to%20match.
https://www.qualitylogic.com/knowledge-center/the-truth-about-end-to-end-testing/#:~:text=End%2Dto%2Dend%20testing%20can,script%20re%2Dwrites%20to%20match.
https://towardsdatascience.com/moving-averages-in-python-16170e20f6c

43

https://www.analyticsvidhya.com/blog/2020/10/how-to-create-an-arima-model-for-

time-series-forecasting-in-python/

[7] ARIMA models for time series forecasting

https://people.duke.edu/~rnau/411arim.htm#arima110

[8] What is a Random Forest?

https://www.tibco.com/reference-center/what-is-a-random-forest

[9] Will Koehrsen, Towards Data Science

https://towardsdatascience.com/random-forest-in-python-24d0893d51c0

https://www.analyticsvidhya.com/blog/2020/10/how-to-create-an-arima-model-for-time-series-forecasting-in-python/
https://www.analyticsvidhya.com/blog/2020/10/how-to-create-an-arima-model-for-time-series-forecasting-in-python/
https://people.duke.edu/~rnau/411arim.htm#arima110
https://www.tibco.com/reference-center/what-is-a-random-forest
https://williamkoehrsen.medium.com/?source=post_page-----24d0893d51c0--------------------------------
https://towardsdatascience.com/?source=post_page-----24d0893d51c0--------------------------------
https://towardsdatascience.com/?source=post_page-----24d0893d51c0--------------------------------
https://towardsdatascience.com/?source=post_page-----24d0893d51c0--------------------------------
https://towardsdatascience.com/random-forest-in-python-24d0893d51c0

44

Appendix A

Dataset: derived from log files from the Aetion’s private S3 location.

Start name: jobid_128001.20221102.log, date: 11/02/2022

End name: jobid_132999.20221220.log, date: 12/20/2022

Total number of files: 4990

File’s content: logs of job executions.

Example of input JSON log file (inner {"metrics": …} JSON).

45

Appendix B

Example of input JSON log file ([jobSucceeded] mark).

46

Appendix C.

Start and end of execution time frames at the log file (example).

a. Start execution time:

b. End execution time:

