
i 
 

BUILDING A STATISTICAL LEARNING MODEL 

FOR EVALUATION OF NBA PLAYERS USING 

PLAYER TRACKING DATA 

 

By 

 

Matthew Byman, B.A. in Economics 

  

A thesis submitted to the Graduate Committee of  

Ramapo College of New Jersey in partial fulfillment  

of the requirements for the degree of 

Master of Science in Data Science 

Spring, 2023 

                                                           

 Committee Members: 

         Osei Tweneboah, Advisor 

         Debbie Yuster, Reader 

Nikhil Varma, Reader 



ii 
 

COPYRIGHT 

© Matthew Byman 

2023 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



iii 
 

Table of Contents 

 

List of Figures ............................................................................................................................... v 

Abstract ..................................................................................................................................... vii 

Chapter 1: Introduction ................................................................................................................. 1 

Chapter 2: Background .................................................................................................................. 5 

History of Basketball Advanced Analytics ................................................................................ 5 

Ordinary Least Squares (OLS) ................................................................................................ 7 

Ridge Regression ..................................................................................................................... 8 

Lasso Regression ....................................................................................................................10 

Decision Tree .........................................................................................................................11 

Random Forest ......................................................................................................................12 

Regularized Adjusted Plus Minus (RAPM) .............................................................................14 

Chapter 3: Methodology ...............................................................................................................17 

Dataset Description ................................................................................................................19 

Dataset cleaning .....................................................................................................................22 

Distribution of RAPM and Correlation Matrix ........................................................................22 

Co-efficient Estimation of Our Models ....................................................................................25 

Training our Models ...............................................................................................................28 

Deployment of our Models ......................................................................................................31 

Chapter 4: Analysis and Discussion ...............................................................................................34 



iv 
 

Comparing our results ............................................................................................................34 

Implications for NBA teams ....................................................................................................38 

Limitations of our study .........................................................................................................39 

Chapter 5: Conclusions ................................................................................................................42 

Chapter 6: References ..................................................................................................................44 

Appendix....................................................................................................................................46 

 

 

 

 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



v 
 

List of Figures 

 

Figure 2.1: An example of OLS graphed 

Figure 2.2: Geometric Interpretation of Ridge Regression 

Figure 2.3: Estimation picture of Lasso (left) and Ridge Regression (right) 

Figure 2.4: Decision Tree’s 1 and 2 for the Random Forest model in this study 

Figure 2.5: 3-year RAPM (2020-2023) 

Figure 3.1: Flowchart of our methodology process 

Figure 3.2: Distribution of RAPM (2021) 

Figure 3.3: Correlation Matrix (2021) 

Figure 3.4: OLS Co-efficient Estimation (2021) 

Figure 3.5: Lasso Co-efficient Estimation (2021) 

Figure 3.6: Ridge Co-efficient Estimation (2021) 

Figure 3.7: Decision Tree Co-efficient Estimation (2021) 

Figure 3.8: Random Forest Co-efficient Estimation (2021) 

Figure 3.9: Top two models with all features included (2021) 

Figure 3.10: Statistical models with top performing features (2021) 

Figure 3.11: Top two performing models with all features against the 2022 testing data 

Figure 3.12: Statistical models with top performing features against the 2022 testing data 

Figure 4.1: Table of top two performing models metrics 

Figure 4.2: Table of models metrics with top performing features 

Figure 4.3: Table of top two performing models against 2022 data 

Figure 4.4: Table of models metrics with top performing features against 2022 data 



vi 
 

Figure 4.5: 2022 RAPM Values vs 2022 Predicted RAPM Values with Lasso 

Figure 4.6: 2022 RAPM metrics vs 2022 Predicted RAPM with Lasso metrics 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



vii 
 

Abstract 

 

This thesis aims to develop faster and more accurate methods for evaluating NBA player 

performances by leveraging publicly available player tracking data. The primary research 

question addresses whether player tracking data can improve existing performance evaluation 

metrics. The ultimate goal is to enable teams to make better-informed decisions in player 

acquisitions and evaluations. 

To achieve this objective, the study first acquired player tracking data for all available NBA 

seasons from 2013 to 2021. Regularized Adjusted Plus-Minus (RAPM) was selected as the target 

variable, as it effectively ranks player value over the long term. Five statistical learning models 

were employed to estimate RAPM using player tracking data as features. Furthermore, the 

coefficients of each feature were ranked, and the models were rerun with only the 30 most 

important features. 

Once the models were developed, they were tested on a newly acquired player tracking data from 

the 2022 season to evaluate their effectiveness in estimating RAPM. The key findings revealed 

that Lasso Regression and Random Forest models performed the best in predicting RAPM 

values. These models enable the use of player tracking statistics that settle earlier, providing an 

accurate estimate of future RAPM. This early insight into player performance offers teams a 

competitive advantage in player evaluations and acquisitions. 

In conclusion, this study demonstrates that combining statistical learning models with player 

tracking data can effectively estimate performance metrics, such as RAPM, earlier in the season. 
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By obtaining accurate RAPM estimates before other teams, organizations can identify and 

acquire top-performing players, ultimately enhancing their competitive edge in the NBA. 
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Chapter 1: Introduction 

 

Basketball, one of the most popular and widely followed sports globally, has undergone 

numerous transformations since its inception in the late 19th century. The game's history, 

evolution, and the significance of analytics in the modern era are all critical aspects of 

understanding the sport as we know it today. 

In 1891, James Naismith, a 31-year-old graduate student at Springfield College, conceived 

basketball as an engaging indoor sport to occupy his fellow students during the winter months 

while they awaited the return of warmer weather for outdoor sports such as football, lacrosse, 

and baseball ("Where Basketball Was Invented: The Birthplace of Basketball."). The initial 

iteration of basketball diverged significantly from the contemporary version of the game, 

featuring peach baskets as goals and nine players per team; nevertheless, the essence of 

basketball remained. Professional leagues emerged shortly thereafter, with the National 

Basketball League (NBL) being established in 1898. Although the NBL only endured for five 

years, subsequent attempts to form professional leagues ensued. The National Basketball 

Association (NBA) that we know today was ultimately established in 1949, following the merger 

of the NBL and the Basketball Association of America ("History of Basketball Leagues."). The 

sport has also become an essential feature of the Olympic Games, with its debut in the 1936 

Berlin Olympics. 

The earliest documented basketball statistics date back to the National Basketball League in 

1946. At that time, local newspapers published rudimentary box scores the day following games, 
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which included field goals (baskets made during gameplay), free throws (uncontested shots taken 

after an opposing player commits a foul), and individual points scored for each player on both 

teams ("How Basketball-Reference Got Every Box Score."). Over the years, statistical analysis 

in basketball has evolved dramatically, subsequently influencing the game's strategies and 

overall style of play. 

Basketball analytics, the use of advanced statistical analysis to evaluate team and player 

performance, has revolutionized the sport over the past few decades. Traditionally, teams and 

coaches relied on basic statistics, such as points, rebounds, and assists, to evaluate player 

contributions. However, with the emergence of new analytical tools and methodologies, teams 

now have access to more sophisticated metrics that offer deeper insights into a player's value. 

In the early 2000s, the advent of player tracking technology, such as SportVU (SportVU is the 

camera system that tracks player’s movements on the court), enabled the collection of detailed 

spatial and temporal data on player movements, shot trajectories, and defensive positioning. This 

wealth of data led to the development of new advanced metrics, including Player Efficiency 

Rating (PER), Win Shares, and Real Plus-Minus (RPM) ("NBA Analytics Movement: How 

Basketball Data Science Has Changed the Game."). These metrics allow teams and coaches to 

make more informed decisions about roster construction, game strategy, and player development. 

As the importance of analytics continues to grow, it will undoubtedly shape the future of the 

sport, leading to new strategies, enhanced player development, and an even more competitive 

and exciting game for fans worldwide. This thesis will attempt to use these player-tracking 

technologies along with established statistical models to help drive the game of basketball 

forward and improve on existing player evaluation techniques. At present, there is a lack of 
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research that integrates player tracking data with statistical models for player evaluation 

purposes. The majority of existing NBA player assessment tools remain opaque, as their inner 

workings are not disclosed to the public. 

We will explore five popular statistical learning models: Ordinary Least Squares (OLS), Ridge 

Regression, Lasso Regression, Decision Tree, and Random Forest. Each model has its unique 

strengths and limitations, making them suitable for different types of problems and data sets. 

After examining the inner workings of our models, we will delve into the methodology 

employed in our study. This discussion will encompass the data selection process and the criteria 

used for determining the most crucial features. 

Ultimately, we will address the outcomes of our analysis and demonstrate how our model can be 

utilized in the basketball industry to elevate existing benchmarks. By adopting this model, teams 

can leverage its insights to drive success and gain a competitive edge. 

An overview of our chapters in this study, in Chapter 2, we will provide a comprehensive 

background to our study, delving into the history of basketball analytics and its transformative 

impact on the modern sport. We will also present a thorough explanation of our five statistical 

learning models, outlining their respective functionalities and justifying the selection of our 

target variable. 

In Chapter 3, we will detail our methodology, elucidating every step involved in our research 

process. This will encompass a description of the dataset employed, the data cleaning process, 

model training procedures, coefficient estimation techniques to identify crucial features, and, 

ultimately, the deployment of our models. 
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In Chapter 4, we will present a critical analysis of our models, discussing the results obtained and 

their implications. This chapter will further explore the potential effects of our model on NBA 

team strategies, acknowledging the limitations of our study and suggesting possible 

improvements for future research. We will also consider the broader implications of our findings 

within the context of the sport and analytics. 

Chapter 5 will present our conclusions and final thoughts, highlighting the key insights derived 

from our study and identifying avenues for future work that could build upon and extend the 

scope of our research. 
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Chapter 2: Background 

 

We will first delve into the history of basketball analytics, past works, and why player tracking 

cameras are such an evolution in the game of basketball. We will then discuss our five statistical 

models and how each of them works. After that we will explain our target variable and why it 

was chosen.  

History of Basketball Advanced Analytics 

The history of advanced basketball analytics in the modern era can be traced back to the early 

2000s, when the sport began to adopt more sophisticated statistical methods to analyze and 

evaluate player performance. The Moneyball revolution in baseball, spearheaded by Oakland 

Athletics General Manager Billy Beane, had a profound impact on basketball, as teams and 

analysts started to embrace data-driven approaches to gain a competitive edge ("NBA Analytics 

Movement: How Basketball Data Science Has Changed the Game."). 

In the early days of basketball analytics, pioneers such as Dean Oliver and John Hollinger 

developed groundbreaking metrics like Offensive Rating, Defensive Rating, and Player 

Efficiency Rating (PER) that went beyond traditional box score statistics. Oliver's seminal book, 

"Basketball on Paper," published in 2004, laid the foundation for modern basketball analytics, 

emphasizing the importance of efficiency and situational analysis. 

The availability of play-by-play data and the rise of the internet allowed for the development of 

new metrics, such as Adjusted Plus-Minus (APM) and its derivatives like Regularized Adjusted 

Plus-Minus (RAPM), which account for the context of teammates and opponents on the court. 
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These metrics provided a more accurate measure of a player's impact on their team's 

performance. 

The introduction of SportVU player tracking technology in the NBA in 2013 marked a turning 

point in basketball analytics, as it provided unprecedented access to spatial and temporal data, 

capturing every movement of the players and the ball at a rate of 25 times per second ("The NBA 

releases SportVU Camera Statistics."). This wealth of information enabled the development of 

advanced metrics like Player Impact Estimate (PIE), Player Tracking Plus-Minus (PT-PM), and 

Quantified Shot Quality (QSQ), which leveraged machine learning algorithms and spatial 

analysis techniques to better understand player performance and decision-making. 

Player tracking data has become an indispensable tool in basketball analytics for several reasons: 

Granularity: Player tracking data provides detailed information about each player's movements 

and actions on the court, allowing for more nuanced analysis of individual skills and tendencies. 

Contextual Analysis: With player tracking data, analysts can study the impact of spatial 

relationships, defensive pressure, and offensive spacing on player performance, leading to a 

deeper understanding of the game's dynamics. 

Load Management: By analyzing player movements and workload, teams can better manage 

players' health and recovery, reducing the risk of injury and optimizing performance. 

Game Planning: Access to detailed player tracking data enables coaches and analysts to develop 

tailored game plans and strategies based on their opponents' strengths and weaknesses. 
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Player Development: The insights gained from player tracking data can help teams identify 

areas for improvement and guide player development programs. 

In conclusion, the modern era of basketball analytics has witnessed a rapid evolution, driven by 

the adoption of data-driven approaches and the availability of advanced player tracking 

technology. These innovations have transformed how teams evaluate players, develop strategies, 

and manage player health, leading to a more sophisticated understanding of the game. 

 

Ordinary Least Squares (OLS) 

Ordinary Least Squares (OLS) is a fundamental linear regression method that aims to model the 

relationship between a dependent variable and one or more independent variables ("Ordinary 

Least Square (OLS) Method for Linear Regression."). In a linear regression model, the 

dependent variable is assumed to be a linear function of the independent variables, plus some 

random error component. The main objective of OLS is to find the best-fitting line that 

minimizes the sum of the squared differences between the observed values of the dependent 

variable and the predicted values based on the model. 

To accomplish this, OLS estimates the coefficients of the independent variables by minimizing 

the residual sum of squares (RSS). The residual for each observation is the difference between 

the observed value of the dependent variable and the value predicted by the model. The RSS is 

the sum of the squares of these residuals. By minimizing the RSS, OLS finds the optimal set of 

coefficients that best explain the relationship between the independent and dependent variables. 
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OLS is a popular method due to its simplicity, interpretability, and ease of implementation. It 

performs well when the relationship between the variables is linear, and there is little 

multicollinearity. However, it can be sensitive to outliers and may perform poorly when the 

independent variables are highly correlated, as it does not provide any regularization to prevent 

overfitting. Figure 2.1 shows how the OLS method seeks to minimize the residual sum of 

squares and create a line of best fit. 

 

Figure 2.1: An example of OLS graphed 

 

Ridge Regression 

Ridge Regression is an extension of linear regression that introduces a regularization term to 

address the limitations of OLS. Regularization is a technique that adds a penalty to the regression 
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coefficients based on their magnitude, effectively shrinking the coefficients toward zero. This 

helps to reduce overfitting, especially when there are many irrelevant or noisy features in the 

data, and to handle multicollinearity. 

In Ridge Regression, the regularization term is the sum of the squared coefficients multiplied by 

a hyperparameter, lambda (λ) ("STAT 508: Applied Data Mining and Statistical Learning."). 

This term is added to the RSS, and the objective becomes to minimize the sum of the RSS and 

the regularization term. By increasing λ, the model places more emphasis on minimizing the 

coefficients' magnitude, resulting in a more constrained model. Conversely, if λ is set to zero, 

Ridge Regression becomes equivalent to OLS. Below is the formula for the ridge regression 

estimator. 

 

Ridge Regression is particularly effective in handling multicollinearity and preventing 

overfitting. However, it tends to include all features in the model, albeit with smaller 

coefficients, which may not be ideal when there are a large number of irrelevant features. In 

Figure 2.2, the ellipses correspond to the contours of the residual sum of squares (RSS): the inner 

ellipse has smaller RSS, and RSS is minimized at ordinal least square (OLS) estimates. We are 

trying to minimize the ellipse size and circle simultaneously in the ridge regression. The ridge 

estimate is given by the point at which the ellipse and the circle touch. 
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Figure 2.2: Geometric Interpretation of Ridge Regression 

 

Lasso Regression 

Lasso (Least Absolute Shrinkage and Selection Operator) Regression is another variant of linear 

regression that employs regularization to address the limitations of OLS. Like Ridge Regression, 

Lasso adds a penalty term to the objective function. However, instead of using the sum of the 

squared coefficients, Lasso uses the sum of the absolute values of the coefficients as the penalty 

term ("STAT 508: Applied Data Mining and Statistical Learning."). Below you will see the 

subtle but important change between Ridge and Lasso. 
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This difference in the penalty term leads to a unique property of Lasso Regression: it encourages 

sparsity in the resulting model. When the regularization strength is sufficiently large, some of the 

coefficients may be exactly zero, effectively excluding the corresponding features from the 

model. This makes Lasso Regression particularly useful for feature selection in high-dimensional 

data sets, as it can identify the most relevant features and discard the irrelevant ones. 

However, Lasso Regression may struggle when there are highly correlated features, as it tends to 

select only one of them, which could lead to suboptimal performance. Figure 2.3 shows how 

Lasso (left) will compare to Ridge Regression (right). The lasso performs L1 shrinkage so that 

there are "corners'' in the constraint, which in two dimensions corresponds to a diamond. If the 

sum of squares "hits'' one of these corners, then the coefficient corresponding to the axis is 

shrunk to zero. 

 

Figure 2.3: Estimation picture of Lasso (left) and Ridge Regression (right) 

 

Decision Tree 

A Decision Tree is a non-parametric model that represents a series of decision rules based on the 

values of input features ("Decision Tree and Random Forest Explained."). The tree is built by 
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recursively splitting the data into subsets according to the feature values. At each node of the 

tree, a decision rule is applied based on the value of a specific feature. This rule is chosen to 

maximize the purity of the resulting subsets, which is typically measured using criteria such as 

Gini impurity or information gain. The process continues until a stopping criterion is reached, 

such as a maximum tree depth or a minimum number of samples per leaf.  

 

Decision Trees can be used for both classification and regression tasks. In classification tasks, 

the majority class in each leaf node represents the predicted class for the samples reaching that 

node. In regression tasks, the average value of the target variable in each leaf node is used as the 

prediction for the samples reaching that node. 

 

Decision Trees are intuitive and easy to interpret, as they resemble human decision-making 

processes. They can handle both numerical and categorical features, and they do not require any 

assumptions about the distribution of the data. However, Decision Trees can be prone to 

overfitting, especially when they are deep, as they can become too specific to the training data. 

This issue can be mitigated by pruning the tree or using ensemble methods, such as Random 

Forests. 

 

 

Random Forest 

Random Forest is an ensemble learning method that combines multiple Decision Trees to 

improve the overall performance and stability of the model. The idea behind Random Forest is 

that by aggregating the predictions of multiple weak learners (individual Decision Trees), the 
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resulting model can achieve better generalization and robustness ("Decision Tree and Random 

Forest Explained."). 

 

To construct a Random Forest, multiple Decision Trees are trained on different subsets of the 

training data, generated by bootstrapping (sampling with replacement). In addition, at each node 

of the tree, a random subset of features is considered for splitting, which introduces more 

diversity among the trees. Once all the trees are built, their predictions are combined by 

averaging (in the case of regression) or by taking a majority vote (in the case of classification) to 

obtain the final prediction of the Random Forest. 

 

Random Forests are particularly effective in reducing overfitting and improving the stability of 

the model, as they combine the predictions of multiple trees, each trained on a different subset of 

the data and features. They can handle a wide range of data types and are robust to noise and 

outliers. However, Random Forests can be computationally expensive, especially when the 

number of trees and the depth of the trees are large, and they may not be as interpretable as 

individual Decision Trees. Figure 2.4 demonstrates the first two decision trees in the Random 

Forest model in our study. 
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Regularized Adjusted Plus Minus (RAPM) 

Regularized Adjusted Plus-Minus (RAPM) is an advanced basketball statistic that aims to 

measure a player's impact on their team's performance while accounting for the quality of 

teammates and opponents on the court. RAPM builds upon the basic plus-minus statistic, which 

calculates the point differential (points scored minus points allowed) while a player is on the 

court ("Regularized Adjusted Plus-Minus (RAPM)."). However, plus-minus can be misleading 

because it does not take into account the quality of a player's teammates or opponents, which can 

significantly influence the point differential. 

RAPM addresses these limitations by incorporating a Bayesian regularization technique. It uses 

play-by-play data and lineup information to estimate the individual contributions of each player 

Figure 2.4: Decision Tree’s 1 and 2 for the Random Forest model in this study 
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while controlling for the strength of their teammates and opponents. This is achieved by solving 

a linear regression problem with a prior distribution on the player's impact, which helps to shrink 

extreme estimates and reduce overfitting. 

The RAPM value represents the estimated point differential per 100 possessions that a player 

contributes to their team relative to an average player in the league. A positive RAPM indicates 

that a player has a positive impact on their team's performance, while a negative RAPM suggests 

a detrimental impact. 

RAPM is considered an important statistic in basketball for several reasons: 

Comprehensive Evaluation: RAPM accounts for both offensive and defensive contributions of 

a player, providing a more comprehensive evaluation than traditional box score statistics like 

points, rebounds, and assists. 

Context Adjustment: By controlling for the quality of teammates and opponents, RAPM offers 

a more accurate estimate of a player's individual impact on their team's performance, 

independent of the surrounding context. 

Predictive Power: RAPM has been shown to have strong predictive power for team success, 

making it a valuable tool for player evaluation and roster construction. 
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Stability: The regularization technique used in RAPM helps to reduce noise and produce more 

stable estimates across different seasons and lineups. 

While RAPM is a powerful tool, there are some drawbacks to it. 

This includes a high threshold of data requirements as it relies on 

play-by-play data and lineup information that can be challenging 

to obtain, especially historically. The quality of the analysis 

depends on the accuracy and completeness of our data. It can also 

be noisy especially when dealing with small sample sizes or 

players who have limited playing time. This leads to a degree of 

uncertainty in our results. Lastly, there is a lack of contextual 

information in RAPM. It provides a single value that estimates a 

player’s overall impact on team performance. It does not tell you 

any insights into specific aspects of a player’s game, such as 

shooting, rebounding, or playmaking. This makes it difficult to 

identify areas for improvement or understand the underlying 

factors driving a player's RAPM value.                               

Overall, RAPM is an essential tool for basketball analysts and decision-makers, as it provides a 

more accurate and context-adjusted measure of a player's contributions to their team's success. In 

Figure 2.5, a list of RAPM values for the top players is presented, encompassing the three year 

period from 2020 to 2023. 

 

 

Figure 2.5: 3-year RAPM (2020-
2023) 
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Chapter 3: Methodology 

In this methodology chapter, we will delve into the details of the process and techniques 

employed to build a statistical learning model for evaluating NBA players using player tracking 

data. The chapter will be structured into several sections, each highlighting a crucial aspect of the 

research methodology. 

Firstly, we will begin with a thorough description of the dataset used in our study, including its 

source, the number of seasons, players, and games covered. This section will also provide an 

overview of the various variables present in the player tracking dataset and their respective 

definitions to ensure a comprehensive understanding of the data. 

Next, we will discuss the data preprocessing and cleaning procedures undertaken to ensure the 

quality and reliability of the dataset. This includes handling missing values and outliers, as well 

as any necessary data transformation. 

The main focus of the chapter will be on the models employed in the study. We will outline the 

feature engineering and selection process that enables us to extract relevant information from the 

player tracking dataset. This will be followed by a description of the model training and 

coefficient estimation techniques used to create our statistical models. 

 Subsequently, we will present the model evaluation criteria and validation techniques employed 

in our study, such as cross-validation, to ensure the robustness and generalizability of our 

findings. This section will also explore the analysis of models using all features and the analysis 

of models using only the most important features, shedding light on the significance of feature 

selection and the impact of dimensionality reduction on model performance. 
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By the end of this chapter, you will have a comprehensive understanding of the research 

methodology used to build a statistical model for evaluating NBA players using player tracking 

data. This will serve as a foundation for the subsequent chapters, where we will discuss the key 

findings of our study, their implications for the world of professional basketball, and potential 

avenues for future research. In figure 3.1, a flowchart illustrating our methodology process is 

displayed. The process begins with the initial data sets and concludes with the deployment of our 

model. 

 

Figure 3.1: Flowchart of our Methodology process 
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Dataset Description  

The dataset used for this thesis is obtained from the NBA's publicly available player tracking 

data, which includes information on player performance and movements during games ("NBA 

Advanced Stats: Player Advanced Stats."). The dataset covers nine seasons (2013-2022) and 

contains data for approximately 500 players per season. There are a total of 178 feature variables 

in our dataset as well as our target variable RAPM in a separate dataset ("RAPM: Regularized 

Adjusted Plus-Minus."). Below we list the 30 most important features in the dataset. To see all 

the variables in our study and the definitions for each ("NBA.com/Stats Glossary."), please refer 

to the appendix section. 

PLUS-MINUS: A statistic that measures the point differential when a player is on the court, 

comparing the team's performance with and without the player. 

NET RATING: A metric that calculates the point differential per 100 possessions between a 

team's offensive and defensive ratings. 

LOSS: A game outcome in which a team scores fewer points than their opponent. 

WIN: A game outcome in which a team scores more points than their opponent. 

TOUCHES: The number of times a player touches the ball during a game. 

PASSES RECEIVED: The number of passes a player receives from teammates during a game. 

ASSIST RATIO: The percentage of a player's possessions that end with an assist. 

TURNOVER: When a player loses possession of the ball to the opposing team. 
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TOV AT ELBOW: Turnovers that occur in the elbow area of the court, near the free-throw line. 

CONTESTED REBOUNDS: A rebound in which a player secures the ball while being 

challenged by an opponent. 

PASSES MADE: The number of passes a player makes to teammates during a game. 

3PM PULL-UPS: Three-point field goals made off a pull-up jump shot. 

STEAL: A defensive play in which a player takes the ball from an opponent. 

TOV PERCENTAGE ON DRIVES: The percentage of turnovers that occur during a player's 

drive to the basket. 

USAGE PERCENTAGE: An estimate of the percentage of team plays involving a particular 

player while on the court. 

PACE: A measure of the number of possessions a team uses per 48 minutes of play. 

PERSONAL FOUL PERCENTAGE ON DRIVES: The percentage of personal fouls committed 

by a player during their drives to the basket. 

TURNOVER PERCENTAGE IN PAINT: The percentage of turnovers that occur within the 

painted area near the basket. 

PERSONAL FOULS: Fouls committed by a player, resulting in free throws for the opposing 

team or a change in possession. 

OFFENSIVE RATING:  The number of points a team scores per 100 possessions. 
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FANTASY POINTS: A scoring system used in fantasy basketball to measure a player's overall 

performance. 

FREE THROW PERCENTAGE ON DRIVES: The percentage of free throws resulting from a 

player's drives to the basket. 

PASS PERCENTAGE IN PAINT: The percentage of passes that are completed within the 

painted area near the basket. 

GAMES PLAYED: The total number of games a player has participated in during a season or 

career. 

PASS PERCENTAGE ON POST-UPS: The percentage of passes completed during post-up 

plays. 

FREE THROW PERCENTAGE IN PAINT: The percentage of free throws made from fouls 

committed within the painted area near the basket. 

TRUE SHOOTING PERCENTAGE: A shooting efficiency statistic that accounts for field goals, 

three-point field goals, and free throws. 

EFFECTIVE FIELD GOAL PERCENTAGE ON PULL-UPS: The adjusted field goal 

percentage that accounts for the additional value of three-point field goals made from pull-up 

jump shots. 

DISTANCE MILES DEFENSE: The total distance covered by a player on the defensive end of 

the court during a game, measured in miles. 
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MINUTES PLAYED: The total amount of time a player spends on the court during a game, 

measured in minutes. 

Dataset cleaning 

Before analyzing the dataset for our models, we undertook several preprocessing and cleaning 

steps to ensure data quality. The data consisted of sixteen separate datasets per year, each 

representing a different player tracking category, and an additional RAPM dataset. Initially, we 

verified the uniqueness of each variable's title and removed any duplicates. Subsequently, we 

combined the datasets into a master dataset for modeling purposes. 

Next, we added the target variable, RAPM, to the master dataset. Due to discrepancies in player 

names within the RAPM dataset, we manually corrected these inconsistencies to ensure proper 

alignment. We then converted the categorical Team variable into a numerical format using one-

hot encoding, making it suitable for our models. Following these processes, our dataset was 

prepared and ready for model implementation. 

Upon examining our thoroughly cleaned dataset, we determined that utilizing the most recent 

data would yield the most accurate models. Rather than developing models for each individual 

year, we opted to train our model on data from the 2021 season, as it represented the latest 

completed season. Once the 2022 season concluded, we then deployed our model and evaluated 

its performance using the most current data available. 

Distribution of RAPM and Correlation Matrix 

In our study, we must first check that our target variable, RAPM, has a normal distribution. A 

normal distribution is important in our target variable as it ensures that the underlying 
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assumptions of many statistical techniques are satisfied. A normal distribution will help in 

achieving unbiased estimates, reduce the impact of extreme variables, and facilitate the 

interpretation of our results. When the target variable is normally distributed, our models become 

more reliable, and the conclusions we draw from them are more valid and generalizable. 

In Figure 3.2, we display the distribution of RAPM for our 2021 season. When looking at the 

graph of the distribution of RAPM, we are looking for symmetry around the mean and a bell-

shaped curve. Since the graph shows a roughly equal number of observations on either side of 

the mean and shows the characteristic pattern of the bell curve, we can conclude that the 

distribution is normal. Inspection alone may not provide definitive evidence of a normal 

distribution so we also do a Shapiro-Wilk test to confirm.  

 

Figure 3.2: Distribution of RAPM (2021) 
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For our study, we conducted the Shapiro-Wilk test on the RAPM values and obtained a p-value 

greater than 0.05. The Shapiro-Wilk statistic measures the deviation of the sample distribution 

from a normal distribution. The test then calculates a p-value that indicates the probability of 

obtaining the observed test statistic under the null hypothesis of normality. If the p-value is less 

than the significance level (which is 0.05 in this case), we reject the null hypothesis and conclude 

the data does not follow a normal distribution. In our case, the result is greater than 0.05 which 

indicates that there is insufficient evidence to reject the null hypothesis, suggesting that the 

RAPM values are likely to have originated from a normally distributed population. 

Consequently, the assumption of normality for the RAPM values 

in our dataset is considered reasonable, which is an important 

prerequisite for the application of the chosen statistical models in 

this thesis. By establishing the normality of the RAPM 

distribution, we can proceed with confidence in our subsequent 

analyses, knowing that our models' assumptions are met. 

To aid in the process of coefficient estimation, we employ a 

correlation matrix to examine the linear relationships between 

features. The correlation matrix helps identify potential 

multicollinearity among predictors, which can inform our feature 

selection and the interpretation of the estimated coefficients. 

Figure 3.3 displays the correlation matrix for RAPM related to all 

other variables. It shows that net rating, plus/minus, and offensive 

rating are all highly correlated with RAPM which makes sense as 

Figure 3.3: Correlation Matrix (2021) 
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RAPM is a statistic that is derived from plus/minus similar to offensive rating and net rating.    

 

Co-efficient Estimation of Our Models 

In this study, we aim to estimate the coefficients for each of our selected features using five 

different statistical models: Ordinary Least Squares (OLS), Ridge Regression, Lasso Regression, 

Decision Tree, and Random Forest. Each model offers unique advantages in coefficient 

estimation and allows for a comprehensive understanding of the relationships between the 

features and our target variable, RAPM. 

Ordinary Least Squares is the most straightforward linear regression model, which minimizes the 

sum of squared residuals to obtain the best-fitting line. Figure 3.4 is our coefficient estimation 

using Ordinary Least Squares. 

Ridge and Lasso Regression are extensions of OLS, 

introducing regularization to prevent overfitting and improve 

model generalization. Ridge Regression employs L2 

regularization, while Lasso Regression uses L1 regularization, 

which can also yield sparse models with some feature 

coefficients set to zero. Figures 3.5 and 3.6 show the 

coefficient values for Lasso and Ridge regression. 

 

 
Figure 3.4: OLS Co-efficient Estimation 

(2021) 
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Figure 3.5: Lasso Co-efficient Estimation (2021)  Figure 3.6: Ridge Co-efficient Estimation (2021) 

 

Decision Trees and Random Forests are non-linear models capable of capturing complex 

relationships in the data. Decision Trees recursively partition the data into subsets based on the 

most significant features, while Random Forests aggregate the results of multiple Decision Trees 

to reduce variance and improve predictive performance. Figures 3.7 and 3.8 reports the 

coefficients of our decision tree model and random forest model respectively. 
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Figure 3.7: Decision Tree Co-efficient Estimation (2021)   Figure 3.8: Random Forest Co-efficient Estimation (2021) 

 

By combining the insights from these five models and the correlation matrix, we can gain a 

deeper understanding of the factors that contribute to the RAPM values and ultimately improve 

our ability to evaluate NBA player performances. 
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Training our Models 

In this section of the thesis, we will analyze the performance of our five selected statistical 

models - Ordinary Least Squares (OLS), Ridge Regression, Lasso Regression, Decision Tree, 

and Random Forest - with all the features included in the dataset. To ensure a robust evaluation 

of the models, we split the data into training and testing sets using an 80% training and 20% 

testing split. This approach allows us to train our models on a majority of the data while 

reserving a portion for testing their performance and generalizability on unseen data. 

The goal of this analysis is to understand the initial performance of each model in predicting 

RAPM values and to identify any potential challenges, such as overfitting or multicollinearity, 

that may arise from using the complete set of features. Following the analysis of the models with 

all features, we will then focus on a more refined feature set by selecting the top 30 most 

important features. The top 30 features are selected from the co-efficient estimation for each 

individual model. For example, the top 30 features in the co-efficient estimation for OLS will 

now be the only features used in our OLS model with optimized features. In our Random Forest 

model with optimized features, we will use the top 30 features in our co-efficient estimation for 

Random Forest. This selection is based on the feature importance rankings derived from our 

initial models, and it aims to improve model interpretability, reduce overfitting, and potentially 

enhance the predictive performance. 

By comparing the results from both the full-feature and the reduced-feature analyses, we can 

gain valuable insights into the robustness and efficiency of our statistical learning models in 

evaluating NBA player performances using player tracking data. 
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To evaluate the performance of our models, we will employ three popular metrics: Mean 

Squared Error (MSE), Root Mean Squared Error (RMSE), and R-squared. These metrics are 

widely used in the field of regression analysis and can provide valuable insights into the 

accuracy and goodness-of-fit of our models. 

Mean Squared Error (MSE): MSE is the average of the squared differences between the 

predicted and actual values. It measures the dispersion or spread of the errors, with larger values 

indicating a greater difference between predictions and actual values. The primary advantage of 

using MSE is that it penalizes larger errors more heavily than smaller errors, which is beneficial 

in situations where large deviations from the true value are particularly undesirable. 

Root Mean Squared Error (RMSE): RMSE is the square root of the MSE. It represents the 

standard deviation of the residuals or prediction errors, which means it provides a measure of the 

average distance between the predicted and actual values. Since RMSE is expressed in the same 

unit as the target variable, it is easier to interpret compared to MSE. Lower values of RMSE 

indicate better model performance, with a value of 0 representing a perfect fit. 

R-squared: R-squared, also known as the coefficient of determination, measures the proportion 

of the total variation in the target variable that is explained by the model. It ranges from 0 to 1, 

with higher values indicating a better fit. An R-squared value of 1 indicates that the model 

perfectly explains the variance in the target variable, while a value of 0 means that the model 

does not explain any of the variance. R-squared is particularly useful for comparing the 

performance of different models and assessing their ability to capture the underlying patterns in 

the data. 
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These three metrics, when used in conjunction, provide a comprehensive assessment of our 

models' performance. MSE and RMSE focus on the accuracy of the predictions, while R-squared 

evaluates the overall goodness-of-fit. By considering all these metrics, we can ensure a balanced 

evaluation of our models, taking into account both the magnitude of prediction errors and the 

proportion of variance explained. 

In Figures 3.9 and 3.10, you will see the results of our models against the testing data using the 

three metrics discussed, MSE, RMSE, and R-squared (R2).  

 

Figure 3.9: Top two models with all features included (2021) 
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Figure 3.10: Statistical models with top performing features (2021) 

 

Deployment of our Models 

In the final step of our methodology, we aim to evaluate the performance of our models using 

newly acquired 2022 data. This recently completed dataset provides an opportunity to test the 

generalizability and predictive power of the models we have developed. By applying our trained 

models to this independent dataset, we can gain insights into their real-world applicability and 

robustness. This analysis will help us better understand the strengths and weaknesses of our 

models and identify potential areas for improvement in future research. In figures 3.11 and 3.12, 

you can see the results of our statistical learning models against the 2022 testing data. 
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Figure 3.11: Top two performing models with all features included against the 2022 testing data 

 
 

 

Figure 3.12: Statistical models with top performing features against the 2022 testing data 

 

In conclusion, the methodology chapter of this thesis has provided a detailed overview of the 

dataset, variables of interest, data preprocessing and cleaning steps, and the modeling techniques 
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employed. We have described the comprehensive player tracking dataset, which contains 

valuable information on various aspects of basketball performance, and discussed the target 

variable RAPM, which is an important statistic in evaluating player contributions. Careful data 

preprocessing and cleaning procedures were undertaken to ensure the highest possible data 

quality and to prepare the dataset for use in our models. 

The methodology also included a thorough explanation of the five regression models used in this 

study: OLS, Ridge, Lasso, Decision Tree, and Random Forest. The feature engineering and 

selection process, as well as model training and coefficient estimation methods, were discussed. 

We have also outlined the model evaluation criteria and validation techniques, which involve 

splitting the data into training and testing sets and using metrics such as MSE, RMSE, and R-

squared to assess the performance of each model. 

Finally, we have described the process of analyzing the models using all features and using the 

most important features, which allows for a comprehensive comparison of their performance in 

both scenarios. By following this robust methodology, this study aims to provide valuable 

insights into the relationships between player tracking data and player performance in basketball, 

ultimately contributing to the field of sports analytics and enhancing our understanding of the 

game. 
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Chapter 4: Analysis and Discussion 

In this analysis section, we will dive into a comprehensive evaluation of the various models 

developed in our study, focusing on their performance, interpretability, and practical implications 

for NBA teams. We will start by comparing the performance of all models, considering both the 

full feature and the top 30 feature scenarios. This comparison will allow us to identify the best-

performing model and further investigate its performance on the 2022 testing data. 

Next, we will interpret the results of the chosen model and discuss its implications for basketball 

analytics, player evaluation, and NBA team strategies. This section will provide valuable insights 

into how our model can aid teams in making more informed decisions regarding player 

development, roster construction, and game planning. 

Finally, we will address the limitations of our study, considering factors such as data scope, 

feature selection, model assumptions, and generalizability. This discussion will help to 

contextualize our findings and highlight areas for future research and improvement in the field of 

basketball analytics. By understanding the strengths and weaknesses of our approach, we can 

better appreciate the potential impact of our work on the world of professional basketball. 

Comparing our results 

In this section, we analyze and discuss the performance of our models using the Mean Squared 

Error (MSE), Root Mean Squared Error (RMSE), and R-squared metrics. The models are 

compared in two scenarios: using all features and using only the top 30 most important features, 

as identified by the coefficient analysis performed earlier in the study. 



35 
 

Initially, we focus on the results obtained using all features. The Random Forest model 

outperforms the Decision Tree model, with lower MSE (0.37 vs. 0.53) and RMSE (0.60 vs. 0.73) 

and a higher R-squared value (0.8283 vs. 0.7499). This is shown in Figure 4.1. This indicates 

that the Random Forest model has better predictive accuracy and explains more variability in the 

RAPM. 

 

Figure 4.1: Table of top two performing model’s metrics 

Next, we examine the results for models using only the top 30 features selected from the 

coefficient analysis. The Lasso Regression model demonstrates the best performance with the 

lowest MSE (0.32) and RMSE (0.57) and the highest R-squared value (0.848). Figure 4.2 

displays this information. This result suggests that Lasso Regression provides a more accurate 

and reliable prediction of RAPM when using a reduced set of features, which can lead to a more 

interpretable and parsimonious model. 

 

Figure 4.2: Table of model’s metrics with top performing features  

Finally, we consider the model performance using the 2022 testing data. Among the models with 

all features, Random Forest performs the best, with lower MSE (0.43 vs. 0.84) and RMSE (0.66 

vs. 0.92) and a higher R-squared value (0.7460 vs. 0.503) than the Decision Tree model. Figure 
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4.3 shows this information. In the case of models with only the top 30 features, Lasso Regression 

outperforms the other models, exhibiting the lowest MSE (0.32) and RMSE (0.57) and the 

highest R-squared value (0.8090). Figure 4.4 displays these results. 

 

Figure 4.3: Table of top two performing models against 2022 data 

 

 

Figure 4.4: Table of models metrics with top performing features against 2022 data  

 

In summary, the Random Forest model performs the best when using all features, while Lasso 

Regression demonstrates the best performance when using only the top 30 features. When 

considering the 2022 testing data, Lasso Regression with the top 30 features shows the best 

overall performance, indicating its effectiveness in predicting RAPM values. To further show 

how well our Lasso Regression model predicts RAPM values, Figure 4.5 shows the top RAPM 

values for 2022 next to our predicted values. Figure 4.6 shows the metrics of the 2022 RAPM 

values and the metrics for our predicted values.  
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Figure 4.5: 2022 RAPM Values vs 2022 Predicted RAPM Values with Lasso 

 

Figure 4.6: 2022 RAPM metrics vs 2022 Predicted RAPM with Lasso metrics  

This model balances accuracy and simplicity, providing a reliable and interpretable solution for 

future analysis and applications. 

 



38 
 

Implications for NBA teams 

The best-performing model, Lasso Regression with the top 30 features, offers valuable insights 

and applications for basketball analytics, NBA teams, and player evaluation. By leveraging this 

model, various stakeholders can gain a deeper understanding of player performance, optimize 

team strategies, and make more informed decisions regarding player acquisitions and 

development. Here are some specific applications and benefits of utilizing this model in 

basketball analytics: 

Improved player evaluation: Using the Lasso Regression model, NBA teams can better assess 

a player's overall performance by considering the most relevant features that contribute to their 

RAPM. This holistic evaluation can help teams identify undervalued players or potential 

weaknesses in their opponents' rosters. 

Data-driven coaching and game strategies: The model can be used to identify patterns and 

tendencies in player performance and provide recommendations for optimizing offensive and 

defensive strategies. Coaches can use these insights to make adjustments during games or 

develop targeted training programs that focus on specific skill sets. 

Roster optimization: The model can help teams find the optimal mix of players that 

complement each other, maximizing their combined RAPM. This can lead to improved on-court 

chemistry and overall team success. 

Player development: By identifying the most important features contributing to RAPM, the 

model can help teams design individualized development programs for their players. This can 

enhance player growth, improve their RAPM, and ultimately contribute to team success. 
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Salary cap management: Using the insights from the Lasso Regression model, NBA teams can 

make more informed decisions about player contracts, ensuring that they allocate resources 

efficiently and stay within the salary cap while maximizing team performance. 

Draft and trade analysis: The model can be used to evaluate potential draft prospects and trade 

targets, enabling teams to make more informed decisions when acquiring new players. This can 

help teams build a stronger roster and improve their chances of success in the long run. 

Limitations of our study 

While our study provides valuable insights into predicting player performance using advanced 

basketball metrics, there are several limitations to consider: 

Limited data scope: Our study is based on data from specific seasons up until 2022, which may 

not capture the full spectrum of player performance or game contexts. Additionally, there may be 

changes in the game, player performance trends, or team strategies that our model does not 

account for. 

Feature selection: Although we used the top 30 features based on our coefficient analysis, there 

may be other important features that were not considered, or the selected features may not be the 

most optimal for predicting RAPM across all scenarios. 

Model assumptions: The study relies on several model assumptions, such as normal distribution 

of RAPM and the use of linear regression techniques. These assumptions may not hold true in all 

cases, potentially affecting the model's performance. 
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Generalizability: Our models were trained and tested on specific data sets, and their 

performance on new data or different leagues may be different. The models might need to be 

retrained or adapted for different contexts to ensure their reliability. 

Overfitting: Although we have attempted to minimize overfitting by using regularization 

techniques like Lasso and Ridge Regression, there is still a possibility that the model could be 

overfitting to the training data, leading to reduced performance on new data. 

Model interpretability: While Lasso Regression was our best-performing model, it can be more 

challenging to interpret compared to simpler models like OLS. This may make it harder for 

stakeholders to understand and trust the predictions made by the model. 

Addressing these limitations in future research can help improve the accuracy and reliability of 

our models and expand their applicability to other basketball analytics tasks. This may involve 

incorporating additional data sources, exploring alternative feature selection methods, or 

experimenting with different modeling techniques. 

In conclusion, the Lasso Regression model with the top 30 features can significantly enhance 

basketball analytics, providing NBA teams with valuable insights and tools for player evaluation, 

coaching strategies, roster optimization, and more. By leveraging this model, teams can make 

more informed decisions and ultimately improve their performance on the court. 

Our analysis has provided a thorough examination of the various models used to predict player 

performance in the context of NBA basketball. By comparing these models, we have identified 

the best-performing one, which has significant implications for basketball analytics, player 

evaluation, and team decision-making. The insights gained from our model can help NBA teams 
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make more informed decisions, ultimately leading to better on-court performance and increased 

competitiveness. 

Furthermore, our study has revealed the importance of feature selection in model development, 

as evidenced by the improved performance of the models using the top 30 features. This finding 

highlights the need for careful consideration of the features included in any predictive model, as 

well as the value of a comprehensive coefficient analysis. 

While our study has provided valuable insights, we have also acknowledged its limitations, 

paving the way for future research to build upon our findings and refine the methods used in 

basketball analytics. As the field of sports analytics continues to grow, we can expect more 

sophisticated models and techniques to emerge, driving the evolution of basketball analytics and 

further enhancing our understanding of player performance in the NBA. 
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Chapter 5: Conclusions 

This thesis, titled "Building a Statistical Model for Evaluation of NBA Players Using Player 

Tracking Data," aimed to find faster and more accurate ways to measure NBA player 

performances. Our research question sought to determine if publicly available player tracking 

data could improve existing measures for evaluating player performances. The study acquired 

player tracking data from the 2013 to 2021 seasons and used RAPM as the target variable due to 

its effectiveness in ranking player value over the long term. 

Five statistical learning models, including Ordinary Least Squares, Ridge regression, Lasso 

regression, Decision Tree, and Random Forest, were employed to estimate RAPM using player 

tracking data as features. The models were also tested using only the top 30 most important 

features ranked by their coefficients. The models' performance was further assessed using newly 

acquired 2022 player tracking data. Key findings revealed that Lasso regression and Random 

Forest performed the best among all models at predicting RAPM values. 

The implications of these findings suggest that by using player tracking statistics that settle 

earlier, we can achieve a more accurate estimate of future RAPM. Consequently, teams can gain 

an advantage in player evaluations, enabling them to acquire the best-performing players before 

other teams become aware of their potential.  

However, it is essential to acknowledge the limitations of this study, such as the reliance on 

available player tracking data and potential biases in the RAPM metric. Despite these limitations, 

the contributions of this thesis have the potential to impact the way NBA teams approach player 

evaluation and strategy in the future. 
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Future studies and research in this topic hold great potential to build on our study and continue 

the work in understanding basketball. As the accuracy and availability of player tracking data 

continues to improve, researchers can develop even more sophisticated models for evaluating 

player performances and predicting outcomes. Integrating advanced machine learning techniques 

and exploring novel features could lead to a deeper understanding of the game, uncovering 

hidden patterns and previously unknown relationships among player statistics. Furthermore, real-

time analysis and predictive models could be incorporated into coaching strategies, allowing 

teams to make data-driven adjustments during games. Additionally, future research could 

explore ways to refine player evaluation metrics, reducing biases and better accounting for 

intangibles, such as leadership and teamwork. Ultimately, the continued evolution of NBA 

analytics has the potential to revolutionize not only player evaluation and team strategy but also 

enhance the overall understanding and appreciation of the game of basketball. 

In conclusion, this study demonstrated that combining statistical models with player tracking 

data enables us to estimate end-of-season statistics earlier. The ability to make accurate early 

estimates of player performance empowers teams to make informed decisions in acquiring top 

talent, ultimately leading to a more competitive and exciting NBA landscape. 
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Appendix 

Definitions of our 178 feature Variables 

TEAM: The NBA team the player belongs to. 

AGE: The age of the player. 

GAMES PLAYED: The total number of games the player participated in during a season. 

WIN: The total number of games the player's team won during a season. 

LOSS: The total number of games the player's team lost during a season. 

MINUTES PLAYED: The total number of minutes the player was on the court during a season. 

OFFENSIVE RATING: A metric that estimates the number of points a player contributes per 

100 possessions while on the court. 

DEFENSIVE RATING: A metric that estimates the number of points a player allows per 100 

possessions while on the court. 

NET RATING: The difference between a player's offensive and defensive rating. 

ASSIST PERCENTAGE: The percentage of teammate field goals a player assisted on while on 

the court. 

TURNOVER RATIO: The number of turnovers a player commits per 100 possessions while on 

the court. 
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EFFECTIVE FIELD GOAL PERCENTAGE: A statistic that adjusts for the fact that three-point 

field goals are worth more than two-point field goals. 

TRUE SHOOTING PERCENTAGE: A measure of shooting efficiency that takes into account 

field goals, three-point field goals, and free throws. 

USAGE PERCENTAGE: The percentage of team plays used by a player while they were on the 

floor. 

PACE: The number of possessions a team uses per 48 minutes. 

PLAYER IMPACT ESTIMATE: A metric that measures a player's overall impact on the game, 

expressed as a percentage. 

POINTS OFF CATCH AND SHOOT: The number of points a player scores as a result of 

catching a pass and shooting without dribbling. 

DRIVES: The number of times a player drives to the basket. 

ELBOW TOUCHES: The number of times a player touches the ball at the elbow area of the 

court. 

CONTESTED REBOUNDS: The number of rebounds a player grabs when an opposing player is 

also attempting to grab the rebound. 

PAINT TOUCHES: The number of times a player touches the ball in the paint area of the court. 

POST UPS: The number of times a player receives the ball in the post area of the court. 
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POINTS OFF PULL UP: The number of points a player scores as a result of dribbling and 

shooting without passing. 

TOUCHES: The total number of times a player touches the ball during a game. 

DISTANCE FEET: The total distance a player covers during a game, measured in feet. 

AVERAGE SPEED: The average speed at which a player moves during a game, measured in 

miles per hour. 

POINTS: The total number of points a player scores during a game. 

REBOUNDS: The total number of times a player retrieves the ball after a missed field goal or 

free throw. 

ASSISTS: The total number of passes a player makes that lead directly to a made field goal by a 

teammate. 

TURNOVERS: The total number of times a player loses possession of the ball to the opposing 

team. 

STEALS: The total number of times a player takes the ball away from an opposing player. 

BLOCKS: The total number of times a player deflects an opposing player's field goal attempt. 

PERSONAL FOULS: The total number of Illegal physical contact violations, leading to free 

throws or possession for the opposing team. 
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DOUBLE DOUBLES: The total number of games in which a player records double-digit values 

in two of the five major statistical categories (points, rebounds, assists, steals, and blocks) during 

a single game. 

TRIPLE DOUBLES: The total number of games in which a player records double-digit values in 

three of the five major statistical categories (points, rebounds, assists, steals, and blocks) during a 

single game. 

PLUS/MINUS: A statistic that measures the point differential when a player is on the court, i.e., 

the difference between the points scored by the player's team and the points scored by the 

opposing team while the player is on the court. 

TOTAL MINUTES PLAYED: The sum of all minutes played by a player throughout the entire 

season. 

Many of the variables in the list below are repeated for different contexts or situations (e.g., for 

catch and shoot, pull-up, elbow touches, post-ups, and paint touches). Provided are general 

definitions for these variables, which can be applied to their specific contexts. 

A. FIELD GOALS MADE: The total number of successful shots from the field in the specified 

context. 

B. FIELD GOALS ATTEMPTED: The total number of shots attempted from the field in the 

specified context. 

C. FIELD GOAL PERCENTAGE: The ratio of successful field goals to field goal attempts in 

the specified context. 
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D. FREE THROWS MADE: The total number of successful free throws in the specified context. 

E. FREE THROWS ATTEMPTED: The total number of free throw attempts in the specified 

context. 

F. FREE THROW PERCENTAGE: The ratio of successful free throws to free throw attempts in 

the specified context. 

G. POINTS: The total number of points scored in the specified context. 

H. POINTS PERCENTAGE: The percentage of a player's total points that come from the 

specified context. 

I. PASSES: The total number of passes made in the specified context. 

J. PASS PERCENTAGE: The percentage of a player's total passes that come from the specified 

context. 

K. ASSISTS: The total number of assists made in the specified context. 

L. ASSIST PERCENTAGE: The percentage of a player's total assists that come from the 

specified context. 

M. TURNOVERS: The total number of turnovers committed in the specified context. 

N. TURNOVER PERCENTAGE: The percentage of a player's total turnovers that come from 

the specified context. 

O. PERSONAL FOULS: The total number of personal fouls committed in the specified context. 
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P. PERCENTAGE OF TEAM'S PERSONAL FOULS: The percentage of a player's personal 

fouls relative to the total number of personal fouls committed by the team in the specified 

context. 

For variables related to rebounding, defensive plays, and other statistics with similar groupings, 

the general definitions provided above can be applied to the specific context or situation 

mentioned in the variable name. 

 


